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Abstract In this work, we contribute to the study of the1

structural reorganisation of biological tissues in response to2

mechanical stimuli. We specialise our investigation to a class3

of hydrated soft tissues, whose internal structure features re-4

inforcing fibres. These are oriented statistically within the5

tissue, and their pattern of orientation is such that, at each6

material point, the tissue is anisotropic. From its natural,7

stress-free state, the tissue can be distorted anelastically into8

a global reference configuration, and then deformed under9

the action of external mechanical loads. The anelastic dis-10

tortions are responsible for changing irreversibly the internal11

structure of the tissue, which, in the present context, oc-12

curs through both the rearrangement of the bonds among13

the tissue cells and the deformation-driven reorientation of14

the fibres. The anelastic strains, in addition, are assumed to15
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model the onset and evolution of microcracks in the tissue, 16

which may be triggered by the mechanical loads applied to 17

the tissue in the case of traumatic events, or diseases. For 18

our purposes, we formulate an anisotropic model of remod- 19

elling and we consider a fully isotropic model of structural 20

reorganisation for comparison, with the aim to study if, how, 21

and to what extent the evolution of anelastic distortions is 22

influenced by the tissue’s anisotropy. 23

Keywords Anelastic distortions · Fibre-reinforcement · 24

Biological tissues · Anisotropic media 25

1 Introduction 26

Biological tissues tend to adapt themselves to the stimuli to 27

which they are exposed and to the environment in which 28

they are placed [60]. By “stimulus” it is meant here any 29

interaction, or combination of interactions, that yields an 30

evolution of mass, composition, shape, and internal structure 31

of a given tissue. An interaction of this kind can be genetic or 32

epigenetic, physiological or pathological, and may be related 33

to the occurrence of phenomena of various nature, associated 34

with different time and length scales. 35

In this work, emphasis is put on the evolution of the inter- 36

nal structure of fibre-reinforced soft tissues saturated with an 37

interstitial fluid and exchangingmechanical interactions with 38

it [25]. The fibres consist of collagen and are assumed to be 39

directed according to a spatially inhomogeneous statistical 40

distribution of orientations that makes the tissue anisotropic 41

[42,4,30,23,18]. The interactions with the fluid are usually 42

accounted for under the hypothesis of validity of Darcy’s law 43

[41,56,3]. 44

Within the modelling framework outlined above, we ad- 45

dress a type of structural reorganisation that may be asso- 46

ciated with two types of phenomena. The first one, which 47

is often encountered in the study of cellular aggregates and 48
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tumour spheroids, occurs through the reorganisation of the49

extracellular matrix of the considered tissue, and leads to50

the change of the adhesion properties of the tissue cells [55,51

31,39]. The second phenomenon, studied in the mechanics52

of bone, consists of the emergence of irreversible strains in53

conjunction with the formation of micro-cracks in diseased54

or injured tissues [27]. In spite of the fact that the aforemen-55

tioned phenomena have different nature, both of them can56

be described by suitably re-interpreting some fundamental57

concepts of the theory of Plasticity [46,51] (further details58

are given in Section 2.1). More specifically, it is stipulated59

that both the remodelling of a tissue’s extra-cellular matrix60

and the irreversible strains arising in the case of damaged or61

overloaded tissues can be expressed in terms of plastic-like62

distortions. The physical meaning of such distortions can be63

captured by relating them to the concept of residual stresses,64

which generally accompany the structural changes of a tis-65

sue. Since residual stresses persist even when all the loads66

applied to the tissue are switched off, even an unloaded con-67

figuration, taken as reference for the tissue’s evolution, may68

happen to be in a stressed state. Accordingly, it is possible to69

identify the plastic distortions with the transformations that70

bring the tissue from the stressed state associated with the71

chosen reference configuration to a stress-free state, i.e., a72

state reached by eliminating all applied loads and relaxing73

all residual stresses [51] (we recall that a similar definition74

is given in [58] for the remodelling associated with growth).75

Determining physically sound evolution laws for the dis-76

tortions characterising the structural adaptation of biological77

tissues is a crucial task, which has been undertaken by sev-78

eral authors (see e.g. [16,45,28,1,43,29,53,36]). One of the79

main challenges of mathematical modelling is to predict how80

the structural evolution of a tissue is modulated by mechani-81

cal stress. This issue is particularly relevant when also other82

phenomena, such as growth [57], mechano-transduction [6],83

and interactions with other stimuli [44,48,10], have to be84

accounted for. Moreover, since the formulation of models for85

the structural evolution of tissues allows for a certain free-86

dom, and since a model that is reliable for a certain tissue87

may be inaccurate for another one, it is difficult to find a88

unified criterion for determining a priori how such models89

should be constructed. To our knowledge, however, Epstein90

andMaugin [16] prescribed a series of conditions that should91

be satisfied in order to formulate acceptable structural evolu-92

tions. These rules, in turn, are based on the theory developed,93

for example, in [15,50,14].94

With the purpose of seeking for a unified form of the95

structural evolution laws of biological tissues, we take a phe-96

nomenological law of remodelling in isotropic media [31]97

and, by following the rules put forward in [16], we rephrase98

it for the case of an anisotropic tissue. To this end, we elab-99

orate the anisotropic hyperelastic model of fibre-reinforced100

tissues developed in [24,19,61], in which the interaction101

with an interstitial fluid is considered, and we extend it to 102

the case of nonlinear elastoplastic material behaviour. Then, 103

after specifying the equations governing the deformation of 104

the tissue, the fluid flow, and the evolution of the plastic-like 105

distortions, we test our model by solving numerically ded- 106

icated benchmark problems. The main result of our work 107

is the evaluation of the interplay between remodelling and 108

the anisotropy of the tissue. This interplay is highlighted by 109

comparing the results of our anisotropic model with those 110

predicted by an isotropic model taken as reference [39]. 111

2 Theorethical background 112

We adopt with slight variations the covariant formalism of 113

Continuum Mechanics presented in [47]. 114

The motion of the solid phase is described in terms of 115

a one-parameter family of embeddings χt : B → S, where 116

t ∈ I is time and I ⊆ R is an interval, S is the three- 117

dimensional Euclidean space, and the open set B⊂S is said 118

to be the reference configuration of the tissue. It holds that 119

χt (X) = χ(X, t), with χ :B × I → S. 120

For every x ∈ S and X ∈ B, TxS and TXB are the 121

tangent spaces of S and B at x and X , respectively. The 122

disjoint unions TS := tx∈STxS and TB := tX∈BTXB are 123

the tangent bundles of S and B. The spaces dual to TxS and 124

TXB are referred to as co-tangent spaces and denoted byT?x S 125

and T?XB, while T?S := tx∈ST?x S and T?B := tX∈BT?XB 126

are the co-tangent bundles. Finally, B and S are equipped 127

with the metric tensors G and g, respectively. 128

The tangent map of χt :B→ S is the deformation gradi- 129

ent tensor F(X, t) :TXB→ Tχt (X)S. Once two local systems 130

of coordinates are chosen in B and S, the components of 131

F read Fa
A
= ∂ χa/∂XA ≡ χa

,A
, with a, A = 1, 2, 3. The 132

determinant J = det F, called volumetric ratio, is required 133

to be strictly positive at all points X ∈ B and at all times. 134

Another measure of deformation that will be used in the fol- 135

lowing is the right Cauchy-Green deformation tensor defined 136

by C = FTgF ≡ FT.F. 137

2.1 Anelastic distortions and natural state 138

As anticipated in Section 1, the structural evolution of a tis- 139

sue is interpreted as a sequence of plastic-like distortions, de- 140

scribed by a distortion tensor. This tensor, denoted by Fp, is 141

introduced by invoking the Bilby-Kröner-Lee (BKL) decom- 142

position of the deformation gradient tensor. Consequently, F 143

is written as F = FeFp, where Fe is said to be the tensor 144

of elastic distortions and J = JeJp, with Je := detFe > 0 145

and Jp := detFp > 0. In the literature, decompositions of the 146

deformation gradient tensor have been extensively used to 147

address problems of biomechanical interest (see e.g. [58,16, 148
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45,1,2,26,36,39,40]). The physical and geometrical mean-149

ing of the BKL decomposition have been explained in detail,150

for instance, in [51,32] and they have been recently used to151

study the structural evolution of a growing tumour in [10].152

For every pair (X, t) ∈ B × I, Fp(X, t) maps TXB into a153

vector space, denoted by NX (t) and consisting in the im-154

age of TXB through Fp(X, t) [10], whose vectors represent155

body elements in a stress-free state [11]. In general, Fp is156

an incompatible tensor (see [51,59] and references therein).157

The way in which Fp(X, t) operates on TXB is illustrated in158

Figure 1.159

F

FeFp

collection of natural states

B Bt

Fig. 1 Multiplicative decomposition of the deformation gradient tensor
F. When the BKL decomposition is enforced, the rule F = FeFp
applies. When, instead, the decomposition à la Epstein and Maugin
[15,50] is employed, the rule FΠ = Fe is used.

In light of the BKL decomposition, each vector in the160

natural state uX (t) ∈ NX (t) can be distorted elastically into161

ux(t) = Fe(X, t)uX (t) ∈ TxS, with x = χt (X). Moreover, we162

introduce the tensorΠ(X, t) : NX (t) → TXB as the inverse of163

Fp(X, t), so that the relationUX = Π(X, t)uX (t) ∈ TXB holds164

true. Finally, we notice that, since F(X, t) : TXB → TxS is165

such that ux(t) = F(X, t)UX , with x = χt (X), it also holds166

true that167

ux(t) = F(X, t)UX = F(X, t)Π(X, t)uX (t)

= Fe(X, t)uX (t). (1)

It follows thus from this chain of equalities, which has to be168

respected for all uX (t) ∈ NX (t), that the elastic distortion169

tensor is given by Fe = FΠ. We remark that this result goes170

far behind the simple renaming of F−1
p withΠ, for it actually171

discloses the possibility of exploring some analogies of the172

BKL decomposition with the theory of material uniformity173

[15,50,16,14,54] (quoting verbatim from [16] “a body is174

said to be materially uniform if all its points are made of the175

same material”). However, we do not speculate here on this176

analogy because it is out of the scope of our work.177

2.2 The fibre pattern 178

Following the framework presented in [24,19,61,5,34,35], 179

also in this work we study fibre-reinforced tissues in which 180

the fibres are oriented statistically. The first assumption of 181

our approach is that, at each material point X that finds it- 182

self in a natural state, the tissue is transversely isotropic with 183

respect to the direction associated with the unit vector mX , 184

which defines the direction of local alignment of the fibre 185

passing through X . The second assumption is that the fibres’ 186

directional distribution is such that the tissue as a whole 187

is transversely isotropic with respect to a global symmetry 188

axis, identified with the unit vector m0. Moreover, in the 189

sequel we restrict our attention to a sample of tissue charac- 190

terised by cylindrical shape and material properties that vary 191

only along its geometrical axis. The sample is thus homoge- 192

neous on each cross section. A consequence of this setting is 193

that the sample’s geometrical axis coincides with the axis of 194

transverse isotropy, which is also then symmetry axis of the 195

tissue. 196

To account for the statistical orientation of the fibres, we 197

adhere to the framework discussed in [19] and we introduce 198

the function ℘X : S2NX (t) → R+0 , with 199

S2NX (t) := {mX ∈ NX (t) : ‖mX ‖ = 1}, (2)

and ℘X (mX ) measuring the probability density that a (recti- 200

fied) fibre passing through X be directed along mX . 201

With respect to an orthonormal vector basis {eα}3α=1 of 202

NX (t), such thate3 is parallel tom0, a unit vectormX ∈ NX (t) 203

can be expressed in spherical coordinates asmX = m̌X (ϑ, ϕ), 204

where the vector-valued function m̌X : [0, π] × [0, 2π[→ 205

S2NX (t) is given by 206

m̌X (ϑ, ϕ) = sin ϑ cos ϕ e1 + sin ϑ sin ϕ e2 + cos ϑ e3. (3)

Accordingly, a physical quantity FX depending on the lo- 207

cal direction of fibre alignment, and thus defined over the 208

set S2NX (t), can be rewritten as a function of ϑ and ϕ, i.e., 209

FX (mX ) = FX (m̌X (ϑ, ϕ)) = F̌X (ϑ, ϕ). In particular, the prob- 210

ability density becomes ℘X (mX ) = ℘̌X (ϑ, ϕ) and, since the 211

tissue as a whole is assumed to be transversely isotropic with 212

respect to m0, ℘̌ is not allowed to depend on the longitude, 213

ϕ. Consequently, the equality ℘X (mX ) = ℘̌X (ϑ) must be 214

fulfilled. 215

Following the formalism adopted in [20], the directional 216

average of FX is defined as 217

〈〈FX (mX )〉〉 =

∫
S2NX (t)

FX (mX )℘X (mX )

=

∫ 2π

0

∫ π

0
F̌X (ϑ, ϕ)℘̌X (ϑ) sin ϑdϑdϕ. (4)

All physical quantities featuring in the mathematical model, 218

including the probability density, are assumed to be invariant 219
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under the reflection mX 7→ −mX , for all mX . This permits220

to rephrase the directional average (4) as221

〈〈FX (mX )〉〉 = 2
∫
S2+NX (t)

FX (mX )℘X (mX )

=

∫ 2π

0

∫ π/2

0
F̌X (ϑ, ϕ)ψ̌X (ϑ) sin ϑdϑdϕ, (5)

where S2+NX (t) is the “northern” hemisphere [5], i.e.,222

S2+NX (t) := {mX ∈S
2NX (t) : mX .m0 ≥ 0}, (6)

and the probability density ψ̌X : [0, π/2] → R+0 is defined223

by the equality ψ̌X (ϑ) = ψX (m̌X (ϑ, ϕ)), for all (ϑ, ϕ) ∈224

[0, π/2]×[0, 2π[, with ψX = 2℘X |S2+
X B [5]. As done in previ-225

ous works [21,5], we assume that ψ̌X is the pseudo-Gaussian226

distribution227

ψ̌X (ϑ) =
γ̌X (ϑ)

2π
∫ π/2

0 γ̌X (ϑ′) sin ϑ′dϑ′
, (7a)

γ̌X (ϑ) = exp
(
−
[ϑ − q]2

2ω2

)
, (7b)

where q and ω are referred to as fibre mean angle and stan-228

dard deviation, respectively. Since, as anticipated above, q229

and ω are hypothesised to vary only along the axis of the230

sample, they can be written as functions of the normalised231

axial variable ξ ∈ [0, 1], which is zero at the sample’s lower232

boundary and equal to one at the upper boudary. Hereafter,233

we prescribe the expressions234

q(ξ) =
π

2

{
1 − cos

(
π

2

[
−

2
3
ξ2 +

5
3
ξ

] )}
, (8a)

ω(ξ) = 103[(1 − ξ)ξ]4 + 3 · 10−2, (8b)

which qualitatively reproduce the alignment of fibres in ar-235

ticular cartilage [52]. According to (8a) and (8b), the mean236

angle takes on the values q(0) = 0 and q(1) = π/2, and the237

standard deviation attains its minimum at ξ = 0 and ξ = 1.238

Hence, the fibres are more likely to be found aligned with239

the sample’s symmetry axis at the bottom of the sample, and240

more likely to be lying on transverse plane at the top. More-241

over, at ξ = 1/2, the standard deviation reaches itsmaximum,242

thereby tending to randomise the fibre orientation and, con-243

sequently, to make the tissue isotropic in the middle of the244

sample.245

Note that m : B → N(t) indicates the vector field such246

that m(X) = mX , and N(t) := tX∈BNX (t) is the bundle of247

all spaces NX (t).248

2.3 Constitutive laws 249

At each material point, the solid phase of the tissue is mod- 250

elled as a hyperelastic material. This hypothesis allows to 251

describe the mechanical behaviour of the solid phase en- 252

tirely in terms of a strain energy density, and to express the 253

latter as a function of the elastic part of the deformation, 254

only. More precisely, if WR = ŴR(C, X, t) denotes the strain 255

energy density of the solid phase, written per unit volume 256

of the reference configuration (note that the the material in- 257

homogeneities and their evolution are accounted for by the 258

explicit dependence of ŴR on the material points and time, 259

respectively), it is possible to write [7,16] 260

ŴR(C, X, t) =
1

JΠ(X, t)
Ŵν(Ce(X, t), X), (9)

where Ŵν is measured per unit volume of the natural state, 261

JΠ = detΠ and Ce = FT
e .Fe = FT

e gFe = ΠTCΠ is the 262

elastic part of the right Cauchy-Green deformation tensor. 263

We remark that, in Equation (9), the explicit dependence 264

of the strain energy function on material points is given 265

through ξ. In the following, however, for the sake of a lighter 266

notation, the explicit dependence of Ŵν on material points, 267

X , is omitted but understood, and we adapt to the present 268

framework a strain energy density used in previous works 269

[24,19,61,5,40,35], i.e., 270

Ŵν(Ce) = ΦsνÛ(Je) + Φ0sνŴ0(Ce) + Φ1sνŴen(Ce), (10)

where 271

Φ0sν = Jeφ0s, (11a)
Φ1sν = Jeφ1s, (11b)
Φsν = Φ0sν + Φ1sν = Jeφs (11c)

are the volumetric fractions of the non-fibrous matrix, fibres, 272

and solid phase as a whole, respectively, all measured per 273

unit volume of the natural state, while Û(Je), Ŵ0(Ce), and 274

Ŵen(Ce) are given by 275

Û(Je) = α0H(Jcr − Je)
[Je − Jcr]

2q

[Je − Φsν]r
, (12a)

Ŵ0(Ce) = α0

[
exp (α1[I1e − 3] + α2[I2e − 3])

[I3e]α3
− 1

]
, (12b)

Ŵen(Ce) = Ŵ1i(Ce) + 〈〈Ŵ1a(Ce,m)〉〉. (12c)

In (12a)–(12c), α0 = 0.125 MPa, α1 = 0.778, α2 = 0.111, 276

α3 = α1 + 2α2 = 1, q ≥ 0, and r ∈]0, 1] are material 277

parameters, Jcr ∈]Φsν, 1] is a critical value of Je (in this work, 278

we take q = 2, r = 0.5, and Jcr = Φsν + 0.1), I1e = tr(Ce), 279

I2e =
1
2 {[tr(Ce)]

2− tr(C2
e )}, and I3e = det Ce are the principal 280

invariants of Ce, Ŵ1i is the isotropic part of the strain energy 281

density of the fibres (it has the same functional form as (12b), 282

but it features different coefficients), and Ŵ1a(Ce,m) reads 283

Ŵ1a(Ce,m) = H(I4e − 1) 12 c[I4e − 1]2, (13)
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where I4e = Ce : m⊗m = C : (Πm⊗Πm) and c = 7.46 MPa.284

In (12a) and (13),H is the Heaviside function, i.e.,H(s) = 1285

for all s ≥ 1, andH(s) = 0 for all s < 0. Finally, it is possible286

to define the unit vector field287

M =
Πm

‖Πm‖
. (14)

Consequently, the structure tensor field associated with the288

natural state, i.e., a = m ⊗ m, transforms as289

A = M ⊗ M =
ΠaΠT

(ΠT.Π) : a
, (15)

with A being the structure tensor field associated with the290

reference configuration, and the invariant I4e becomes I4e =291

I4I4Π , where we used the notation292

I4 = C : A, (16a)

I4Π = (Π
T.Π) : a. (16b)

The energy Û(Je) is zero for Je above the critical volume ratio293

Jcr (which, in general, is a function of material points), and294

diverges for Je tending toΦsν from above, thereby preventing295

the elastic distortions from violating the unilateral constraint296

Je ≥ Φsν . The constitutive part of the first Piola-Kirchhoff297

stress tensor associated with the solid phase is given by298

P = F

[
1

JΠ
Π

(
2
∂Ŵν

∂Ce
(Ce)

)
ΠT

]
. (17)

Consequently, P can be expressed constitutively as a function299

of F and Π, i.e., P = P̂(F,Π). Also in this case, the explicit300

dependence on material points is omitted but understood.301

The system under study, comprising a porous solid phase302

(i.e., matrix and reinforcing fibres) and an interstitial fluid, is303

assumed to be saturated, thereby meaning that the porosity304

of the medium coincides with the volumetric fraction of the305

fluid, which is thus given by φf = 1 − φs.306

The mathematical model presented in the following is307

based on the hypothesis that the interstitial fluid obeysDarcy’s308

law. This requires the introduction of a permeability tensor309

for the tissue. In this work, we adapt to our problem the con-310

stitutive framework developed in [23,22,19,61,34]. Hence,311

we assume that the spatial permeability tensor reads [61]312

k =k0
[JJΠ − Φ1sν]

2

J2J2
Π

g−1

+ k0
[JJΠ − Φ1sν]Φ1sν

J2J2
Π

FΠ

〈〈
a

I4e

〉〉
ΠTFT, (18)

where k0 is taken to be of the Holmes&Mow type [41], i.e.,313

k0 = k0ν

[
JJΠ − Φsν

1 − Φsν

]κ0

exp
(

1
2

m0[J2J2
Π − 1]

)
, (19)

where κ0 = 0.0848 and m0 = 4.638 are model parameters,314

and k0ν is a reference permeability. As done elsewhere (e.g.315

in [61]), k0ν is taken as a function of the axial coordinate, ξ, 316

and its functional form is defined in (22). From (18) and (19) 317

we notice that, since the product JJΠ = Je has to be greater 318

than, or equal to, Φsν , the permeability tensor is positive 319

semi-definite for JJΠ ≥ Φsν ≥ Φ1sν and, in particular, it is 320

positive definite when the strict inequality is satisfied, i.e., 321

when JJΠ > Φsν . 322

For future use, we compute the Piola transform of k , i.e., 323

K = JF−1kF−T, which reads 324

K =k0
[JJΠ − Φ1sν]

2

JJ2
Π

C−1

+ k0
[JJΠ − Φ1sν]Φ1sν

JJ2
Π

Π

〈〈
a

I4e

〉〉
ΠT. (20)

Clearly, since k is positive semi-definite, K is positive semi- 325

definite too. Note also that K can be written as K = K̂ (F,Π), 326

where the dependence on F is through C because of objec- 327

tivity, and the dependence on X is understood. In fact, in the 328

case of inhomogeneous materials, the dependence of k0ν on 329

material points can be taken into account by expressing k0ν 330

as a function of the void ratio associated with the natural 331

state, eν = (1−Φsν)/Φsν , and specifying how the volumetric 332

fraction Φsν depends on the normalised axial coordinate ξ 333

(we recall, indeed, that the material is assumed here to be 334

inhomogeneous only axially). In this work, we assign the 335

volumetric fractions of matrix and fibres in the tissue’s natu- 336

ral state, Φ0sν and Φ1sν , and we compute thus the volumetric 337

fraction of the solid phase asΦsν = Φ0sν+Φ1sν . In particular, 338

we prescribe [61] 339

Φ0sν = Φ̂0sν(ξ) = −0.062ξ2 + 0.038ξ + 0.046, (21a)

Φ1sν = Φ̂1sν(ξ) = +0.062ξ2 − 0.138ξ + 0.204, (21b)
Φsν = Φ̂sν(ξ) = −0.100ξ + 0.250. (21c)

Following the constitutive framework adopted in previous 340

works, we assume that k0ν depends on eν as suggested by 341

Holmes&Mow [41]. Hence, given the constant referential 342

void ratio e(0)ν = 4 and the constant referential scalar per- 343

meability k(0)0ν = 3.7729 · 10−3 mm4(Ns)−1, we assign k0ν 344

through the expression [61] 345

k0ν

k(0)0ν

=

[
eν
e(0)ν

]κ0

exp ©­«m0
2


(

1 + eν
1 + e(0)ν

)2

− 1
ª®¬ . (22)

In summary, the constitutive framework adopted in this 346

work describes a hydrated, fibre-reinforced tissue, whose 347

solid phase is hyperelastic, transversely isotropicwith respect 348

to a global symmetry axis (the direction of which is identi- 349

fied by the unit vector m0), and inhomogeneous along this 350

axis. We emphasise that, within the employed approach, the 351

inhomogeneity is due to the fact that the volumetric fractions 352

of matrix and fibres,Φ0sν andΦ1sν , the standard deviation of 353
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the probability density, ω, and the mean angle of fibre orien-354

tation, q, depend on the normalised axial coordinate through355

the expressions (8a) and (8b), which are in qualitative agree-356

ment with the histological features of articular cartilage, as357

revealed by X-ray diffraction experiments [52].358

3 Description of Remodelling359

The mathematical model of the physical system under study360

is characterised by two dissipative phenomena. First we con-361

sider the one related to the fluid flow, which is affected by362

dissipative forces exchanged between the fluid and the solid363

phase. We prescribe that these forces depend linearly on364

the filtration velocity q = φf[vf − vs] and, by disregard-365

ing the influence of gravity on the flow, we obtain Darcy’s366

law, which reads q = −k grad p in spatial form [3], and367

Q = −KGrad p in the so-called “material” form. Here,368

Q := JF−1q is the Piola transform of the filtration velocity,369

and Grad p = FTgrad p is the “material” pressure gradient,370

obtained by differentiating p with respect to the coordinates371

associated with the reference configuration. We remark that372

the filtration velocity represents the specific mass flux vector373

associated with the motion of the fluid relative to the solid.374

The second dissipative phenomenon addressed in this375

work is due to the reorganisation of the tissue’s internal376

structure. This process is described here in analogy with the377

theory of finite strain plasticity throughΠ [16]. The rate with378

which the anelastic distortions associated with Π evolve in379

time is given byΛ = ÛΠΠ−1 and it will be referred to as tensor380

of rate of remodelling. In the sequel, we shall assume that381

remodelling is a volume-preserving process, which yields the382

restriction JΠ = 1 and implies that Λ is a deviatoric second-383

order tensor. Within this framework, the generalised force384

power-conjugate to Λ is the Mandel stress tensor Σ = CS385

[15,50], where S = F−1P is the constitutive part of the386

second Piola-Kirchhoff stress tensor of the solid phase.387

3.1 Dissipation Inequality388

By accounting for the contributions due to the flow and re-389

modelling, denoted by Dflow and Drem, respectively, the dis-390

sipation of the system under study can be written as [39]391

DR = K : [Grad p ⊗ Grad p]︸                      ︷︷                      ︸
Dflow≥0

−Σ : Λ︸  ︷︷  ︸
Drem

≥ 0. (23)

Since the positive semi-definiteness of K guarantees that392

Dflow is non-negative for all pressure gradients, the fulfilment393

of the inequality DR ≥ 0 is equivalent to requiring the con-394

dition Drem = −Σ : Λ ≥ 0 for all Σ and Λ. Moreover, the395

physical observation that remodelling is triggered by stress396

suggests to relate Σ to Λ in such a way that the aforemen- 397

tioned restriction is respected. This should be done, however, 398

by exploiting the fact that Σ complies, by construction, with 399

the symmetry conditionΣC = CSC = (ΣC)T [15,50]. Upon 400

setting Y := CSC, this yields the chain of equalities 401

Σ : Λ = (CSC) : (ΛC−1) = Y : sym(ΛC−1), (24)

which allows to rephrase Drem as [15] 402

Drem = −Y : sym(ΛC−1) ≥ 0. (25)

We recall that the stress tensor Y can be obtained by express- 403

ing the strain energy density as a function of the Piola strain 404

E = 1
2 [G

−1 − C−1] [15,50]. 405

We prescribe here that Y and sym(ΛC−1) are related to 406

each other through an expression of the type 407

sym(ΛC−1) = −R, (26)

where R is a tensor-valued function that has to be specified 408

constitutively. Equation (26) shall also be referred to as the 409

remodelling law. 410

To satisfy the condition Drem ≥ 0, we assume here that 411

R can be written as R = T : Y , where T is a fourth-order 412

tensor endowed with the major symmetry and such that the 413

inequality Drem = Y : T : Y ≥ 0 is respected for all Y 414

(i.e., T has to be positive semi-definite). The constitutive 415

expression defining T specifies the law of remodelling that 416

one is interested in. It should be noticed, however, that since 417

Λ is deviatoric (i.e., trΛ = 0), the right-hand-side of (26),R, 418

must comply with the restriction tr(CR) = 0. This requires 419

T to fulfil the condition tr[C(T : Y )] = C : T : Y = 0, for all 420

Y . 421

3.2 Remodelling laws 422

Equation (26) is the remodelling equation and it describes 423

how the anelastic phenomena evolve during all the defor- 424

mative process. It is formulated as an evolution law for Π 425

through the tensor Λ = ÛΠΠ−1. 426

In this work, we assume that remodelling occurs at a 427

given material point when the Frobenius norm ‖devσ‖ = 428√
gab[devσ]acgcd[devσ]db of the deviatoric part of the con- 429

stitutive solid phase Cauchy stress, σ = J−1PFT, exceeds 430

at that point a threshold equivalent stress, σY , termed “yield 431

stress” in analogy with Plasticity. To take this requirement 432

into account, wewriteT asT = ζL, where ζ is a scalar stress- 433

dependent “remodelling switch”. Hence, following [31], we 434

prescribe a Perzyna-like model [51] 435

ζ = λ(φs)

[
‖devσ‖ −

√
2/3σY

‖devσ‖

]
+

, (27)
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where λ(φs) is a material parameter depending on the vol-436

umetric fraction of the solid phase, and the operator [ · ]+437

extracts the positive part of the function to which it is ap-438

plied (see also [8]). In this work, we assume that the yield439

stress is constant, andwe setσY = 0.002 MPa.We emphasise440

that λ(φs) vanishes for vanishing φs, since no remodelling441

may occur if the solid phase is absent. In the following, we442

adopt the simple law λ(φs) = λ0φ
2
s = λ0[Φsν/JJΠ]2, with443

λ0 = 0.5 (MPa · s)−1. We also remark that, since the condi-444

tion JΠ = 1 applies in this context, the equality φs = Φsν/J445

allows to rephrase the dependence of λ on φs in terms of the446

volume ratio J alone, rather than in terms of J and JΠ .447

To complete the description of remodelling, it is neces-448

sary to specify the fourth-order tensor L. In this work, we449

consider the expression450

L = M∗ : D : M∗T, (28)

whereM∗ andM∗T are specified in Appendix A. The fourth-451

order tensor D encodes information about the material prop-452

erties of the tissue and, in general, is a function of C and453

Π. With the notation introduced in Appendix A, D trans-454

forms tensors of ([TB]02, sym) into tensors of ([TB]20, sym).455

According to (28), the tensor R featuring in (26) reads456

R = T : Y = ζ L : Y = ζM∗ : D : M∗T : Y . (29)

We remark that the double-contraction of M∗T with Y ex-457

tracts the deviatoric part of Y with respect to the metric C,458

i.e.,459

M∗T : Y = Y − 1
3 tr(C−1Y )C . (30)

Moreover, by introducing the tensor Z := D : M∗T : Y , the460

left-multiplication byM∗ in (29) leads to461

R = ζM∗ : Z = ζ
[
Z − 1

3 tr(CZ)C−1] , (31)

which guarantees the compliance with the constraint462

0 = trΛ = tr
[
C sym(ΛC−1)

]
= −tr(CR) = −ζ tr[C(M∗ : Z)] = 0. (32)

For the sake of simplicity, in the following we set D = I]∗463

(see Appendix A for the definition of I]∗), which implies464

Z = I]∗ : M∗T : Y

= S − 1
3 tr(CS)C−1 = M∗ : S = S̃, (33a)

L : Y = M∗ : Z = M∗ : I]∗ : M∗T : Y

= M]∗ : Y, (33b)

where S̃ is said to be the deviatoric part of S with re-465

spect to the metric C, and M]∗ is defined in Appendix466

A. Furthermore, since M∗ is idempotent (i.e., it holds that467

M∗ : M∗ = M∗), we obtain the identity468

M∗ : Z = M∗ : M∗ : S = M∗ : S = Z . (34)

Thus, Equation (31) reduces to 469

R = ζM∗ : Z = ζ Z = ζ
[
S − 1

3 tr(CS)C−1] , (35)

and the remodelling law takes on the form 470

sym(ΛC−1) = −ζ
[
S − 1

3 tr(CS)C−1] = −ζ S̃, (36)

thereby satisfying the requirement (32). 471

3.2.1 Model M1: Fully isotropic model 472

We use this model for comparison with the other ones, and 473

we obtain it in the limit of vanishing volumetric fraction of 474

the fibres. Hence, we setΦ1sν = 0,which impliesΦ0sν = Φsν , 475

and we rewrite the strain energy density (10) as 476

Ŵν(Ce) = ΦsνÛ(Je) + ΦsνŴ0(Ce). (37)

Consequently, the second Piola-Kirchhoff stress tensor con- 477

sists of the isotropic contribution only, i.e., 478

Siso =
1

JΠ
Π

[
2Φsν

(
∂Û
∂Ce
+
∂Ŵ0
∂Ce

)]
ΠT, (38)

and the permeability tensor reduces to K iso = Jk0C
−1. Fur- 479

thermore, we prescribe the remodelling law 480

sym(ΛC−1) = −R(1) = −ζ L : Y iso. (39)

with Y iso = CSisoC. By substituting Y iso into (39) and per- 481

forming all the necessary algebraic calculations, we obtain 482

sym(ΛC−1) = −R(1) = −ζ S̃iso, (40)

with S̃iso = M
∗ : Siso = Siso −

1
3 tr(CSiso)C

−1. 483

3.2.2 Model M2: Semi-isotropic model 484

In this model, we use the full permeability tensor defined 485

in (20) and the transversely isotropic strain energy den- 486

sity (10), which produces the second Piola-Kirchhoff stress 487

tensor 488

S = Si + Sa, (41)

with 489

Si =
1

JΠ
Π

[
2Φsν

∂Û
∂Ce
+ 2Φ0sν

∂Ŵ0
∂Ce

+ 2Φ1sν
∂Ŵ1i
∂Ce

]
ΠT,

(42a)

Sa =
1

JΠ
Π

[
2Φ1sν

∂〈〈Ŵ1a〉〉

∂Ce

]
ΠT. (42b)

Note that Si and Sa represent, respectively, the isotropic and 490

transversely isotropic contributions to the overall constitutive 491

part of the second Piola-Kirchhoff stress tensor of the solid 492

phase, S. 493
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In spite of the fact that both the elastic and the hydraulic494

response of the tissue are transversely isotropic, we consider495

the same remodelling law as in the Model M1. Hence, we set496

sym(ΛC−1) = −R(2) = −ζ L : Y, (43)

where Y splits additively as Y = CSC = CSiC + CSaC.497

Analogously to the Model M1, also in this case the remod-498

elling law can be written as499

sym(ΛC−1) = −R(2) = −ζ
[
S̃i + S̃a

]
, (44)

with500

S̃i = M
∗ : Si = Si −

1
3 tr(CSi)C

−1, (45a)

S̃a = M
∗ : Sa = Sa −

1
3 tr(CSa)C

−1 (45b)

being the deviatoric parts of Si and Sa, respectively, with501

respect to the deformed metric C. We remark that, according502

to (44), the presence of the fibres supplies a direct contribu-503

tion to the remodelling law through S̃a.504

Remark Each remodelling law, i.e., (39) or (43), is in general505

equivalent to a set of six scalar differential equations in the506

components of Π. However, when the isochoric condition507

JΠ = 1 is enforced, as is the case in this work, the num-508

ber of independent equations is five, because the constraint509

tr(Λ) = tr( ÛΠΠ−1) = 0 has to be respected. Since, in general,510

Π possesses nine independent components, which become511

eight when the isochoric condition JΠ = 1 applies, the re-512

modelling laws are not closed. To obtain the closure, we per-513

form the polar decomposition of Π, i.e., Π = V .R ≡ VGR,514

where R is a rotation tensor and V is a symmetric and515

positive-definite tensor. In this work, we impose that the ro-516

tations associated with remodelling are not allowed, so that517

only V is unknown. Since it has only six independent com-518

ponents (actually five, because it holds that JΠ = detV = 1),519

the remodelling laws become closed. We also notice that the520

identity Λ = ÛΠΠ−1 = ÛVV−1 holds true.521

4 Benchmark test and numerical settings522

We formulate a finite strain poroplastic problem for a porous523

medium in which the interstitial fluid obeys Darcy’s law and524

the solid phase exhibits hyperelastic behaviour. Given the525

reference configuration of the tissue B ⊂ S and the interval526

of time I ⊂ R, find the motion χ, pressure p, and V such527

that528

Div (K Grad p) = ÛJ, in B × I, (46a)

Div
(
−Jp g−1F−T + P

)
= 0, in B × I, (46b)

sym(ΛC−1) = −R, in B × I, (46c)

where R can be equal to R(1) or R(2), depending on whether 529

themodelM1orM2 is computed.We emphasise that, by con- 530

struction, both R(1) and R(2) have to be understood as func- 531

tionals of χ, and V , i.e., R(α) = R̂(α)(χ,V ), for α ∈ {1, 2}. 532

Whereas (46c) expresses the general form of the investigated 533

remodelling law, (46a) and (46b) represent, respectively, the 534

mass balance law and the momentum balance law for the 535

biphasic system with which the tissue is approximated. We 536

recall, indeed, that the tissue is assumed here to consist of 537

a solid phase, which comprises a porous matrix and the 538

reinforcing fibres, and an inviscid interstitial fluid obeying 539

Darcy’s law. Equations (46a)–(46c) are determined under 540

the hypotheses that the mass densities of the solid and the 541

fluid phase are constant (a condition implying the intrinsic 542

incompressibility of both phases), and that all the external 543

body forces —including the inertial ones— as well as all 544

the quantities of order higher than the first in the relative 545

velocity vfs := vf − vs are negligible. More specifically, the 546

mass balance law (46a) implies that the opposite of the di- 547

vergence of the specific (material) mass flux Q = −KGrad p 548

is compensated for by the time derivative of the volume ratio 549

J. Furthermore, the momentum balance law (46b) defines 550

the overall stress tensor of the biphasic system under study 551

as Ptot = −Jp g−1F−T + P, where the pressure p is the La- 552

grange multiplier associated with the incompressibility and 553

the saturation constraints. 554

The logical steps leading to (46a) and (46b) have been 555

presented elsewhere (cf. e.g. [37,19,61,33,38,39,5,40]), and 556

will not be repeated here. In addition to them, the remodelling 557

law (46c) supplies a further coupling among deformation, 558

pressure, and plastic-like distortions. 559

Equations (46a)–(46c) shall be solved for simulating an 560

unconfined compression test of the sample under study. This 561

test represents a typical benchmark problem for investigating 562

the elastic and hydraulic properties of biological tissues (cf. 563

(46a) and (46b), respectively), and has been adapted here in 564

order to also account for the reorganisation of the sample’s 565

internal structure (cf. (46c)). In the experiment simulated in 566

this work, a specimen of tissue of cylindric shape is posi- 567

tioned between two rigid, parallel plates, and compressed. 568

The two plates are impermeable to the fluid flow. The com- 569

pression takes place in displacement control and, in particu- 570

lar, by displacing the upper plate according to a given loading 571

ramp. The lower plate is instead kept fixed, and the specimen 572

is clamped on it. The upper plate constitutes a frictionless 573

glide surface for the specimen, whose upper boundary is thus 574

allowed to deform radially in axial-symmetric way. The lat- 575

eral boundary is assumed to be free of contact forces, thereby 576

requiring that both the pressure and the radial component of 577

the overall stress vanish on it (see (47b)). 578

By introducing a reference frame with origin O coin- 579

ciding with the centre of the lower boundary of the sample, 580

and orthonormal cartesian basis vectors {ΞI }
3
I=1 emanating 581
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from O, such that Ξ3 is the unit vector directed along the582

specimen’s symmetry axis, the experiment described above583

is represented by the boundary conditions [5,34]:584 {
χ3 = f
(−KGrad p).N = 0 on ∂B(u), (47a){
(−Jpg−1F−T + P).N = 0
p = 0 on ∂B(l), (47b){
χ(X, t) − χ(X, 0) = 0
(−KGrad p).N = 0 on ∂B(L). (47c)

In (47a), χ3 is the axial component of the motion, and f is585

the loading ramp586

f (t) =

{
L − t

Tramp
uT, for t ∈ [0,Tramp],

L − uT, for t ∈ ]Tramp,Tend],
(48)

where uT = 0.20 mm is the target displacement imposed to587

the sample and L = 1 mm is the sample’s initial length. The588

initial cross section of the sample has diameter D = 3 mm.589

The target displacement is reached at the end of the loading590

ramp, i.e., at Tramp = 20 s, and is then kept constant until591

Tend = 300 s. Moreover, in (47a)–(47c), ∂B(u), ∂B(l) and592

∂B(L) are the upper, lateral and lower part of the boundary593

∂B, such that ∂B = ∂B(u) t ∂B(l) t ∂B(L). Finally, N is the594

unit vector normal to ∂B.595

It is assumed that, at the initial time, the sample finds596

itself in an undeformed state, with zero pressure, and in the597

absence of anelastic distortions. These requirements lead to598

the initial conditions599

χ(X, 0) = X, ∀ X ∈ B, (49a)
p(X, 0) = 0, ∀ X ∈ B, (49b)

V (X, 0) = G−1(X) ∀ X ∈ B. (49c)

The numerical solution of (46a)–(46c), with (49a)–(49c)600

and (47a)–(47c), is achieved by performing Finite Element601

simulations. In particular, following [39,5], (46a) and (46b)602

are put in weak form, and solved according to a given Finite603

Element scheme, while (46c) is solved only at the integra-604

tion points of the finite elements. To this end, by search-605

ing for the motion χ and pressure p in the Sobolev spaces606

(H1(B×I,S))3 and H1(B×I,S), respectively, and enforc-607

ing the boundary conditions (47a)–(47c), the model equa-608

tions (46a)–(46c) are reformulated as609

Fχ = F̂χ(χ, p,V )

=

∫
B

P̂(χ, p,V ) : ggg Grad ũ = 0, (50a)

Fp = F̂p(χ, p,V )

=

∫
B

{
(Grad p̃)K̂ (χ,V )(Grad p) + p̃ ÛJ

}
= 0, (50b)

FV = F̂V (χ,V ) = sym( ÛVV−1) + R̂(χ,V ) = 0, (50c)

where ũ and p̃ are the test functions associated with the ve- 610

locity and pressure and are sometimes referred to as “virtual 611

velocity” and “virtual pressure”, respectively. We notice that 612

the functionals F̂χ and F̂p depend linearly on the virtual 613

fields ũ and p̃. However, for the sake of a lighter notation, 614

we have omitted this dependence in their definitions. 615

5 Results 616

In this section, we present and discuss the main results of 617

our simulations (see Figures 2–6). In particular, we show (i) 618

how remodelling modulates the mechanical and hydraulic 619

response of the tissue, and (ii) how the fibre reinforcement, 620

which makes the tissue transversely isotropic, influences the 621

evolution of the anelastic distortions. To highlight the conse- 622

quences of remodelling, we run a set of simulations in which 623

remodelling is switched off, and we compare the correspond- 624

ing results with those stemming from the set of simulations 625

in which themodelsM1 andM2 are implemented.Moreover, 626

in order to see the role played by the fibre reinforcement, we 627

compare the results predicted by the model M1, in which an 628

ideal isotropic tissue without fibres is simulated, with those 629

predicted by the model M2, in which the presence of the 630

fibres is accounted for. In all the plots (Figures 2–6), we 631

evaluate the physical quantity of interest at the point XU of 632

Cartesian coordinates given by (1.3, 0.0, 1.0) [mm], which is 633

on the upper boundary and close to the lateral boundary of 634

the sample. 635

In Figure 2a, we report the time trend of the magni- 636

tude of the (spatial) filtration velocity, ‖q(XU, t)‖, evaluated 637

at the point XU for t ∈ [0,Tend[, where we let Tend be ar- 638

bitrarily greater than Tramp. We show both the case of no 639

remodelling and the case of remodelling, as described by the 640

models M1 and M2. In the absence of remodelling, the mag- 641

nitude of the filtration velocity grows monotonically until 642

the target displacement is reached, i.e., until t = Tramp. Then, 643

it relaxes asymptotically towards zero for increasing time. 644

When remodelling occurs, the trend of ‖q(XU, t)‖ depends 645

on whether or not the fibres are accounted for. In the sim- 646

ulation performed by applying the model M1, the influence 647

of remodelling on ‖q(XU, t)‖M1 is twofold: on the one hand, 648

it lowers considerably the maximum value of ‖q(XU, t)‖, 649

which is however attained at t = Tramp, and, on the other 650

hand, it leads to a much slower relaxation time. Hence, even 651

though ‖q(XU, t)‖M1 decreases monotonically towards zero, 652

the curve associated with M1 intersects the curve of no re- 653

modelling, and it holds that 654

‖q(XU, t)‖M1 ≥ ‖q(XU, t)‖no-rem, (51)

for all t ≥ T1, with T1 > Tramp being the time at which the 655

two curves intersect each other. The simulation performed 656

considering the model M2 leads, instead, to quite different 657
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Fig. 2 Norm of Darcy velocity vs time (a) and radial component of
Darcy velocity vs time (b), evaluated at the point XU of Cartesian
coordinates (1.3, 0.0, 1.0) [mm]. The anisotropic model predicts an
inversion of the filtration velocity, which yields thus an inflow of fluid
after a critical instant of time is reached. This behaviour is not captured
by the isotropic model M1.

results. First of all, the maximum value of ‖q(XU, t)‖M2, al-658

ways attained at T = Tramp, is smaller than the one reached in659

the case of no remodelling and bigger than the one predicted660

by M1. Moreover, the relaxation of ‖q(XU, t)‖M2 towards661

zero is slower than that observed in the case of no remod-662

elling, but slightly faster than the one obtained by employing663

the model M1. The most noticeable results, however, are664

given by the loss of monotonicity of ‖q(XU, t)‖M2 in the665

interval [Tramp,Tend[, and by the presence of the point of666

non-differentiability, herafter denoted by Tc, between Tramp667

and t = 50 s. This behaviour is due to the fact that, when668

remodelling occurs and the anisotropy of the fibre pattern669

is considered, the radial component of the filtration velocity670

decreases for t > Tramp, becomes negative until it attains a671

global minimum and, subsequently, it grows asymptotically672

towards zero for a sufficiently long time (see Figure 2b).673

The change of sign in the radial velocity may be inter-674

preted as a “syringe effect”, thereby meaning that, for t > Tc,675

the fluid tends to flow back into the tissue. Since the fluid676

filtration velocity complies with Darcy’s law, this behaviour677

is accompanied by a change of sign of the radial pressure678

gradient, which implies that the pressure at XU becomes679
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0.025

Fig. 3 Pressure vs time, p(XU, t), evaluated at the point XU of Carte-
sian coordinates (1.3, 0.0, 1.0) [mm]. The isotropic model M1 predicts
a dramatic decrease of pressure due to the progression of remodelling.
In the case of the model M2, instead, the interplay between the evolu-
tion of the plastic distortions and the tissue’s anisotropy contains the
pressure fall and induces a loss of monotonicity in the time trend. This
is consistent with the inversion of the filtration velocity observed in
Figure 2.

smaller than zero for t > Tc (we recall, indeed, that our 680

boundary conditions prescribe that, on the lateral bound- 681

ary of the sample, the pressure is zero at all times). This 682

observation seems to be supported by the results shown in 683

Figure 3. In the absence of remodelling, pressure grows until 684

a global maximum is reached, and it relaxes then towards 685

zero for increasing time. A qualitatively similar trend is also 686

observedwhen remodelling is switched on and themodelM1 687

is used, even though the maximum value of pressure is much 688

smaller than the one obtained in the case of no remodelling. 689

The model M1 predicts, indeed, that [p(XU, t)]M1 consists 690

of two monotonic branches, one increasing over the inter- 691

val [0,Tramp] and the other one decreasing over [Tramp,Tend[. 692

The decreasing branch intersects the relaxing branch of the 693

pressure curve of no remodelling and tends towards zero 694

more slowly than the latter one. The curve determined by 695

simulating the model M2 grows rather steeply until the max- 696

imum pressure is attained, and this maximum places itself 697

in between the values obtained in the case of no remdelling 698

and that of the model M1, respectively. Then, [p(XU, t)]M2 699

decreases much faster than it happens in the other cases, be- 700

comes negative, and reaches a global minimum. Afterwards 701

it grows again, and it then tends to zero from below at a 702

rate comparable with that of no remodelling. We remark that 703

the instant of time at which pressure equals zero coincides 704

with Tc, i.e., the time at which the radial component of the 705

filtration velocity changes its sign. 706

In Figure 4, we study the time trend of porosity at XU. 707

We notice that, both in the case of no remodelling and in 708

the case of the model M1, porosity decreases monotonically 709

in time. In the absence of remodelling, porosity varies very 710

smoothly, and the amplitude of the variation between its ini- 711
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Fig. 4 Porosity vs time, 1 − Φsν (XU)/J(XU, t), evaluated at the point
XU of Cartesian coordinates (1.3, 0.0, 1.0) [mm]. Whereas the case
of no remodelling and the model M1 predict quantitatively different,
but qualitatively similar, results, the model M2 is characterised by a
trend that is both quantitatively and qualitatively different from the
other two. The loss of monotonicity is, in fact, consistent with that of
Figures 2 and 3, and represents an opening of the tissue’s pores (with
corresponding increase of porosity) on the way towards the stationary
state.

tial and asymptotic values is bigger than in the other case.712

The model M1, in turn, predicts a rather pronounced change713

of slope of the porosity curve, and the asymptotic value of714

porosity is reached more slowly. A quite different behaviour715

can be observed when the tissue’s anisotropy is accounted716

for. Indeed, in accordance with the inversion of the fluid fil-717

tration velocity (see Figure 2) and the change of sign of the718

pressure (see Figure 3), the model M2 prescribes that poros-719

ity varies in time in a non-monotonic way. More specifically,720

it decreases until it comes to a global minimum, which cor-721

responds to the end of the loading ramp, and then it grows722

towards a stationary value. This behaviour is consistent with723

the fact that, to permit the inflow of fluid, the tissue must724

increase its porosity, and it seems to be a consequence of the725

interplay between the tissue’s anisotropy and the evolution726

of the anelastic distortions.727

In terms of Fp, a measure of the magnitude of plastic-728

like distortions is the Frobenius norm of the anelastic strain729

tensor730

Ep =
1
2
[
FT

p .Fp − G
]
. (52)

Since it holds that Fp is the inverse ofΠ, Ep may be rewritten731

as732

Ep =
1
2 [Π

−T.Π−1 − G] = −AΠ, (53)

whereAΠ is the Almansi-Euler-like strain tensor associated733

with Π. Finally, by enforcing the polar decomposition Π =734

V .R, Ep becomes735

Ep =
1
2 [V

−1.V−1 − G]. (54)
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0.00

0.05
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0.15

0.20

Fig. 5 Frobenius norm ofEp =
1
2 [V

−1.V−1−G] vs time, ‖Ep(XU, t) ‖,
evaluated at the point XU of Cartesian coordinates (1.3, 0.0, 1.0) [mm].
The magnitude of the plastic strains is bigger in the transversely
isotropic model M2. In the isotropic model M1, instead, the plastic
strains are rather small, but they tend to the stationary state much more
slowly than predicted by the model M2.

Equation (53) suggests which tensor field should be used to 736

address remodelling within the theory of uniformity [15,50, 737

7,54]. 738

The Frobenius norm of Ep is now evaluated at XU and 739

its variation in time is reported in Figure 5. We notice that 740

the magnitude of the anelastic distortions as predicted by the 741

model M2 is much bigger than that obtained by the model 742

M1. Thus, the anisotropy of the tissue seems to enhance the 743

growth of the plastic distortions, whose magnitude increases 744

quite rapidly and tends to approach a stationary value. In 745

the case of the model M1, instead, ‖Ep(XU, t)‖ grows much 746

more slowly (and almost linearly) towards a stationary value. 747
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Fig. 6 Equivalent stress vs time, evaluated at the point XU of Cartesian
coordinates (1.3, 0.0, 1.0) [mm]. The equivalent stress is the Frobenius
norm of the deviatoric part of the constitutive Cauchy stress tensor, i.e.,
‖devσ ‖, with σ = J−1FSFT. The 2nd Piola-Kirchhoff stress tensor
S is given by (38) for the model M1, and by (41) both for the model
M2 and for the case of no remodelling (in which, however, the identity
V = G−1 applies).
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Finally, we investigate how the onset of plastic distortions748

modulates the stress borne by the tissue. To this end, we plot749

in Figure 6 the von Mises equivalent stress at XU, and we750

notice that the curve corresponding to the model M1 is, until751

about 200 s, bounded from above by the curve pertaining752

to the model M2. This means that, even though the plastic753

distortions are characterised by a magnitude of Ep that is754

bigger in the anisotropic case than in the isotropic one, the755

level of stress reached in the first case is higher. We remark756

that the onset of remodelling occurs only when the vonMises757

equivalent stress, ‖devσ‖, overcomes the yield stress, σY . In758

fact, there exists an instant of time such that the condition759

of incipient remodelling, i.e., ‖devσ‖ = σY , is verified, and760

the von Mises equivalent stress is bigger than σY for all761

subsequent times. To highlight this behaviour, we plotted in762

Figure 6 the yield stress (which is constant in time in this763

work), and we showed that, in all the considered cases, the764

von Mises equivalent stress exceeds the yield stress after a765

quite short interval of time.766

6 Conclusions767

In this work, we employed an inhomogeneous and trans-768

versely isotropic poroplastic model of fibre-reinforced bi-769

ological tissue in order to study how the variation of the770

tissue’s internal structure (i.e., the process of remodelling),771

which manifests itself through the onset and evolution of772

anelastic distortions, is influenced by the material symme-773

tries of the tissue itself.774

For our purposes, we rephrased the poroelastic model775

of hydrated, fibre-reinforced tissues summarised in [19,61]776

in order to account for the presence of anelastic distortions777

(the definition of the hyperelastic strain energy energy is778

developed from [24,19] and the tissue’s permeability has779

been adapted from [23,22,19,61]). Then, we formulated and780

solved numerically the two different descriptions of struc-781

tural remodelling denoted by model M1 and model M2. We782

recall that, while the tissue has been simulated as inhomo-783

geneous and transversely isotropic both in the case of the784

model M2 and in the reference case of no remodelling, it785

has been regarded as inhomogeneous but isotropic in the786

model M1. We emphasise that this idealisation serves as a787

basis for comparison with the transversely isotropic model788

M2, and has been done to highlight the interplay between the789

tissue’s material symmetries and the development of plastic790

distortions. These, indeed, drive an evolution of the group of791

material symmetries, but they do not change it (see [12,13]792

for further details).793

Among the obtained results, represented graphically in794

Figures 2–6, we give prominence to the “syringe effect” dis-795

cussed in Section 5, which is observed in our simulations796

only when remodelling occurs in the tissue modelled as an797

inhomogeneous and tranversely isotropic material (cf. model798

M2). Such effect seems to be an evidence of the change of 799

the tissue’s mechanical and hydraulic behaviour. Such alter- 800

ation of material response could characterise a diseased or 801

damaged tissue, and could thus also provide some indica- 802

tions on how the tissue might behave in non-physiological 803

conditions. 804

Finally, since the observed changes of material behaviour 805

occurs both qualitatively and quantitatively in the case of 806

anisotropy (while the change is only quantitative in the case 807

of isotropy), our results could be used for studying the inter- 808

play between growth and remodelling in anisotropic tissues. 809

For example, this could be of interest for elaboratingmore de- 810

tailed and more accurate models of tumour growth, in which 811

the onset of remodelling has appreciable consequences on 812

the tumour evolution [49,48]. 813

Appendix A: Fourth-order tensors 814

The notation adopted in the following is taken from [17]. Let 815

[TB]11, [TB]
1

1 , [TB]
2
0, and [TB]

0
2 denote the spaces of all 816

second-order tensors which, as bilinear maps, read 817

A : T?B × TB→ R, (55a)
B : TB × T?B→ R, (55b)
T : T?B × T?B→ R, (55c)
Q : TB × TB→ R, (55d)

respectively. Let also ([TB]20, sym) and ([TB]02, sym) be, re- 818

spectively, the subspaces of [TB]20 and [TB]
0
2 of all symmet- 819

ric, second-order tensors. The elements of [TB]11 and [TB]
1

1 820

can be written as linear maps from TB into itself, and from 821

T?B into itself, respectively, while the elements of [TB]20, 822

and [TB]02 can be written as linear maps from T?B into TB, 823

and from TB into T?B, respectively. 824

Let us also consider the spaces [TB]22 and [TB] 2
2 of all 825

fourth-order tensors of the type 826

T ∈ [TB]22, T : T?B × T?B × TB × TB→ R,

Q ∈ [TB] 2
2 , Q : TB × TB × T?B × T?B→ R.

An element of [TB]22 can also be represented as a linear map 827

from [TB]20 into [TB]20. Analogously, an element of [TB] 2
2 828

can be represented as a linear map from [TB]02 into [TB]02. 829

For instance, the fourth-order tensor 830

I : [TB]20 → ([TB]
2
0, sym),

I = 1
2
(
I ⊗ I + I ⊗ I

)
, (57)

where I : TB → TB is the identity tensor in TB, returns 831

the symmetric part of the element of [TB]20 to which it is 832

applied. Given two tensors A,D ∈ [TB]11, the representation 833

of the tensor products A⊗D and A⊗D in index notation 834

reads [A⊗D]ABMN = AA
MDB

N and [A⊗D]ABMN = AA
N DB

M 835
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[9]. Accordingly, in index notation, I is represented by the836

expression837

IABMN =
1
2

(
δAMδ

B
N + δ

A
N δ

B
M

)
. (58)

Thus, for every T ∈ [TB]20, it holds that838

I : T = 1
2

(
T +TT

)
= sym(T ), (59)

where the symbol “:” stands for “double contraction”. In in-839

dex notation, it reads (I : T )AB = IABMNTMN = [sym(T )]AB.840

By definition, I is the identity fourth-order tensor over the841

space ([TB]20, sym). From here on, we consider only the re-842

strictions of the fourth-order tensors of [TB]20 onto ([TB]
2
0, sym).843

For every T ∈ ([TB]20, sym), the fourth-order tensor844

K∗ : ([TB]20, sym) → ([TB]20, sym),

K∗ = 1
3C
−1 ⊗ C (60)

extracts the spherical part of T with respect to the metric C,845

i.e.,846

K∗ : T = 1
3 tr(CT )C−1. (61)

The deviatoric part of T with respect to the metric C is847

obtained by substracting K∗ : T to T . This operation can be848

represented by the application of the fourth-order tensor849

M∗ : ([TB]20, sym) → ([TB]20, sym)
M∗ = I − K∗, (62)

to T i.e.,850

M∗ : T = (I − K∗) : T = T − 1
3 tr(CT )C−1. (63)

Clearly, it holds that tr [C (M∗ : T )] = 0. We remark that, by851

their own definition, K∗ and M∗ constitute the partition of852

unity, i.e., I = K∗ +M∗.853

In analogous manner, we introduce the identity fourth-854

order tensor over the space ([TB]02, sym), i.e.,855

IT : ([TB]02, sym) → ([TB]02, sym),

IT = 1
2

(
IT ⊗ IT + IT ⊗ IT

)
, (64)

where IT : T?B → T?B is the identity tensor in T?B. For856

every Q ∈ ([TB]02, sym) it holds that857

IT : Q = 1
2

(
Q + QT

)
≡ Q. (65)

The spherical and the deviatoric parts of Q with respect858

to the inverse metric C−1 are extracted by employing the859

fourth-order tensors860

K∗T : ([TB]02, sym) → ([TB]02, sym),

K∗T = 1
3C ⊗ C−1, (66)

and 861

M∗T : ([TB]02, sym) → ([TB]02, sym),

M∗T = IT − K∗T, (67)

respectively, which are such that 862

K∗T : Q = 1
3 tr(C−1Q)C, (68)

M∗T : Q = (IT − K∗T) : Q = Q − 1
3 tr(C−1Q)C . (69)

In this case, it holds that tr
[
C−1 (

M∗T : Q
) ]
= 0. 863

Finally, we introduce the fourth-order tensor 864

I]∗ : ([TB]02, sym) → ([TB]20, sym),

I]∗ = 1
2

(
C−1 ⊗ C−1 + C−1 ⊗ C−1

)
. (70)

For every Q ∈ ([TB]02, sym), it holds that 865

I]∗ : Q = C−1QC−1. (71)

In index notation, Equation (71) implies (I]∗ : Q)AB = 866

(C−1)AMQMN (C
−1)NB, which means that I]∗ raises the in- 867

dices of Q through the inverse metric tensor C−1 rather than 868

through G−1, the latter being the inverse of the metric tensor 869

G in the undeformed configuration. In analogy with K∗ and 870

M∗, we also consider the fourth-order tensors 871

K]∗ : ([TB]02, sym) → ([TB]20, sym),

K]∗ = 1
3C
−1 ⊗ C−1, (72a)

M]∗ : ([TB]02, sym) → ([TB]20, sym),

M]∗ = I]∗ − K]∗. (72b)

For every Q ∈ ([TB]02, sym), we obtain 872

K]∗ : Q = 1
3 tr(C−1Q)C−1, (73a)

M]∗ : Q = C−1QC−1 − 1
3 tr(C−1Q)C−1. (73b)

Note that the second-order tensor M]∗ : Q is deviatoric in 873

the sense that tr[C(M]∗ : Q)] = 0. 874
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