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1 Introduction

Chern-Simons theories including gravity and matter in three dimensions developed three

decades ago by Achúcarro and Townsend [1], have been shown to exhibit interesting fea-

tures [2, 3], particularly in connection with the holographic correspondence [4–6]. Our

interest here focuses on the Achúcarro-Townsend (AT) theory, following the Ansatz pro-

posed in [7, 8] (referred to as the AVZ model in the sequel). The AVZ model consists of

a Chern-Simons system in 2 + 1 dimensions for the supergroup OSp(2|2). It is an effec-

tive theory for a massive spin-1/2 fermion, generically defined on a curved geometry and

minimally coupled to the background gravity and a U(1) gauge field. This system exhibits

an unconventional form of supersymmetry based on a graded Lie algebra that extends the

local invariance of the tangent of the spacetime manifold, with the addition of the internal

gauge generators necessary to close the superalgebra. All the fields are contained in the
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gauge connection for the adjoint representation of the supergroup, namely1

A =
1

2
ωij Jij +A · T + ψAQA + QA ψ

A + . . . , (1.1)

where ωij , A and ψA are one-forms, while J, T and Q are the generators of Lorentz,

internal gauge and supersymmetry transformations, respectively. What makes this model

unconventional is that it assumes a peculiar Ansatz for the fermionic gauge fields ψAµ ,

expressing them as composite fields of the vielbein ei and spin-1/2 fields χA,

ψA = i γi e
iχA. (1.2)

In three dimensions, the simplest Lagrangian for the connection (1.1) is a Chern-Simons

form and the resulting AVZ model is particularly suited for describing graphene near the

Dirac points in a generic spatial lattice with nonvanishing curvature and torsion [9].

In 3 + 1 dimensions, on the other hand, the simplest action for a superconnection

of the form (1.1) is a Yang-Mills theory for the smallest superalgebra that extends the

AdS4 symmetry and yields a spin-1/2 field minimally coupled to Einstein gravity and the

Maxwell field [10]. This four-dimensional unconventional SUSY model was in turn shown

to correspond to the boundary theory of a Chern-Simons theory for a super connection in

five-dimensions [11].

In what follows, we consider a three dimensional model of unconventional supersym-

metry at the boundary of an AdS4 supergravity vacuum, extending the analysis in [12],

where it was shown that the three-dimensional AVZ model could be holographically re-

alized as the boundary theory of an N = 2 four-dimensional supergravity of the AdS4

spacetime. The model in [12] was constructed by embedding the OSp(2|2)-Chern-Simons

theory of the AVZ model in an N = 2, D = 3 AdS3 supergravity described by an AT

theory with gauge group OSp(2|2)+ × SO(1, 2)−. This theory was in turn obtained as an

effective model at the boundary of an AdS4 space on which an N = 2 supergravity is de-

fined. This results from a suitable choice of boundary conditions for the four-dimensional

fields. Imposing then the AVZ Ansatz (1.2) for the D = 3 fermions identifies the resulting

spin-1/2 fields χA as the radial component of the four-dimensional gravitini whose mass

is related to the AdS3 radius. Applying the resulting model to the effective description

of the electronic properties of graphene and other graphene-like 2D materials2 provides a

top-down approach to the understanding of the origin of supersymmetric phenomenology

of this physical system [13–15]. The quantum BRST formulation of the same D = 3 model

was discussed in [16].

The aim of the present paper is to generalize the construction of [12] to an N -extended

supergravity, with maximally supersymmetric AdS4 vacuum related to an OSp(p|2)+ ×
OSp(q|2)−, p+ q = N , Chern-Simons theory at the boundary.

1Here we assume Q and ψ to have dimensions (length)−
1
2 and (length)

1
2 , respectively, as it is common

in the supergravity literature. The one-form gauge fields A and ω on the other hand, are assumed to be

dimensionless.
2By graphene-like materials we mean two-dimensional materials featuring a honeycomb lattice and an

emergent behaviour as Dirac fermions for the pseudo-particle wavefunction.
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It is achieved by generalizing the boundary conditions for the D = 4 fields used in [12].

Applying the AVZ Ansatz for ψAµ (A = 1, . . . ,N ) an effective model for the massive spin-

1/2 fields χA on a curved background in the presence of a larger amount of supersymmetry

and a larger internal symmetry group SO(p)× SO(q) is obtained. This allows to introduce

extra internal degrees of freedom which can provide an application of the model to the

description of graphene. The supersymmetry of the boundary model is defined by the

partition (p, q) of N and depends on the signature of a real symmetric matrix ηAB entering

the boundary conditions for the gravitini.

Besides discussing the relation to the four-dimensional supergravity, the effective theory

for the χA fields is explicitly constructed and its symmetries illustrated. The fermionic

fields χA naturally split into two sets, χa1 and χa2 , with a1 = 1, . . . , p and a2 = 1, . . . , q,

which correspond to the representations
(
1
2 ,0
)

and
(
0, 12

)
of the AdS3 isometry group

SL(2,R)+ × SL(2,R)−. In the special case p = q, a manifest reflection symmetry emerges

in the model, under which the fermions in the two sets are interchanged. In light of this we

argue that, in this particular case, the Dirac fermions χa1 , χa2 may possibly describe the

wave functions of the π-electrons in graphene-like systems at the two inequivalent Dirac

points K, K′. Both fermions have masses which, as in the original AVZ model, depend

on the torsion of the three-dimensional spacetime. We briefly elaborate on a microscopic

(i.e. at scales comparable with the honeycomb lattice spacing) description of graphene-like

materials which can account for the massive Dirac equations that we find at the two Dirac

points.

We emphasize that our construction follows a top-down approach, in that the effective

D = 3 theory that we derive at the boundary of AdS4 originates from a well defined

supersymmetric effective supergravity in the bulk. Nevertheless it bears similarities with

the D = 3 models considered in [17], whose formulation also features an underlying AdS3

symmetry. We shall elaborate on this at the end of section 4.

The paper is organized as follows:

In section 2 we discuss the emergence of an N -extended Achúcarro-Twonsend model

in D = 3 at the boundary of an AdS4 supergravity by choosing appropriate boundary con-

ditions on the supergravity fields. We also discuss the effect of a reflection transformation

on the boundary model, showing that in the p = q case it becomes a symmetry.

In section 3 we implement the AVZ Ansatz (1.2) in the N -extended AT theory of

section 2 and discuss the properties of the resulting model and its symmetries in the

presence of a general world-volume torsion. In particular, we write the Dirac equations for

the spin-1/2 fields χ± in the two sectors acted on by each simple factor of the supergroup,

and relate the corresponding masses to the torsion parameters.

In section 4 we apply our model as an effective long wave-length description of the

electronic properties of graphene-like Dirac materials. We show that in the particular case

p = q the spin-1/2 fields χ± can be consistently related to the electron wave-functions in two

K and K′ Dirac points. This allows us to identify the parity-even and odd components of

the corresponding masses with Semenoff and Haldane-type mass contributions, respectively.

These quantities, in light of the discussion in section 3, are then consistently expressed in

terms of the torsion parameters of the model. In the last subsection we consider a different

– 3 –
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model within our general construction, defined by p = 4 and q = 0, which allows us to

make contact with the analysis in [17].

We end with a general discussion of our results and possible generalizations thereof.

The appendices contain our notations and conventions and a brief account of some facts

about graphene-like systems which are relevant to our analysis.

2 Achúcarro-Townsend D = 3 theory from AdS4 supergravity

The starting point of our analysis is an AdS4 vacuum of an N -extended pure supergravity

theory preserving all N supersymmetries. The vacuum symmetry is described by the

supergroup OSp(N|4) group.3 We consider fluctuations on this background which exhibit

the full vacuum symmetry at radial infinity. We require, in particular, all scalar and spin-

1/2 fields at the conformal boundary to be frozen at their vacuum values, and that the

remaining fields obey the osp(N|4) Maurer-Cartan equations. This condition is satisfied,

for instance, by the four dimensional vacuum configuration. We therefore do not consider

here boundary terms depending on the scalar fields of the N -extended AdS4-supergravity.

For pure N = 2, where scalar fields are not present, this choice of asymptotic symmetry is

consistent with the analysis of [18], applied in [12].

The dual description of the osp(N|4) algebra is given in terms of the connection

A = θi ⊗ Ei =
1

2
ωAB LAB +

1

2
ACD TCD + Ψ

A
α Q

α
A, (2.1)

where LAB (A,B = 0, . . . , 4) and TAB (A,B = 1, . . . ,N ) are the SO(2, 3) and SO(N )

generators respectively, whereas QαA (α = 1, . . . , 4) are the Majorana supersymmetry gen-

erators (see appendix A). The structure of the algebra is encoded in the Maurer-Cartan

equations dA+A∧A = 0, which can be conveniently written in a manifestly covariant form

with respect to the D = 4 Lorentz group SO(1, 3) by splitting A = (a, 4), with a = 0, 1, 2, 3

and defining La4 := ` Pa , ωa4 := `−1 V a, where V a is the four-dimensional vielbein:

dωab + ωac ∧ ωcb − `−2V a ∧ V b − 1

2`

(
Ψ
A ∧ ΓabΨA

)
= 0,

dV a + ωab ∧ V b − i

2

(
Ψ
A ∧ ΓaΨA

)
= 0,

dACD +ACB ∧ABD + `−1
(
ΨC ∧ΨD

)
= 0,

dΨA +
1

4
ωab ∧ ΓabΨ

A +
i

2`
V a ∧ ΓaΨ

A +AAB ∧ΨB = 0.

(2.2)

As mentioned above, we shall restrict to D = 4 asymptotically anti-de Sitter back-

grounds in which the above algebra only holds at the UV boundary located at radial

infinity.

To proceed, it is convenient to rewrite the Maurer-Cartan equations in a form which

is covariant with respect to the Lorentz group at the spatial boundary, SO(1, 2). This is

3We work with the “mostly minus” convention for the metric and refer to a parametrization of AdS4

given by ds2 = r2

`2
ds2

(3)
− `2 dr2

r2
, where ds2

(3)
is a locally AdS3 metric of the conformal UV boundary

at r →∞.
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achieved by further splitting the rigid index a into a = (i, 3), where i = 0, 1, 2 labels the

boundary dreibein and a = 3 labels the vierbein along the radial direction. This allows to

decompose the AdS4 superalgebra in terms of SO(1, 1)×SO(1, 2) ⊂ SO(2, 3) where L34 and

Lij are the SO(1, 1) and SO(1, 2) generators, respectively. We then write the asymptotic

algebra in a way in which the SO(1, 1)-grading of the fields is manifest. This is achieved

by defining

Ei± := ±1

2

(
V i ∓ `ω3i

)
, (2.3)

ωi3 =
1

`
(Ei+ + Ei−) , (2.4)

V i = Ei+ − Ei− , (2.5)

and decomposing the gravitini in their chiral components with respect to the same SO(1, 1),

represented on the spinors by the matrix Γ3,

ΨAα = ΨA
+ + ΨA

− , Γ3ΨA
± = ±iΨA

± . (2.6)

With these definitions, the previously obtained asymptotic relations become4

dωij+ωik∧ωkj+
4

`2
E

[i
+∧E

j]
−−

1

`

(
Ψ
A
+∧ΓijΨA−

)∣∣∣∣
∂M

= 0 ,

dEi±+ωij∧Ej±∓
1

`
Ei±∧V 3∓ i

2

(
Ψ
A
±∧ΓiΨA±

)∣∣∣∣
∂M

= 0 ,

dV 3−1

`
(Ei++Ei−)∧Vi+Ψ

A
−∧ΨA+

∣∣∣∣
∂M

= 0 ,

dACD+ACM∧AMD+
2

`

(
Ψ

[C
+ ∧Ψ

D]
−

)∣∣∣∣
∂M

= 0 ,

dΨMβ
± +

1

4
ωij∧

(
ΓijΨ

M
±
)β± i

`
Ei±∧

(
ΓiΨ

M
∓
)β± 1

2`
V 3∧ΨMβ

± +δM [CδD]B A
CD∧ΨBβ

±

∣∣∣∣
∂M

= 0 .

(2.7)

2.1 Boundary limit

We are now interested into the AdS4 boundary, which is reached in the limit r → ∞. In

order to perform the limit, we define the vielbein at the boundary as5

Ei+(r, x) =
1

2

(r
`

)
Ei(x) +O

(
`2

r2

)
, Ei−(r, x) = −1

2

(
`

r

)
Ei(x) +O

(
`2

r2

)
, (2.8)

4We use Ψ±ΓijΨ± = Ψ±Γ3Ψ± = Ψ±Ψ± = 0.
5Note the more symmetric choice of the numerical factors entering the boundary conditions in the “+”

and “−” sectors with respect to [12]. This is achieved by a rescaling r → r/2, which does not alter the

asymptotic limit.

– 5 –
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where x = (xµ), µ = 0, 1, 2, are the boundary coordinates. As for the spinors we require

ΨA
+µ(r, x) dxµ =

√
r

2`

(
[c]ψA(x)

0

)
+O

(
`

r

)
, (2.9)

ΨA
−µ(r, x) dxµ =

√
`

2r

(
[c]0

ηABψB(x)

)
+O

(
`

r

)
, (2.10)

where ηAB is a symmetric metric such that ηAC ηCB = δAB.6 As far as the spin and the

gauge connection, we require

ωij(r, x) = ωijµ (x) dxµ + . . . , AAB(r, x) = AABµ (x) dxµ + . . . , (2.11)

where the ellipses denote subleading terms in `/r. When writing the equations at the

boundary we shall simply denote by ωij and AAB the boundary values of the corresponding

quantities in the bulk, as defined by the leading terms above.

Consistency of the boundary conditions requires that both V 3 and dV 3 vanish at

the boundary. This is indeed the case since, at the boundary, ω3
i ∧ Ei = 0 (by virtue

of the general properties of the extrinsic curvature of the boundary) and (Ψ∓)Ψ± ∝
ηAB (ψA)Tσ2ψB = 0, the latter being a consequence of the antisymetry of σ2 and the

symmetry of ηAB.

With these boundary conditions, one can verify that the boundary equations (2.7)

involve only boundary fields7

dωij + ωik ∧ ωkj −
1

`2
Ei ∧ Ej − 1

2`

(
ψ
A ∧ γijηABψB

)
= 0 ,

dEi + ωij ∧ Ej −
i

2

(
ψ
A ∧ γiψA

)
= 0 ,

dACD +ACM ∧AMD +
1

`
ψ[C ∧ ηD]BψB = 0 ,

dψA +
1

4
ωij ∧ γij ψA +

i

2`
Ei ∧ γi ηABψB +AAB ∧ ψB = 0 .

(2.12)

We now examine the role of the ηAB in the breaking of the D = 4 R-symmetry group:

O(N )→ O(p)×O(q), p+q = N , where the integers p, q, define the signature of η. Indeed,

through an O(N ) rotation η can be brought to the diagonal form

ηAB =

(
1p×p 0p×q
0q×p −1q×q

)
. (2.13)

The index A = 1, . . . ,N then naturally splits into A = (a1, a2), where a1 = 1 . . . , p and

a2 = p+ 1 . . . , N , and similarly B = (b1, b2). Inserting expression (2.13) into (2.12) one

can verify that, in the Maurer-Cartan equations for the gauge fields ABC , the fermion

6Being A,B indices in the fundamental N -dimensional representation of the R-symmetry group SO(N ),

we do not distinguish between their upper and lower positions.
7More specifically, it is straightforward to verify that the right-hand-side of equations (2.7) are propor-

tional, through powers of `/r, to the right hand side of equations (2.12).

– 6 –
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bilinear is projected on the adjoint of the algebra generating the subgroup O(p)×O(q) of

O(N ), so that the equation for the gauge fields Aa1b2 , associated with the generators in

the coset O(N )/(O(p)×O(q)), reads

dAa1b2 +Aa1c1 ∧Ac1b2 +Aa1c2 ∧Ac2b2 = 0 , (2.14)

and therefore these fields can be consistently set to zero: Aa1b2 = 0. This condition,

however, is not optional, implicit in the requirement that the fields at the boundary (and

in particular the gravitini fields) satisfy consistent equations. The remaining equations

describe the superalgebra of OSp(p|2)+ × OSp(q|2)− (note that the subscripts “±”, from

now on, no longer refer to the eigenvalues of −iΓ3, but to the two factors in the D = 3

supergroup). To see this we define

Ωi(±) := ωi±E
i

`
, ψ+ := (ψa1) , ψ− := (ψa2) , A+ := (Aa1b1) , A− := (Aa2b2) ,

D[Ω+, A+]ψ+ :=

(
dψa1+

i

2
Ωi+∧γiψa1+Aa1b1∧ψβb1

)
,

D[Ω−, A−]ψ− :=

(
dψa2+

i

2
Ωi−∧γiψa2+Aa2b2∧ψb2

)
,

(2.15)

where ωi := 1
2 ε

ijk ωjk. Equations (2.12) can then be cast into the following compact form

R±
i := dΩi

± −
1

2
εijkΩ± j ∧ Ω± k = ± i

`

(
ψ± ∧ γiψ±

)
, (2.16a)

D[Ω±, A±]ψ± = 0 , (2.16b)

Fa1b1 := dAa1b1 +Aa1c1 ∧Ac1b1 = −1

`

(
ψ
a1 ∧ ψb1

)
, (2.16c)

Fa2b2 := dAa2b2 +Aa2c2 ∧Ac2b2 =
1

`

(
ψ
a2 ∧ ψb2

)
, (2.16d)

which rflects the structure of the osp(p|2)+⊕ osp(q|2)− superalgebra,8 where the two parts

are described by the 1-forms Ωi
+, ψ+, A+ and Ωi

−, ψ−, A−, respectively.9

The Maurer-Cartan equations (2.16) can be derived from the Lagrangian 3-form [1]

L = L(+) − L(−) −
1

2
d(Ω+k ∧ Ωk

−) ,

L(±) :=
1

2

(
Ω± idΩi

± −
1

3
εijk Ωi

± ∧ Ωj
± ∧ Ωk

±

)
+ Tr

(
A± ∧ dA± +

2

3
A± ∧A± ∧A±

)
±

± 2

`
ψ± ∧ D[Ω±, A±]ψ± ,

(2.17)

8Note that, in our conventions, the structure constants of an sl(2,R) algebra are chosen to be

fijk = −εijk.
9These curvatures are exactly those obtained by Achúcarro and Townsend in [1] in three dimensions

starting from a Chern-Simons action, if we call ψi,i′ →
√

2ψa1,a2 , ψi,i′ → i
√

2ψa1,a2 , m = 1
2`

.

– 7 –
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where the total derivative − `
2 d(Ω+k ∧ Ωk

−) = d(ωi ∧ Ei) is a Gibbons-Hawking term

which originates from writing the Einstein-Hilbert Lagrangian as the difference of two

Chern-Simons forms. Note that one could have chosen a singular matrix ηAB, with p

positive, q negative and r vanishing eigenvalues (N = p+ q+ r). In that case, η2 = Pp+q =

(1− Pr), where Pr is the projector on the 0-eigenspace of ηAB. Imposing PrAB ABC = 0,

PrAB ψB = 0 and Aa1b2 = 0 at the boundary, the resulting boundary fields are connections

in the algebra osp(p|2)+ ⊕ osp(q|2)−, corresponding to the smaller supersymmetry N ′ =

p + q = N − r. This more general choice of ηAB therefore allows a reduced amount of

supersymmetry at the boundary.

2.2 Reflection transformations and the symmetric case p = q

In this subsection we discuss the effect of a parity transformation on the AT model. This

transformation can be characterized as a spatial reflection in the Y-axis tangent to the 2+1

dimensional boundary (t → t, x → −x, y → y), and implemented on three-dimensional

vectors by the matrix OY = diag(+1,−1,+1). Recalling that Ei are vectors and ωi pseudo-

vectors, the transformation properties under this parity of the Ei and ωi fields are:

Ei → Ẽi = OY ij Ej , ωi → ω̃i = −OY ij ωj , (2.18)

which in turn implies: Ωi
± → Ω̃i

± = −OY ij Ωj
∓ . The action on the full supersymmetric

model is not in general an invariance, since the OSp(p|2)+ ×OSp(q|2)− model is mapped

into the OSp(q|2)+ ×OSp(p|2)− one, i.e. the + and — sectors are interchanged.

In the special case p = q this discrete transformation is an invariance of the theory.

To make the parity symmetry manifest in the supersymmetric case we extend its action to

the fermionic10 and gauge sectors as follows:

ψ± → ψ̃± = σ1 ψ∓ , A± → Ã± = A∓ . (2.19)

The reader can easily verify, given our spinor conventions, that:

ψ± ∧ γiψ± → OY ij ψ∓ ∧ γjψ∓ ,

Ω± γ
iψ± → Ω∓ σ

1γiψ∓ ,

ψ±D[Ω± , A±]ψ± → −ψ∓D[Ω∓ , A∓]ψ∓ .

(2.20)

and that the Maurer-Cartan equations (2.16) are invariant for p = q. The reader can show

that L̃(±) = L(∓), so that the Lagrangian density L is odd: L̃ = −L. When making contact

with the effective description of certain 2D materials, in the next sections, we will, in the

p = q case, interpret the + and − sectors as related to the Dirac points K, K′.

As pointed out above, in the general p 6= q case, the discrete reflection symmetry

exchanges the + and the − sector so that a (p, q) model is mapped into the (q, p) one.

By the same token one can show that the inversion in the X-axis, tangent to the 2 + 1

dimensional world volume, is also a symmetry of the model for p = q. Its action on three-

dimensional vectors is implemented by the matrix OX = diag(+1,+1,−1), while on the

gravitini it involves multiplication by the Pauli matrix σ3: ψ± → ψ̃± = σ3ψ∓ .

10The Clifford algebra representation that we use is given in appendix A.
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3 Generalized AVZ model

The Chern-Simons theory discussed in [7] and [12] is naturally defined on a prin-

cipal fiber bundle [M3,OSp(2|2)], under the assumption that the bosonic subgroup

SO(1, 2) ⊂ OSp(2|2) of the fiber gauge group is identified with the Lorentz group on the

tangent space of the three-dimensional world-volume space time M3. This identification

is implicit, in particular, in the Ansatz (1.2), where the γ-matrices act both on the odd

generator QαA of the OSp(2|2) gauge group and on the world-volume spinor χα. A more

general point of view was adopted in [16], where such identification is not imposed a priori.

This allows in particular the construction of the quantum world-volume field theory, in the

spirit of the holographic AdS/CFT correspondence [2, 3].

In this paper we are going to analyze some applications to graphene-like systems of

the geometrical features of the classical model of [7, 12] in the more general case of a gauge

group OSp(p|2)+ ×OSp(q|2)−. However we prefer to maintain the conceptual distinction

between target space and world volume. From this point of view, Ω±, ψ±, A± are world-

volume gauge fields with values in the osp(p|2)+ ⊕ osp(q|2)− superalgebra (target space).

We assume the three-dimensional world-volume to have a tangent bundle with local AdS3

symmetry of radius `′, and a local frame bundle defined by the dreibein ei. Supersymmetry

is just the odd part of the gauge supergroup and is not assumed to act on the world volume

at the classical level.

According to this more general point of view, the isometry group SL(2,R)′+×SL(2,R)′−
of the tangent space to the world-volume geometry and the bosonic subgroup SL(2,R)+×
SL(2,R)− of the gauge group are in principle unrelated, and we shall use primed and

unprimed symbols to emphasize this distinction. In particular, the connections Ω′ i± of

SL(2,R)′±, can be written in terms of the torsion-free Lorentzian connection ω′ i on the

world volume as Ω′ i± = ω′ i ± ei/`′. However, in line with [7] and [12], we shall eventually

identify Ω′ i± with Ωi
± modulo additional torsion terms (which corresponds to identifying

the corresponding SL(2,R) groups). Also, as explained in [12], the theory obtained at the

boundary of the (target space) AdS4 supergravity can be related to the model discussed

in [7] by considering an Ansatz, as in (1.2), in which the gravitini are expressed in terms

of the local frame and spinor fields χA = (χa1 , χa2). These are world-volume spinors in

the
(
1
2 , 0

)
⊕
(
0, 1

2

)
representation of SL(2,R)′+ × SL(2,R)′−.11 For the sake of notational

simplicity, we use for the two sets of spinor bases χa1 , χa2 on which the generators of

the corresponding SL(2,R)′ groups act, to be represented by the same matrices, i γi/2.

Eventually, along the lines of the discussion in subsection 2.2, we shall relax this condition

in order to study the parity symmetry of the theory when p = q.

3.1 NYW scale invariance

As shown in [7, 12], the above construction leads to the description of a propagating charged

fermion satisfying a Dirac equation. Implicit in the Ansatz (1.2) is the local scale invariance

11In line with the previous discussion, the γi matrices in (1.2) should be thought of as intertwining

matrices between target space spinor indices and world-volume spinor indices. This makes sense in light of

the identification between SL(2,R)± and SL(2,R)′± mentioned above.
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under the so-called Nieh-Yan-Weyl (NYW) symmetry [19–22]

ei → λ(x) ei , χA →
1

λ(x)
χA , λ 6= 0 , (3.1)

which leaves the gravitino, and the whole theory, invariant. It is precisely the breaking of

this conformal invariance that, in the framework of [8, 12], turns an originally topological

Chern-Simons theory into a system with a propagating spin-1/2 field.

The identification of SL(2,R)± with SL(2,R)′± can be established by identifying the

index i of ei with the same index of Ei and defines the action of the covariant derivatives

D[Ω±] on ei as well. In particular, one can write the following general expressions for the

torsion with respect to Ω± as

T i± = D[Ω±]ei = β±e
i + τ±ε

ijkej ∧ ek , (3.2)

where β± and τ± are 1- and 0-forms, respectively. Under the NYW symmetry transforma-

tion (3.1), the above expressions retain their form provided β± and τ± change according to

β± → β± +
dλ

λ
, τ± →

1

λ
τ± , (3.3)

that is, β± transform as a connection under local scale transformations.

Implementing the Ansatz (1.2) in the OSp(p|2)+×OSp(q|2)− structure equations (2.16)

for the bosonic curvatures, yields

Ri± = ±1

`
χ±χ±ε

ijk ej ∧ ek ,

D[Ω±]Ei = ∓1

`
εijk Ej ∧ Ek +

1

2
(χ+χ+ + χ−χ−) εijk ej ∧ ek ,

Fa1b1 = − i
`

(
χa1γiχb1

)
εijke

j ∧ ek , Fa2b2 =
i

`

(
χa2γiχb2

)
εijke

j ∧ ek ,

(3.4)

where χ+ := (χa1), χ− := (χa2). Covariantly differentiating (3.2) yields

D[Ω±]2ei = −εijk R± j ek = 0 , (3.5)

where last equality follows from the first of eqs. (3.4). This in turn requires dβ± = 0 and,

for non vanishing τ±,

β± = −dτ±
τ±

= −dln(|τ±|) . (3.6)

This last relation means that β± can be viewed as produced by the scale transformation

ei → (τ±)−1ei. Consequently, in the absence of global obstructions, either β+ or β− can be

gauged away to zero, and correspondingly either τ+ or τ− can be set equal to a constant,

by an appropriate NYW transformation.

Next we express Ei in the basis of ei. Consistently with our assumptions we can write

the following proportionality relation

Ei = f ei , (3.7)
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where f is some indeterminate function.12 Since we have defined Ωi
± = ωi ± Ei/`, assum-

ing (3.7), the covariant derivatives of ei can be written as

D[Ω±] ei = D[ω] ei∓(f/`) εijkej ∧ ek , (3.8)

from which one obtains

(β+ − β−) ei + (τ+ − τ−+2f/`) εijkej ∧ ek = 0. (3.9)

One can also compute the covariant derivative of ei with respect to ωi, which has the

following general form

D[ω]ei = β ∧ ei + τ εijkej ∧ ek . (3.10)

Comparing equation (3.10) with (3.9), one can find

β+ = β− = β , τ+ +
f

`
= τ− −

f

`
= τ . (3.11)

Note that in the absence of global obstructions the 1-form β can be disposed of through a

NYW transformation (3.3) [7].13 This would leave the theory only invariant under global

(rigid) NYW transformations, which can in turn be used to fix the value of either τ+ or τ−
at will since, for β = 0, τ± are constants.

In order to find f(x), we use (3.7) in the second expression of (3.4). Comparing this

with (3.2) leads to the following conditions for f(x):

df + β f = 0 , (3.12)

f τ =
1

2
(χ+χ+ + χ−χ−) , (3.13)

where τ was introduced in (3.10).

For β = 0, eq. (3.12) is satisfied by f = α± τ±, where α± are dimensionful constants.

An additional constraint comes from the Bianchi identities for Ri±, obtained from the first

of eqs. (3.4),

D[Ω±]Ri± = 0 ⇒ d(χ±χ±) = −2β χ±χ± . (3.14)

Under a NYW transformation, one can always set β = 0 locally. Then, the second ex-

pression in (3.14) implies that, in a local patch, χ±χ± are constants, consistently with the

results of [12]. In general, for non-vanishing β, the last of eqs. (3.14) implies that:

χ+χ+ = k χ−χ− , (3.15)

with k = constant.

12In general, the 1-form Ei may not be parallel to ei. We briefly touch on this more general case in

section 5.
13Clearly, in the presence of global obstructions, this can only be done locally in an open neighborhood

of every spacetime point.
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Let us now turn to the discussion of the fermionic sector of the model. In general, we

can keep the local NYW symmetry of the theory manifest by including its connection β in

the definition of the covariant derivative and defining

D̂ = D + w β , (3.16)

where w is the NYW weight of the field (−1 for ei and +1 for χ±). Thus, the NYW-

covariant derivatives on χ± is

D̂[Ω±, A±]χ± = D[Ω±, A±]χ± + β χ± , (3.17)

where

D[Ω+, A+]χa1+ := dχa1 +
i

2
Ωi
+ γiχ

a1 +Aa1b1χb1 , (3.18)

and similarly for D[Ω−, A−]χ−. From eqs. (2.16b) one finds

γ[iD̂j][Ω±, A±]χ± = τ± εijk γ
kχ± . (3.19)

Contracting both sides on the left by γij we end up with the following Dirac equations:

/D[Ω±, A±]χ± = −3 i τ± χ± , (3.20)

while contracting both sides of (3.19) to the left by γi and using (3.20) one finds

D̂i[Ω±, A±]χ± = −i τ± γiχ± . (3.21)

Equations (3.4) and (3.19) can all be derived from an action for two Dirac fields, χ±,

minimally coupled to two independent sets of CS connection fields, Ω±, A±,

S =

∫ [
1

2

(
Ω+i∧dΩi

+−
1

3
εijkΩ+i∧Ω+j∧Ω+k

)
−1

2

(
Ω−i∧dΩi

−−
1

3
εijkΩ−i∧Ω−j∧Ω−k

)
+

+

(
Aa1b1∧dAb1a1+

2

3
Aa1b1∧Ab1c1∧Ac1a1

)
−
(
Aa2b2∧dAb2a2+

2

3
Aa2b2∧Ab2c2∧Ac2a2

)
−

−2i

`
εijkχa1

{
γkD̂[Ω+, A

a1b1 ]χa1+iτ+χa1ek

}
∧ei∧ej−

−2i

`
εijkχa2

{
γkD̂[Ω−, A

a2b2 ]χa2+iτ−χa2ek

}
∧ei∧ej−

1

2
d(Ω+k∧Ωk

−)

]
.

Note that the above action can be obtained from (2.17) using the Ansatz (1.2).

3.2 Fixing the NYW scaling

As already mentioned, the NYW symmetry can be used to set β = 0 locally on any open

neighborhood of the world volume. Globally, this requires integrability of (3.6), which

imposes a nontrivial condition on the topology of spacetime. Once the scale invariance has

been used to set β(x) = 0, one can then use the remaining global NYW symmetry to fix

either τ+ or τ− (which are constants) to some chosen value. It is useful to write the field

equations in terms of the torsion-free Lorentz connection ω′i

ω′i = Ωi
+ + τ+ e

i = Ωi
− + τ− e

i . (3.22)
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The reader can easily verify that the Dirac equations in the two sectors can be recast in

the form

/D[ω′, A±]χ± = −3

2
i τ± χ± , (3.23)

where, as in the models discussed in [7, 12], the mass of the spinor fields are fixed in terms

of the torsion

m± =
3

2
τ± . (3.24)

The Riemann tensor associated with ω′, using eq.s (3.4), (3.11), (3.12) and (3.13), reads

Ri[ω′] =
1

2

(
f2

`2
+ τ2 +

ηABχ
AχB

`

)
εijkej ∧ ek . (3.25)

For β = 0, the coefficient of εijkej ∧ ek in (3.25) is a constant that defines an effective

cosmological constant, which also receives a contribution from the fermion condensate

(recall that f and τ are related by eq. (3.13)). The coefficient in front of this contribution

depends on the choice of spin connection on the world volume. In particular, the residual

global NYW symmetry can be used to identify the AdS3 radius of the world volume, `′,

with the one on the target space, `. This still allows for several choices of world-volume spin

connection, which can be labeled by a real parameter λ. Identifying the gauge connection

Ωi
(λ) ≡ ω

i + λ
` E

i with the tangent space connection Ω′i(λ) ≡ ω
′i + λ

` e
i, yields

τ =
λ

`
(f − 1) , (3.26)

which combined with (3.11) gives

τ± =
1

`
[λ(f − 1)∓ f ] . (3.27)

In this case eq. (3.13) implies

λ f (f − 1) =
`

2
(χ+χ+ + χ−χ−) . (3.28)

Under reflection λ changes sign, so that parity invariance requires λ = 0, which in turn

implies χ+χ+ = −χ−χ−. This case is alternatively described by the limit ` → ∞ of

vanishing cosmological constant. The cases λ = ±1 correspond to the choices Ω′ i± = Ωi
±.

In particular, for λ = −1, this identification includes the one assumed in [12], where the

gauge super-group was defined by p = 0 and q = 2, and τ− = 1/`, τ+ = −(2f − 1)/`.

Note that the left-hand-side of (3.28) also vanishes for f = 0 and f = 1. The first case

can be excluded on physical grounds since it would imply Ei = 0, which is singular. The

second possibility, f = 1, implies χ+χ+ = −χ−χ−, which, as pointed out above, is the

necessary condition for parity invariance. Moreover one can verify that the absolute value

of the left hand side of eq. (3.28) has a minimum for f = 1/2. In this case, as it follows

from eq. (3.27), choosing λ to be +1 or −1, implies that either χ− or χ+ are massless

(i.e. τ− = 0 or τ+ = 0, respectively). In the next section we shall elaborate on these

conditions in relation to the application of our construction to the effective description of

graphene-like systems.
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4 Interpretation in terms of graphene-like 2D materials

In the spirit of [7] we shall discuss an application of our construction to the effective long

wavelength description of the electronic properties of graphene-like systems. From this

perspective, the spin 1/2 fields χA, which satisfy the Dirac equations (3.20), describe the

electron wave-functions. Let us recall few facts about the electronic structure of these

materials.

A graphene sheet is a two-dimensional system of carbon atoms arranged in a honey-

comb lattice [23, 24] (for review on the subject, see also [25–28]). From the perspective of

high energy physics, graphene provides a real framework to study Dirac pseudoparticles at

sub-light speed regime [25, 29–32], and many high-energy physics effects can be explored

in a solid state system [26–28, 33–37].

The Dirac spinorial formulation emerges from the peculiar honeycomb structure, where

a unit cell is made of two adjacent atoms belonging to inequivalent sublattices, labelled

A and B, respectively. This means that we find two inequivalent sites per unit cell, the

distinction not referring to different kinds of atoms — they are all carbon atoms — but

to their topological inequivalence. The single-electron wave function is then conveniently

described as a two-component Dirac spinor ζ which, in a basis where the gamma-matrices

γi have the form

γ0 = −σ3 , γ1 = −i σ2 , γ2 = i σ1 , (4.1)

can be written as

ζ =

(√
nA e

iαA

√
nB e

iαB

)
. (4.2)

Here nA, nB are the probability densities for the electron in the π-orbitals, referred to the

A and B sublattices, respectively, and αA, αB the corresponding wave-function phases. In

terms of ζ one can define the following two quantities:

n ≡ nA + nB = ζ†ζ , ∆n ≡ nB − nA = ζ̄ζ , (4.3)

where n is the total electron probability density while ∆n is the asymmetry in the proba-

bility density between the two sublattices. This description is robust under changes of the

lattice preserving the topological structure.

The Dirac physics is realized for low-lying energy pseudoparticle excitations: for energy

ranges where the electron wavelength is much larger than the lattice length, the charge

carriers see the graphene sheet as a continuum 2+1 dimensional spacetime. Moreover,

quasiparticles with large wavelength are sensitive to sheet curvature effects, calling for a

quantum Dirac field formulation in curved spacetime [34, 36].

Let us recall that isolated pristine graphene features massless Dirac equations for the

pseudoparticles at the Dirac points. However, mass terms can be induced in several ways,

for instance by switching on suitable local magnetic fluxes (see appendix B). Moreover,

other graphene-like 2D materials exist where parity symmetry between the A and B sites

is absent, and a mass gap is present, due to the different kind of atoms in the honeycomb
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lattice. This is the case, for instance, of the boron nitride, where effective parity-violating

mass terms emerge [38].14

The relation between the spin-1/2 fields of our model and ζ can be stated as follows:

χ =

√
`

2
U ζ , (4.4)

where the dimensionful constant
√

`
2 is needed in order for ζ to have the correct dimension

of 1/(length) and the 2 × 2 matrix U relates the spinor basis used for χ (see appendix A)

to the one defined above for ζ: U †γiU = γi. The matrix U is readily found to be

U =
1√
2

(
1 1

−i i

)
. (4.5)

We shall restrict ourselves to the case in which supersymmetry is defined by even integers p

and q, since this allows to arrange the real spinors χ± into p/2 and q/2 Dirac spinors. The

simplest choice would be the case p = 2, q = 0 or p = 0, q = 2, discussed in [7] and [12].

The next simplest case corresponds to p = q = 2, which will be discussed next.

An important consequence of (4.4), as first shown in [12] and derived on general grounds

in the previous section, is that the quantity

χχ =
`

2
ζ̄ζ =

`

2
(nB − nA) , (4.6)

by virtue of the last of eqs. (3.14), is constant for β = 0, in which case the difference

nB − nA in the probability densities is a constant index whose relevance will be further

explored in future work.

Let us elaborate now on a consequence of eq. (4.6) in light of the discussion in subsec-

tion 3.2. Equation (3.28) implies the following bounds:

λ > 0 , nA = −4λ

`2
f(f − 1) + nB ≥ −

4λ

`2
f(f − 1) ≥ λ

`2
,

λ < 0 , nB =
4λ

`2
f(f − 1) + nA ≥

4λ

`2
f(f − 1) ≥ |λ|

`2
.

(4.7)

In the two cases we find a lower bound in the probability densities of one of the two

sublattices.

In our model the spinors are split into the + and − sectors and χχ in (4.6) should be

understood as

χχ ≡ χ+χ+ + χ−χ− =
`

2
(nB − nA) , (4.8)

so that we can write

nA = n
(+)
A + n

(−)
A , nB = n

(+)
B + n

(−)
B , (4.9)

14A possibility for producing a parity violating mass gap in a graphene monolayer is to deposit it on a

suitable substrate, for instance of boron nitride [39] or silicon carbide [40], inducing in this way local on-site

potentials spoiling the original parity invariance between A and B sites.
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where n
(±)
A , n

(±)
B are the probability densities related to the A and B sublattices in the +

and − sectors. In the context of graphene-like systems, the + and − sectors, in the p = q

case, can be interpreted as referring to the K, K′ valleys. This will be discussed in the

next subsection. For p 6= q the interpretation of the model is more obscure and we shall

put forward possible interpretations in a particular case. Note that the case λ = 0, which

implies χ+χ+ = −χ−χ−, and nA = nB, can be realized as a non-trivial relation between

the probability densities in the + and − sectors.

4.1 The p = q case and the K, K′ Dirac points

Let us now restrict to the case p = q, in which the parity symmetry discussed in section 2.2

emerges in the model. Since Ei = f ei, the action of the OY -parity on Ei naturally extends

to ei:

ei → ẽi = OY ij ej , (4.10)

provided f is invariant: f̃ = f . Consistency of eqs. (2.18), (2.19) and (4.10) with the

Ansatz (1.2) implies the following transformation rule for the spin-1/2 fields

χ± → χ̃± = −σ1χ∓ . (4.11)

One can verify for instance that ei γ
iχ± = ẽi σ

1γiχ̃∓, consistently with the transformation

property of the ψ±. Invariance under reflections of the expression (3.2) for torsion implies

β → β̃ = β , τ± → τ̃± = −τ∓ . (4.12)

A specific world-volume background, characterized by certain torsion components, is parity

invariant provided:

τ̃± = τ± ⇒ τ+ = −τ− . (4.13)

It is also straightforward to verify that, under reflections,

ηAB χ
AχB = χ+χ+ − χ−χ− and χχ = χ+χ+ + χ−χ− , (4.14)

are a scalar and a pseudo-scalar, respectively. Moreover, the field equations are invariant

while the Lagrangian density is, as expected, odd. Equations (2.18), (2.19) and (4.10)

implement the reflection symmetry over the Y-axis on the tangent space to the world

volume. In particular the two Dirac equations (3.23) are mapped into one another. An

analogous discussion applies to the reflection over the X-axis in the tangent space to the

world volume (see last paragraph of section 2.2). In this case the transformation properties

of the spinors are: χ± → χ̃± = −σ3χ∓.
The ± sectors, which are related by a reflection symmetry in one spatial axis, can be

naturally associated with the K, K′ valleys of graphene. To motivate this, we recall that

K, K′ are the two inequivalent points in the first Brillouin zone (FBZ) of the reciprocal

lattice, which also has a honeycomb geometry. We describe the elementary hexagons related

to the honeycomb lattice and to the FBZ as in figure 1.

The relativistic behavior of the charge carriers can be inferred, in the momentum space,

from the linear dispersion relation between the energy and the quasi-momentum at the
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Figure 1. Honeycomb lattice and first Brillouin zone (FBZ).

vertices of the first Brillouin zone. Close to the Fermi energy, the electrons in graphene have

linear energy bands, like relativistic massless particles and the three dimensional plot of

these two dimensional bands produce the so-called Dirac cones. For every momentum lying

within the Brillouin zone, the Hamiltonian has two eigenvalues with opposite signs: the

positive (negative) eigenvalue corresponds to the conduction (valence) band of graphene.

The conduction and valence bands touch each other at the conical apices, located at the

corners of the hexagonal FBZ. The latter are then split into two equivalence classes (referred

to as “valleys”) and, as a result, electrons in graphene possess an additional pseudo-spin

number, the valley. These properties are shared with other 2D graphene-like materials,

which further allow the inclusion of effective mass terms.

Consistently with our description of the honeycomb lattices (see figure above), the

reflection with respect to the Y-axis exchanges the A and B sites. The points K and K′

are mapped into each other if the reflection is combined with a time-reversal transformation,

so that the resulting effect on a momentum vector is kx → kx , ky → −ky . As mentioned

above, this symmetry, which is present in pure graphene, is absent in 2D materials with

inequivalent A and B sites. This feature implies the presence, for such materials, of a

parity-violating Semenoff mass term in the effective Dirac equation.

In the absence of curvature, it is known that the Dirac equations in momentum space

in the two valleys, in our conventions, read (setting ~ = vf = 1) [25]:

K : Eq χK(q) =
(
α1 q1 + α2 q2 +mK γ

0
)
χK(q) ,

K′ : Eq χK′ (q) =
(
α1 q1 − α2 q2 +m

K′ γ
0
)
χ

K′ (q) ,
(4.15)

where α` ≡ γ0 γ` (` = 1, 2) and the two equations are computed in the two-momenta

K + q and K′ + q, with |q| � |K|, |K′|. The Hamiltonian matrices on the right hand

sides of equations (4.15) have eivengalues +|Eq| and −|Eq|. The above two equations, in

configuration space, read:

K : i ∂tχK(x) =
(
−iα1 ∂x − iα2 ∂y +mK γ

0
)
χK(x) ,

K′ : i ∂tχK′ (x) =
(
−iα1 ∂x + iα2 ∂y +m

K′ γ
0
)
χ

K′ (x) .
(4.16)
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By general covariance, the generalization of equations (4.16) to a curved background, in

the presence of minimal couplings to a gauge potential, is obtained by replacing partial

derivatives by covariant ones:

K : iDt[ω′, AK ]χK(x) =
(
−iα1Dx[ω′, AK ]− iα2Dy[ω′, AK ] +mK γ

0
)
χK(x) ,

K′ : iDt[ω′, AK′ ]χK′ (x) =
(
−iα1Dx[ω′, A

K′ ] + iα2Dy[ω′, AK′ ] +m
K′ γ

0
)
χ

K′ (x) ,

(4.17)

where AK(x) and A
K′ (x) denote the configuration-space representation of the gauge fields

about the two Dirac points. By comparing (4.17) with eqs. (3.23), we can consistently

identify the spinor field χ±(x) with χK(x), χ
K′ (x), up to an overall normalization, as

follows

χK(xµ) = χ+(xµ) , χ
K′ (x

0, x1, x2) = σ1χ−(−x0, x1, x2) , (4.18)

provided we also identify:

AK = A+ , A
K′ = A− , (4.19)

and the mass gaps at the two valleys with the mass parameters m± of χ±, see eq. (3.24),

mK = m+ =
3

2
τ+ , m

K′ = m− =
3

2
τ− . (4.20)

This motivates the identification of the ± sectors in our model with the two valleys,

and the corresponding mass gaps with the torsion parameters of our model.

Note that applying spatial reflection with respect to the X-axis maps eqs. (4.15) into

each other, provided m
K′ = −mK . This implies that m

K′ + mK is parity-odd, while

m
K′ −mK is parity-even.

4.1.1 Microscopic interpretation

Mass terms can be included in graphene-like systems by generalizing the tight binding

microscopic model (see appendix B) and opening mass gaps at the Dirac points. The

generation of a gap at Dirac points was first discussed in 1984 by Semenoff, introducing a

mass term through an on-site deformation ±M breaking sublattices equivalence [38].

Another model was proposed by Haldane, with the introduction of a periodic local mag-

netic flux density with zero net flux over the honeycomb hexagon [41]. The corresponding

physical system is represented introducing in the microscopic Hamiltonian second-neighbor

hopping terms with a phase factor e±iϕ, the phase sign according to the “chirality” of the

electron path, i.e. depending on whether the hopping is clockwise or anticlockwise w.r.t.

the hexagonal cell. The phase ϕ (Aharonov-Bohm phase) induced by the local fluxes can

be taken as a parameter of the model. As discussed in appendix B, the degeneracy of the

bands at the Dirac points is lifted either by non-zero M or non-zero Aharanov-Bohm phase

contribution, and the fermion masses in the two inequivalent valleys turn out to be

mK = M − 3
√

3 t2 sinϕ , m
K′ = M + 3

√
3 t2 sinϕ , (4.21)

where the coefficient t2 is the hopping amplitude between next-to-nearest neighbors [41]

(see appendix B).
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Using eq. (4.20) the physical quantities expressed by the Semenoff local potential term

M and Haldane contribution 3
√

3 t2 sinϕ can be related to the fermion masses m± of our

macroscopic model. To see this, let us use eqs. (3.11) to write:

τ± ≡
1

2
(τ+ + τ−) ± 1

2
(τ+ − τ−) = τ ∓ 2

f

`
. (4.22)

As discussed above (see in particular eq. (4.13)), the first term is parity odd, while the

second is parity even. From eqs. (4.20), (4.21) and (4.22), the following identification can

be made:

M =
3

2
τ ,

√
3 t2 sin(ϕ) =

f

`
. (4.23)

This is consistent with the property of the Semenoff and Haldane mass terms to be parity

odd and even, respectively. Indeed, parity is broken by a Semenoff-type contribution, that

could be generated by an asymmetry between the A and B sites. Hence, the action of

parity amounts to an interchange of nA with nB. The above identification is therefore

consistent with the fact that, in light of eq. (3.13), τ is proportional to χχ which is in turn

proportional to nA − nB.

As for the Haldane-type mass contribution, the identification (4.23) suggests a relation

between the ratio f/` and the Berry phase parameters. Its meaning deserves a separate

investigation which we leave for a future work.

4.2 A different model for graphene

Let us now briefly discuss a different application of our model to graphene-like materials,

which makes contact with the analysis in [17]. In the latter the authors generalize the

original model of [7] by considering a superalgebra of the form A(1, 1) = SU(2|1, 1) whose

bosonic subgroup is SU(1, 1)×SU(2), with respect to which the supersymmetry generators

have the following transfomation property:

QIAα ∈
(

1

2
,
1

2

)
⊕
(

1

2
,
1

2

)
, (4.24)

where I = 1, 2 is a “flavour” index labelling the two irreducible representations in the

above direct sum, A and α run over the doublet representations of SU(2) and SU(1, 1),

respectively. Applying the AVZ Ansatz to the spinor 1-forms ψIAα dual to QIAα, one

ends up with four real 2-spinors χIA = (χIAα) which can be grouped into two Dirac ones

χA ≡ χ1A+i χ2A. In [17] the doublet index A refers to the K and K′ valleys and the SU(2)

internal symmetry group is naturally gauged by construction. This allows the authors to

describe topological features of graphene such as grain boundaries. We emphasize here

that this theoretical construction is substantially different from the one described in the

previous subsection, in that the “valley” pseudo-spin is not associated with two different

“±” sectors of the AdS3 Achucarro-Townsend supergravity, but with just one of the two,

since no supersymmetry is assumed in the other (as it is the case for the orignal model

of [7]). We also emphasize that the approach pursued here is a top-down one.

Although a supergroup of the form SU(2|1, 1)+ × SO(2, 1)− is not comprised in our

class of models, the closest we can get to the construction of [17] corresponds to choosing
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p = 4 and q = 0. In this case the supergroup we start from is OSp(4|2)+×SO(2, 1)−, whose

bosonic subgroup is SO(4)× SL(2,R)+× SL(2,R)− . By writing the R-symmetry group in

the equivalent form SO(4) = SU(2)1 × SU(2)2, the supercharges can be characterized as

transforming in the following real irreducible representation

QIAα ∈
(

1

2
,
1

2
,
1

2

)
, (4.25)

where now I = 1, 2 and A = 1, 2 are the doublet indices of the two factors SU(2)1 and

SU(2)2 of the R-symmetry group. Consequently, upon implementing the AVZ Ansatz, the

index structure of the resulting spinors is χIAα, formally the same as in the model of [17]

described above, with the difference that now the index I is no longer a flavour one but

it is acted on by the gauge group SU(2)1 which was absent in the construction of [17],

while SU(2)2, acting on the A index, should be identified with the R-symmetry group

of [17]. Therefore we expect that most of the applications of the model of [17] to the study

of the topological features of graphene should also hold for our OSp(4|2)+ × SO(2, 1)−
model. The main difference is the presence in the latter of additional gauge vectors AIJµ =

AJIµ , associated with SU(2)1. It is tempting to identify these vectors with the true spin-

connection, and the corresponding group SU(2)1 with the true spin of the π-electrons in the

honeycomb layer. From the Maruer-Cartan equations of the superalgebra, upon using the

AVZ Ansatz, we derive, apart from the Dirac equations for χIAα, the following equations

for the curvature and gauge field strengths:

Ri+ =
i

`
χIAαχJBβ εIJ εAB εαβ ε

ijk ej ∧ ek ,

FAB ≡ dAAB − 1

2
εCD A

AC ∧ADB = − i
`
χIAαχJBβ εIJ(Cγi)αβ εijk e

j ∧ ek ,

FIJ ≡ dAIJ − 1

2
εKLA

IK ∧ALJ = − i
`
χIAαχJBβ εAB(Cγi)αβ εijk e

j ∧ ek ,

where FIJ = FJI and FAB = FBA are the field strengths associated with the internal

symmetry groups SU(2)1 and SU(2)2, respectively. Interpreting the former as the true

spin group, the corresponding field strength would describe the true spatial curvature of

the two-dimensional sheet.

Note that if we choose the fermion field χ to have the following special “factorized”

form χIAα = vIAχα, where χα are Grassmann numbers while vIA are real ones, in the above

equations FAB = FIJ = 0 and the fermion field ceases to be a source for the gauge field

strengths. We refrain from studying the features of this model any further here, leaving it

to a future work.

5 Concluding remarks

Here we have seen how the extension of unconventional supersymmetry to the OSp(p|2)×
OSp(p|2) superalgebra can be instrumental in describing the electronic properties of

graphene-like systems in the K and K′ valleys and thus physical situations in which the
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symmetry between them is broken. These can be realized, for instance, by breaking re-

flection or time-reversal symmetries through the Semenoff or Haldane-type mass terms, as

produced by the presence of suitable substrate and magnetic fields. One of the main results

of this work was to embed this effective description in an N -extended four-dimensional

supergravity. This sets the stage of a holographic analysis which will be pursued in a

future work.

There is a different application of our construction to the description of graphene,

which makes contact with the work by Iorio and Pais [17], and which we just touched

upon here.

As a final comment, we observe that a graphene sheet is “relativistic” in the sense of

Fermi velocity vf playing the role of analogue speed of light for the charge carriers. However,

in our top-down approach the speed of light, as coming from the D = 4 supergravity model,

is naturally identified with the true speed of light, c. Actually, this issue can be dealt with

in different ways. We could either think of the D = 4 supergravity as already analogue,

or we could instead define a more general relation between the two frames Ei and ei

than the one assumed here in (3.7), of the form Ei = f M i
j e

j . By choosing, for instance,

M = diag(α2, 1, 1), we can introduce an analogue speed of light in the world volume ĉ = α c.

The mathematical implications of such assumption are under investigation by one of the

authors [42].

We also leave to a future investigation the construction of explicit solutions, including

topologically non-trivial configurations, to the equations of our model and the derivation

from them of explicit phenomenological predictions.
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A OSp(N|4) algebra and conventions

In this appendix we review the ortho-symplectic superalgebra and, while doing so, we state

the conventions used in this paper.

The whole algebra is given by the following relations

[LAB, LCD] = κADLBC − κACLBD + κBCLAD − κBDLAC ,

[TAB, TCD] = δADTBC − δACTBD + δBCTAD − δBDTAC ,

[LAB, Q
α
A] = −1

2
(Γ̃AB)αβQ

β
A,

[TAB, Q
α
C ] = 2δD [AδB]CQ

α
D,

{QαA, Q
β
B} =

1

2`
(Γ̃EFC5)

αβδABLEF −
1

`
Cαβ5 TAB.

(A.1)
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The first two properties describe the bosonic subalgebra of the subgroup O(N )× SO(2, 3),

where

A,B, . . . = 0, 1, 2, 3, 4 ,

κAB = diag(+,−,−,−,+) ,
(A.2)

and

A,B, . . . = 1, . . . ,N . (A.3)

The other three relations extend the bosonic subalgebra to a supersymmetric one and nec-

essarily involve the fermionic generators QαA: they are Majorana spinors in the fundamental

representation of SO(N ). Being spinors, they also have a Lorentz index α in the spinorial

representation, which means that α, β, . . . = 0, 1, 2, 3, 4. One can show that all these

relations satisfy Jacobi identities, which in turn means that this is indeed an algebra.

We now clarify the conventions for the Dirac matrices: if i = 0, 1, 2, then

Γi = σ1 ⊗ γi , γ0 = σ2 , γ1 = iσ1 , γ2 = iσ3 ,

Γ3 = iσ3 ⊗ 1 , Γ5 = iΓ0Γ1Γ2Γ3 = −σ2 ⊗ 1 .
(A.4)

with

{Γa,Γb} = 2κab14×4 , (A.5)

where κab = diag(+,−,−,−) and a, b, . . . = 0, 1, 2, 3.

The Γ̃A matrices appearing in (A.1) are related to the D = 4 gamma matrices Γa by

Γ̃a := iΓaΓ5, Γ̃4 := Γ5 , (A.6)

in such a way that they satisfy

Γ̃ab = Γab, Γ̃a4 = iΓa. (A.7)

At last, the charge conjugation matrix C5 appearing in the algebra is defined as

C5 := Γ̃0Γ̃4 = Γ0 , (A.8)

with the straightforward properties

C5 = C−15 = −Ct5 = −C∗5 , C−15 Γ̃AC5 = (Γ̃A)t. (A.9)

Notice that C5 behaves as the usual 4-dimensional charge conjugation when acting on Γa
matrices

C−15 ΓaC5 = −(Γa)
t. (A.10)

In these cases we will just indicate the charge conjugation matrix as C.

Finally, the Dirac conjugate of a 4-d spinor is given by

Ψ̄ = −iΨ†Γ̃0Γ̃4 = Ψ†Γ0, (A.11)

whereas a Majorana spinor satisfies the reality property

Ψ = −C5Ψ
t = Ψ∗. (A.12)
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Conventions in D = 3. We choose the mostly minus convention for the signature of

the three dimensional spacetime and ε012 = ε012 = 1. The Lorentz covariant derivatives

are defined on vectors Ei as

D[ω]Ei := dEi + ωijEj = dEi − εijkωjEk , (A.13)

where ωi := 1
2ε
ijkωjk, while on spinors ψ as

D[ω]ψ := dψ +
1

4
ωijγijψ = dψ +

i

2
ωiγiψ. (A.14)

B Microscopic description for graphene-like systems

Pure graphene quantum states can be formulated in terms of the so-called tight-binding

model, describing electrons hopping in the (single-state per site) honeycomb lattice. In

the limit of very far apart ions, the single-particle eigenstates refer to an electron affected

by a single ion, resulting in a set of lattice sites with a single-level state. Within this

model, electrons can tunnel to their first neighbor atoms, with a hopping amplitude t1 (for

graphene one has t1 ' −2.7 eV). The electronic system is described by the single orbital,

tight-binding Hamiltonian:

H1 = t1
∑
〈i,j〉

c†i cj , (B.1)

where the creation (annihilation) operator c†i = c†(ri)
(
ci = c(ri)

)
acts on particle site ri,

and the sum 〈i, j〉 runs on nearest neighbors sites ri, rj .

B.1 Massive deformations

The above massless formulation is in general robust, since it comes out at the level of non-

interacting system and is protected by combination of parity and time-reversal symmetry

of the framework. However, mass terms for 2D, graphene-like systems can be obtained from

generalization of a tight binding microscopic model, opening mass gaps at the Dirac points.

This gap generation was first discussed by Semenoff, introducing a mass term through an

on-site staggered potential ±M spoiling sublattices equivalence [38] and breaking parity

symmetry of the theory. Another model was proposed by Haldane, including local magnetic

fields over the honeycomb hexagon, breaking time-reversal symmetry of the model.

Haldane model. The formulation of the Haldane model [41] was motivated by the re-

alization of a quantum anomalous Hall effect (topological, quantized insulating phase), in

the absence of Landau level structure. This can be achieved by the introduction of peri-

odic local magnetic flux densities, with zero net flux over the cell. The physical system

is represented introducing in the microscopic Hamiltonian second-neighbor hopping terms

with unimodular phase factor, the phase sign depending on the “chirality” of the electron

path (according to whether the hopping is clockwise or anticlockwise w.r.t. the cell). The

microscopic Hamiltonian can be written

H = H1 +H2 = H1 + t2
∑
〈i,j〉

(2)

ei ϕαij c†i cj + εiM
∑
i

c†i ci , (B.2)
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where H1 is the tight binding Hamiltonian and H2 accounts for the local magnetic fields

and for a Semenoff-type parity-breaking term. The first sum in H2 runs on second nearest

neighbors sites, t2 being the hopping amplitude, while the second term is the Semenoff

contribution coming from on-site potential energy M , the prefactor εi = ε± = ±1 depending

on whether the site i is on the first or second sublattice. The Aharonov-Bohm phase ϕ due

to the local magnetic fluxes is taken as a parameter of the model and the factor αij = ±1

gives the chirality of the path related to the second neighbor hopping.15

If we define a basis
(
ζa(k), ζb(k)

)
of two-component spinors of Bloch states constructed

on the two sublattices A and B, after Fourier-transform the Hamiltonian in the k-space

reads:

H(k) = t1
∑
i

(
cos (k · di) σ1 + sin (k · di) σ2

)
+ 2 t2 cos(ϕ)

∑
i

cos
(
k · d(2)

i

)
1 −

− 2 t2 sin(ϕ)
∑
i

sin
(
k · d(2)

i

)
σ3 + M σ3 ,

(B.3)

where σi are the Pauli matrices, while di and d(2)

i are the displacement vectors to the first

and second nearest neighbors sites, respectively. The degeneracy of the bands at the Dirac

points is lifted either by non-zero M or non-zero t2 sin(ϕ), and the fermion masses in the

two inequivalent valleys are [41]

mi = m± = M ∓ 3
√

3 t2 sinϕ . (B.4)

If we restrict to time-reversal invariant case, t2 sin(ϕ) = 0, the two masses m+ and m− are

equal and the system behaves as a Semenoff insulator.

The Haldane model can provide an effective description also of specific 2D honeycomb

lattices where the time-reversal symmetry is broken without the presence of local magnetic

fields [43, 44].

Open Access. This article is distributed under the terms of the Creative Commons
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