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Observers for linear systems by the
time-integrals and moving average of the output

Laura Menini, Corrado Possieri and Antonio Tornambè

Abstract— In this paper, it is shown that, under some
mild assumptions, it is possible to design observers for
linear, time-invariant, continuous-time and discrete-time
systems by feeding classical linear observers (as, e.g., the
Kalman filters and the Luenberger observer) with the suc-
cessive integrals and the moving average of the measured
output, respectively. The main interest in these observers
relies on the fact that both the integral and the moving
average exhibit low-pass behaviors, thus allowing the de-
sign of observers that are less sensitive to high-frequency
noise. Examples are reported all throughout the paper to
corroborate the theoretical results and to highlight the
improved filtering properties of the proposed observers.

Index Terms— Observer design, linear systems.

I. INTRODUCTION

The problem of estimating the current state of a dynamic
system from the inputs and outputs measurements is crucial
in several applications, as, e.g., the design of output feedback
controllers. Its roots go back to the introduction of state-space
approaches for the design of controllers and for the analysis
of linear, time-invariant plants [1]. The birth of the theory of
deterministic state observers can be traced back to [2], [3],
which outlined how the inputs and outputs of a continuous-
time plant may be used to construct an estimate of the system
state. Since those seminal papers on continuous-time systems,
a lot of works have extended the deterministic observation
theory to discrete-time [4], [5], time-varying [6], [7], and, more
recently, hybrid linear systems [8] (see [9] for a survey).

The approach classically used to design a state observer
for linear systems is to build a replica of the plant and to
feedback the difference between the outputs of the plant and
of the replica through a linear gain [10]. This has been proved
successful in several applications [11], [12], [13]; it allows the
independent design of the observer and of the state feedback,
leading to stabilizing output feedback controllers [14].

When dealing with linear plants, whose dynamics and out-
puts are affected by noise, one of the most used approaches to
determine an estimate of the current state of the system is the
Kalman filter [15], [16], [17], [18], which was first presented
and developed in [19], [20], [21]. For time-invariant, linear
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systems, the Kalman filter essentially operates by feeding back
the output error to a replica of the plant through a linear
gain, to be found by solving a Riccati equation depending
on the covariance matrices of the noises [22], [23]. For linear
systems, affected by Gaussian, independent, zero-mean noises,
with known distributions, the Kalman filter minimizes the
mean square of the estimation error [24].

Since the early works of Kalman [20] and Luenberger [2],
several attempts have been made to improve the convergence
properties of the observer and to reject noises. For instance,
in [25], Utkin proposed an observer for continuous-time lin-
ear system that achieves finite time convergence to zero of
the output error by feeding back to the system replica the
estimation error via a discontinuous switched signal. Other
examples of observers for linear systems, largely used in
practical applications [26], are the unknown input observers,
first introduced in [27]; a technique to design a linear unknown
input observer for continuous-time linear systems has been
proposed in [28], whereas, in [29], aH∞ approach is proposed
for robust estimation of unknown inputs and state variables. On
the other hand, in [30], [31], parameter-dependent approaches
are given for robust H2 and H∞ filtering of uncertain systems.

Due to the large impact of observation theory on the fields
of estimation and control, state observers for linear systems
are still being studied largely [32], [33].

One of the main objectives of this paper is to characterize
the integrals (for continuous-time systems) and the moving
average (for discrete-time systems) of the output of a linear
plant. The interest on these filters relies on the fact that they
are perhaps the most simple low-pass numerical filter used in
practical application to reduce the effects of high-frequency
noise on the output. It turns out that, under some mild as-
sumptions, the output of such filters preserves the observability
properties of the system and that it can be expressed as a
linear function of the state response of the system and of
the successive time-integrals of the input, thus allowing, in
principle, the coupling of the tools given in this paper with
any other technique able to design observers for linear systems
(the Kalman filters and the Luenberger observers are mainly
preferred here due to their simplicity). The advantage of the
use of such tools is that they improve the performance of
other estimation techniques by reducing the effects of high-
frequency additive measurement noise without affecting the
observability properties of the system, as confirmed by several
simulations reported all throughout the paper.

The paper is organized as follows. In Section II, the notation
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used in this paper is introduced and a hint on the main
idea pursued to design observers is given. In Section III,
some properties of the time-integrals of the output of a linear
continuous-time system are derived. Such results are used
in Section IV to design linear observers for continuous-time
systems based on the time-integrals of the output. Following
the same scheme, some properties of the moving average of
the output of a discrete-time system are derived in Section V
and used in Section VI to design observers for discrete-time
systems. The case of detectable but not observable systems is
dealt with in Section VII. Finally, conclusions are drawn in
Section VIII.

II. NOTATION AND PROBLEM STATEMENT

Let R, Z, R>0, Z>0, R≥0, and Z≥0 denote the sets of
real, integer, positive real, positive integer, non-negative real,
and non-negative integer numbers, respectively. The symbol
block diag(A1, . . . , An) denotes the block diagonal matrix,
whose blocks are A1, . . . , An. Given A ∈ Rn×n, σ(A)
denotes the spectrum of the matrix A, i.e., the set of its
eigenvalues. Given M ∈ Rm×n, with m ≥ n and such
that rank(M) = n, let M† = (M>M)−1M> denote the
Moore-Penrose pseudo-inverse of M . Let E{·} be the expected
value of the random variable at argument. Given a multi-
index ` = [ `1 · · · `n ]>, `i ∈ Z≥0, i = 1, . . . , n, let
|`| :=

∑n
i=1`i and `! := `1! · · · `n! be the length and the

factorial of `, respectively. Given x = [ x1 · · · xn ]>,
define accordingly x` := x`11 · · ·x`nn and ∂`

∂x` := ∂|`|

∂x
`1
1 ···x

`n
n

.

Let R[x] be the set of all the polynomials in x with coefficients
in R, and let R∞[[x]] be the set of all the scalar functions
h : Rn → R such that there exists an open (possibly, small)
subset U of Rn containing x = 0 such that h is C∞ at each
x ∈ U ; each function h in R∞[[x]] is referred to as smooth.
The formal power Taylor series of h ∈ R∞[[x]] is

H(x) =
∑+∞
|`|=0

1
`!

∂`h(x)
∂x`

∣∣∣
x=0

x`. (1)

Let Rω[[x]] be the set of all the h ∈ R∞[[x]] that are analytic
at x = 0, i.e., such that, for each x in a neighborhood B ⊂ U
of x = 0, the series given in (1) converges and h(x) = H(x),
for each x ∈ B. Let Rω0 [[x]] be the set of all the functions h in
Rω[[x]] that vanish at x = 0 and Rω0 [[x]]p be the set of all the
p-dimensional vector functions whose entries are in Rω0 [[x]].
For h ∈ Rω0 [[x]]p, let ∂h(x)

∂x denote the Jacobian matrix of h.
Consider the following linear and time-invariant system:

∆x(t) = Ax(t) +B u(t), (2a)
y(t) = C x(t) +Du(t), (2b)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input
and output vectors, respectively, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, D ∈ Rp×m, and t ∈ T, with T being either R≥0

or Z≥0. If T = R≥0, then the input u(t) is assumed to be a
function of t being continuously differentiable a sufficiently
large number of times. If T = R≥0, then the symbol ∆x(t)
denotes the time-derivative of the state x(t), i.e., ∆x(t) =
ẋ(t), whereas, if T = Z≥0, then the symbol ∆x(t) denotes the
one-step forward-shifted value of x(t), i.e., ∆x(t) = x(t+1).

Given a pair (C,A) and an integer N ≥ 1,

ON (C,A) :=
[
C> . . . (A>)N−1C>

]>

denote the observability matrix of order N of pair (C,A).
Note that, by [34], system (2) is observable if and only if
rank(On(C,A)) = n for both T = R≥0 and T = Z≥0.

A. Rationale of the proposed observer design technique
The main objective of this paper is to design state observers

for system (2), based on either some successive time-integrals
of the output-response y(t), if T = R≥0, or some successive
moving averages of the output-response y(t), if T = Z≥0.

The interest in this class of observers for T = R≥0 relies
on the following observation: if the output measurements are
affected by a high-frequency noise, i.e., the measured output is
y(t) +A cos(ωt), ω � 1, then the integral of such a signal is∫ t

0
y(γ) dγ− A

ω sin(ωt), whence it is affected by a disturbance
with smaller amplitude. Therefore, it may be convenient, in
practical applications, to design an observer that considers
the integral of the output-response rather than the output-
response itself. As shown in the subsequent Section IV, such
an observer requires, apart from the integrals of the input and
output of the system, additional constants c that depend on the
initial condition (a method to estimate such constants is given
in the subsequent Sub-section IV-A). Hence, the proposed
observer for T = R≥0 has the structure depicted in Fig. 1.

y, u
∫

state
observer

x̂
c

Fig. 1. Conceptual model of the proposed observer for T = R≥0.

A similar reasoning holds for T = Z≥0 since the moving
average allows to efficiently filter additive disturbances on the
output (see the subsequent Section VI).

III. DERIVATIVES AND INTEGRALS OF THE OUTPUT OF A
CONTINUOUS-TIME LINEAR SYSTEM

Throughout this section, it is assumed that T = R≥0, so
that the dynamics given in (2) read as follows:

ẋ(t) = Ax(t) +B u(t), (3a)
y(t) = C x(t) +Du(t). (3b)

The objective of this section is to characterize the successive
time-derivatives and time-integrals of the output-response y(t)
as functions of the state-response x(t) of system (3) and of
the time-derivatives and time-integrals of the input u.

A. Time-derivatives of the output-response

Let yi(t) := di

dti y(t) denote the i-th time-derivative of the
output-response y(t) of system (3), i ∈ Z≥0. The following
proposition can be easily proved by the analysis carried out in
Section 5.1.2 of [34], and gives a closed-form expression for
the time-derivatives of the output-response y(t) of system (3).



MENINI et al.: OBSERVERS FOR LINEAR SYSTEMS USING THE INTEGRALS AND THE MOVING AVERAGE OF THE OUTPUT 3

Proposition 1. Let x(t) and yk(t) be the state-response
and the k-th time-derivative of the output-response y(t) of
system (3), respectively; for k ∈ Z≥0 and t ∈ R≥0, one has

yk(t) = CAk x(t) +Duk(t) +
∑k−1
i=0 CA

k−i−1B ui(t), (4)

where ui(t) := di

dtiu(t), i = 0, . . . , k.

B. Time-integrals of the output-response

Let system (3) be given, let y0(t) := y(t) (as in the previous
sub-section) and let

y−(i+1)(t) :=
∫ t

0
y−i(γ) dγ (5)

be the (i + 1)-th time-integral of the output-response y(t) of
system (3), i ∈ Z≥0. Note that y−i(0) = 0, for i ∈ Z, i ≥ 1.

Proposition 2. Assume det(A) 6= 0; let x(t) and y−k(t) be
the state-response and the k-th time-integral of the output-
response y(t) of system (3), respectively. For each k ∈ Z,
k ≥ 1, and t ∈ R≥0, one has

y−k(t) = CA−k x(t) +Du−k(t)

−∑k
i=1CA

i−k−1B u−i(t) +
∑k
j=1

c−j

(k−j)! t
k−j , (6)

where u−(i+1)(t) :=
∫ t

0
u−i(γ) dγ, i = 0, . . . , k − 1, and

c−1, . . . , c−k are constant vectors depending on x(0) = xo.

Proof. By definition, (6) holds for k = 0. Now, assume that (6)
holds for some k ∈ Z≥0. Thus, since A is invertible, one has
that x(t) = A−1 ẋ(t)−A−1B u(t), whence

y−(k+1)(t) =
∫ t

0
CA−kx(γ) dγ +Du−k−1(t)

−∑k+1
i=2CA

i−k−2B u−i(t) +
∑k
j=1

c−j

(k−j+1)! t
k−j+1

= CA−k−1 x(t)− CA−k−1 x(0) +Du−k−1(t)

−∑k+1
i=1CA

i−k−2B u−i(t) +
∑k
j=1

c−j

(k−j+1)! t
k−j+1.

Letting c−k−1 = −CA−k−1 x(0), (6) holds by induction.

Given h ∈ Rω0 [[x]]p, let LAxh(x) := ∂h(x)
∂x Ax be the direc-

tional derivative of h along the vector field Ax, LAxh(x) ∈
Rω0 [[x]]p; such a notation can be iterated as Li+1

Ax h(x) :=
LAx(LiAxh(x)), i ∈ Z≥0. A directional integral of h ∈
Rω0 [[x]]p along the vector field Ax is, if any, a vector function
k ∈ Rω[[x]]p such that LAxk(x) = h(x). Since LAxk(x) =
h(x) implies LAx(k(x) + b) = h(x), for any constant vector
b, function k(x) can be chosen so that k(0) = 0, i.e.,
k ∈ Rω0 [[x]]p. It is worth pointing out that the directional
derivative of h along the vector field Ax always exists and
is uniquely defined, whereas, although the time-integral of
y(t) given in (5) always exists and is uniquely defined, a
directional integral of h along the vector field Ax need not
either exist or be uniquely defined. As shown later in this
section, the existence of a directional integral of h along
the vector field Ax and its uniqueness in the class of linear
functions is guaranteed by the condition det(A) 6= 0. In case
of existence of a function k(x) such that LAxk(x) = h(x),
since y(t) = h(x(t)), where x(t) and y(t) are the state-
response and the output-response of the considered system,

respectively, one has that k(x(t)) −
∫ t

0
y(γ) dγ is a constant,

which need not be zero.
The following lemma gives some properties of the direc-

tional integrals of a scalar function along the vector field Ax.

Lemma 1. Let A ∈ Rn×n and h, ω, k1, k2 ∈ Rω0 [[x]].
(1.1) If LAxω(x) = 0, then LAxb(ω(x)) = 0, ∀b ∈ Rω0 [[ω]].
(1.2) If LAxω(x) = 0 and LAxk1(x) = h(x), then

LAx(k1(x) + ω(x)) = h(x).
(1.3) If LAxk1(x) = h(x) and LAxk2(x) = h(x), then

LAx(k1(x)− k2(x)) = 0.

Proof. Statement (1.1) follows from LAxb(ω(x)) =
∂b(ω)
∂ω |ω=ω(x)LAxω(x), which implies that if LAxω(x) = 0,

then LAxb(ω(x)) = 0. Statements (1.2) and (1.3) follow from
the linearity of the directional derivative along Ax.

If ω(x) ∈ Rω[[x]] satisfies LAxω(x) = 0, then it is an
analytic first integral associated with Ax; any scalar constant is
a (trivial) analytic first integral associated with Ax, for any A.

Corollary 1. Let A ∈ Rn×n and h ∈ Rω0 [[x]]; k is the unique
directional integral in Rω0 [[x]] of h(x) along the vector field
Ax (i.e., k is the unique solution in Rω[[x]] of LAxk(x) =
h(x) satisfying k(0) = 0) only if there is no non-constant
analytic first integral associated with the vector field Ax.

Some polynomials ω1, . . . , ωυ ∈ R[x] are algebraically
independent if there is no non-zero polynomial p ∈
R[z1, . . . , zυ], where z1, . . . , zυ are scalar variables, such that
p(ω1(x), . . . , ωυ(x)) is the zero polynomial in R[x]. Given a
monomial order in R[x], a polynomial p ∈ R[x] is monic if
the coefficient of the leading monomial of p is equal to 1.

Theorem 1 (see Lemma 3.3 of [35]). Let a monomial order
be fixed. For any A ∈ Rn×n, there is a finite number υ ∈
Z, υ ≥ 1, of algebraically independent monic polynomials
ω1, . . . , ωυ ∈ R[x] such that each analytic first integral ω(x) ∈
Rω[[x]] associated with the vector field Ax can be expressed
as ω(x) = b(ω1(x), . . . , ωυ(x)), where b ∈ Rω[[z1, . . . , zυ]].

If the only analytic first integrals associated with the vector
field Ax are the constants, then υ = 1 and ω1(x) = 1.

In the remainder of this section, without loss of generality
(since the observability of linear systems is not affected by the
input [36]), only the unforced case is considered for simplicity.

A polynomial p` ∈ K[x] is homogeneous of degree ` with
respect to the standard dilation [37] if all the monomials of
p` have the same degree `; given p ∈ K[x], let p` be the
sum of all terms of p of degree `; each p` is homogeneous,
p =

∑
`p` is a finite sum, and the p`’s are called the

homogeneous components of p. Similarly, for any analytic
function k ∈ Rω0 [[x]]p, just considering its Taylor series
expansion about the origin, one has that k can be expressed
through the following (possibly, infinite) sum k =

∑
`≥1p`,

where p` is homogeneous of degree `.

Lemma 2. If k ∈ Rω0 [[x]]p satisfies LAxk(x) = Cx, then
there is C−1 ∈ Rp×n such that C−1A = C.

Proof. If k =
∑
`≥1p` satisfies LAxk(x) = Cx, one has∑

`≥1LAxp`(x) = Cx. If p` is homogeneous of degree
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` with respect to the standard dilation, then LAxp`(x) is
still homogeneous of degree ` with respect to the standard
dilation, because Cx is homogeneous of degree 1 and the
entries of the Jacobian matrix of p` are homogeneous of
degree ` − 1; therefore, the equation

∑
`≥1LAxp`(x) = Cx

becomes LAxp1(x) = Cx and LAxp`(x) = 0, ` ∈ Z, ` ≥ 2.
Letting p1(x) = C−1x, one has C−1Ax = Cx, which yields
C−1A = C, by the arbitrariness of x.

If k =
∑
`≥1p` satisfies LAxk(x) = Cx, then p1(x) =

C−1x is a linear directional integral of Cx along the vector
field Ax, and p` is a polynomial first integral associated with
the vector field Ax, for any ` ≥ 2; this implies that

k(x) = C−1x+ ω(x),

where ω(x) =
∑
`≥1p`(x) = k(x)−C−1x is an analytic first

integral associated with the vector field Ax.
Let {ω1, . . . , ωυ} ⊂ R[x] be a maximal set of algebraically

independent monic polynomial first integrals associated with
the vector field Ax, so that each analytic first integral ω(x) ∈
Rω0 [[x]] associated with Ax can be expressed as ω(x) =
b(ω1(x), . . . , ωυ(x)), where b ∈ Rω[[z1, . . . , zυ]].

Lemma 3. If there is C−1 ∈ Rp×n such that C−1A = C,
all the solutions k ∈ Rω[[x]] (possibly, k ∈ Rω0 [[x]]) of
LAxk(x) = Cx are given by:

k(x) = C−1x+ b(ω1(x), . . . , ωυ(x)),

where b ∈ Rω[[z1, . . . , zυ]]p is arbitrary.

Note that, by construction, for any xo ∈ Rn, one has that

k(eAtxo) =
∫ t

0
CeAγxo dγ + b(ω1(eAtxo), . . . , ωυ(eAtxo)),

where b(ω1(eAtxo), . . . , ωυ(eAtxo)) is constant,
b(ω1(eAtxo), . . . , ωυ(eAtxo)) = c; hence, if y(t) = CeAtxo

and x(t) = eAtxo are the output-response and the state-
response, respectively, of the (unforced) linear system under
consideration from the initial state x(0) = xo, then

k(x(t)) =
∫ t

0
y(γ) dγ + c.

Now, if k1, k2 ∈ Rω[[x]] are two directional integrals of Cx
along the vector field Ax, since

ki(x(t)) =
∫ t

0
y(γ) dγ + ci, i = 1, 2,

k1(x(t)) − k2(x(t)) is constant as a function of t, although
k1(x)− k2(x) need not be constant as a function of x.

Since C−1A = C if and only if each row of C is a linear
combination of the rows of A, one has the following lemma.

Lemma 4. Given pair (C,A), one has:
(4.1) there is C−1 such that C−1A = C if and only if

rank(

[
A
C

]
) = rank(A), (7)

(4.2) there is a unique C−1 such that C−1A = C if and
only if det(A) 6= 0, and, in such a case, C−1 = CA−1.

By Statement (4.2) of Lemma 4, condition det(A) 6= 0 is
necessary to have uniqueness of the solution of C−1A = C.
If det(A) 6= 0 and system (3) is observable, then

rank(

[
A
C

]
) = rank(A) = n,

whence (7) holds. On the contrary, if det(A) = 0, then 0 is
one of the eigenvalues λ1, . . . , λn of A and rank(A) < n. As
well known [34], pair (C,A) is observable if and only if

rank(

[
A− λiE

C

]
) = n, (8)

where E is the n×n identity matrix. Letting λi = 0 in (8), one

has rank(

[
A
C

]
) = n, whence (7) does not hold. This proves

that condition det(A) 6= 0 is also necessary if pair (C,A) (i.e.,
system (3)) is observable, as stated in the following lemma.

Lemma 5. Under the assumption that pair (C,A) is observ-
able, condition (7) holds if and only if det(A) 6= 0.

Lemma 5 motivates the condition det(A) 6= 0 assumed in
Proposition 2. The following theorem shows that, under the
assumption det(A) 6= 0, system (3) is observable through the
measured output Cx if and only if it is observable through the
fictitious outputs CAix, with i ∈ Z.

Theorem 2. Consider system (3) and assume that det(A) 6= 0.
Let Ci := CAi, i ∈ Z. Pair (C,A) is observable if and only
if pair (Ci, A) is observable.

Proof. Consider the observability matrices of order n,
On(C,A) and On(C−i, A), and note that On(C,A) =
On(C−i, A)Ai. The lemma follows from the non-singularity
of the dynamic matrix A.

The following corollary shows that, under the assumption
that (C,A) is observable and det(A) 6= 0, ki(x) is linear (i.e.,
ki(x) = C−ix for some matrix C−i) and satisfies LiAxki(x) =
Cx if and only if C−i = CA−i.

Corollary 2. Let pair (C,A) be observable and assume that
det(A) 6= 0. For each i ∈ Z, i ≥ 1, the function ki(x) =
CA−ix is the unique i-th directional integral of Cx along the
vector field Ax in Rω0 [[x]] being linear.

Proof. By Lemmas 3, 4, and 5, k1(x) = CA−1x is the unique
directional integral of Cx along the vector field Ax in Rω0 [[x]]
being linear. Hence, assume that ki(x) = CA−ix is such
that LiAxki(x) = Cx and let Ci = CA−i. By Theorem 2,
if (C,A) is observable, then (Ci, A) is observable. Thus, by
Lemmas 3, 4, and 5, ki+1(x) = CA−(i+1)x is the unique
directional integral of CA−ix along the vector field Ax in
Rω0 [[x]] being linear, and the statement follows.

Under the assumptions of Corollary 2, a directional integral
of Cx need not be unique in Rω0 [[x]]. By Lemma 3, if {1}
is not a maximal set {ω1, . . . , ωυ} ⊂ R[x] of algebraically
independent monic (with respect to some monomial order)
polynomial first integrals associated with Ax, then there
are infinitely many analytic (but just one linear) directional
integrals of Cx along the vector field Ax in Rω0 [[x]].
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IV. STATE ESTIMATION BY OUTPUT INTEGRATION FOR
CONTINUOUS-TIME SYSTEMS

The following Assumption 1 ensures existence and unique-
ness of the linear directional integral of the output of sys-
tem (3) along Ax.

Assumption 1. As for system (3), pair (C,A) is observable
and det(A) 6= 0.

Remark 1. Assumption 1 is met by any observable linear
system that admits the origins as unique equilibrium point if
the input vanishes identically for all times t ∈ R≥0.

The following example shows what may happen when
Assumption 1 does not hold.

Example 1. Assume that A = block diag(Aa, Ab), C =
[ Ca Cb ], and x = [ x>a x>b ]>, with consistent dimen-
sions; let B = 0 and D = 0. If Ab = 0, then any linear
function kb xb of xb is a linear first integral associated with
Ax, whence if C−1A = C, then C−1x + kbxb, kb 6= 0, is
linear directional integral of Cx along Ax, being different
from C−1x. On the other hand, if Ab = 0 and Cb 6= 0,
then let C−1 = [ C−1,a C−1,b ]. Clearly, LAxC−1x =
LAaxaC−1,axa + LAbxb

C−1,bxb = C−1,aAaxa cannot never
be equal to Cx = Caxa + Cbxb since Cb 6= 0, whence there
is no linear directional integral of Cx along the vector field
Ax. Clearly, Assumption 1 does not hold in both cases.

Following Propositions 1 and 2, define, for i ∈ Z, j ∈ Z≥0,

Rj :=




D 0 0 0 0
CB D 0 0 0
CAB CB D 0 0

...
...

. . .
...

...
CAj−2B CAj−1B ··· CB D


 ,

Sj :=



CA−1B−D CA−2B ··· CA1−jB

0 CA−1B−D ··· CA2−jB

...
...

. . .
...

0 0 0 CA−1B−D


 ,

Tj(t) :=



E ...

tj−3

(j−3)!E
tj−2

(j−2)!E

...
. . .

...
...

0 ... E tE
0 ... 0 E


 ,

yi,i+j(t) :=




yi(t)
yi+1(t)

...
yi+j(t)


 , Oi,i+j :=




CAi

CAi+1

...
CAi+j


 ,

ui,i+j(t) :=




ui(t)
ui+1(t)

...
ui+j(t)


 , ci,i+j :=




ci
ci+1

...
ci+j


 ,

Sj,0 :=
[
Sj 0
0 −D

]
, Tj,0(t) :=

[
Tj(t)

0

]
,

where 0 is the zero matrix and E is the identity matrix, both
of consistent dimensions, and ci = 0, for all i ∈ Z≥0.

In the following theorem, it is shown how a sort of static
state observer for system (3) can be designed, provided that the
successive time-derivatives and time-integrals of the output-
response y(t) and of the input u(t) are available (such a strong
assumption will be removed later in the paper).

Theorem 3. Let system (3) be given, let Assumption 1 hold
and assume that the signals y0,n−1(t), y1−n,0(t), u0,n−1(t),
u1−n,0(t) are available for all t ∈ R≥0. Let

x̄ = O†0,n−1(y0,n−1 −Rnu0,n−1), (9a)

x̂ = O†1−n,0(y1−n,0 + Sn,0u1−n,0 − Tn,0c̄), (9b)

c̄ = T−1
n (y1−n,−1 −O1−n,−1x̄+ Snu1−n,−1), (9c)

where the dependence on t has been omitted. Thus, one has
(3.1) c̄(t) is constant and c̄(t) = c1−n,−1 for all t ∈ R≥0,
(3.2) x̄(t) and x̂(t) are equal to x(t) for all times t ∈ R≥0.

Proof. By Propositions 1 and 2, since det(A) 6= 0, one has

y0,n−1 = O0,n−1x+Rnu0,n−1, (10a)
y1−n,0 = O1−n,0x− Sn,0u1−n,0 + Tn,0c1−n,−1,(10b)
y1−n,−1 = O1−n,−1x− Snu1−n,−1 + Tnc1−n,−1. (10c)

Since (C,A) is observable, by Theorem 2, the matrices O0,n−1

and O1−n,0 have full rank, whence, by (10a) and (10c),
one has that x̄(t) and c̄(t) are equal to x(t) and c1−n,−1,
respectively, for all t ∈ R≥0 [38]. Thus, by (10b), one has
that x̂(t) = x(t), for all times t ∈ R≥0.

In Theorem 3, it is shown how to exactly reconstruct the
state of system (3) from the successive time-derivatives and
time-integrals of the output-response y. In fact, the state x is
reconstructed with the two formulae (9a) and (9b):

(i) the reconstruction x̄ of x in (9a) only uses the time-
derivatives y0,n−1 and u0,n−1 of y and u, respectively;

(ii) the reconstruction x̂ of x in (9b) only uses the time-
integrals y1−n,0 and u1−n,0 of y(t) and of u(t), respectively,
and the knowledge of c̄, which by Statement (3.1) of Theo-
rem 3 is constant and equal to c1−n,−1;

(iii) the constant c̄ can be obtained by (9c) as a function of
x̄ and of the time-integrals of y and of u.

The static state observer for system (3) given in Theorem 3
assumes the knowledge of the successive time-derivatives and
time-integrals of y(t) and of u(t). The goal of the next
subsection is to incorporate in the scheme (9) suitable dynamic
filters to compute the integrals and to avoid the use of the
derivatives, so to obtain an observer just using u(·) and y(·).

A. An observer using integrals and moving average
With the aim of avoiding the use of too many symbols, with

a little abuse of notation, in the following, the symbols x̄, c̄
and x̂ are used to denote the estimates of the corresponding
exact values given by (9). In particular, x̄(t) is a first “rough”
estimate of x(t), c̄(t) is a non-constant estimate of the constant
vector c1−n,−1 and x̂(t) is the proposed estimate of the state.

In absence of noise, a feasible solution to implement the
observer (9) using only the measured u(·) and y(·) would
be that of computing the estimate x̄(t) of x(t) by using
high-gain observers [39], [40] based on estimates of the
vectors y0,n−1 and u0,n−1. The computation of the integrals
in the vectors y1−n,−1 and u1−n,−1 can be simply realized
by using a chain of integrators (see the subsequent (14d)
and (14e)); it is important to stress that the integrals thus
obtained are highly insensitive to high-frequency noise. On
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the contrary, since high-gain observers are highly sensitive
to high-frequency noise, it is more convenient, in practical
applications, to obtain the estimate x̄(t) through a Luenberger
observer based on the measures of u(t) and y(t), which
does not require the knowledge of the time-derivatives of the
output-response y(t) and of the input u(t) (in particular, the
subsequent Luenberger observer (14c)). In view of (9c), define
the function φ(t, U, Y, x) as follows:

φ :=

{
T−1
n (t)(Y −O1−n,−1x+ SnU), if t ≥ 0,

0, otherwise,
(11)

where Y ∈ Rp(n−1) and U ∈ Rm(n−1) are auxiliary
variables used just to define φ. In particular, by State-
ment (3.1) of Theorem 3, if U and Y are replaced
by y1−n,−1(t) and u1−n,−1(t), respectively, one obtains
c1−n,−1 = φ(t, u1−n,−1(t), y1−n,−1(t), x(t)). Since, in prac-
tical applications, the estimate x̄(t) need not be equal to x(t)
for all t ∈ R≥0, one has that

c̄(t) := φ(t, u1−n,−1(t), y1−n,−1(t), x̄(t)) (12)

need not be constant. Although, by Statement (3.1) of Theo-
rem 3, the signal φ(t, u1−n,−1(t), y1−n,−1(t), x(t)) is constant
and equals c1−n,−1, its estimate c̄(t) is severely non-constant
even after the “settling time” for the estimate x̄(t) in presence
of high-frequency noise affecting the measured u(·) and y(·).
Hence, an improved estimate c̄f of c1−n,−1 can be obtained
by filtering c̄(t) through a low-pass filter such as the moving
average with averaging period equal to τ , for some τ ∈ R>0:

c̄f (t) = 1
τ

∫ t
t−τ φ(γ, u1−n,−1(γ), y1−n,−1(γ), x̄(γ)) dγ.

(13)
In particular, by initializing c̄f (0) = 0, the moving aver-
age (13) can be computed as in the subsequent (14b) (note
that φ(t, U, Y, x) = 0 if t < 0). Finally, by (10b), one has that
y1−n,0(t) = O1−n,0x(t) − Sn,0u1−n,0(t) + Tn,0(t)c1−n,−1.
Therefore, it is possible to obtain the estimate x̂(t) of the
state x(t) of system (3) by using another Luenberger observer
based on the output y1−n,0(t) (the subsequent Luenberger ob-
server (14a)). The use of the vector y1−n,0(t) rather than of its
last (block) entry y(t) improves significantly the performance
of the observer in presence of high-frequency noise (see the
examples at the end of this section).

Summarizing, the proposed state observer is represented in
Fig. 2; it consists of the following Luenberger observer (the
dependence on t is omitted):

˙̂x = A x̂+B u

+K (y1−n,0 −O1−n,0 x̂+ Sn,0 u1−n,0 − Tn,0 c̄f ), (14a)

where y1−n,0 = [ y>1−n,−1 y> ]>, u1−n,0 =
[ u>1−n,−1 u> ]>, K is such that the eigenvalues of
the matrix A − KO1−n,0 have negative real part, and the
estimate c̄f (t) of c1−n,−1 is given by

˙̄cf (t) = 1
τ

(
φ(t, u1−n,−1(t), y1−n,−1(t), x̄(t))

− φ(t− τ, u1−n,−1(t− τ), y1−n,−1(t− τ), x̄(t− τ))
)
,

(14b)

where φ is the function given in (11), whereas x̄(t),
u1−n,−1(t) and y1−n,−1(t) are the block-entries of the state-
response of the following system:

˙̄x = A x̄+B u+ L (y − C x̄−Du), (14c)

u̇1−n,−1 =




0 E ··· 0
...

...
. . .

...
0 0 ··· E
0 0 ··· 0


u1−n,−1 +




0
0
...
E


u, (14d)

ẏ1−n,−1 =




0 E ··· 0
...

...
. . .

...
0 0 ··· E
0 0 ··· 0


 y1−n,−1 +




0
0
...
E


 y, (14e)

where 0 is the zero matrix, E is the identity matrix, both
of consistent dimensions, L is such that the eigenvalues of
A − LC have negative real part, and u1−n,−1(0) = 0,
y1−n,−1(0) = 0, c̄f (0) = 0, τ ∈ R>0. System (14) is referred
to as the state observer without reset.

y, u

state
observer

φ
moving
average

∫
state

observer

computation of constants

x̂

x̄ c̄

y1−n,0, u1−n,0

c̄f

Fig. 2. Structure of the dynamic observer (14).

The following theorem states that system (14) is an asymp-
totic state observer for system (3).

Theorem 4. Let Assumption 1 hold; let x(t) be the state-
response of system (3) from x(0) ∈ Rn to u(t) and let x̂(t)
be the state-response in the x̂-variables of system (14) from
(x̂(0), c̄f (0), x̄(0), u1−n,−1(0), y1−n,−1(0)) in Rn × {0} ×
Rn × {0} × {0}, to u(t) and y(t) = Cx(t) +Du(t).

(4.1) For all x(0), x̂(0), x̄(0) ∈ Rn, one has that

lim
t→∞

(x(t)− x̂(t)) = 0. (15)

(4.2) For each ε ∈ R>0, there are δ1, δ2 ∈ R>0 such that
if ‖x(0)− x̂(0)‖ < δ1 and ‖x(0)− x̄(0)‖ < δ2, then ‖x(t)−
x̂(t)‖ < ε for all times t ∈ R≥0.

Proof. Define χ := x− x̄, whose dynamics are given by χ̇ =
(A − LC)χ. Therefore, letting λ = maxλ∈σ(A−LC) Re(λ),
λ < 0, there are α ∈ R>0 and λ ∈ (λ, 0) such that ‖χ(t)‖ ≤
α exp(λt)‖χ(0)‖ for all t ∈ R≥0. Thus, one has

φ(t, u1−n,−1, y1−n,−1, x̄) = c1−n,−1 + T−1
n O1−n,−1χ, (16)

for all t ∈ R>0. Then, define ζ = x− x̂, whose dynamics, by
Theorem 3 and (16), are given, for all t ∈ R≥0, by

ζ̇(t) = (A−KO1−n,0)ζ(t)

+ 1
τKTn,0(t)

∫ t
max(t−τ,0)

T−1
n (γ)O1−n,−1χ(γ) dγ, (17)

Since ‖χ(γ)‖ ≤ α exp(λγ)‖χ(0)‖ for all γ ∈ R≥0, there
exists β ∈ R≥0 such that ‖T−1

n (γ)O1−n,−1χ(γ)‖ ≤
β exp(λγ)‖χ(0)‖. By the Dominated Convergence
Theorem [41], there exists µ ∈ R≥0 such that
‖Tn,0(t)

∫ t
t−τ T

−1
n (γ)O1−n,−1χ(γ) dγ‖ ≤ µ| exp(λt) −

exp(λ(t − τ))|‖χ(0)‖, for all t ≥ τ . Hence, since the
eigenvalues of A−KO1−n,0 have negative real part, by [42],
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one has that (15) holds. In addition, there exists a symmetric
and positive definite P ∈ Rn×n such that

(A−KO1−n,0)>P + P (A−KO1−n,0) = −E.

Hence, define the positive definite function V = ζ>Pζ.
By (17), there exists µ̄ ∈ R>0 such that

V̇ (t) ≤ −‖ζ(t)‖2 + µ̄
τ ‖ζ(t)‖‖P‖‖χ(0)‖.

Since P is positive definite, there exist λ, λ ∈ R>0 such that
λ2‖ζ‖2 ≤ V ≤ λ2‖ζ‖2, whence by ISS arguments [42]:

‖ζ(t)‖ ≤ max
{
λ
λ‖ζ(0)‖, 2µ̄‖P‖λ

τλ ‖χ(0)‖
}
, t ∈ R≥0.

Statement (4.1) of Theorem 4 guarantees that the state
x̂ of system (14) converges to the state x of system (3)
independently of the initial conditions x(0), x̂(0), x̄(0) ∈ Rn.
On the other hand, Statement (4.2) of Theorem 4 guarantees
that the estimation error x(t) − x̂(t) can be made arbitrarily
small for all t ∈ R≥0 by letting x(0)− x̂(0) and x(0)− x̄(0)
be sufficiently small. Thus, the combination of these two
properties ensures asymptotic stability of the estimation error.

The following remark allows one to evaluate the filtering
properties of the proposed observer.

Remark 2. Let the assumptions of Theorem 4 hold. Let ζ =
x− x̂, and let the measured output of system (3) be affected
by an additive noise d(t), i.e., y = C x+Du+d. The transfer
function from d to ζ is given by the following expression:

(sE −A+KO1−n,0)−1K
(
−




1
sn−1E

...
E


+ 1

τQ(τ, s)

·
(
O1−n,−1(sE −A+ LC)−1L+




1
sn−1E

...
1
sE



))
, (18)

where

Q(τ, s) =

[
E − e−τsTn(τ)

0

] (
sE −




0 E ··· 0
...

...
. . . 0

0 0 ··· E
0 0 ··· 0


)−1

.

Note that, the state observers given in (14a) and in (14c) can
be Kalman filters (i.e., Luenberger observers with K and L
computed as optimal gains). In the following, it is shown, by
several numerical examples, that the overall state observer (14)
has an improved performance with respect to the Kalman
filter (14c) if the signal y(t) is affected by high-frequency
bounded noise. Furthermore, it is worth noticing that the
Luenberger observers in (14a) and in (14d) can be substituted
with other observers able to estimate the state of a linear
plant. For instance, a state observer for system (25) based
on the time-integrals of the output-response y(t) can be built
by using the sliding-mode techniques given in [25], [43], as
detailed in the following. Let Assumption 1 hold and assume
that rank(C) = p < n. Letting Na be a basis of ker(C)
and letting Nb be a basis of ker(CA−1), define the matrices
Za =

[
N>a
C

]
, Zb =

[
N>b
CA−1

]
, Ā = ZaAZ

−1
a , B̄ = ZaB,

C̄ = CZ−1
a , Ǎ = ZbAZ

−1
b , B̌ = ZbB, Č = CA−1Z−1

b . Let
Ā and Ǎ be partitioned as

Ā =
[
Ā1,1 Ā1,2

Ā2,1 Ā2,2

]
, Ǎ =

[
Ǎ1,1 Ǎ1,2

Ǎ2,1 Ǎ2,2

]
, (19)

respectively, and let L and K be such that the eigenvalues of
(Ā1,1 + L Ā2,1) and (Ǎ1,1 + K Ǎ2,1) have negative real part
(the existence of such values is guaranteed by Assumption 1
and Corollary 2), and let κa =

[
L
−E
]
, κb =

[
K
−E
]
. Thus,

letting ρ ∈ R≥0 be a sufficiently large integer, consider the
sliding-mode observer, based on the first directional integral
of the output along Ax, given by

x̂(t) = Z−1
b x̌(t), (20a)

where x̌(t) is the state-response of the following system

˙̌x(t) = Ǎ x̌(t) + B̌ u(t) + κbρ sign(Čx̌− ŷ(t)),

where ŷ is an estimate of Čx, obtained as

ŷ(t) = y−1(t)− c̄f (t)− (D − CA−1B)u−1(t), (20b)

where u−1(t), y−1(t), and c̄f (t) are the entries of the state-
response of the system

u̇−1 = u, (20c)
ẏ−1 = y, (20d)

˙̄cf (t) = τ−1(φ(t, u−1(t), y−1(t), Z−1
a x̄(t))

− φ(t− τ, u−1(t− τ), y−1(t− τ), Z−1
a x̄(t− τ))), (20e)

where φ is the function given in (11) and x̄(t) is the state-
response of the following system:

˙̄x = Ā x̄+ B̄ u+ κaρ sign(C̄ x̄+Du− y). (20f)

Note that system (20f) is the sliding-mode observer given
in [25] for the dynamics given in (25), systems (20c) and (20d)
compute the time-integral of the measured output y(t) and of
the input u(t), respectively, whereas system (20b) is a sliding-
mode observer for the integral of the output. The following
theorem establishes that system (20) is a state observer for (3).

Theorem 5. Let Assumption 1 hold; let x(t) be the state-
response of system (3) from x(0) ∈ Rn to u(t) and let x̌(t)
be the state-response in the x̌-variables of system (20) from
(x̌(0), c̄f (0), x̄(0), u−1(0), y−1(0)) in Rn×{0}×Rn×{0}×
{0}, to u(t) and y(t) = Cx(t) +Du(t).

(5.1) For all ς ∈ R>0, there exists ρ ∈ R>0 such that, for
all x(0), x̂(0), x̄(0) ∈ Rn such that ‖x(0) − x̌(0)‖ ≤ ς and
‖x(0)− x̌(0)‖ ≤ ς , one has

lim
t→∞

(x(t)− x̂(t)) = 0, (21)

where x̂ is obtained from x̌ by using (20a).
(5.2) If, additionally, ker(C) ⊆ ker(CA−1), then there is a

finite time Ξ such that CA−1(x(t)− x̂(t)) = 0 for all t > Ξ .

Proof. Assume, without loss of generality, that system (3) is
already in the coordinate associated with (20a), so that Zb = E
and x̌ = x̂. Letting χ = x− x̄, by [43], for all ς ∈ R>0, there
exists ρ ∈ R>0 such that, if |x(0)− x̄(0)| ≤ ς , then there are
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α ∈ R>0 and λ < 0 such that ‖χ(t)‖ ≤ α exp(λt)‖χ(0)‖ for
all t ∈ R≥0. Moreover, by (16) and since T1 = E, one has

φ(t, u1−n,−1, y1−n,−1, x̄) = c−1 + CA−1χ, (22)

for all t ∈ R>0. Therefore, it results that, for all t ≥ τ ,

c̄f = 1
τ

∫ t
t−τ φ(γ, u1−n,−1, y1−n,−1, x̄)dγ

= c−1 + 1
τ

∫ t
t−τ CA

−1χ(γ)dγ.

Thus, define ζ = x̌ − x, partitioned as in (19), ζ =
[ ζ>1 ζ>2 ]>, whose dynamics are given by

ζ̇1 = Ǎ1,1ζ1 + Ǎ1,2ζ2 +Kρ sign(ζ2 + c̄f − c−1),

ζ̇2 = Ǎ2,1ζ1 + Ǎ2,2ζ2 − ρ sign(ζ2 + c̄f − c−1).

Thus, letting ϑ = ζ2 + c̄f − c−1, for all t ≥ τ , one has

ϑ>ϑ̇ = ϑ>(Ǎ2,1ζ1 + Ǎ2,2ζ2)− ρ‖ϑ‖
+ 1

τ ϑ
>CA−1(χ(t)− χ(t− τ))

≤ −‖ϑ‖(ρ− ‖Ǎ2,1ζ1 − Ǎ2,2ζ2‖+ 2α
τ ‖CA−1‖).

Therefore, by the same reasoning used in Section 3.2 of [43],
if ρ is sufficiently large, then ϑ will converge to zero in finite
time, thus inducing a sliding motion. During sliding, both ϑ̇
and ϑ vanish identically, thus implying that

ζ̇1 = Ǎ1,1ζ1 − 1
τ Ǎ1,2

∫ t
t−τ CA

−1χ(γ)dγ +Kϕ,

ϕ = Ǎ2,1ζ1 + 1
τCA

−1(χ(t)− χ(t− τ))

− 1
τ Ǎ2,2

∫ t
t−τ CA

−1χ(γ)dγ,

where ϕ is the so-called equivalent output error injection that
is required to maintain the sliding motion. Hence, since the
eigenvalues of (Ǎ1,1 + KǍ2,1) have negative real part and
limt→∞ χ(t) = 0, the statement follows by classical bounded-
input bounded-state stability arguments [42].

Furthermore, under the above positions [43], there exists
Ξ̄ ∈ R>0 such that the output estimation error Cx(t)−Cx̄(t)
vanishes identically for all t > Ξ̄, thus implying that χ(t) ∈
ker(C) for all t > Ξ̄. Hence, if additionally ker(C) ⊂
ker(CA−1), then c̄f (t) = c−1 for all t > Ξ̄ + τ . Thus, there
exists a finite time Ξ such that ξ2(t) = 0 for all t > Ξ .

B. The proposed observer

The state observer given in (14) uses information obtained
from the time-integrals of the output-response y(t) and of
the input u(t) of system (3) to determine estimates of some
constants related to the state x(t). If some noise is added to
the output-response y(t), these estimates may be subject to a
drift (see the subsequent Fig. 4(b)). Therefore, it is suggested,
when implementing such a state observer, to periodically reset
the states u1−n,0, y1−n,0 and c̄f , as detailed below. In practice,
consider the state observer given by:

˙̂x = A x̂+B u+K(ŷ1−n,0 −O1−n,0 x̂), (23a)

where K makes the eigenvalues of A−KO1−n,0 have negative
real part and ŷ1−n,0 is an estimate of O1−n,0x given by

ŷ1−n,0 = y1−n,0,i + Sn,0u1−n,0,i − Tn,0(ηi)c̄f,i, (23b)

where i = 1, if mod(t, 2θ) ≤ θ, or i = 2, if mod(t, 2θ) > θ,
where u1−n,0,i(t) = [ u1−n,−1,i(t)

> u(t)> ]>,
y1−n,0,i(t) = [ y1−n,−1,i(t) y(t)> ]>, whereas ηi(t),
u1−n,−1,i(t), y1−n,−1,i(t), and c̄f,i(t) are the block-entries
of the state-response of the following system:

η̇i = 1, (23c)

u̇1−n,−1,i =




0 E ··· 0
...

...
. . .

...
0 0 ··· E
0 0 ··· 0


u1−n,−1,i +




0
0
...
E


u, (23d)

ẏ1−n,−1,i =




0 E ··· 0
...

...
. . .

...
0 0 ··· E
0 0 ··· 0


 y1−n,−1,i +




0
0
...
E


 y, (23e)

˙̄cf,i(t) = τ−1(φ(ηi(t), u1−n,−1,i(t), y1−n,−1,i(t), x̄(t))

− φ(ηi(t)− τ, u1−n,−1,i(t− τ), y1−n,−1,i(t− τ), x̄(t− τ))),
(23f)

where φ is the function given in (11), i = 1, 2, and
ηi, u1−n,−1,i, y1−n,−1,i, c̄f,i are reset to their initial condition
(assumed to be zero) according to the following periodic logic
with period 2θ ∈ R>0:

ηi(t) = 0, u1−n,−1,i(t) = 0, y1−n,−1,i(t) = 0, c̄f,i(t) = 0,
(23g)

where i = 1 if mod(t, 2θ) = θ, or i = 2, if mod(t, 2θ) =
0. The proposed observer still uses the dynamics (14c) to
compute the estimate x̄(t):

˙̄x = A x̄+B u+ L (y − C x̄−Du). (23h)

where L is such that the eigenvalues of A−LC have negative
real part. System (23) is referred to as state observer with reset.

Note that the dynamics of system (23) essentially match
with the ones of the observer given in (14) for t ∈
[kθ, (k + 1)θ], k ∈ Z≥0. The main difference between sys-
tems (23) and (14) is that a portion of the state of the
former is reset to its initial condition every θ times. In
particular, the subsystem of system (23) that is labeled with 1
(respectively, 2) is reset to zero if t = (2k+ 1)θ (respectively,
t = 2k), k ∈ Z≥0. The advantage of these resets is that they
allow one to reduce the errors due to the numerical integration
of the signals y(t) and u(t) (which naturally increase with
the integration times). It is worth noticing that the signals
c̄f,1 and c̄f,2 are no more estimates of the same constant
c1−n,−1. As a matter of fact, by Theorem 4, the state-response
in the c̄f -variables of system (14) is an estimate of c1−n,−1 =
−O1−n,−1x(0). On the other hand, due to the presence of the
resets, the signal c̄f,1(t) is an estimate of −O1−n,−1x((2k +
1)θ) for all t ∈ [(2k + 1)θ, (2k + 3)θ], whereas c̄f,2(t) is an
estimate of −O1−n,−1x(2kθ) for all t ∈ [2kθ, (2k + 2)θ],
k ∈ Z≥0. Therefore, c̄f,1(t) and c̄f,2(t) are estimates of
piecewise constant signals, whose behaviors depend on the
state of system (3) at the reset times. In particular, since c̄f,1(t)
is reset to zero at t = (2k + 1)θ, there is an initial transient
behavior in the obtained estimates of −O1−n,−1x((2k+1)θ) at
the beginning of each interval [(2k+1)θ, (2k+3)θ] (a similar
behavior can be noticed for the signal c̄f,2(t) at the beginning
of each interval [2kθ, (2k + 2)θ]), k ∈ Z≥0. However, since
the estimate ŷ1−n,0 of O1−n,0x neglects the signal c̄1,f (t)
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(respectively, c̄2,f (t)) for all t ∈ [(2k + 1)θ, (2k + 2)θ]
(respectively, t ∈ [2kθ, (2k+ 1)θ]), k ∈ Z≥0, such a transient
behavior is neglected by the observer given in (23). Therefore,
system (23) provides an estimate of the state of system (3)
avoiding saturations due to floating point computations of
the polynomial entries of Tn,0 and T−1

n , and neglecting the
transient behavior of the moving average (23f).

The resetting logic given in (23g) can be used to reset the
states u−1, y−1, and c̄f of the sliding mode observer given
in (20). In the following, the observer obtained by coupling
system (20) with the resetting logic given in (23g) is referred
to as sliding observer with resets.

The following example illustrates the application of the
observer with resets and compares its performance with those
of a Kalman filter and of the observer without resets.

Example 2. Consider the mechanical system depicted in Fig. 3
and assume that the only measurable output is the position of
the body having mass m2. The dynamics of the system are

k1 m1
k2 m2

u

Fig. 3. Mechanical system considered in Example 2.

given by

ẋ =

[
0 1 0 0

−(k1+k2)/m1 0 k2/m1 0
0 0 0 1

k2/m2 0 −k2/m2 0

]
x+

[
0
0
0

1/m2

]
u, (24a)

y = [ 0 0 1 0 ]x, (24b)

where x ∈ R4, y ∈ R, and u ∈ R denotes the force
applied to the body having mass m2. Numerical simulations
have been carried out to compare the performances of the
state observers (14) and (23) with the performance of a
Kalman filter, assuming the following (normalized) values of
the parameters k1 = 1.6, k2 = 1.1, m1 = 1, m2 = 0.6,
x(0) = x0 = [ 1 −1 3 −4 ]>, u(t) = min(t, 1), and
that y(t) is affected by the additive noise d(t) = 4 sin(100πt).
The gains L and K of the Kalman filters (see below) have been
designed with the objective of minimizing the steady state
estimation errors. In particular, the gain L has been tuned
in order to minimize maxt∈[400,500] ‖x(t) − x̄(t)‖. Hence,
assuming such a value for the parameter L, the gain K has
been tuned in order to minimize maxt∈[400,500] ‖x(t)− x̂(t)‖.
The estimate x̄(t) obtained by the tuned Kalman filter is used
by both (14) and (23) to reconstruct the state of (24). The
parameters of (14) and (23) are τ = 1, θ = 2,

L = [ 0.071 0.0057 0.26 0.034 ] , K =

[ 0.021 −0.11 0.028 0
0.31 −0.14 0.23 0
0.36 −0.59 0.19 0
0.79 −0.079 0.0062 0

]
.

Fig. 4 depicts the time behavior of the state-response of
system (24) from the initial state xo and with input u, the
estimated constants c̄f , and the estimation errors obtained
by using the Kalman filter (14c)≡ (23h) and the state ob-
servers (14) and (23). As shown in Fig. 4(a), the proposed
state observers (14) and (23) are both less sensitive to high-
frequency noise than the Kalman filter. However, as shown in
Fig. 4(b), the state-response in the c̄f variables of system (14)

−5

0

5
x1
x2
x3
x4

State

−3 · 10−3

0

3 · 10−3
x1 − x̄1
x2 − x̄2
x3 − x̄3
x4 − x̄4

Kalman filter

−3 · 10−3

0

3 · 10−3
x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Observer without reset

0 100 200 300 400 500

−3 · 10−3

0

3 · 10−3

t

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Observer with reset

(a) State and estimation error.

0 1000 2000 3000 4000 5000 6000 7000

0

10

20

t

c̄1
c̄2
c̄3

(b) Estimated constants (observer (14)).

0

50

c̄f,1,1
c̄f,1,2
c̄f,1,3

0 1000 2000 3000 4000 5000 6000 7000

−50

0

t

c̄f,2,1
c̄f,2,2
c̄f,2,3

6950 6960 6970 6980 6990 7000

6950 6960 6970 6980 6990 7000

(c) Estimates c̄f,i (observer with resets (23)).

Fig. 4. Example 2: state-response of system (24); estimation errors,
estimates c̄f and c̄f,i obtained by state observers (14) and (23).

is affected by a drift that is induced by the numerical errors
arising from the integration of the output-response y(t) and
of the input u(t) (which can be reduced by using higher-
order integration methods or smaller numerical tolerances).
Such a drift is made negligible by the use of the observer
given in (23). As a matter of fact, the periodic resets of the
states u1−n,−1,i, y1−n,−1,i and c̄f,i, i = 1, 2, allow one to keep
such an error bounded and small, because the signals y and u
are integrated for a limited amount of time. It is to be noted
that the signals c̄f,1(t) and c̄f,2(t) are estimates of piecewise
constant signals, as shown in Fig. 4(c). The improved filtering
properties of the proposed observer are confirmed by the Bode
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plots of the transfer functions f̄ and f̂ from the additive error d
acting on y to the estimation errors χ = x− x̄ and ζ = x− x̂,
respectively. Fig. 5 depicts the magnitude of these transfer
functions computed according to (18). As shown by such a

10−1 100 101 102 103 104
−200

−100

0

ω

|f̄1(ıω)|dB
|f̂1(ıω)|dB

10−1 100 101 102 103 104
−200

−100

0

ω

|f̄2(ıω)|dB
|f̂2(ıω)|dB

10−1 100 101 102 103 104
−200

−100

0

ω

|f̄3(ıω)|dB
|f̂3(ıω)|dB

10−1 100 101 102 103 104
−200

−100

0

ω

|f̄4(ıω)|dB
|f̂4(ıω)|dB

Fig. 5. Example 2: magnitude of the transfer functions from the additive
noise d to the estimation errors χ and ζ.

figure, the state observer given in (14) filters high-frequency
additive noises better then the Kalman filter given in (14c).

In the following example, it is shown how to design a state
observer based on the time-integrals of the output-response
y(t) by using the sliding-mode technique given in (20).

Example 3. Consider the two-tank system depicted in Fig. 6
and assume that the only measured output is the flow of the
tank whose capacity is C2. The dynamics of the system are

R1 R2
u yC1 C2

Fig. 6. Two-tank system considered in Example 3.

given by (3), where

A =

[ − 1
R1C1

1
R1C1

1
R1C2 − R1+R2

C2R1R2

]
, B =

[
1
C1
0

]
u, (25a)

C = [ 0 1
R2

], D = 0, (25b)

xi denotes the pressure in the i-th tank, Ci is the capacity of
the i-th tank, Ri is the value of the i-th resistance, i = 1, 2.

The sliding observer with reset, obtained by coupling sys-
tem (20) with the reset logic given in (23g), has been tested by
a numerical simulation, assuming that C1 = 1.019 · 10−6 m3

Pa ,
C2 = 11.3263 · 10−6 m3

Pa , R1 = 408.252 · 103 Pa s
m3 , R2 =

3.306 · 103 Pa s
m3 , x(0) = [ 1 20 ]MPa, L = −13.499 · 10−6,

K = 496.856 · 10−9, ρ = 106, τ = 0.3s, θ = 0.6s, and that
u(t) is a pulse signal with amplitude 1m3

s , period 0.2s, and
pulse width 30%. The output y(t) is assumed to be affected
by the additive noise 20 sin(60πt). Fig. 7 depicts the results
of such a numerical simulation. As shown by such a figure,

5

10

15

[M
P

a] x1
x2

State

-500

0

500

[k
P

a] x1 − x̄1
x2 − x̄2

Sliding-mode observer

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-500

0

500

t [s]

[k
P

a] x1 − x̂1
x2 − x̂2

Observer with resets

Fig. 7. Example 3: state-response of system (25); estimation errors
obtained by using the sliding-mode observer (20).

the sliding observer with reset, which is based on the time-
integrals of u(t) and y(t), performs better than the sliding-
mode observer (20f) based on u(t) and y(t).

V. THE MOVING AVERAGE OF THE OUTPUT OF A
DISCRETE-TIME SYSTEM

Throughout this section, it is assumed that T = Z≥0 so that
the dynamics given in (2) read as follows:

x(t+ 1) = Ax(t) +B u(t), (26a)
y(t) = C x(t) +Du(t). (26b)

The following assumption is made all throughout this sec-
tion and is motivated by the subsequent Proposition 4.

Assumption 2. As for system (26), pair (C,A) is observable
and det(A) 6= 0.

The moving average is one of the most widely used methods
in applications to filter high-frequency, zero-mean noises from
discrete-time measurements [44]. In this section, the moving
average of the output of system (26) is characterized.

Define, for all j ∈ Z≥0, j ≥ 1, t ≥ N , the fictitious output:

ỹj(t) := y(t)−Du(t) +
∑j
k=1CA

−kB u(t+ k − 1), (27)

and on its basis the following auxiliary output, which is the
moving average of the fictitious output ỹj(t):

ξN (t) := 1
N+1

∑N
j=0ỹj(t− j), t ≥ N. (28)

It is worth pointing out that, although the fictitious output
ỹj(t) is a function of the future values u(t + k − 1), k =
1, . . . , j, of the state (whence, it is not measurable at the
current time t), the auxiliary output ξN (t) does not depend
on future values of the state (whence, it is measurable at the
current time t, because ỹj(t − j) is measurable at time t).
Note that ỹj(t) is a sort of non-causal, free output response
of system (26) that is related to the future values of x.

The following technical lemma is used in the proof of the
subsequent Proposition 3.
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Lemma 6. Let x(t) and y(t) be the state-response and output-
response of system (26), respectively, and assume det(A) 6= 0;
for each j ∈ Z≥0 and t ∈ Z≥0, one has:

y(t) = CA−jx(t+ j) +Du(t)−∑j
k=1CA

−kBu(t+ k− 1).
(29)

Proof. By definition, y(t) = C x(t) + Du(t) for all times
t ∈ Z≥0, thus (29) holds for all t ∈ Z≥0 and j = 0. Assume
now that (29) holds for all t ∈ Z≥0 and for some j ∈ Z≥0.
Thus, since det(A) 6= 0, one has x(t + j) = A−1x(t + j +
1)−A−1Bu(t+ j), which yields

y(t) = CA−j−1x(t+ j + 1)− CA−j−1Bu(t+ j)

+Du(t)−∑j
k=1CA

−kBu(t+ k − 1)

= CA−j−1x(t+ j + 1) +Du(t)

−∑j+1
k=1CA

−kBu(t+ k − 1)

Therefore, (29) holds by induction on j.

The following proposition characterizes the relation between
the output-response ξN (t) and the state-response x(t).

Proposition 3. Let system (26) be given and assume det(A) 6=
0. For all N ∈ Z≥0 and t ∈ Z≥0, t ≥ N , one has:

ξN (t) = 1
N+1C(

∑N
j=0A

−j)x(t). (30)

Proof. By (27) and Lemma 6, one has ỹj(t−j) = CA−jx(t).
Thus, (30) follows by its definition.

The only assumption needed to relate ỹj(t − j) with x(t)
by (30) is det(A) 6= 0. In the following proposition, it is shown
that such an assumption is indeed necessary to guarantee the
existence of an analytic function relating ỹj(t− 1) with x(t),
in the unforced case.

Proposition 4. Consider the unforced system obtained from
system (26) by letting u = 0. There exists k ∈ Rω0 [[x]]p such
that k(x(t)) = ỹj(t− 1) only if (7) holds.

Proof. Note that x(t) = Ax(t−1) and ỹj(t−1) = C x(t−1).
Let k(x) =

∑+∞
|`|=1H`x

`. Thus, k(Ax) =
∑+∞
|`|=1H`(Ax)`,

whence if k(x(t)) = k(Ax(t− 1)) = Cx(t− 1), then letting
C−1 = [ He1 · · · Hen ], where ei is the multi-index
coinciding with the i-th column of the identity matrix E, i.e.,
such that Hei = ∂eik(x)

∂xei
, i = 1, . . . , n, one has C−1A = C.

By Lemma 4, there is such a C−1 if and only if (7) holds.

If (C,A) is observable, then, by Lemma 5, condition (7)
holds if and only if det(A) 6= 0, thus showing that Assump-
tion 2 is necessary to allow one to use the moving average of
the output to estimate the state of system (26).

The following theorem characterizes the observability of
system (26) from the auxiliary output ξN (t).

Theorem 6. Under Assumption 2, let ξN (t) be defined as
in (28), for some N ∈ Z≥0. System (26) is observable from
the auxiliary output ξN (t) if and only if

rank(
∑i
j=0A

−j) = n. (31)

Proof. Let GN = 1
N+1C(

∑N
j=0A

−j) so that ξN (t) =
GNx(t). Hence, the observability matrix of (GN , A) is




GN
...

GNA
n−1


 = 1

N+1




C(
∑N
j=0A

−j)
...

C(
∑N
j=0A

−j)An−1




= On(C,A)(
∑N
j=0A

−j).

Since On(C,A) is non-singular, system (26) is observable
from ξN (t) if and only if (31) holds.

The following proposition provides necessary and sufficient
conditions for condition (31) to hold.

Proposition 5. Let N ∈ Z≥0 be fixed; under the assumption
det(A) 6= 0, condition (31) holds if and only if

σ(A) ∩
{
s ∈ C :

∑N
j=0

1
sj = 0

}
= ∅.

Proof. First, it is worth noticing that rank(
∑N
j=0A

−j) =

rank(T (
∑N
j=0A

−j)T−1) = rank(
∑N
j=0(TAT−1)−j) for any

non-singular matrix T ∈ Cn×n, i.e., (31) is independent
of a linear change of basis. Thus, assume, without loss of
generality, that A−1 is in the Jordan normal form, i.e., A−1 =
block diag(J1, . . . , Jν), where, for ` = 1, . . . , ν,

J` =

[
λ` 1 ··· 0

...
...

. . .
...

0 0 ··· λ`

]
.

By [45], A−j = block diag(Jj1 , . . . , J
j
ν), where, for j ∈ Z≥0,

Jj` =



λj
` ∗ ··· ∗
...

...
. . .

...
0 0 ··· λj

`


 ,

with ∗ denoting a generic element, possibly different from 0,
` = 1, . . . , ν. Therefore,

∑N
j=0A

−j has full rank if and only
if
∑N
j=0λ

j
` 6= 0 for each λ` ∈ σ(A−1). The statement follows

since σ(A) = {λ ∈ C : 1
λ ∈ σ(A−1)}.

Corollary 3. Under Assumption 2, let N ∈ Z≥0 be fixed.
Hence, system (26) is observable from the following output:

[
ξN (t)
ξN+1(t)

]
=

[
1

N+1

∑N
j=0ỹj(t− j)

1
N+2

∑N+1
j=0 ỹj(t− j)

]
. (32)

Proof. By the same reasoning used in the proof of Theorem 6,
system (26) is observable from the output (32) if and only if

ΩN :=

[
On(C,A) 0

0 On(C,A)

][ ∑N
j=0A

−j
∑N+1
j=0 A

−j

]
(33)

has rank n. Since
[
−E E

]
[ ∑N

j=0A
−j

∑N+1
j=0 A

−j

]
= A−(N+1),

and det(A) 6= 0, the rightmost matrix factor in the ex-
pression given in (33) has rank n. On the other hand, the
rank of the first term in the expression given in (33) is
2 rank(On(C,A)). By the Sylvester rank inequality [45],
rank(ΩN ) ≥ 2 rank(On(C,A))−n. Since rank(On(C,A)) =
n, and hence rank(ΩN ) = n, system (26) is observable from
the output (32).
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VI. STATE ESTIMATION FROM THE MOVING AVERAGE OF
THE OUTPUT FOR DISCRETE-TIME SYSTEMS

In this section, a procedure is proposed to design a state
observer for system (26) on the basis of the knowledge of the
moving average of the output.

In view of Proposition 3 and Corollary 3, note that, by (27),
for N ∈ Z≥0 and t ≥ N , one has

ξN (t) = 1
N+1

∑N
j=0(y(t− j)−Du(t− j)

+
∑j
k=1CA

−kBu(t− j + k − 1)), (34a)

ξN+1(t) = 1
N+2

∑N+1
j=0 (y(t− j)−Du(t− j)

+
∑j
k=1CA

−kBu(t− j + k − 1)). (34b)

Then, define
GN := 1

N+1C
∑N
j=0A

−j , (34c)

and let ΩN be defined as in (33). In the following theorem
(similar to Theorem 3), a state observer for system (26), which
uses the moving averages ξN (t) and ξN+1(t), is given.

Theorem 7. Under Assumption 2, let N ∈ Z≥0 be fixed.
Letting ξN (t) and ξN+1(t) be given by (34) for all t ∈ Z≥0,
t ≥ N + 1, define, for all j ∈ Z≥0, j ≤ n− 1,

ξ̃N (t+ j) = ξN (t+ j)−∑j−1
k=0GNA

j−1−kBu(t+ k),

ξ̃N+1(t+ j) = ξN+1(t+ j)−∑j−1
k=0GN+1A

j−1−kBu(t+ k).

Hence, one has that, for all t ∈ Z≥0, t ≥ N ,

x(t) = Ω†N (




ξ̃N (t)

...
ξ̃N (t+n−1)

ξ̃N+1(t)

...
ξ̃N+1(t+n−1)




). (35)

Proof. By Proposition 3, it results that ξN (t) = GNx(t). Since
ξ̃N (t + j) = GNA

jx(t) and ξ̃N+1(t + j) = GN+1A
jx(t),

for all j ∈ Z≥0, j ≤ n − 1, one has that (35) follows
by its definition, because system (26) is observable from
[ G>N G>N+1 ]>x(t), by Corollary 3.

The state x(t + n) of system (26) can be estimated by
forward propagating the estimate x(t) given by (35); to
simulate the system and to compute x(t), the knowledge of
the output y(γ) and of the input u(γ) of system (26) for all
times γ ∈ [t − i − 1, t + n − 1], γ ∈ Z≥0, is required. If
such measurements are affected by additive noises, it may be
preferable, rather than directly using the inverse of the observ-
ability map, to use either a Luenberger observer or a Kalman
filter to estimate the current state of system (26). Toward
this end, define the symbols ξ̄N := [ ξ>N (t) ξ>N+1(t) ]> and
ḠN = [ G>N G>N+1 ]>, and consider the following remarks.

Remark 3 (Luenberger observer). Let Assumption 2 hold, let
N ∈ Z≥0 be given and let ξN (t), ξN+1(t), GN be given
by (34). A state observer for system (26) is given, for all
times t ∈ Z≥0, t ≥ N + 1, by

x̌(t+ 1) = Ax̌(t) +Bu(t) + S(ξ̄N (t)− ḠN x̌(t)), (36)

where S is a matrix (which exists, by Corollary 3) such
that the eigenvalues of A − SḠN have modulus less than 1.
System (34), (36) is briefly referred to as Luenberger observer
with moving average (36).

Remark 4 (Kalman filter). Let the assumptions of Remark 4
hold. Let x̂(t|τ) denote the estimate of the state x(t) of
system (26) based on measurements of the outputs ξN (τ) and
ξN+1(τ) up to time τ ∈ Z≥0, τ ≤ t. The filter state is updated
according to the following system:

x̂(t+ 1|t) = Ax̂(t|t−1) +Bu(t) +S(ξ̄N (t)− ḠN x̂(t|t−1)),
(37a)

where the gain matrix S solves a Riccati equation related
to the covariance errors of the (gaussian, white) noises that
affect system (26) (see, e.g., [23], [22]). The filter generates
the estimate x̂(t|t) of the current state x(t) of system (26)
through the following output:

x̂(t|t) = x̂(t|t− 1) +W (ξ̄N (t)− ḠN x̂(t|t− 1)), (37b)

where W is a matrix related to the gain S. The existence
of the matrices S and W is guaranteed by Corollary 3.
System (34), (37) is briefly referred to as Kalman filter with
moving average (37).

The following theorem guarantees that systems (36)
and (37) are asymptotic state observers for (26).

Theorem 8. Let Assumption 2 hold. Letting x(t), x̌(t) and
x̂(t|t) be the state-responses of systems (26), (36), and (37),
respectively, one has that

lim
t→∞

(x(t)− x̂(t)) = 0 and lim
t→∞

(x(t)− x̂(t|t)) = 0.

Proof. The proof follows directly by Theorem 7.

In the following remark, the filtering properties of the state
observers given in (36) and (37) are highlighted.

Remark 5. Let the assumptions of Theorem 8 hold. Let ψ(t) =
x(t)− x̌(t) and $(t) = x(t)− x̂(t|t); assume that the output
y is affected by an additive noise d(t), i.e., y(t) = C x(t) +
Du(t) + d(t). The transfer function from d to ψ is given by

(zE −A+ SḠN )−1S

[
1

N+1
1−z−N−1

1−z−1 E
1

N+2
1−z−N−2

1−z−1 E

]
, (38)

whereas the transfer function from d to $ is

((E−WḠN )(zE−A+SḠN )−1S+W )

[
1−z−N−1

(N+1)(1−z−1)E
1−z−N−2

(N+2)(1−z−1)E

]
.

(39)

The following lemma characterizes the mean and covariance
of the estimation errors in presence of random noise.

Lemma 7. Let Assumption 2 hold and assume that {d(t)}∞t=0

is a sequence of independent, identically distributed random
variables with zero-mean (i.e., E{d(t)} = 0) and covariance
matrix Σ (i.e., E{d(t)d>(t)} = Σ and E{d(t1)d>(t2)} = 0,
for t1 6= t2, t1, t2 ∈ Z≥0). Thus, letting

Σ̄ =

[ 1
N+1Σ 1

N+2Σ
1

N+2Σ 1
N+2Σ

]
,
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one has that

lim
t→∞

E{ψ(t)} = 0, (40a)

lim
t→∞

E{$(t)} = 0, (40b)

lim
t→∞

E{ψ(t)ψ>(t)} = lim
k→∞

k∑
j=0

R(k, j), (40c)

lim
t→∞

E{$(t)$>(t)} = lim
k→∞

k∑
j=0

V (k, j) +W Σ̄W>, (40d)

where

R(k, j) = (A− SḠN )k−j−1SΣ̄S>(A> − Ḡ>NS>)k−j−1,

V (k, j) = (E −WḠN )R(k, j)(E −WḠN )>.

Proof. First, note that E{ 1
N+1

∑N
j=0d(t − j)} =

1
N+1

∑N
j=0E{d(t − j)} = 0, whereas E{ 1

(N+1)2

∑N
j1=0d(t −

j1)
∑N
j2=0d

>(t − j2)} = 1
N+1Σ, and, similarly,

E{ 1
(N+1)(N+2)

∑N
j1=0d(t − j1)

∑N+1
j2=0d

>(t − j2)} = 1
N+2Σ.

Thus, by considering that

ψ(t+ 1) = (A− SḠN )ψ(t) + S

[
1

N+1

∑N
j=0d(t− j)

1
N+2

∑N+1
j=0 d(t− j)

]
,

by [46], one has that

E{ψ(t+ 1)} = (A− SḠN )E{ψ(t)},
E{ψ(t+ 1)ψ>(t+ 1)} = SΣ̄S>

+ (A− SḠN )E{ψ(t)ψ>(t)}(A− SḠN )>.

Therefore, (40) follows by Remark 5 and by the fact that ψ(t)
and d(t) are independent random variables,

Lemma 7 highlights the filtering properties of the given
observer, deriving from the fact that the entries of the matrix
Σ appear in (40) are divided by either N + 1 or N + 2.

The following example illustrates the application of the state
observers given in (36) and (37) and compares their estimates
with the ones obtained by a Kalman filter.

Example 4. Consider the Markov chain depicted in Fig. 8 and
assume that the only available measured output is the sum of
the probabilities of staying in state 1 and 3. The dynamics of

1 234

1

1

p

1− p

q

1− q

Fig. 8. The Markov chain considered in Example 4.

such a system are given by

x(t+ 1) =

[ 0 1 p 0
1 0 0 0
0 0 0 q
0 0 1−p 1−q

]
x(t), (41a)

y(t) = [ 1 0 1 0 ]x(t), (41b)

where p, q ∈ [0, 1], and the k-th entry of x(t) denotes the
probability of staying in state k at time t, k = 1, . . . , 4.
Numerical simulations have been carried out to compare the
performances of the state observers given in (36) and (37) with
the performance of a Kalman filter, assuming p = 1

100 , q = 1
2 ,

x(0) = [ 1
6

1
2 0

1
3 ]>. The constant N = 14 has been fixed. The

gains of the Kalman filter have been designed by assuming
that the dynamics in (41a) are affected by a noise F d(t),
where F = [ 1 −1 0 0 ]> and d(t) is a Gaussian, white,
zero-mean noise with covariance 10−3 and that the output of
system (41) is affected by a a Gaussian, white, zero-mean
noise with covariance 10−1. The same assumptions have been
made to design the gains S and W of (37):

S =

[−0.733 0.897
0.768 −0.570

0 0
0 0

]
, W =

[
0.768 −0.570
−0.733 0.897

0 0
0 0

]
.

Since the eigenvalues of A− S[ C>−i C>−i−1 ]> have mod-
ulus less than 1, the same gain has been used for system (36).
A numerical simulation has been carried out letting the output
y(t) of system (41) be affected by a Gaussian, white, zero-
mean noise with covariance 10−1 and letting the dynamics of
the system be affected by the additive noise F d(t), where F is
the matrix given above and d is a Gaussian, white, zero-mean
noise with covariance 10−3, so that the Kalman filter is tuned
to the noises affecting the system. Fig. 9 depicts the results of
this simulation. As shown by Fig. 9, the performances of the

0

0.5

1

x1
x2
x3
x4

State

−0.3

0

0.3
x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Kalman filter

0 1000 2000 3000 4000 5000

−0.3

0

0.3

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Kalman filter
with moving average

−0.3

0

0.3

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Luenberger observer
with moving average

Fig. 9. Example 4: state-response of system (41), of the Kalman filter
and of the state observers given in (36) and (37) when the output and
the system dynamics are affected by a Gaussian additive noise.

proposed state observers are very similar to the performance
of the Kalman filter, thus highlighting the effectiveness of
the proposed state observers in the case of Gaussian noises
with known covariance matrix. Another simulation has been
carried out letting the output be affected by a noise uniformly
distributed in [−0.3, 0.3]. Fig. 10 depicts the results of such
a simulation. As shown by Fig. 10, the state observers given
in (36) and (37) provide comparable estimates of the current
state of system (41). Furthermore, both of them are less
sensitive to uniformly distributed noises than the Kalman filter
thanks to the filtering properties of the moving average. These
two simulations highlight the effectiveness of the proposed ob-
servation scheme in presence of unknown measurement noise.
In fact, if such a noise is Gaussian, then the proposed observer
performs similarly to the Kalman filter, which is known to be
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0

0.5

1

x1
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x4

State

−0.3

0

0.3
x1 − x̂1
x2 − x̂2
x3 − x̂3
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0 25000 50000

−0.3

0

0.3

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Kalman filter
with moving average

−0.3

0

0.3

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4

Luenberger observer
with moving average

Fig. 10. Example 4: state-response of system (41), of the Kalman filter
and of the state observers given in (36) and (37) when the output is
affected by a uniformly distributed noise.

optimal. On the other hand, if the measurement noise is not
Gaussian, then the proposed observer performs better than the
Kalman filter showing improved filtering properties.

In real-world applications, continuous-time systems are con-
trolled and monitored by digital devices. The main objective
of the following example is to show how the tools given in
Sections IV and VI can be adapted to deal with the sampled-
data scenario.

Example 5. Consider the circuit depicted in Fig. 11 and
assume that the only available measured output is the voltage
across C. The dynamics of such a system are given by

+−u

R L

C

Fig. 11. The RLC electrical circuit considered in Example 5.

ẋ =

[
0 1
− 1
LC −RL

]
x+

[
0
1
LC

]
u, (42a)

y = [ 1 0 ]x, (42b)

where x1 denotes the voltage across the capacitor and x2 is its
time-derivative. Assume that just samples of the input u and of
the output y are measurable by ideal and synchronous samplers
with sampling time δT . The techniques given in Sections IV
and VI can be adapted to deal with sampled measurements.
In particular, by integrating the dynamics given in (23) with a
fixed-step numerical integration method (see, e.g., [47], [48]
for efficient implementations) with step equal to δT , it is
possible to use the observer (23) to estimate the state of
system (42) by taking into account just sampled measurements
of the input and of the output (in the following, the resulting
discrete-time observer is denoted discretized observer). On
the other hand, assuming that the input u can be nicely

approximated by its sampled counterpart fed to a zero-order
holder, with sampling time δT , it is possible to firstly find a
discrete-time system that approximates the trajectories of the
continuous-time system (42) at the sampling times (see, e.g.,
[49]) and to use system (37) to estimate the state of such
a discrete-time system (in the following, this discrete-time
observer is denoted state observer for the discretized system).

A numerical simulation has been carried out to compare the
performances of these two state observers with the ones of a
discretized Kalman filter, assuming the following (normalized)
values for the circuit: R = 1

2 , C = 1, L = 1
2 , and δT =

10−3. The initial condition of system (42) has been set to
x(0) = [ 5 0 ]>. The parameters of the discretized observer
have been set to τ = 10−2, θ = 1, L = 10−3 · [ 629.98

198.44 ],
K = 10−3 ·

[−336.23 0
−808.37 0

]
. On the other hand, the state observer

for the discretized system has been designed by using (37),
with N = 10, S = 10−3 · [ 0.49 0.49

0.23 0.23 ], W = 10−3 · [ 0.49 0.49
0.23 0.23 ].

The input u has been generated by the following system:

ξ̇1 = sin(ξ2), ξ̇2 = sin(ξ3),

ξ̇3 = sin(ξ1), u = ξ1,

with ξ(0) = [ 0.1 −0.2 0.3 ]>, which exhibits a chaotic
behavior [50]. A random noise, with zero-mean, and uniformly
distributed in [−1, 1], has been added to the samples of the
output yD(k) that, afterwards, have been quantized as signed
words, with 8-bit length and 4-bit fraction length. Fig. 12
depicts the results of such a simulation. As shown by such

−4
−2

0
2
4
6

x1
x2

State

-0.05

0

0.05
x1 − x̄1
x2 − x̄2

Discretized
Kalman filter

-0.05

0

0.05
x1 − x̂1
x2 − x̂2

Observer for the
discretized system

0 5 10 15 20 25 30

-0.05

0

0.05

t

x1 − x̂1
x2 − x̂2

Discretized observer

Fig. 12. Numerical simulation of the state-responses of system (42),
of the discretized Kalman filter, of the state observer for the discretized
system, and of the discretized observer.

a figure, both methods provide good estimates of the state
of system (42) despite the presence of the additive noise,
the quantization of the samples, and the approximation due
to the sampling of the input u, In particular, while the state
observer for the discretized system and the discretized Kalman
filter have comparable performance, the discretized observer
performs better than the other two systems. This is essentially
due to the fact that the integral filters zero-mean noises better
than the moving average and the classical Kalman filter.
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VII. STATE OBSERVERS FOR DETECTABLE SYSTEMS

Assume that system (2) is detectable, but not observable.
Thus, let W be a basis of ker(On−1(C,A)) and let V be
such that rank([ W V ]) = n. Thus, define the matrix T =
[ W V ]. By [34], using the linear change of coordinates
x̆ = Tx = [ x̆>i x̆>o ]>, system (2) can be rewritten as

∆x̆i(t) = Ăi,i x̆i(t) + Ăi,o x̆o(t) + B̆i u(t), (43a)

∆x̆o(t) = Ăo,o x̆o(t) + B̆o u(t), (43b)

y(t) = C̆o x̆o(t) + D̆ u(t), (43c)

where either σ(Ăi,i) ⊂ {s ∈ C : Re(s) < 1}, if T =
R≥0, or σ(Ăi,i) ⊂ {s ∈ C : |s| < 1}, if T = Z≥0,[
Ăi,i Ăi,o

0 Ăo,o

]
= TAT−1,

[
B̆i

B̆o

]
= TB, [ 0 C̆o ] = CT−1, D̆ =

D, and pair (C̆o, Ăo,o) is observable (this is usually known
as the Kalman decomposition with respect to inobservability).
Hence, assuming that det(Ăo,o) 6= 0, the techniques given in
Sections IV and VI can be used to design a state observer for

∆x̆o(t) = Ăo,o x̆o(t) + B̆o u(t), (44a)

y = C̆o x̆o(t) + D̆ u(t). (44b)

Hence, let ˆ̆xo(t) be the estimate of the state of system (44)
obtained by such a state observer and consider the system

∆ˆ̆xi(t) = Ăi,i ˆ̆xi(t) + Ăi,o ˆ̆xo(t) + B̆i u(t). (45)

By [34], ˆ̆xi(t) is an asymptotic estimate fo x̆i(t), i.e.,
limt→∞ x̆i(t) − ˆ̆xi(t) = 0. Therefore, letting ˆ̆xo(t) be an
estimate of the state of system (44) obtained by using the
techniques given in Sections IV and VI for T = R≥0 and for
T = Z≥0, respectively, and letting ˆ̆xi(t) be the state-response
of system (45), an estimate of the state of system (2) can be
obtained as x̂ = T−1[ ˆ̆x>i ˆ̆x>o ]>.

VIII. CONCLUDING REMARKS

It is well known that the time-integral and the moving
average present a low-pass behavior; in this paper, it has been
shown that their use allows the design of observers that are
less sensitive to high-frequency noise than the Kalman filter
and classical state observers, such as the Luenberger and the
sliding-mode ones. The theoretical results have been corrob-
orated by several numerical simulations that have highlighted
the effectiveness of the proposed observers. In particular, it
has been verified in simulation that the tools developed for
purely continuous-time and discrete-time systems can be used
to design efficient state observers based on sampled (possibly,
noisy and quantized) measurements of the output, thus making
the proposed observer suitable for practical applications.

In the continuous-time case, simulations of a mechanical
system and a two tank system have shown increased filter-
ing properties, for high-frequency noise, with respect to the
Kalman filter and to a sliding-mode observer.

As for the discrete-time case, two simulations on an aca-
demic Markov chain have shown that, besides having in-
creased filtering properties for uniformly distributed noise, the
proposed observers perform quite similarly to the Kalman filter
in the case of Gaussian noise, for which the latter is optimal.

Very relevant for practical applications is the performance
shown in the case of a sampled-data system, namely a simple
RLC circuit with quantized and noisy measurements, where
it is evident that a great advantage is obtained with the
proposed method when the approach is the widely used one
of discretizing an observer designed in continuous-time.

Therefore, even if the implementation of the proposed
observers requires more computational effort, they may be
preferred to classic approaches [39], [51] due to their improved
filtering properties with respect to high-frequency noises.

Note that, in order to implement both the continuous-time
and the discrete-time observers proposed in this paper, one
has to compute (off-line) a solution C−k = CA−k to the
linear equation C = C−kAk. If the matrix A has both large
and small singular values, this problem may be numerically
ill conditioned. However, in the literature, several techniques
are given to specifically solve this problem. For instance, the
matrix C−k can be found: (i) by applying an iterated Tikhonov
regularization [52]; (ii) by using a preconditioner for A [53];
(iii) by coupling the above techniques with a singular value
decomposition [54]; (iv) by using a Newton-like method [55].

The focus of this paper is on linear systems, but a first
idea on how to deal with nonlinear ones comes from the Flow
Box Theorem [37]; for each f ∈ R∞[[x]] and each point xo

such that f(xo) 6= 0 (in the following referred to as regular
point), there exists a diffeomorphism % = Φ(x) about xo,
Φ ∈ R∞[[x]], such that φ(xo) = 0 and (∂Φ

∂x f) ◦Φ−1(%) = e1,
where e1 is the first column of E, i.e., each smooth vector field
can be locally rectified about any regular point. Thus, locally
about regular points, any smooth system is diffeomorphic to
%̇ = e1, y = h(%), and hence a directional integral of the
system is locally given by k ◦ Φ(x), where k(%) satisfies
∂k(%)
∂%1

= h(%), and, therefore, can be computed by direct
integration or approximated by formal series. Based on the
function k◦Φ(x), observers based on the integral of the output
can be designed for nonlinear plants about regular points. On
the other hand, the characterization of directional integrals in
the neighborhood of equilibria deserves more attention and
requires further research as well as the characterization of the
performance of the proposed observers in presence of process
noise and non-modeled (possibly, nonlinear) dynamics.
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