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SINR and Multiuser Efficiency Gap
Between MIMO Linear Receivers
G. Alfano, C.-F. Chiasserini, Fellow, IEEE, and A. Nordio, Member, IEEE

Abstract—Due to their low complexity, Minimum Mean

Squared Error (MMSE) and Zero-Forcing (ZF) emerge as two

appealing MIMO receivers. Although they provide asymptotically

the same achievable rate as the signal-to-noise ratio (SNR) grows

large, a non-vanishing gap between the signal to interference and

noise ratio (SINR) obtained through the two receivers exists,

affecting the error and outage probability, and the multiuser

efficiency. Interestingly, both the SINR and the multiuser ef-

ficiency gaps can be compactly expressed as quadratic forms

of random matrices, with a kernel that depends solely on the

statistics of the interfering streams. By leveraging [1], we derive

the closed-form distribution of such indefinite quadratic forms

with random kernel matrix, which turns out to be proportional

to the determinant of a matrix containing the system parameters.

Then, specializing our result to different fading conditions, we

obtain the closed-form statistics of both the SINR gap and the

multiuser efficiency gap. Although the focus of this work is on

the finite-size statistics, for completeness we also provide some

results on the doubly-massive MIMO case. We validate all our

derivations through extensive Monte Carlo simulations.

I. INTRODUCTION

Zero Forcing (ZF) and Minimum Mean Squared Error
(MMSE) are the most popular linear receivers, due to the
desirable trade-off they exhibit between implementation com-
plexity and achievable performance. Interestingly, their sup-
posed performance equivalence in the high Signal-to-Noise
Ratio (SNR) regime was partially contradicted in [2]. Therein
it was shown that, given a finite number of transmission signal
streams with common value of normalized SNR, the output
signal-to-interference and noise ratio (SINR) for independent
stream decoding, measured in correspondence of an arbitrary
branch of the MMSE receiving filter, is equal to the sum of the
output SINR of the ZF equalizer on the corresponding branch,
plus a gap term. The latter is a non-decreasing function of the
transmitted SNR [2], [3], and it accounts for the energy that
is nulled out by the MMSE but not by the ZF receiver.

According to [2, Eqq. (50, 53)], such a gap between the
output SINR values is critical, as it impacts both the outage
and the error probability. Moreover, knowledge of the statistics
of the gap can serve to upper bound the Interference-to-Noise
ratio at the output of an MMSE filter in the high-SINR region
[2, Lemma III.2]. Last but not least, an SINR gap between
two linear receivers implies the existence of a non-vanishing
gap between their Multiuser Efficiency (ME) values. Indeed,
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the ME is given by the ratio of the achieved SINR to the
corresponding SNR in the absence of interference, for each
independently decoded stream [4, Eq. (18)]. Deriving closed-
form expressions for the statistics of both the SINR and the
ME gaps, under different fading conditions, represents one of
the main contributions of our work, as also highlighted by the
discussion of prior art reported below. Moreover, motivated by
the relevance of linear receivers in massive MIMO communi-
cations (see e.g., [5], [6] and references therein), we address
the SINR and ME gaps statistics in such a setting, for some
relevant fading scenarios.

Related work. To date, the probability density function
(pdf) of the SINR gap between MMSE and ZF receivers,
hereinafter denoted by ⌫, has been derived in closed form only
for asymptotically large transmit power. In [2, Thm. III.1], it
was shown that, as the SNR grows large, ⌫ converges with
probability one to a random variable with known pdf [7] under
the assumption that the intended, as well as the interfering
streams, are subject to uncorrelated Rayleigh fading. The
remainder of the literature on linear receivers focuses, instead,
on the characterization of the output SINR in correspondence
of a ZF or a MMSE receiver, but not on the gap between
the two of them. The case of a system with a large number of
transmit and receive antennas, impaired by transmit-correlated
Rayleigh fading, has been investigated in [3]. Irrespectively of
the presence of spatial correlation, under Rayleigh fading, the
output SINR of the ZF equalizer on a given branch, �zf , is
Gamma distributed [8].

More recent works [9, and references therein] deal with
the distribution of �zf in the line-of-sight (LoS) environment,
i.e., when either the desired or the interfering streams [10]
experience Rician fading, while the remaining streams expe-
rience Rayleigh fading. No results on either �zf or the SINR
gap between the MMSE and the ZF receiver, are available for
other channel models. The exact characterization of the output
SINR on a given branch of the MMSE receiver, �mmse, is a
more challenging task1, calling for the separate investigation
of �zf and of the SINR gap, which are easier to handle. ME
statistics are, on the other hand, far more complicated than
that of the SINR, and, up to date, have been studied only in
the large-system case (see [4], [11]).

Aim of the work and contributions. We leverage the fact
that both the SINR and the ME gap between the MMSE and
the ZF receiver can be expressed in terms of a Hermitian
quadratic form, including a vector depending on the desired

1The pdf of �mmse is available when both desired and interfering signals
are Rayleigh faded [12], [13]. A closed-form expression for its moments can
be found for the case of Rice-faded useful stream/Rayleigh-faded interference
in [14]. Large-deviations behavior of �mmse is investigated in [15].
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signal stream and a kernel matrix depending on the interfering
streams only. In particular, the SINR gap can be cast, in
all fading cases of practical interest, as a positive-definite
quadratic form that can be analyzed using theoretical tools of
multivariate analysis. The expression of the ME gap, instead,
corresponds to that of an indefinite quadratic form, and will
be studied exploiting some recently derived tools [1]. Our
analysis provides a handy, yet elegant, closed-form expression
for both the SINR and the ME gap, given by the product of
a constant by a matrix determinant. In the rest of the work,
Sec. III introduces the system model and defines the SINR
and the ME gap. They are successively expressed in terms of
quadratic forms in random kernel matrices, and useful results
from the literature are recalled.

Then we focus on the case of a Rayleigh-faded intended
stream2. Under this assumption, in Sec. IV we first pro-
vide a non-asymptotic result complementing the fundamental
one of [2, Thm. III.1], by giving the gap distribution for
Rayleigh-faded interfering streams but arbitrary rather than
arbitrarily large SINR values. The case of transmit-correlated
Rayleigh fading, possibly corresponding to spatially-clustered
interferers, is addressed in the same vein. Next, we derive the
corresponding statistics in the case of Rician-faded interfering
streams, for arbitrary rank and eigenvalues multiplicity of LoS
matrix. Such a scenario is representative of a worst-case cel-
lular transmission, where the useful stream comes, e.g., from
the cell edge and dominant interferers have LoS path toward
the base station. Finally, we evaluate the pdf of the SINR
gap for the case where interfering streams undergo multiple
Rayleigh scattering3. This last scenario is of particular interest
in small-cells networks. Indeed, it adequately represents, with
no approximation in the channel statistics, the case where
interfering signals come from non co-located single-antenna
equipped transmitters, whose signals may undergo multiple
scattering phenomena. Comparative performance analysis of
MMSE and ZF receivers, based on the newly derived results,
and contrasted with numerical simulation, complete the work.
In particular, as an example of application of our results, we
evaluate the key statistics of the SINR gap, relating the value of
the symbol error probability and that of the outage probability
of an MMSE receiver with the corresponding performance
indices in the case of ZF (Secs. V and VI).

As for the ME gap, Sec. VII presents the pdf of the ME
gap in closed form and the mathematical tools needed for its
derivation. Sec. IX tackles the case of doubly-massive MIMO
communications and provides results and discussions on the
SINR and ME gaps. These analytical results are validated
through extensive simulations (Secs. VIII and IX).

II. NOTATION

Boldface uppercase and lowercase letters denote matrices ad
vectors, respectively. I is the identity matrix. The determinant

2A Rayleigh-faded useful stream allows for closed-form expressions of the
relevant statistics. Other fading distributions allow for saddle-point approxi-
mations, which are accurate only as the system size grows large [1].

3See [16] for the statistical analysis of a multiple scattering system, and
[17], [18] for practical justification and information-theoretic performance of
such channels, as the number of scattering stages vary. Also, a preliminary
analysis of the Rayleigh quotient can be found in [19].
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Fig. 1. (a) Downlink scenario where a user or a relay node receive a useful
signal from a base station as well as interference from other nodes; (b) Uplink
scenario where a relay or user node transmit a useful stream to a base station
and interference may be generated by other nearby nodes.

and the conjugate transpose of the generic matrix A are
denoted by |A| and AH, respectively, while [A]i,j is the
(i, j)-th element of A. For any m ⇥ m Hermitian matrix
A with distinct eigenvalues a1, . . . , am, the Vandermonde
determinant is defined as: V(A) =

Q
1k<`m(a` � ak). The

Vandermonde determinant is sometimes denoted by V(a), in
order to stress the dependence on the vector of eigenvalues
a = [a1, . . . , am]T. Gc,d

a,b(·|·), with integer parameters a, b, c, d,
denotes the Meijer-G function [20, Ch. 8]. Ea[·] represents
the average operator with respect to the random variable
a. The generalized hypergeometric function is denoted by
pFq(a;b;x), and the complex multivariate Gamma function
is defined as [21]: �p(q) = ⇡p

Qp
`=1(q � `)!, with p and q

non-negative integers such that p  q, and ⇡p = ⇡p(p�1)/2.
Finally, fa(a), fa(a), and fA(A) denote the pdf of a scalar,
multivariate, and matrix-variate random variable, respectively,
while Fa(a) denotes the cumulative distribution function (cdf)
of the random variable a.

III. SYSTEM MODEL AND MATHEMATICAL
PRELIMINARIES

We focus on a wireless network composed of a receiver
equipped with multiple antennas, a transmitter equipped with
one or more antennas, and, possibly, a set of interferers.
Such model reflects practical scenario as depicted in Fig. 1
where (a) and (b) refer to, respectively, downlink and uplink
communications in a cellular network. Denoting by nr the
number of antennas at the receiver and by nt the overall
number of transmitting antennas (i.e., irradiating either useful
or interfering signals), the received signal can be written as

y =
p
�hx+ bH b�x̂+ n

where
• y is the received signal vector of length nr;
• x is the intended transmitted symbol with zero mean and

unitary variance, h is the channel vector, and � is the
SNR on the transmitter-receiver link;

• x̂ is the vector of zero mean interfering symbols
with covariance E[x̂x̂H] = I, bH is the channel
matrix on the interferers-receiver links, and b� =

diag(
p
�̂1, . . . ,

q
�̂nt�1) is the diagonal matrix of the

amplitudes of the interfering signals;
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• n is a Gaussian random vector representing additive noise
with covariance E[nnH] = I.

We also define H = [h, bH] as the nr ⇥ nt random channel
matrix, which we assume to be available at the receiver, and
we define� = diag(

p
�,
p
�̂1, . . . ,

q
�̂nt�1) as the amplitude

of the useful and interfering signals. Note that this is a fair
assumption since in advanced systems, such as 5G, the base
station can accurately estimate the channel state information
related to each user thanks to the Sounding Reference Signal
(SRS) transmitted by every UE in uplink. If a data transfer is
in place, also the Demodulation Reference Signal (DMRS) can
be used to support MIMO transmissions. In downlink, the user
can exploit the Channel State Information Reference Signal
(CSI-RS) transmitted by base stations and obtain a channel
estimation, which is quite accurate in the case of stationary or
slowly moving users.

In case of independent stream decoding, the output SINR
corresponding to the useful signal can be expressed for the
MMSE and, respectively, for the ZF receiver as [22, Ch. 6]:

�mmse=
1

(I+�HHH�)�1
1,1

�1, �zf=
1

(�HHH�)�1
1,1

. (1)

The difference of the above quantities is referred to as SINR
gap and is defined as [2], [3]

⌫ = �mmse � �zf . (2)

As mentioned, the SINR gap is a non-decreasing function of
the SNR, accounting for the energy nulled out by the ZF but
not by the MMSE receiver, and it can be modeled as a random
variable supported on the non-negative real axis [2].

In turn, the ME achieved by the useful stream is given by
the ratio between the corresponding SINR and the SNR in
absence of other-stream interference, i.e., [4, Eq. (18)]

⌘mmse =
�mmse

�khk2 , ⌘zf =
�zf

�khk2 . (3)

In analogy with the SINR gap, the multiuser efficiency gap
can be defined from (2)-(3), as

µ = ⌘mmse � ⌘zf =
⌫

�khk2 . (4)

The statistics of both ⌫ and µ can be related to those of
properly cast Hermitian quadratic forms in random matrices.
Let G = bH b�; then the SINR gap defined in (2), is given by
the quadratic form [2, Eq. (26)]

⌫ = �hHU (Int�1 +⇤)
�1 UHh , (5)

where G = U⇤1/2VH is a decomposition of G, with U being
a complex matrix of size nr⇥(nt�1) with orthogonal columns
(i.e., UHU = Int�1); ⇤ = diag(�1, . . . ,�nt�1) is a square
diagonal matrix of size nt � 1 with its diagonal including
the non-zero eigenvalues of GHG, and V is a square unitary
matrix of size nt � 1. Details on how to derive (5) from (1)
are reported in Appendix A.

The law of a quadratic form hHAh as in (5) has been
studied in the literature, when the elements of h are i.i.d. and
zero-mean, Gaussian distributed. A characterization of such
quadratic form for MIMO systems is provided e.g., in [23]

where the kernel matrix A is considered deterministic. We
extend this result to the case of a random kernel matrix since,
in our scenario, A depends on the random matrix G.

The ME gap becomes the ratio of two quadratic forms,

µ =
hHAh

khk2 , (6)

where, according to (4) and (5), A = U (Int�1 +⇤)
�1 UH,

has eigenvalues

a =
h
↵1, . . . ,↵nt�1| {z }

↵

, 0, . . . , 0| {z }
nr�nt+1

i
(7)

with ↵i = (1 + �i)�1, i = 1, . . . , nt � 1. Being both the
numerator and the denominator in (6) quadratic forms in h, µ
can be expressed as a Rayleigh quotient [24], whose statistics
boil down to that of a properly cast indefinite quadratic form.

Our setting (6) requires an investigation of µ when A and
h are randomly distributed. To this end, we consider the cdf
of the ME gap conditioned to matrix A, i.e., Fµ|A(z) =
P(µ  z|A). When A is a deterministic matrix, different
expressions for the pdf of µ are provided in [1], depending
on the multiplicity of the eigenvalues of A; in the remainder
of the paper, we address instead the case of random A. Most
of the results will be derived by using the following Lemmas,
which have general validity beyond the scope of this paper.

Lemma 3.1: Let Ly{·} be a linear operator acting on func-
tions of the variable y. Let ⌅ be an n⇥n matrix defined as

[⌅]i,j =

⇢
ci,j 1  i  n, i 6= k, 1  j  n
⇠j(y) i = k, 1  j  n

where ci,j are constant w.r.t. y, and ⇠j(y) are arbitrary func-
tions. Then Ly{|⌅|} = |e⌅| where

[e⌅]i,j =
⇢

ci,j 1  i  n, i 6= k, 1  j  n
Ly{⇠j(y)} i = k, 1  j  n .

Proof: The determinant of ⌅ can be evaluated by us-
ing the Laplace expansion over the k-th column of ⌅. We
have |⌅| =

Pn
i=1 Cj⇠j(y) where Cj is the (constant w.r.t.

y) (k, j)-th cofactor of ⌅. Since Ly{·} is linear we have
Ly{|⌅|} =

Pn
i=1 CjLy{⇠j(y)} which coincides with the

Laplace expansion of |e⌅| over the k-th column of e⌅.
Lemma 3.2: [25, Corollary I] Let � and  be two n ⇥ n

arbitrary matrices such that [ ]i,j =  i(xj) and [�]i,j =
�i(xj). Also, let ⇣(·) be an arbitrary function. Then the
integral

R
X |�|| |

Qn
i=1 ⇣(xi) dx = |⇥| where X = {b �

x1 � x2 � · · · � xn � a} is the integration domain and
[⇥]i,j =

R b
a  i(x)�j(x)⇣(x) dx.

The notations we use are summarized in Table I.

IV. STATISTICAL CHARACTERIZATION OF THE SINR GAP

We now statistically characterize the SINR gap, ⌫, under
different assumptions on the statistics of the diagonal matrix
⇤ in (5), and assuming that h ⇠ CN (0, Inr), i.e., the received
signal streams are affected by uncorrelated Rayleigh fading.
We will maintain the latter assumption on the intended signal
stream throughout the work, while different distributions of
the fading affecting the interfering streams will be considered.
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TABLE I
DESCRIPTION OF THE MAIN NOTATIONS USED IN THE WORK

Notation Description

nt, nr No. transmit and receiver antennas
nt � 1 No. of interfering antennas
⌧i Shorthand notation for nr � nt + i, i 2 N
� Useful signal power
h Channel vector of the useful signal
bH Channel matrix of the interfering signals
b� Amplitudes of the interfering signals
⇤ Eigenvalues of GH

G, (G = bH b�)
L Eigenvalues of bHH bH
⌫, µ SINR and ME gap
f⌫(y), F⌫(y) pdf and cdf of the SINR gap
fµ(y), Fµ(y) pdf and cdf of the ME efficiency gap

Below, we first provide the expression of the conditional
distribution f⌫|⇤(y). Then, under some hypothesis on the
structure of f⇤(⇤), we obtain f⌫(y). We start by proving the
following lemma on the SINR gap distribution f⌫|⇤(y), which
holds under the assumption of Rayleigh fading afflicting the
main signal stream and given the interfering streams fading
law. The lemma provides the pdf of the SINR gap in a
simple, yet elegant, form, as the product of a constant by the
determinant of the matrix representing the system.

Lemma 4.1: Consider independent stream decoding and the
SINR gap ⌫ as defined in (5). Then ⌫ is a random variable
whose conditional law, with respect to the fading distribution
affecting the interfering streams (i.e., conditioned to ⇤), is:

f⌫|⇤(y) =
s|T|
V(⇤) , (8)

where s = (�1)(nt�1)(nt�2)/2 and T is a (nt � 1)⇥ (nt � 1)
matrix, with generic element

[T]i,j=ti(�j)=

8
>><

>>:

(1+�j)nt�i�1 1jnt�1
1int�2

1+�j

� e�y(1+�j)/� 1jnt�1
i=nt�1

(9)

Proof: In [26] it is shown that if V is an m⇥n (m < n)
complex Gaussian random matrix with zero mean, constant
covariance matrices ⌃1 and ⌃2, and density

fV(V) =
exp

�
�Tr{⌃�1

1 V⌃�1
2 VH}

�

⇡nm|⌃1|n|⌃2|m
.

Then the density of the quadratic form Y = VVH is

fY|⌃1,⌃2
(Y) =

⇡m(m�1)/2|S|
|⌃1|mV(Y)V(⌃2)

. (10)

The elements of S in (10) can be written as:

[S]i,j =

(
pi�1
j 1jn, 1in�m

pn�m�1
j e

� yi�n+m
pj 1jn, n�m+1in

with [p1, . . . , pn] being the eigenvalues of ⌃2 and [y1, . . . , ym]
the eigenvalues of Y. Next, let ⌃2 = � (Int�1 +⇤)

�1 and
v = hHU⌃1/2

2 . Since h ⇠ CN (0, Inr), by the invariance
of the complex Gaussian distribution to linear transformations
and by the fact that UHU = Int�1, then v ⇠ CN (0,⌃2). It
immediately follows that, when V is replaced by the 1⇥(nt�

1) vector vH (i.e., m = 1, n = nt � 1, ⌃1 = 1), the term Y
reduces to a scalar, thus V(Y) = 1, and the density in (10)
corresponds to that of the quadratic form ⌫ = kvk2. Hence, it
can be written as:

f⌫|⌃2
(y) =

|S|
V(⌃2)

. (11)

Since (i) the eigenvalues of ⌃2 are pj = � (1 + �j)
�1, j =

1, . . . , nt�1, and (ii) the variable ⌃2 depends on the random
matrix ⇤ only (hence, f⌫|⌃2

(y) = f⌫|⇤(y)), we can write

V(⌃2) =
Y

1i<j<nt�1

pj � pi =
(��)(nt�1)(nt�2)/2V(⇤)

|I+⇤|nt�2
.

By exploiting the result in (11) and observing that the product
of two determinants of equal size matrices is the determinant
of the matrix product, after some algebra we obtain (8).

Equipped with (8), we derive f⌫(y) for the general case,
encompassing a number of fading scenarios, for which detailed
expressions will be listed in the following.

Proposition 4.1: Let G be a random channel matrix of
interfering streams of size nr⇥(nt � 1), nr�nt. Let ⇤ =
diag(�1, . . . ,�nt�1) be the matrix of the unordered eigenval-
ues of GHG. Assume that the distribution of ⇤ is given by

f⇤(⇤) =
K

(nt � 1)!
V(⇤)|�|

nt�1Y

i=1

 (�i) , (12)

where K is the normalizing factor of the pdf, � is an
arbitrary (nt � 1) ⇥ (nt � 1) matrix with [�]i,j = �i(�j),
i, j = 1, . . . , nt � 1, and  (·) is an arbitrary function. Then,
recalling that s = (�1)(nt�1)(nt�2)/2 is a constant as defined
after (8), the pdf of the SINR gap, ⌫, is

f⌫(y) = sK|Z| , (13)

[Z]i,j =

8
>><

>>:

Z +1

0
�j(�) (�) (1+�)

nt�i�1 d�
1jnt�1
1int�2

1

�

Z +1

0
�j(�) (�) (1+�) e

�y 1+�
� d�

1jnt�1
i=nt�1

(14)

The functions �i(�) and  (�) have to be specified according
to the adopted fading model, as detailed later. The above
expression allows us to easily obtain the cdf and all moments
of ⌫. Indeed, since integration is a linear operation, we can
apply Lemma 3.1 on Z and get F⌫(y) =

R y
0 f⌫(z) dz =

1 � sK|Z̄| and m(k)
⌫ = sK|Z(k)|, where F⌫(y) is the cdf of

⌫, m(k)
⌫ = E[⌫k] is the k-moment of ⌫,

[Z̄]i,j=

8
>><

>>:

[Z]i,j
1  j  nt � 1
1  i  nt � 2Z +1

0
�j(�) (�)e

�y 1+�
� d�

1  j  nt � 1
i = nt � 1

[Z(k)]i,j=

8
>><

>>:

[Z]i,j
1  j  nt � 1
1  i  nt � 2Z +1

0

k!�k�j(�) (�)

(1 + �)k
d�

1  j  nt � 1
i = nt � 1



5

Proof: The unconditional law of ⌫ can be derived as:

f⌫(y) =

Z

⇤>0
f⌫|⇤(y)f⇤(⇤) d⇤ (15)

where f⌫|⇤(y) is given by Lemma 4.1. Plugging (8) and (12)
into (15), we obtain

f⌫(y) =
sK

(nt � 1)!

Z

⇤>0
|T||�|

nt�1Y

i=1

 (�i) d⇤ . (16)

The evaluation of the integral in (16) is carried out by resorting
to Lemma 3.2. This result, specialized to our case, allows us
to write:

Z

⇤>0
|T||�|

nt�1Y

i=1

 (�i) d⇤ = (nt � 1)!|Z| . (17)

The term (nt�1)! in (17) is due to the fact that now we inte-
grate over the domain of the unordered eigenvalues⇤, while in
Lemma 3.2 we considered ordered variables. The elements of
the matrix Z are given by [Z]i,j =

R +1
0 ti(�)�j(�) (�) d�.

Recalling the definition of ti(�) in (9), we obtain (14).
In the following subsections, we derive closed-form expres-

sions for specific types of interfering fading channels, i.e., for
specific expressions of the density f⇤(⇤).

A. Rayleigh fading
Assume that the elements of bH are zero-mean, independent,

complex Gaussian random variables with unit variance and
that b� =

p
�̂I, i.e., all interfering streams have the same

average power. This case well represents both the following
scenarios: (i) there is a single transmitter with nt antennas
out of which one irradiates the useful signal while the others
transmit interfering streams (� = �̂); (ii) there is one transmit-
ter with one antenna and an interfering node equipped with
nt � 1 antennas. Then the following result holds.

Proposition 4.2: The distribution of the SINR gap in (5),
under the assumption of Rayleigh-faded interfering streams,
can be written as

f⌫(y) =
s⇡2

nt�1

�nt�1(nt � 1)�nt�1(nr)
|Z1| , (18)

[Z1]i,j=

8
>>>><

>>>>:

nt�i�1X

k=0

�(nr+j�i�k)�(nt�i)

�̂kk!�(nt�i�k)

1jnt�1
1int�2

e�y/�

�

⌧j !

t⌧j+1

"
1+

�̂(⌧j+1)

t

#
1jnt�1
i=nt�1

(19)
⌧j = nr � nt + j, j 2 N, and t = 1 + �̂

�y.
Proof: When the columns of bH are uncorrelated and

Gaussian distributed, the joint pdf of the unordered eigenvalues
L of bHH bH is obtained from [27, Eq. (9)], as

fL(L) =
⇡2
nt�1V(L)2e�Tr{L}|L|⌧1

�nt�1(nt � 1)�nt�1(nr)(nt � 1)!
. (20)

Since b� =
p
�̂I, the eigenvalues of G = bH b� are ⇤ = �̂L

whose distribution is

f⇤(⇤)=
fL(⇤/�̂)

�̂nt�1
=
⇡2
nt�1V(⇤)2e�Tr{⇤}/�̂|⇤⌧1/�̂nr |
�nt�1(nt�1)�nt�1(nr)(nt�1)!

. (21)

In (20) and (21), the term (nt � 1)! accounts for the fact
that we consider unordered eigenvalues, while in [27, Eq. (9)]
ordered eigenvalues were assumed.

By comparing (21) to (12), we identify the following terms:
|�|=V(⇤) (i.e., �j(�)=�j�1),  (�) = 1

�̂nr
�⌧1e��/�̂ , and

K =
⇡2
nt�1

�nt�1(nt�1)�nt�1(nr)
which, substituted in (14), provide

[Z1]i,j =
1

�̂nr

Z +1

0
(1 + �)nt�i�1 �⌧je��/�̂ d�

= �̂j�i
nt�i�1X

k=0

�(nr+j�i�k)�(nt�i)

�̂kk!�(nt�i�k)
(22)

for 1  i  nt�2 and 1  j  nt�1. Instead, for i = nt�1,

[Z1]i,j =
e�y/�

�̂nr�

Z +1

0
(1 + �)�⌧je��(1/�̂+y/�) d�

=
e�y/�

�

⌧j !�̂j�nt+1

t⌧j+1

"
1 +

�̂(⌧j + 1)

t

#
(23)

where we recall that ⌧j = nr�nt+ j, j 2 N, and t = 1+ �̂
�y.

At last, observe that the determinant of a matrix Z such that
[Z]i,j = �̂j�iai,j , equals the determinant of a matrix A whose
(i, j)-th element is ai,j . Thus, the factors �̂j�i and �̂j�nt+1

can be removed from (22) and (23), respectively.
From the above proposition, we obtain the following inter-

esting result on the case where the rows of G are correlated.
Also, note that our model captures the case where interfering
signals exhibit different values of path loss.

Corollary 4.1: If the rows of G have zero-mean, Gaussian-
distributed elements and are correlated with common covari-
ance matrix ⌃, with distinct4 eigenvalues �i, i = 1, . . . , nt�1,
the distribution of the SINR gap ⌫ is given by

f⌫(y) =
s⇡nt�1|Z2|

�nt�1(nr)V(⌃)|⌃|⌧2
, (24)

[Z2]i,j=

8
>>><

>>>:

nt�i�1X

k=0

�(nt�i)(nr�i�k)!

k!�(nt�i�k)�k�nr+i�1
j

1jnt�1
1int�2

e�
y
� ⌧1!�

⌧2
j

�(1+�j

� y)⌧2

✓
1+

⌧2�j
1+�j

� y

◆
1jnt�1
i=nt�1

Proof: Under the corollary’s assumptions on G, the
density of ⇤ is given by [21, eq. (95)]:

f⇤(⇤)=⇡
2
nt�1

0F0(; ;�⌃�1,GHG)|GHG|⌧1V(⇤)2

(nt�1)!|⌃|nr�nt�1(nr)�nt�1(nt�1)
. (25)

In (25), the term (nt�1)! is due to the fact that we consider
unordered eigenvalues ⇤, while [21, eq. (95)] assumes
ordered eigenvalues. Moreover, in (25) pFq(a;b;�, )
is the generalized hypergeometric function of two
matrix arguments. Since |GHG|=|⇤|, V(GHG)=V(⇤),

0F0(; ;�⌃�1,GHG)=
�nt�1(nt�1)|E|

⇡nt�1V(�⌃�1)V(GHG)
, [E]i,j=e

� �i
�j

[27, eq. (6)], and V(�⌃�1) = V(⌃)|⌃|2�nt , the pdf of ⇤
can be rewritten as

f⇤(⇤) =
⇡nt�1|E||⇤|⌧1V(⇤)

(nt � 1)!�nt�1(nr)V(⌃)|⌃|⌧2
. (26)

4Multiple eigenvalues can be addressed via limiting procedures [26].
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By comparing (26) to (12), we identify the following terms:
� = E (hence �j(�i) = e��i/�j ),  (�) = �⌧1 , and K =

⇡nt�1

�nt�1(nr)V(⌃)|⌃|⌧2 . By substituting these expressions in (14),
after some algebra, we obtain (24).

B. Rice fading

In the case of an interfering node with nt�1 antennas whose
streams undergo Rice fading, we have H = H̄+ eH where H̄ is
constant and eH is a random Gaussian zero-mean matrix with
i.i.d. entries. This scenario is representative of a worst-case
cellular transmission where the useful stream comes, e.g., from
the cell edge and dominant interferers have LoS path toward
the base station. We specifically consider the case where b� =p
�̂I so that G =

p
�̂ bH. Note that, in the case of r Rice-faded

interferers and nt�1�r Rayleigh-faded interferers, H̄ has rank
less or equal to r. In the following, we provide an expression
for the pdf of the SINR gap ⌫ for a generic r by defining the
matrix ⌦ = H̄HH̄ with rank r  nt � 1. Also, we denote by
⌦r = diag(!1 . . . ,!r) the diagonal matrix containing the r
distinct, non-zero eigenvalues of ⌦.

Proposition 4.3: The distribution of the SINR gap in (5),
under the assumption of Rice-faded interfering streams, with
rank-r LoS matrix, can be written as

f⌫(y) =
s⇡nt�1�re�Tr{⌦r}(⌧1!)1�nt |Z3|

�nt�1�r(nt � 1� r)|⌦r|nt�1�rV(⌦r)
, (27)

[Z3]i,j=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

nt�i�1X

k=0

✓
nt�i�1

k

◆
1F1(nr�i�k+1; ⌧2;!j)

[(nr�i�k)!]�1�̂k

1jr, 1int�2
nt�i�1X

k=0

✓
nt�i�1

k

◆
⌧1!(nr+nt�i�j�k�1)!

(nr � j)!�̂k

r+1jnt�1, 1int�2
e�y/�e!j/t

�

⌧1!

t⌧3

h
t+�̂

⇣
⌧2+

!j

t

⌘i

1jr, i=nt�1
e�y/�

�

⌧1!

tnr�j+2

h
t+ �̂(nr�j+1)

i

r+1jnt�1, i=nt�1

Proof: The distribution of the unordered eigenvalues L =
diag(`1, . . . , `nt�1) of bHH bH is given in [28, Eq. (46)] as:

fL(L)=
(�1)

r(r�1)
2 s⇡mr (⌧1!)

1�nt |⌥(L)|V(L)|L|⌧1
�mr (mr)eTr{L}eTr{⌦r}|⌦r|mrV(⌦r)(nt�1)!

(28)

where mr = nt � 1� r and [28, Formula (49)]

[⌥(L)]i,j =

8
<

:

0F1(; ⌧2;!j`i), 1int�1, 1jr
`nt�j�1
i ⌧1!

(nr � j)!
, 1int�1, r+1jnt�1

We remark that the term (nt � 1)! at the denominator of (28)
accounts for the fact that we consider unordered eigenvalues,
unlike in [28, Eq. (46)]. If b� =

p
�̂I, the eigenvalues of GHG

are ⇤ = �̂L whose distribution is

f⇤(⇤)=
1

�̂nt�1
fL

✓
⇤

�̂

◆

=
s⇡mre

�Tr{⌦r}(⌧1!)1�nt |⌥(⇤
�̂
)|V(⇤)

��� ⇤⌧1

�̂nr�nt/2+1

���

(�1)
r(r�1)

2 e
Tr{⇤}

�̂ �mr (mr)|⌦r|mrV(⌦r)(nt�1)!

By comparing it to (12), we identify the following terms:
�(⇤) = ⌥(⇤

�̂
), i.e., �j(�i) = [⌥(⇤

�̂
)]i,j ,  (�) = �⌧1e��/�̂

�̂nr�nt/2+1
,

and K = (�1)r(r�1)/2s⇡mr (⌧1!)
1�nt

eTr{⌦r}�mr (mr)|⌦r|mrV(⌦r)
. The integral in (14) is

then solved by exploiting the following formula
Z +1

0
0F1

✓
;b;
!

�̂
�

◆
�me�✓� d�=

�(m+1)

✓m+1 1F1

✓
m+1;b;

!

�̂✓

◆
,

✓ > 0. After some algebra, we obtain (27).
The corollary below refers to a full-rank LoS matrix ⌦ with

equal eigenvalues. This case, initially considered in [29], repre-
sents an optimized LoS MIMO system where the correlation
between the LoS responses is removed, thereby resulting in
orthogonal spatial LoS subchannels.

Corollary 4.2: When r = nt � 1 and !i = !, i =
1, . . . , nt � 1, the distribution of the SINR gap in Proposi-
tion 4.3 reduces to

f⌫(y) =
s⇡nt�1e�!(nt�1)|Z4|

�nt�1(nt � 1)
,

[Z4]i,j=

8
>>>>>>><

>>>>>>>:

nt�i�1X

k=0

✓
nt�i�1

k

◆
�(')1F1(';nr�j+1;!)

(nr � j)!�̂k

1jnt�1, 1int�2
e�y/�+!

t

�tnr�j+2

h
t+ �̂

⇣
nr � j + 1 +

!

t

⌘i

1jnt�1, i=nt�1

and ' = nr+nt�i�j�k.
Proof: If the LoS channel matrix bH is full rank and has

all-equal eigenvalues, the density of the unordered eigenvalues
of bHH bH, f(L), is given by [29, Eq. (6)], i.e.,

fL(L) =
s⇡nt�1e�!(nt�1)|⌥1(L)|V(L)|L|⌧1

eTr{L}�nt�1(nt � 1)(nt � 1)!
,

with [⌥1]i,j =
`
nt�j�1
i
(nr�j)! 0F1( ;nr�j+1;!`i). When b� =

p
�̂I,

⇤ = �̂L has density

f⇤(⇤) =
s⇡nt�1|⌥1(

⇤
�̂
)|V(⇤)

��� ⇤⌧1

�̂nr�nt/2+1

���

e!(nt�1)e
Tr{⇤}

�̂ �nt�1(nt�1)(nt�1)!
(29)

By comparing (29) to (12), we identify �j(�i) =

[⌥1(
⇤
�̂
)]i,j ,  (�) = �⌧1e��/�̂

�̂nr�nt/2+1
, and K = s

⇡nt�1e
�!(nt�1)

�nt�1(nt�1) .
The matrix Z4 is then obtained by computing (14).

C. Small-cells and multiple scattering
Finally, we consider the case where there is an interfering

node equipped with nt�1 antennas and all streams undergo a
multiple-scattering channel with N�1 clusters of ni indepen-
dent scatterers each. This scenario is of particular interest in
small-cells networks. Indeed, it adequately represents, with no
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approximation in the channel statistics, the case where interfer-
ing signals come from non co-located single-antenna equipped
users, whose signals may undergo multiple scattering.

In this case, bH can be represented by the product of N
matrices, Ki, of size ni ⇥ ni�1, i = 1, . . . , N , with n0 =
nt � 1 and nN = nr. The entries of Ki are zero-mean unit
variance, complex Gaussian, independent random variables.
For compactness, we define the set of auxiliary variables ⇣i =
ni�n0, i = 1, . . . , N . Also, we assume nt� 1  n1  . . . 
nr, thus the variables ⇣i are non-negative integers.

Proposition 4.4: The distribution of the SINR gap in (5),
under the assumption of multiple Rayleigh scattering affecting
the interfering streams, can be written as

f⌫(y) =
s|Z5|Qn0

i=1

QN
`=0 �(i+ ⇣`)

, (30)

[Z5]i,j=

8
>>>>>>>><

>>>>>>>>:

nt�i�1X

k=0

✓
nt�i�1

k

◆
�(n1+j�i�k)

�̂k

NY

q=2

(nq�i�`)!

1jnt�1, 1int�2

e�
y
�

�̂y

"
GN,1

1,N

 
0
⇣j

�����
�

�̂y

!
+
�

y
GN,1

1,N

 
�1
⇣j

�����
�

�̂y

!#

1jnt�1, i=nt�1

and ⇣j = [⇣N , . . . , ⇣2, ⇣1 + j � 1].
Proof: The density of the unordered eigenvalues L of

bHH bH is given by [30, Eq. (8)]:

fL(L) =
V(L)|�(L)|

n0!
Qn0

i=1

QN
`=0 �(i+ ⇣`)

, (31)

where �(L) is an n0 ⇥ n0 matrix with entries [�(L)]i,j =

GN,0
0,N

✓
�
⇣j

���`i
◆

, for i, j = 1, . . . , n0. When b� =
p
�̂I, the

density of the unordered eigenvalues ⇤ = �̂L of GHG is

f⇤(⇤) =
V(⇤)|�(⇤/�̂)|

�̂(nt�1)nt/2n0!
Qn0

i=1

QN
`=0 �(i+ ⇣`)

. (32)

Comparing (32) to (12), we identify �j(�i)=[�(⇤/�̂)]i,j ,
 (�)=�̂�(nt�1)nt/2, and K= 1Qn0

i=1

QN
`=0 �(i+⇣`)

. We proceed
along the lines of previous proofs. The evaluation of (14), for
1int�2 and 1jnt�1, can be carried out by exploiting
the expression [20, 7.811.4], which provides integrals of the
type

R +1
0 �nGc,d

a,b(·|✓�) d�. Instead, for i = nt � 1 and
1  j  nt � 1, the evaluation of (14) can be carried out by
using [20, 7.813.1], which provides the expression of integrals
of the type

R +1
0 ��ne��Gc,d

a,b(·|✓�) d�.

V. APPLICATIONS OF THE SINR GAP STATISTICS

Here we present two main applications of the SINR gap
statistics evaluation, focusing on the symbol error rate and the
outage probability.

A. Symbol error rate achieved by the ZF and MMSE receivers

In the presence of an M-PSK-modulated input signal and by
modeling the SINR with the random variable �, the achieved
symbol error rate can be expressed as [14, eq.(5)] Pe =
1
⇡

R ⇥
0 M�

�
� c

sin2 ✓

�
d✓ where c = sin2(⇡/M), M�(s) =

E� [es� ] is the moment generating function of the SINR, and
⇥ = ⇡M�1

M . Such an expression for Pe is difficult to evaluate,
due to the integration with respect to ✓. To overcome this
problem, the following approximation to Pe has been proposed
in [14, eq.(10)], which proved to be very accurate:

Pe ⇡
✓

⇥

2⇡
� 1

6

◆
M�(�c) +

1

4
M�

✓
�4c

3

◆

+

✓
⇥

2⇡
� 1

4

◆
M�

✓
� c

sin2 ⇥

◆
. (33)

We now investigate the case where the MMSE filter is
employed to process the intended stream, thus � = �mmse =
�zf+⌫. When the random variables �zf and ⌫ are independent,
the moment generating function of the SINR �mmse factorizes
as M�mmse(s) = M�zf (s)M⌫(s). Note that, as proven in [2,
Th. III.1], the independence between �zf and ⌫ holds true
when the Rayleigh-faded useful signal is subject to indepen-
dent Rayleigh-faded interferers, i.e., when the vector h and
the columns of the matrix G = U⇤1/2VH are Gaussian
and independent. Interestingly, the result applies also to any
unitarily invariant matrix G since the proof of [2, Th. III.1]
exploits the independence between ⇤ and U, which holds for
all unitarily invariant matrices.

By exploiting the expression of the density of ⌫ in (13), the
moment generating function M⌫(s) can be written as

M⌫(s) = sK|M|, (34)

[M]i,j=

⇢
[Z]i,j 1jnt�1, 1int�2R1
0 esy[Z]i,j dy 1jnt�1, i=nt�1

Remark I: The result in (34) is obtained by applying
Lemma 3.1 and by observing that E� [·] is a linear operator.
For example, in the case of Rayleigh interferers, we have
M⌫(s) =

s⇡2
nt�1

�nt�1(nt�1)�nt�1(nr)
|M1| with

[M1]i,j=

8
>>>>>>><

>>>>>>>:

nt�i�1X

k=0

�(nr+j�i�k)�(nt�i)

�̂kk!�(nt � i� k)
1jnt�1, 1int�2

eŝ⌧j !


1

�̂
Ei (⌧j+1, ŝ) + (⌧j+1)Ei (⌧j+2, ŝ)

�

1jnt�1, i=nt�1

where ŝ= 1�s�
�̂

and Ei(·, ·) is the generalized exponential
integral. The expression of �zf is reported in (1) and can
be rewritten as [2, eq. (15)] �zf = �⇢, where ⇢ =
hH
⇥
I�G(GHG)�1GH

⇤
h. Given the density of ⇢, f⇢(z) =

znr�nt

(nr�nt)!
e�z [2, eq. (16)], we get the density of �zf as

f�zf (z) = 1
� f⇢

�
z
�

�
. Hence, M�zf (s) = (1 � s�)�(nr�nt+1),

from which the symbol error rate can be easily obtained.



8

B. Outage probability
Let us now assume that the useful stream is coded with

rate R, then its outage probability when the MMSE receiver is
employed is given by Pmmse

out (R) = P (log(1 + �mmse) < R).
By using the definition of the SINR gap in (2), we can rewrite
Pmmse
out as a function of the SINR gap ⌫ and of the outage

probability achieved by the ZF receiver, P zf
out(R), i.e.,

Pmmse
out (R) = P

�
log(1+�zf+⌫)<R

�
= P

�
�zf < 2R�1�⌫

�
.

As mentioned in the previous section, �zf = �⇢ and, under the
assumption of unitarily invariant matrix G, we have:

Pmmse
out (R)=P

✓
⇢<

2R�1�⌫
�

◆
=

Z 2R�1

0
F⇢

✓
2R�1�y

�

◆
f⌫(y) dy

where F⇢(·) is the cumulative distribution function of ⇢.
When the distribution of the SINR gap takes the form

in (13), by Lemma 3.1, the outage probability becomes

Pmmse
out (R) = sK|O|, (35)

[O]i,j=

8
>><

>>:

[Z]i,j
1jnt�1
1int�2

Z 2R�1

0
F⇢

✓
2R�1�y

�

◆
[Z]nt�1,j dy

1jnt�1
i=nt�1

We now consider the case where all interfering streams are
affected by Rayleigh fading. Then the following holds.

Proposition 5.1: In the case of independent Rayleigh-faded
interfering streams and b� =

p
�̂I, the outage probability can

be expressed as Pmmse
out (R) =

s⇡2
nt�1

�nt�1(nt�1)�nt�1(nr)
|O1| where

[O1]i,j=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

nt�i�1X

k=0

�(nr+j�i�k)�(nt�i)

�̂kk!�(nt�i�k)
1  j  nt � 1, 1  i  nt � 2

⌧j !

 
1� e�

u
�

( �̂�u+1)⌧j+1

!

� ⌧j !
e

u
�

nr�ntX

`=0

u`+1
h
⇣⌧j+1 + �̂(⌧j+1)⇣⌧j+2

i

(`+ 1)!�`+1

1  j  nt � 1, i = nt � 1

⇣p = 2F1

⇣
1, p; `+ 2;� �̂

�u
⌘

and u = 2R � 1.
Proof: In the case of independent Rayleigh-faded interfer-

ing streams, the density and the cdf of ⇢ are given by, respec-
tively, f⇢(z) = znr�nt

(nr�nt)!
e�z and F⇢(z) = 1� e�z

Pnr�nt

`=0
z`

`! ,
while the pdf of ⌫ is given in (18). Therefore, by using the
expression for F⇢(z) and the result in (19), the integral in (35)
becomes [O1]nt�1,j = aj � e�u/�⌧j !

Pnr�nt

`=0
bj,`

`!�`+1 where

aj =
⌧j !

�

Z u

0

e�y/�

t⌧j+1

 
1+

�̂(⌧j + 1)

t

!
dy ,

bj,` =

Z u

0

(u� y)`

t⌧j+1

 
1+

�̂(⌧j+1)

t

!
dy ,

u=2R�1, and where we recall that ⌧j=nr�nt+j. By applying
the change of variable x= �̂

�y, aj can be rewritten as

aj = ⌧j !

Z w

0

e�x/�̂

(1 + x)⌧j+1

✓
1

�̂
+
⌧j + 1

1 + x

◆
dx

where w = �̂
�u. To solve the above integral, we can use a

special case of the expression reported in [20, 3.353.1], i.e.,
Z 1

w

e�x/�̂

(1+x)h
dx = e�w/�̂

h�1X

k=1

�(k)(��̂)1+k�h

�(h)(w + 1)k

�e1/�̂(��̂)1�h

�(h)
Ei


�w+1

�̂

�

Let q(x) = e�
x
�̂

⇣
1+ �̂(⌧j+1)

1+x

⌘
(1 + x)�⌧j�1. After some

algebra, we obtain
R1
w q(x) dx = �̂e

�w
�̂

(w+1)⌧j+1 which, for

w = 0, provides
R1
0 q(x) dx = �̂. In conclusion, aj =

⌧j !
⇣
1� e�w/�̂

(w+1)⌧j+1

⌘
. To solve the integral in bj,`, we can

resort to a particular case of [20, 3.196.1], i.e.,
Z w

0

(w � x)`

(1 + x)h
dx =

w`+1

`+ 1
2F1 (1, h; `+ 2;�w)

and, defining Ĵ(p) = 2F1 (1, p; `+2;�w), we obtain

bj,` =

Z u

0

(u� y)`

t⌧j+1

 
1+

�̂(⌧j+1)

t

!
dy

=
u`+1

`+ 1

h
J(⌧j+1)+�̂(⌧j+1)J(⌧j+2)

i
.

Notably, similar results can be derived for Rice interfering
streams for both rank 1 and full rank matrices ⌦, using the
distributions of ⇢ in [9, Eq. (51)] and [9, Eq. (53)], respectively.

VI. NUMERICAL RESULTS ON THE SINR GAP

We now validate our analytical expressions for the pdf
of the SINR gap ⌫, against Monte Carlo simulations. The
excellent match between the two sets of results is shown in
Fig. 2(left) where solid lines have been obtained by evaluating
the analytical expressions in (18), (27), and (30), and refer
to, respectively, Rayleigh, Rice, and multiscattering distributed
interfering channels. Markers, instead, refer to the numerical
results obtained by randomly generating 106 outcomes of the
random variable ⌫. As for the system parameters, we set �̂ = 1,
nr = 6, nt = 4; also, we set � = 2 in the Rayleigh case, and
� = 5, r = 1, and [H̄]1,j = j, j = 1, . . . , nr and [H̄]i,j = 0
8i 6= 1, for the Rice case. For the multiscattering channel,
we considered one cluster of scatterers with n0 = 3, n1 = 5,
n2 = 6, and � = 10.

Fig. 2(right) shows the evolution of the pdf of the SINR
gap as the SNR � varies, and when the interfering streams
are subject to Rayleigh channel, nr = nt = 4, and �̂ = �
(i.e., the power of the useful signal and that of the interfering
streams increase at the same pace). We observe that, as
the SNR grows, the SINR gap does not vanish. On the
contrary, it asymptotically tends to a limit distribution, as
already noted in [2]. Specifically, for �̂ = � and Rayleigh-
distributed interferers, as � ! 1, f⌫(y) tends to the Fisher-
Snedecor distribution (or F-distribution) [2, eq.(4)]. We point
out, however, that our analytical results hold also in the finite
SNR regime, thus representing a more general characterization
of the SINR gap. Such a characterization can be used in the
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Fig. 2. Pdf of the SINR gap. Left: Numerical simulations vs. analysis for Rayleigh, Rice, and multiscattering distributed interferer channel. Right: Analytical
results as functions of the SNR �, under Rayleigh distributed interferer channel and for nr = nt = 4, and �̂ = �.

asymptotic case as well as for any arbitrary value of the ratio
�̂/�, in the case of Rayleigh interferers as well as in the case
of other distributions of the interfering channels.

As an example, Fig. 3(left) depicts the evolution of the SINR
gap as the SNR � grows, for �̂/� = 10, nr = 6, nt = 4, and
Rice-distributed interferers characterized by [H̄]1,j = j/nr,
j = 1, . . . , nr and [H̄]i,j = 0 for i 6= 1. Even in this case, we
observe that the distribution of the SINR gap tends to a limit
distribution whose expression (omitted for space limitations),
can be readily obtained from (27) by letting � tend to infinity
with constant ratio �̂/�.

Fig. 3(right) shows the evolution of the pdf of the SINR
gap as the number of transmit (nt) and receive (nr) antennas
varies, for a fixed ratio nt/nr = 2/3, � = 10, and �̂ = 1.
The interferers are Rice distributed and the entries of the
matrix [H̄] are as in Fig. 3(left). Again, we observe the perfect
match between Monte Carlo simulation and analytical results.
Moreover, as nt increases, the distribution of the SNR gap
shifts to the right. This behavior is due to the fact that the
power of the interferers grows as the number of interfering
antennas (nt�1) increases, and that higher interference results
in a larger performance gap between MMSE and ZF receivers.

As an application of the results obtained in Sec. IV,
Fig. 4(left) shows the symbol error probability, when the
transmitters send M -PSK modulated signals, the receiver
employs the MMSE filter, and the interferers are subject to
Rayleigh fading. The curves show the approximation in (33)
for M = 2, 4, 8 and �̂ = 1, versus the SNR �. Instead, points
represent the results obtained via Monte Carlo simulations of
the transmitter-receiver chain. These results not only confirm
the validity of our analysis, but they also underline the
importance of having exact expressions available for the SINR
gap, in order to assess the system performance.

Finally, Fig. 4(right) shows the outage probability achieved
by the MMSE receiver (obtained by computing (35)), as a
function of the SNR �. Results refer to the case of Rayleigh
distributed interferer channels, nr = 8, �̂ = 1, R = 1,
and different values of the number of transmit antennas. We
observe that, since the interference level increases with the
number of interfering streams (i.e., nt � 1), so does the

outage probability. Conversely, if the number of interferers
is kept constant, a larger number of receive antennas lead
to a lower outage probability. Interestingly, the curve for
nr = 6 and nt = 5 coincides with that experimentally
obtained by simulation in [2]. As mentioned, however, all our
results in Fig. 4(right) have been derived using the closed-form
expressions in Proposition 5.1.

VII. STATISTICAL CHARACTERIZATION OF THE ME GAP

This section is devoted to the derivation of the closed-form
expressions of the pdf and cdf of the ME gap µ, defined
in (6). Hereinafter, we present such derivation for nr � nt.
We point out that the cases nr = nt and nr > nt correspond,
respectively, to the absence and to the presence of multiple
zero-eigenvalues in the matrix A.

We first present our result under general assumptions on
the fading affecting the interfering streams, then we detail
the analysis under specific fading assumptions. Note that also
the expression of the ME gap distribution turns out to be the
product of a constant by a matrix determinant. We prove such
result by leveraging results on the Rayleigh quotient.

Proposition 7.1: Let us consider the ME gap µ in (6) where
A is a Hermitian random matrix with non-zero eigenvalues
↵1, . . . ,↵nt�1, ↵i = (1+�i)�1 depending on the eigenvalues
�1, . . . ,�nt�1 of the interfering matrix GHG. Assume that h
is a standard complex Gaussian vector of size nr with uncor-
related entries and that the joint law of the nt � 1 (distinct)
non-zero, unordered, positive eigenvalues ⇤ of GHG, can be
written as in (12). Then, the cdf and the pdf of µ admit the
following closed-form expressions, respectively,

Fµ(y) = 1�K|Q̄|, fµ(y) = K|Q|, (36)

[Q̄]i,j=

8
>><

>>:

Ij,nr�1(y)
i = 1
1jnt�1Z 1

0
�i�2�j(�) (�)(1+�) d�

2int�1
1jnt�1

[Q]i,j=

8
>><

>>:

(nr � 1)Ij,nr�2(y)
i = 1
1jnt�1

[Q̄]i,j
2int�1
1jnt�1

(37)
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as the number of transmit antennas varies, in the case of Rayleigh-distributed interferer channel, nr = 8, �̂ = 1, and R = 1.

and, defining v = 1�y
y ,

Ij,q(y) = yq
Z v

0
(v � �)q(1 + �)nr�1�q�j(�) (�) d� . (38)

Proof: The proof is organized in two parts. First, we
derive the expression of the conditional distribution Fµ|⇤(y),
then we consider the randomness of the eigenvalues, ⇤,
and compute the average Fµ(y) =

R
⇤>0 Fµ|⇤(y)f⇤(⇤) d⇤

by deconditioning over f⇤(⇤), i.e., the distribution of the
unordered eigenvalues ⇤. We start by observing that when
nr � nt, the eigenvalues of the kernel matrix A are specified
by (7). In general, A has an eigenvalue a = 0 with multiplicity
nr � nt + 1 and nt � 1 non-zero eigenvalues denoted by
↵ = [↵1, . . . ,↵nt�1]. Therefore, A can be decomposed as
A = ŪHdiag(a)Ū, where Ū is a unitary matrix. By using
such decomposition, we can write:

µ =
hHAh

khk2 =
hHŪHdiag(a)Ūh

khHŪHk2
=

h̃Hdiag(a)h̃

kh̃k2

where h̃ = Ūh has Gaussian i.i.d. entries since h is a
vector of length nr, with Gaussian i.i.d. entries. Furthermore,

we have: h̃Hdiag(a)h̃

kh̃k2
= h̃H

1diag(↵)h̃1

kh̃1k2+kh̃2k2
where h̃ = [h̃H

1 , h̃
H

2 ]
H,

h̃1 has size nt � 1, and h̃2 has size nr � nt + 1. Let
z = kh̃2k2, then the cdf Fµ|A(y) = P(µ  y|A) is given
by Fµ|A(y) =

R1
0 Fµ|A,z(y)fz(z) dz by deconditioning over

z. The distribution Fµ|A,z(y) is provided in [1, eq. (48)] as:

Fµ|A,z(y) = u(yz)�
nt�1X

`=1

(↵` � y)nt�1e�
yz

↵`�y u
⇣

yz
↵`�y

⌘

|↵` � y|
Qnt�1

i=1,i 6=`(↵` � ↵i)

with y > 0, z > 0, and u(·) being the Heaviside step
function. The density of y is specified in [27, Eq. (9)] and
reads as: fz(z) = znr�nt

(nr�nt)!
e�z . Thus, combining the above

two expressions, the cdf Fµ|A can be readily obtained as

Fµ|A(y)=1�
nt�1X

`=1

R1
0 e�

yz
↵`�y u

⇣
yz

↵`�y

⌘
znr�nt

(nr�nt)!
e�z dz

(↵` � y)1�nt |↵` � y|
Qnt�1

i=1,i 6=`(↵` � ↵i)

=1�
nt�1X

`=1

(↵` � y)nr�1u(↵` � y)

↵nr�nt+1
`

Qnt�1
i=1,i 6=`(↵` � ↵i)

. (39)

Recall that ↵i = (1 + �i)�1 where �i are the eigenvalues of
the channel matrix GHG. We then express Fµ|A(y) through
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the �i’s. As for the factor
Qnt�1

i=1,i 6=`(↵` �↵i) in (39), we get:

nt�1Y

i=1,i 6=`

(↵` � ↵i)=
(�1)nt�2

Qnt�1
i=1,i 6=`(�` � �i)

(1 + �`)nt�2
Qnt�1

i=1,i 6=`(1 + �i)
. (40)

Moreover, by using the definition of the Van-
dermonde determinant, it is easy to show that
V(⇤) = (�1)nt�1�`V(⇤`)

Qnt�1
i=1,i 6=`(�` � �i) with

⇤` = diag(�1, . . . ,�`�1,�`+1, . . . ,�nt�1), ` = 1, . . . , nt�1.
Thus, (40) can be rewritten as:

nt�1Y

i=1,i 6=`

(↵` � ↵i) =
(�1)`�1

(1 + �`)nt�2
Qnt�1

i=1,i 6=`(1 + �i)

V(⇤)
V(⇤`)

.

By substituting in (39) all occurrences of ↵i with (1+�i)�1,
the cdf Fµ|A(y) now reads as

Fµ|A(y)=1� 1

V(⇤)

nt�1X

`=1

u
⇣

1
1+�`

�y
⌘
(1+�`)nt�2

⇣
1

1+�`
�y
⌘1�nr

⇣
1

1+�`

⌘⌧1
(�1)`�1

⇥V(⇤`)
nt�1Y

i=1,i 6=`

(1+�i)

=1� 1

V(⇤)

nt�1X

`=1

(�1)`+1u (1�y(1+�`)) |W`|
[1�y(1+�`)]

1�nr

=1� |W|
V(⇤) (41)

where |W`| = V(⇤`)
Qnt�1

i=1,i 6=`(1 + �i) and W` is an (nt �
2) ⇥ (nt � 2) matrix whose (i, j)-th element is given by
[W`]i,j = (1+�i)�

j�1
i , for i = 1, . . . , `�1, j = 1, . . . , nt�2

and [W`]i,j = (1 + �i+1)�
j�1
i+1 for i = `, . . . , nt � 2, j =

1, . . . , nt � 2. This result is obtained directly from the defini-
tion of the Vandermonde determinant and the Vandermonde
matrix. Finally, the sum in the second line of (41) is the
Laplace expansion on the first row of W, defined as:

[W]i,j=

8
<

:

u (1�y(1+�i))

[1�y(1+�i)]
1�nr

j=1, 1int�1

�j�2
i (1+�i) 2jnt�1, 1int�1 .

Equipped with the expression of Fµ|⇤(y), we can now move
to the second part of the proof, i.e., the computation of Fµ(y)
by deconditioning over ⇤. It is clear that the expression of the
integral that we have to compute to decondition with respect
to ⇤, depends on the postulated f⇤(⇤), which, in turn, is
tailored to the specific scenario one has in mind. As done in
Sec. IV, we assume the general model (12) for f⇤(⇤).

We first evaluate Fµ(y) by using (12) and (41). We obtain:

Fµ(y) =

Z

⇤>0

✓
1� |W|

V(⇤)

◆
KV(⇤)|�|
(nt�1)!

nt�1Y

i=1

 (�i) d⇤

= 1� K
(nt � 1)!

Z

⇤>0
|W||�|

nt�1Y

i=1

 (�i) d⇤

= 1�K|Q̄|

where Q̄ is an (nt � 1)⇥ (nt � 1) matrix whose entries can
be computed by resorting to Lemma 3.2. More specifically,

[Q̄]i,j=

8
<

:

Ij,nr�1(y) i=1, 1jnt�1Z 1

0
�i�2�j(�) (�)(1+�) d�

2int�1
1jnt�1

where Ij,nr�1=
R1
0 �j(�) (�)

u(1�y(1+�))
[1�y(1+�)]1�nr d� can be con-

veniently written as in (38). Then the pdf of µ can readily be
obtained as: fµ(y) = d

dyFµ(y) = �K d
dy |Q̄|. Since � d

dy is a
linear operator and only the first column of Q̄ depends on y,
we can apply the result in Lemma 3.1 and obtain (36) where

[Q]i,j=

⇢
� d

dz [Q̄]i,j i = 1, 1  j  nt � 1
[Q̄]i,j 2  i  nt � 1, 1  j  nt � 1 .

Note that, for i = 1, 1  j  nt � 1, the term � d
dy [Q̄]i,j =

� d
dyIj,nr�1(y) = (nr� 1)Ij,nr�2(y). Thus the matrix Q can

be rewritten as in (37).

A. Rayleigh-faded interferers
We start the analysis from the case of uncorrelated

Rayleigh-faded interference. This translates into bH following a
standard multivariate complex Gaussian distribution, with un-
correlated elements. When b� =

p
�̂I, the joint distribution of

the nt� 1 (unordered) non-zero random eigenvalues of GHG
can be written as (21). By comparing (21) to (12), we identify
the following terms: �j(�) = �j�1,  (�) = �nr�nt+1

�̂nr
e��/�̂ ,

and K = K1 =
⇡2
nt�1

�nt�1(nt�1)�nt�1(nr)
. These terms, replaced

in (36)–(38), provide Fµ(y) = 1�K1|Q̄1| with

[Q̄1]i,j=

8
>>>>>><

>>>>>>:

vnr+⌧j (nr�1)!⌧j !1F1

⇣
nr;nr+⌧j+1; v

�̂

⌘

y1�nr �̂nrev/�̂(nr + ⌧j)!
i=1, 1jnt�1

�̂i+j�1�nt

h
(i+⌧j�2)!+�̂(i+⌧j�1)!

i

2int�1, 1jnt�1

B. Spatially correlated interferers
Moving to a slightly less homogeneous scenario, we pos-

tulate that, while the useful signal stream undergoes uncorre-
lated Rayleigh fading, interference is coming from a bunch
of spatially correlated and Rayleigh faded transmitters. This
occurs, e.g., when interfering transmitters are located in close
proximity to each other, but well spatially separated from
the useful signal source. In such a case, the distribution
of the unordered, non-zero eigenvalues of GGH is given
by (26), which, compared to (12), allows us to identify the
following terms �j(�i) = e��i/�j ,  (�) = �nr�nt+1, and
K = K2 =

⇡nt�1

�nt�1(nr)V(⌃)|⌃|nr�nt+2 . We recall that ⌃ is
the common covariance of each row of G whose eigenvalues
are denoted by {�1, . . . ,�nt�1}. By substituting these results
in (36), we obtain Fµ(y) = 1�K2|Q̄2| where

[Q̄2]i,j=

8
>>>>><

>>>>>:

(nr�1)!⌧1!1F1

⇣
nr; 2nr�nt+2; v

�j

⌘

vnt�2nr�1y1�nrev/�j (2nr � nt + 1)!
i=1, 1jnt�1

(i+⌧�1)!�
i+nr�nt
j [1 + �j(i+nr�nt)]

2int�1, 1jnt�1 .
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C. Other fading distributions

For brevity, we do not report here the cases of Rice and mul-
tiscattering fading distributions. However, they can be easily
obtained by using the corresponding eigenvalue distributions
and by plugging them into (14).

VIII. NUMERICAL RESULTS ON THE ME GAP

We now validate our analysis of the ME gap through
numerical simulation.

Fig. 5(left) depicts the pdf and the cdf of the ME gap when
both the useful and interfering signals are affected by Rayleigh
fading. We set nr = 6, nt = 4, while �̂ varies. The perfect
match between analytical and simulation results confirms the
validity of our derivations. Also, as expected, for decreasing
values of the SNR �, the gap in performance between the
MMSE and the ZF receivers grows. Similar observations hold
for Fig. 5(right), which presents the cdf of the ME gap for
nr = 8, nt = 2, 4, 6, 8, and �j = 2j

nt(nt�1) . Note that larger
values of the ME gap become significantly more likely as the
number of interfering streams (i.e., nt) increases.

Fig. 6 shows the cdf of the ME gap when both nt and nr

increase, the ratio nt/nr = 2/3 is fixed, and the interfering
signals are affected by Rayleigh fading. The analytical and
simulation results coincide and show the improvement in per-
formance as the number of antennas increases. Interestingly,
as the number of antennas increases, the cdf of the ME gap
tends to a Heaviside step function around the asymptotic value
of the gap. We then address the massive MIMO scenario more
extensively in the next section.

IX. GAPS STATISTICS IN DOUBLY MASSIVE SETTINGS

Here, we discuss the extension of our results to the doubly
massive MIMO setting, i.e., to the case where both nt and
nr grow large with a fixed ratio, i.e., limnt,nr!1

nt�1
nr

=
�  1. We start by focusing on the SINR gap and define
⌫1 = limnr!1

⌫
nr

where ⌫ is as in (5). Also, for simplicity,
let us initially consider a finite number of interfering nodes,
N , each with a finite and common budget of transmission
power, e�, and equipped with (nt � 1)/N antennas. Hence,
�̂ = e�N/(nt � 1) and

⌫

nr
= ��wH

 
I+

�̃N

�

L

nr

!�1

w

where w = UHh/(nt � 1) is a complex Gaussian random
vector of length nt � 1, with independent entries with zero-
mean, and variance equal to 1

nt�1 . Then, by virtue of [31,
Lemma(2.29.b)], as nr ! 1 and if the spectra of eL = L/nr

converge, we have

⌫1 = ��⌘eL

 
e�N
�

!
. (42)

The availability of a closed-form expression for ⌘eL

⇣
e�N
�

⌘

determines the possibility of explicitly characterizing the SINR
gap in the doubly-massive setting. In our case, either assuming

independent Rayleigh or Rice fading affecting the interfering
signals, by [31, Example (2.10)], we obtain

⌘eL(x) = 1�

⇣p
x(1+

p
�)2+1�

p
x(1�

p
�)2+1

⌘2

4�x
. (43)

In the Rice case, however, besides assuming ⌦ to have
fixed rank 1  r  nt � 1, one must enforce that
limnt!1

r
nt�1 = 0; this is a direct consequence of [31,

Lemma(2.22), Th.(2.49)]. Note also that the same statistical
behavior as in (43) can be observed if the entries of the channel
matrix are independent but non-identically distributed, with
variances satisfying some mild constraints (see, again, [31,
Th.(2.49)]). This case allows us to relax our initial assumption
on equally distributed interfering powers.

In the case of correlated Rayleigh fading, (42) takes on a
more involved expression, which can be obtained by solving
a fixed-point equation provided by [31, Eq.(2.124)]. Finally,
in the presence of multiple scattering, ⌫1 can only be ex-
plicitly evaluated when the interferers’ matrix is a product
of up to 3 independent matrix factors. However, to get a
properly normalized asymptotic model, and according to the
notation adopted in Sec. IV-C, matrices Ki’s are required to
have i.i.d. complex zero-mean Gaussian entries, with variance
proportional to 1/ni. Fig. 7 shows the cdf of the normalized
SINR gap, ⌫/nr, as the number of antennas increases, and its
asymptotic value ⌫1 for � = 1/2. It is evident that, as nt

and nr grow large, the cdf of the normalized gap tends to the
Heaviside step function centered at ⌫1, thus confirming the
validity of our derivation.

As far as the ME is concerned, similarly to the SINR gap,
we can define µ1 = limnr!1 µ where a further normalization
is not required due to the presence in (6) of the term at the
denominator. The asymptotic characterization of µ1 is more
complicated than that of ⌫1, and can be performed just in
a more restrictive framework. Indeed, it can be carried out
by exploiting [31, Theorems (2.50-56)], which encompass the
broad class of channels matrices with independent and non-
identically distributed entries. Uncorrelated Rayleigh and Ri-
cian fading cases fall within this framework, while correlated
entries or multiple scattering have to be separately addressed
through an analysis that goes beyond this work.

X. CONCLUSIONS

We considered scenarios in which transmitter and receiver,
as well as interfering nodes, may be equipped with multiple
antennas, and either the MMSE or the ZF filter is used at
the receiver. In these scenarios, we evaluated the relative
performance of the two receivers by looking at two important
metrics, namely, the SINR gap and the ME gap. For the first
time in this work, we characterized such statistics in closed
form under finite-size setting. We derived these results by
leveraging the expressions of the SINR and ME gap in terms
of quadratic forms in random matrices whose kernel depends
only on the interfering signals. Interestingly, the closed-form
distribution of the aforementioned performance metrics turned
out to be elegant, compact expressions, given by the product
of a constant by the determinant of the communication system
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matrix. The results have been first obtained under general
fading distribution affecting the interfering signals, and then
they have been specialized to the cases of Rayleigh, Rice,
and multiscattering channel. In order to tackle next-generation
wireless systems, we also provided some results and discussion

on the SINR and ME gaps in the doubly massive MIMO
scenario. Finally, we validated our analytical results through
Monte Carlo simulations, and we exploited them to derive the
error and outage probability of the system.

APPENDIX A
DERIVATION OF THE EXPRESSION OF THE SINR GAP IN (5)

By definition of H and �, we have H� = [
p
�h,G],

where G = bH b�. Then

I+�HHH� =


1 + �|h|2

p
�hHGp

�GHh I+GHG

�
.

Let B = I +�HHH�. By exploiting the results on block
matrix inversion, we get

[B�1]1,1=
�
1+�|h|2��hHG(I+GHG)�1GHh

��1
.

Thus, the SINR �MMSE in (1) can be rewritten as �MMSE =
�|h|2 � �hHG(I + GHG)�1GHh, and (�HHH�)�1]1,1 =�
�|h|2 � �hHG(GHG)�1GHh

��1. Then, ⌫ = �MMSE��ZF,
which is equal to �hHG

⇥
(GHG)�1 � (I+GHG)�1

⇤
GHh.

Letting G=U⇤1/2VH and after some algebra, we get (5).
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[4] A. Tulino, L. Li, S. Verdù, “Spectral Efficiency of Multicarrier CDMA,”
IEEE Trans. on Inf. Th., Vol. 51, No. 2, pp. 479–505, 2005.

[5] H. Tataria, et al., “Impact of Line-of-sight and Unequal Spatial Correla-
tion on Uplink MU-MIMO Systems,” IEEE Wireless Comm. Lett., Vol. 6,
No. 5, pp. 634–637, Oct. 2017.

[6] H. Tataria, et al., “Revisiting MMSE Combining for Massive MIMO Over
Heterogeneous Propagation Channels,” IEEE ICC, Kansas City, 2018.

[7] P. C. B. Phillips, “The True Characteristic Function of the F Distribution,”
Biometrika, Vol. 69, No. 1, pp. 261–264, 1982.



14

[8] D. A. Gore, R. W. Heath, A. J. Paulraj, “Transmit Selection in Spatial
Multiplexing Systems,” IEEE Communications Letters, Vol. 6, No. 11,
pp. 491–493, 2002.

[9] C. Siriteanu, S. D. Blostein, A. Takemura, H. Shin, S. Yousefi, S. Kuriki,
“Exact MIMO Zero-forcing Detection Analysis for Transmit-correlated
Rician Fading,” IEEE Transactions on Wireless Communications, Vol. 13,
No. 3, pp. 1514–1527, 2014.

[10] C. Siriteanu, A. Takemura, S. Kuriki, D. St. P. Richards, H. Shin, “Schur
Complement Based Analysis of MIMO Zero-forcing for Rician Fading,”
IEEE Transactions on Wireless Communications, Vol. 14, No. 4, pp. 1757–
1771, 2015.

[11] R. Müller, “Multiuser Receivers for Randomly Spread Signals: Funda-
mental Limits with and without Decision-Feedback,” IEEE Transactions
on Information Theory, Vol. 47, No. 1, pp. 268–283, 2001.

[12] N. Kim, Y. Lee, H. Park, “Performance Analysis of MIMO System
with Linear MMSE Receiver,” IEEE Transactions on Wireless Commu-
nications, Vol. 7, No. 11, pp. 4474–4478, Nov. 2008.

[13] H. Gao, P. J. Smith, M. V. Clark, “Theoretical Reliability of MMSE Lin-
ear Diversity Combining in Rayleigh-fading Additive Interference Chan-
nels,” IEEE Transactions on Communications Vol. 46, No. 5, pp. 666–672,
2003.

[14] M. R. McKay, A. Zanella, I. B. Collings, M. Chiani, “Error Probability
and SINR Analysis of Optimum Combining in Rician Fading,” IEEE
Transactions on Communications, Vol. 57, No. 3, pp. 676–687, 2009.

[15] A. L. Moustakas, “Tails of Composite Random Matrix Diagonals: The
Case of the Wishart Inverse,” Acta Physica Polonica B, Vol. 42, No. 5,
Apr. 2011.

[16] G. Akemann, J. Ipsen, M. Kieburg, “Products of Rectangular Random
Matrices: Singular Values and Progressive Scattering,” APS Physics
Review E, Vol. 88, No. 3, 2013.

[17] H. Shin, M. Z. Win, “MIMO Diversity in the Presence of Double
Scattering,” IEEE Transactions on Information Theory Vol. 54, No. 7,
pp. 2976–2996, 2008.

[18] C. Zhong, T. Ratnarajah, Z. Zhang, K.-K. Wong, M. Sellathurai, “Per-
formance of Rayleigh Product MIMO Channels with Linear Receivers,”
IEEE Transactions on Wireless Communications, Vol. 13, No. 4, pp. 2270–
2281, 2014.

[19] G. Alfano, C.-F. Chiasserini, A. Nordio, “Rayleigh Quotient Based
Analysis of MIMO Linear Receivers,” WSA, Berlin, Germany, pp. 1-6,
2017.

[20] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products,
Academic Press, New York, 1980.

[21] A. T. James, “Distribution of Matrix Variates and Latent Roots Derived
from Normal Samples,” Ann. Math. Stat., Vol. 35, No. 2, pp. 474–501,
1964.
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