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Abstract- We present an energy-saving cooperative adaptive cruise control (eco-CACC), which
minimizes the energy consumption of autonomous electric vehicles. The approach leverages a
trajectory preview from the preceding vehicle, and conciliates inter-vehicular distance reduction
and speed profile smoothing. The problem is tackled with a nonlinear MPC approach. Rather
than tracking a reference trajectory, our approach allows variations of distance and speed
between vehicles, as long as the powertrain energy consumption is minimized and collision
avoidance is guaranteed. Simulations show that this formulation can successfully handle real-
world driving conditions, with limited computational complexity.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

A large portion of greenhouse gas emissions is caused
by the transportation sector. Several approaches have
been taken to counteract this situation, including the
reduction of vehicles’ energy consumption, and powertrain
electrification. Even in electric vehicles, reducing energy
consumption is important, because the electric grid power
is not entirely produced from renewable sources, and
because current on-board energy storage systems limit the
driving range.

In recent years, research has shown that connectivity
and driving automation can help reducing the energy
consumption of vehicles. One approach is the so-called
eco-driving (see e.g. Chang and Morlok (2005); Sciarretta
et al. (2015)), which attempts to attain the energy-optimal
speed trajectory, given constraints on the average speed
and from the surrounding vehicles and infrastructure. Eco-
driving may consider different levels of driving automation,
but usually considers other vehicles as obstacles, if at all.
On another front, the literature on driving automation
started decades ago with studies on highway platoons
(i.e. formations driving at the same speed and small
inter-vehicular distance). While the main focus is on
safety, stability, and road throughput maximization (see
e.g. Lu et al. (2002); Swaroop and Hedrick (1999)), it
is also clear that reducing the distance gaps between
vehicles decreases the aerodynamic resistance, and hence
the energy consumption (see e.g. Shladover et al. (2007);
Solyom and Coelingh (2013)). However, exploitation of
platooning to reduce energy consumption has been mostly
been studied for heavy-duty vehicles, see e.g. Turri et al.
(2016). A reason is that, in freight transportation, travel
plans are defined in advance, there is some flexibility on
the departure and arrival times, and therefore routing and
platooning can be planned by a coordination center.

In this paper, we focus on electric vehicles for personal
transportation. Our goal is to minimize energy consump-
tion by suitably designing a Cooperative Adaptive Cruise
Control (CACC) that leverages the existing literature and
exploits connectivity and driving automation. Unless the
platoon is driving at constant speed on a flat road, tracking
the preceding vehicle’s trajectory may result in a subop-
timal speed profile, which may even nullify the energy
savings due to reduced air drag (Al Alam et al. (2011)).

The focus of this paper is an energy-saving CACC (eco-
CACC) that exploits a short-term trajectory preview from
the preceding vehicle, and conciliates speed smoothing
(to reduce powertrain losses) with the control of inter-
vehicular distance (to reduce aerodynamic drag). The
distance and velocity of two consecutive vehicles are kept
bounded to ensure safety and maintain contact between
platoon members; otherwise, distance and velocity can
evolve freely, as the objective is to minimize the energy
consumption.

A nonlinear model predictive control (MPC) approach is
adopted. Our formulation does not explicitly pursue the
regulation to an equilibrium point or the tracking of a
reference trajectory, and it directly minimizes the vehicle’s
energy consumption. This approach is often referred to as
economic MPC, see e.g. Ellis et al. (2014). The preview
from the preceding vehicle is enabled by vehicle-to-vehicle
(V2V) communication and by automated driving systems,
which plan trajectories in advance and reliably follow
them. In the absence of vehicle-to-vehicle communication,
a prediction of the preceding vehicle’s future trajectory
can still be obtained, leveraging on-board measurements
for automated driving.

The paper is organized as follows. The vehicle model
is described in Section 2. Section 3 formulates the eco-
CACC problem as an MPC problem. In Section 4, the
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eco-CACC performance is evaluated in simulation. Real-
time implementation on an embedded platform is briefly
investigated in Section 5. The paper ends with some
concluding remarks.

2. VEHICLE MODEL

In this section, we present the vehicle model that is the ba-
sis of the proposed eco-CACC. The model encompasses the
longitudinal dynamics and the powertrain of the electric
vehicle (hereafter referred to as ego wvehicle) implement-
ing the eco-CACC. The preceding vehicle in the platoon
formation is denoted as the target vehicle.

2.1 Longitudinal dynamics

As shown e.g. in Guzzella and Sciarretta (2013), longitudi-
nal dynamics can quite accurately capture the mechanical
energy consumption of a vehicle. In discrete time, New-
ton’s second law and backward Euler approximation yield

o(t+ 1) =0(t) 4 1 (1) = Fit) ~ Fa(0(t), d(8) - Fy),

s(t+1)=s(t)+t0(t), @)
d(t)=sret(t) —s(t),

where m is the constant vehicle mass, F} is the powertrain
force, Fj is the friction braking force, F, is the aerody-
namic drag force and F;. is the rolling friction force. v and
s denote the speed and position of the vehicle, respectively,
while s.o¢ denotes the position of the target vehicle and d
the distance between target and ego. The powertrain force

is calculated as p
F(t) =<
(1) = £

w

T (1), (2)

where T, is the motor torque, r, is the wheel radius
and ¢, is the gear ratio. Since we are considering an
electric vehicle, we assume a fixed transmission ratio (see
again Guzzella and Sciarretta (2013)). The aerodynamic
resistance is defined as

Fu(o(t),d(0) = pAsealdde®?’, (3

where p is the air density, Ay is the frontal area of the
vehicle, ¢4 is the air drag coefficient. The latter is a
function of the distance between target and ego vehicle.
It is well known that vehicles traveling at a short inter-
vehicular distance enjoy reduced air resistance, due to the
slipstream effect. In this work, we model ¢; as a linear
function of d, fitting experimental data from Hucho (1987).
Fig. 1 shows a comparison between data and model.

The rolling resistance is expressed as
F,. = c,mg, (4)
where ¢, is the (constant) rolling friction coefficient, and

g is the gravitational constant. The effect of elevation is
neglected here and will be the focus of future research.

2.2 Powertrain model

The powertrain model relates the longitudinal dynamics of
the electric vehicles to the corresponding consumption of
battery energy. Following again Guzzella and Sciarretta
(2013), we use a quasi static approach to model the
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Figure 1. Dependence of the air drag coefficient ¢4 on
the inter-vehicular distance d: experimental data from
Hucho (1987) and linear fit.

.“l R
IR
e
SRR L o
“‘\\t\}“}t o C
NN 5}\:\;% “‘:\\:‘e““

W \\
RN

3
SO T
X
S I SO SSB L 8
0 AR AN ity
SRy
S AN

8
S
\\““
SR
SN

motor power (kW)

100
motor velocity (rad/s)

motor torque (Nm)

Figure 2. Powertrain data from QSS-TB (black dots) fitted
with model (6).

powertrain. The electrical power absorbed (or generated)
by the electric motor is given by

Py (t) = Trn(t) win(t) 1 (T, wpn) T - (5)

where T, is the motor torque, w,, is the rotational
speed of the motor and 7,, is the combined efficiency of
transmission and motor. 7,, is a function of both 7}, and
wy, and is normally mapped through experiments. The
latter is a function of vehicle speed, w,, = Z=v.

Tw

While generally accurate, model (5) is cumbersome for
control design, and simplified models are often useful (see
e.g. Sciarretta et al. (2015)). In this work, we adopt the
model

P (t) = b1 T (1) (t) + b2 T3, (1), (6)
where by, bs are obtained with the following procedure.
The efficiency map of a 12kW electric motor was obtained
from Guzzella and Amsutz (2005) and scaled to obtain a
60 kW motor. A transmission efficiency of 0.9 was included
in the map (multiplying by 0.9 where T}, > 0 and dividing
where T;,, < 0). The resulting map was fitted with model
(6), as shown in Fig. 2.

As a final note, any flow of power into or out of the battery
(such as charging from the grid, supplying power to the
traction motor, performing regenerative braking) is asso-
ciated with losses due to the electrochemical conversion.
Several modeling approaches exist for these losses, includ-
ing equivalent circuits of the battery (see e.g. Guzzella
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Table 1. Ego vehicle parameters.

m vehicle mass kg 1200

Ay vehicle reference area m? 2

p air density kg/m3 1.18
Cr roll coefficient - 0.008
Taw wheel radius m 0.3
by powertrain model parameter - 1.05
bo powertrain model parameter - 0.18
ts sampling time S 0.1

and Sciarretta (2013)). However, in eco-driving studies it is
common (see e.g. Sciarretta et al. (2015) and the references
quoted therein) to consider a constant battery efficiency
or neglect it. In this work we follow this approach and
optimize the electric energy output by the battery. The
ego vehicle parameters are summarized in Table 1.

3. MPC FORMULATION

In this section, we formulate the eco-CACC problem and
we propose an MPC approach to solve it in real-time.

3.1 Eco-CACC problem statement

The requirements for the controller are to exploit the
preview from the target vehicle to (i) minimize the energy
consumption of the ego vehicle, as defined in (6), and
(ii) guarantee a minimum safe distance. Clearly, reducing
the inter-vehicular distance reduces the air drag resistance
and, therefore, the energy consumption under the same
speed profile. However, aiming for the minimum distance
may be counterproductive, particularly when the preced-
ing vehicle has a variable speed profile: the power losses
due to an aggressive tracking of the target vehicle may
nullify the gains due the short inter-vehicular distance.

The system dynamics are defined in (1). The control inputs
Ty, and F} are bounded

Tmin S Tm (t) S Tmax )

Fmin S Fb(t) SO, (7)
where the torque bounds are assumed constant and sym-
metric, Tinin = —Tmax. The position of the ego vehicle is

constrained by the position of the target vehicle, syef. This
constraint is expressed in terms of the relative distance d

dmin S d(t) S dmaX7 (8)

where dpin and dpay are the minimum and maximum dis-
tances between the ego and target vehicle. dy,;y, is dictated
by safety reasons (see Alam et al. (2014)), while, if dyax
is exceeded, the platoon formation is considered broken.
Finally, the speed of the ego vehicle is also constrained by

=0 < wvet(t) —v(t) <6, ©)
Umin(t) S U(t) S Umax(t) )
where v, denotes the speed of the target vehicle, § is

a bound on the relative speed, vnin and vy,ax are the
minimum and maximum speed limits.

3.2 Eco-CACC MPC formulation

We now propose an MPC approach to solve in real time
the eco-CACC problem stated above. At each time step ¢,
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the proposed controller solves the constrained finite time
optimal control problem with horizon N

t+N—1
min T = p(e(t+ N0+ > gk, ulk) (102
k=t
s.t. x(k+ 1) = f(z(k|t), u(k|t), vee(k[t)), (10b)
d(k|t) = sret(k|t) — s(k|t), (10c)
dmin g d(k|t) S dmax, (10d)
Umin (t) < v(k|t) < vmax(t), (10e)
— 0 < vpet(klt) — v(k|t) < 0 (10f)
Vk=t,..,t+ N,
Tmin < Tm (k|t) < Tmaxa (10g)
Froin < Fp(klt) <0, (10h)
Vk=t,...,t+ N —1,
x(t|t) = x(t), (101)
where z = [s v]T, u=[Tp Fb]T, f denotes the dynamics
in (1), and the running cost is ¢ = P, as defined in

(6). The previews of the target vehicle trajectory, syof and
Uret, are assumed known throughout the MPC prediction
horizon. A terminal cost p is also introduced, as detailed
below.

3.8 Terminal cost design

In an application like CACC, an MPC formulation without
terminal penalty or constraints risks to be myopic in many
situations. We then introduce a terminal penalty to make
the MPC longsighted, without extending the prediction
horizon and consequently worsen the computational bur-
den to solve problem (10). The proposed terminal penalty
encompasses two terms, one for the terminal velocity and
one for the terminal position

p(z(t + N|t)) = po(z(t + Nt)) + ps(x(t + N[t)) . (11)
Penalization of the terminal velocity —~ Pure minimization
of the running cost along the prediction horizon disregards
the fact that kinetic energy is conservative. A trajectory
with high terminal speed may have high running cost, but
also high terminal kinetic energy. The optimal trajectory
depends on the velocity of the target vehicle, not only
along the MPC prediction horizon, but also afterwards.
In the absence of further information, it is reasonable to
assume that the target vehicle will maintain a constant
velocity after the end of the prediction horizon

vrcf(t+N+]|t) :Urcf(t+N)7 Vj ZO (12)
In such a scenario, the ego vehicle would also end up at
the same speed vyet(t + N), possibly after a transient. A
logical choice is then to penalize the difference of kinetic
energy at the end of the prediction horizon between target
and ego vehicle

Pol0lt+ NIt) = ghim (et + N1 —o(t+-N19?), (13)

where by is a tuning coefficient to account for powertrain
losses linked with speed oscillations.

Penalization of the terminal distance  The air drag re-
duction encourages the ego vehicle to follow the target
at a small distance; however, the pure minimization of
the running cost along the prediction horizon may lead to
another locally optimal solution, in which the ego vehicle
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Table 2. MPC controller parameters

N MPC horizon - 100
dmin minimum distance m 2
dmax  maximum distance m 20
Tin minimum motor torque Nm —-100
Tmax  maximum motor torque Nm 100
Froin  minimum braking force kN 30
é relative speed bound m/s 3
b powertrain losses coefficient - 1.028

reduces its speed to travel the minimum possible distance.
In closed loop, this would bring the ego vehicle to follow
the target at d = dmax- This is also a problem of myopia,
as the distance not traveled along the horizon will have to
be traveled anyway later.

To counteract this effect, we focus on the energy lost in
friction (i.e. due to forces F, and F, in (1)) along the
MPC horizon. This energy loss, which we denote by AEy,
is a function of the terminal position of the ego vehicle,
which is constrained by that of the target vehicle,

5(t+ N|t) < sres(t + N|t) — dimin - (14)
Thus, also the energy lost in friction is bounded by
AFE¢(Smax(t + NJt)), where Smax(t + N|t) denotes the
upper bound on the ego vehicle position. We penalize the
deviation from this upper bound
AE(Smax(t + N|t)) — AEf(s(t + NJt)).  (15)
Friction is a non conservative force, so we consider its
average value along the MPC horizon

NG
AEs(s) = PLICd 3 | crgms (16)
~——

2N?2t2
——
A
where s denotes the distance traveled by the ego vehicle
along the horizon, and ¢, represents the air drag coefficient
at the initial distance d(t).

B

Plugging (16) into (15) returns a cubic function of the
terminal position s(t + N|t). However, the result can also
be written as a function of the terminal distance d(t+ N |t).
After straightforward calculations we obtain (we omitted
the time index (¢ + N|t) for brevity)

A(d3 - 3d25max + 3d52

max) + Bd, (17)
where —d3 4 3d?spmax < 3ds?2 . for normal values of d and

Smax- Lherefore, we neglect them and define the penalty
on the terminal distance as

ps(z(t+NJt))=
(3A8max(t+ N[t)* 4 B) (smax (t+ N|t) —s(t+N|t)). (18)

The MPC parameters are summarized in Table 2.
4. SIMULATION ANALYSIS

In this section, we evaluate the performance of the pro-
posed eco-CACC in different simulation scenarios, and
compare its energy consumption with that of a baseline
ACC approach.

4.1 Simulation setup

Solution of the monlinear optimization problem  Prob-
lem (10) must be solved every time step t; = 100ms.

Lorenzo Bertoni et al. / IFAC PapersOnLine 50-1 (2017) 23592364

In our simulations, this nonlinear optimization problem
was solved with IPOPT (Wé&chter and Biegler (2006)),
an efficient interior point solver for nonlinear optimization
problems.

Baseline ACC strategy  The energy performance of the
eco-CACC was compared with a baseline ACC, that just
requires the ego vehicle to follow the target vehicle at
a fixed distance. It is implemented as a tracking MPC,
using the longitudinal dynamic model (1) and setting as
reference signals the preceding vehicle speed v.of and the
inter-vehicle spacing d. The latter should generally be a
function of the vehicles’ speed for safety reasons. In this
work we keep it constant along the scenario, for simplicity.

Sitmulation of the target vehicle In our simulations, we
assumed to receive a perfect forecast of the target vehicle
trajectory, with the same length as the prediction horizon
N of the MPC. The trajectories of the target vehicle were
real vehicle trajectories, collected in both highway and
urban driving using on-board sensors. The vehicle was
equipped with a radar and an OTS RT2002 system, which
includes a differential GPS (global positioning system), an
IMU (inertial measurement unit) and a DSP (digital signal
processor). In an experimental setting, these data may be
used to tune and validate algorithms for the prediction of
the target vehicle trajectory.

Vehicle energetics simulator  The energy consumption
under the two ACC approaches was estimated using the
Quasi-Static Toolbox (QSS-TB), see Guzzella and Am-
sutz (2005). QSS-TB is a Simulink blockset which es-
timates fuel and energy consumption for a number of
powertrains. It belongs to the family of so-called backward
facing powertrain simulators, i.e. those that reconstruct
the fuel/energy consumption given the speed profile of the
vehicle (Guzzella and Sciarretta (2013)).

While QSS-TB still uses quasi-static models, it accounts
for aspects that were neglected in the model presented in
Section 2, namely transmission idle power, electric motor
inertia and battery efficiency depending on current and
state of charge. Additionally, we modified the air drag
resistance, which in QSS-TB is not position dependent.
For better agreement with the data from Hucho (1987),
instead of the linear relation used in Section 2, we used
the formula (see Turri et al. (2016))

Cd,1
d) = ] L)
Cd( ) Cd,0 < Ca )

where cg4,0 is the nominal air drag coefficient (i.e. its value
when there is no preceding vehicle, d — o0) and ¢41 and
cq,2 are fitting parameters.

(19)

4.2 Highway scenario

In this scenario, both the ego and the target vehicle are
traveling in the highway at an initial velocity of 20m/s.
The initial distance between the two vehicles is 12m,
and the target vehicle is accelerating. Fig. 3 shows the
trajectories of the distance, speed and motor torque. In
the first 10 seconds, the ego vehicle increases its speed
and catches up with the target vehicle, to take advantage
of the reduced air drag at a close inter-vehicular distance.
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Figure 3. Velocity (top) and inter-vehicular distance (bot-
tom) of the target and ego vehicle, using the eco-
CACC and the baseline ACC in the highway scenario.

Afterwards, the distance is not kept constant, but it is
continuously adapted to conciliate air drag reduction with
the energy losses linked to an aggressive tracking of the
target vehicle. As a result, the ego vehicle has a smoother
speed profile.

The eco-CACC was also compared to a baseline ACC; the
selected metrics were the energy consumption per unit
distance, the RMS value of the relative distance d, and
the RMS value of the jerk. With the baseline ACC, the
ego vehicle follows the target vehicle at a fixed distance,
equal to the initial distance; it does not catch up to
reduce the distance, nor does it smooth the speed pro-
file. Therefore, the comparison highlights how the perfor-
mance of the eco-CACC benefits from managing both the
inter-vehicular distance and the powertrain forces. In this
scenario, the energy consumption with the eco-CACC is
found to be 15.6% lower than with the baseline ACC.
This is achieved with a combination of distance reduc-
tion and speed smoothing; in particular, the jerk RMS is
about 70 percent less. On the other hand, the eco-CACC
consumes additional energy in the catch up phase (until
second 10, approximately).

In general highway driving, the energy savings will depend
on the behavior of the target vehicle, on the minimum
distance dp,i, and on the target distance for the baseline
ACC. The goal of this simulation study is to illustrate the

Table 3. Performance in the highway scenario
using the eco-CACC and the baseline ACC.

Figure 4. Velocity (top) and inter-vehicular distance (bot-
tom) of the target and ego vehicle, using the eco-
CACC and the baseline ACC in the urban scenario.

proposed eco-CACC concept. A comprehensive compari-
son will be the object of future research.

4.8 Urban Scenario

In this scenario, the target vehicle follows a trajectory that
was recorded in urban driving. As it can be observed in
Fig. 4, its speed has large variations, due to the surround-
ing traffic. Compared to the highway scenario, here the
eco-CACC is much less aggressive in pursuing a small
inter-vehicular distance. Although the target vehicle is
initially decelerating (hence reducing the distance gap can
be achieved by simply coasting), the ego vehicle initially
maintains a distance between 10 and 12m. Afterwards, it
maintains an almost constant speed of about 10 m/s, while
the relative distance oscillates between dp,in and dyax due
to the speed variations of the target vehicle.

Overall, in this scenario the eco-CACC judges more con-
venient to sacrifice the air drag reduction in favor of a
smoother speed profile, which substantially reduces pow-
ertrain losses. Also notice that, compared to the highway
scenario, the air drag resistance is reduced due to the lower
speed. The predicted energy consumption with the eco-
CACC is 73.4% lower than with the baseline ACC. This
is to be considered an upper bound to performance, for
a number of reasons. In an urban context, the reliability
of the target vehicle preview may significantly decrease,
due to the surrounding traffic. The ego vehicle itself may
incur in more restrictive speed and position constraints,

Table 4. Performance in the urban scenario
using the eco-CACC and the baseline ACC.

ACC strategy Energy RMS(d) RMS(a) ACC strategy Energy RMS(d) RMS(a)

(W h/km) (m) (m/s3) (W h/km) (m) (m/s3)
baseline ACC 149 12 0.234 baseline ACC 64 12 0.315
eco-CACC 126 3.2 0.069 eco-CACC 16 9.9 0.072
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Table 5. Average and peak computational time
t. in the scenario of Section 5.

average tc peak t.
(ms) (ms)
IPOPT (laptop) 81.5 118.1
FORCES Pro (laptop) 29.4 47.7
FORCES Pro (dSpace) 47.8 52.5

due to other vehicles cutting in and pedestrians crossing
the road. Also, the baseline ACC is quite stiff and a less
aggressive controller could achieve better performance in
this scenario.

In an MPC framework, the above aspects can be consid-
ered including an uncertain model of the environment, see
e.g. Carvalho et al. (2015). The corresponding problem can
be tackled applying robust or stochastic MPC techniques.
While these approaches introduce some conservatism, the
significant energy savings found suggest optimism. The
investigation of this direction requires richer datasets to
characterize the uncertainty in the target vehicle preview,
and is therefore left to future research.

5. EMBEDDED IMPLEMENTATION

The simulations presented in the previous section were
performed in a non-real-time setting, using Matlab and
Simulink on a laptop. In this section, we used FORCES
Pro (Domahidi and Jerez (2014)) to automatically gen-
erate a tailored solver for problem (10). The solver is
generated as self-contained C code, which enables the im-
plementation on embedded platforms and the verification
of real-time performance.

We evaluate the embedded implementation in a basic
highway scenario. Both the ego and the target vehicle
start at a speed of about 22m/s and at a distance of
12m. The target vehicle accelerates for about 10s and
afterwards maintains a constant speed of about 30m/s.
The ego vehicle accelerates in the initial phase, to catch
up with the target vehicle; afterwards, it follows at the
minimum distance dpyjy,-

The resulting MPC controller was implemented and exe-
cuted in real time on a dSpace MicroAutobox 1401, which
includes an IBM PowerPC processor capable of running
at 800 MHz. Table 5 summarizes the average and peak
values of the computational time t., for a sampling time
ts = 0.1s and an MPC horizon Nt; = 8s. The comparison
with IPOPT on the same platform (a laptop with Intel
Core i7-4710HQ, 2.5 GHz) shows a reduction of about
64 % in the average t., and of about 60 % in the peak t..
The implementation on dSpace MicroAutobox shows that
t. is well below the sampling time %5, thus the real-time
implementation of the proposed eco-CACC is possible.

6. CONCLUSIONS

In this paper, we presented an eco-CACC approach to
minimize the energy consumption in autonomous electric
vehicles. Using a nonlinear MPC formulation, we exploit a
preview from the preceding vehicle and control that of the
ego vehicle. Rather than tracking a reference trajectory,
our approach seeks the optimal trade off between air

Lorenzo Bertoni et al. / IFAC PapersOnLine 50-1 (2017) 23592364

drag reduction due to reduced inter-vehicular distance,
and powertrain energy losses, due to suboptimal speed
profile. Simulations in real-world driving conditions show
significant improvements when compared to a baseline
ACC approach. Implementation on an embedded platform
demonstrates the feasibility of real-time implementation.
Future work will address implementation on real vehicles
and robustness to forecast uncertainty.
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