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Extreme Event Quantification in Dynamical Systems with Random Components\ast 

Giovanni Dematteis\dagger , Tobias Grafke\ddagger , and Eric Vanden-Eijnden\S 

Abstract. A central problem in uncertainty quantification is how to characterize the impact that our incomplete
knowledge about models has on the predictions we make from them. This question naturally lends
itself to a probabilistic formulation, by making the unknown model parameters random with given
statistics. Here this approach is used in concert with tools from large deviation theory (LDT)
and optimal control to estimate the probability that some observables in a dynamical system go
above a large threshold after some time, given the prior statistical information about the system's
parameters and/or its initial conditions. Specifically, it is established under which conditions such
extreme events occur in a predictable way, as the minimizer of the LDT action functional. It is
also shown how this minimization can be numerically performed in an efficient way using tools from
optimal control. These findings are illustrated on the examples of a rod with random elasticity pulled
by a time-dependent force, and the nonlinear Schr\"odinger equation with random initial conditions.
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1. Introduction. The governing equations we use to model complex phenomena are often
approximate. For example, we may not know exactly the initial and/or boundary conditions
necessary to integrate these equations. Other parameters entering these equations can also be
uncertain, either because we are not sure of the model itself or because these parameters may
vary from situation to situation in a way that is difficult to predict in detail. The question
then becomes whether we can quantify how our imperfect knowledge of the system's param-
eters impact its behavior. This question lends itself naturally to a probabilistic formulation.
Consider, for example, the case of a dynamical system whose state at time t can be specified
by some u(t) which can be a vector or a field and satisfies

(1.1) \partial tu = b(u, \vargamma ), u(t = 0) = u0(\vargamma ).

Here b(u, \vargamma ) is a given vector field and \vargamma denotes the set of parameters we are uncertain
of. Assuming that these parameters take value in some set \Omega , which can again be finite or
infinite dimensional, it is then natural to equip \Omega with a probability measure \mu to quantify our
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1030 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

uncertainty. This makes \vargamma random, and therefore the solution to (1.1) becomes a stochastic
process. Denoting it by u(\cdot , \vargamma ), we can ask questions about the statistics of this process. For
example, if f(u) is a scalar valued observable, we can define

(1.2) PT (z) \equiv \BbbP (f(u(T, \vargamma )) \geq z) , z \in \BbbR ,

where \BbbP denotes the probability over \mu and T > 0 is some observation time. The probability
(1.2) is useful, e.g., in the context of a certification problem where, given z \in \BbbR and \epsilon > 0
(typically z large and \epsilon small), we wish to verify that PT (z) \leq \epsilon . Other quantities of interest
include

(1.3) \BbbP 
\biggl( \int T

0
f(u(t, \vargamma ))dt \geq z

\biggr) 
, \BbbP 

\Biggl( 
sup

0\leq t\leq T
f(u(t, \vargamma )) \geq z

\Biggr) 
, etc.

The numerical estimation of (1.2) or (1.3) can be performed by Monte Carlo sampling
methods: generateN independent realizations of \vargamma , for each evaluate f(u(T, \vargamma )) via integration
of (1.1), and compute the fraction of these realizations for which f(u(T, \vargamma )) \geq z. As N \rightarrow \infty ,
this fraction will converge to PT (z). This direct approach is not effective when PT (z) is small,
however, since the relative error of the estimator just described is

\sqrt{} 
(1 - PT (z))/(NPT (z)) \sim 

1/
\sqrt{} 
NPT (z). This means that in order to get an estimate accurate to order \delta \ll 1, we need

to use N = O
\bigl( 
\delta  - 2P - 1

T (z)
\bigr) 
samples, which can become prohibitively expensive as PT (z) gets

smaller. This is problematic since it excludes from consideration events that are rare but may
nonetheless have dramatic consequences. Similar issues arise if we replace (1.1) by some time
independent equation like

(1.4) 0 = b(u, \vargamma ),

where b(\cdot , \vargamma ) is some function of u and possibly its derivatives and (1.4) is supplemented with
boundary conditions that may also depend on the random parameter \vargamma . The solution to (1.4)
defines a complicated map u(\vargamma ), and given a scalar valued observable f(u), the estimation of

(1.5) \BbbP (f(u(\vargamma )) \geq z) , z \in \BbbR ,

will again be challenging when this probability is small, i.e., when the event f(u(\vargamma )) \geq z is
rare.

In these situations alternative methods such as those proposed, e.g., in [20, 26, 9, 19, 39,
42, 17, 36], must be used to estimate (1.2), (1.3), or (1.5). The approach we introduce in this
paper builds on earlier results found in [13] and uses large deviation theory (LDT) [14, 43] as a
tool: we show that, if in (1.2) PT (z) \rightarrow 0 as z \rightarrow \infty , then under some additional assumptions
we have

(1.6) PT (z) \asymp exp

\biggl( 
 - min

\theta \in \Omega (z)
I(\theta )

\biggr) 
, where \Omega (z) = \{ \theta : f(u(T, \theta )) \geq z\} \subseteq \Omega .

Here \asymp indicates that the ratio of logarithms of both sides tends to 1 as z \rightarrow \infty and we defined

(1.7) I(\theta ) = max
\eta 

(\langle \eta , \theta \rangle  - S(\eta )) ,
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EXTREME EVENT IN SYSTEMS WITH RANDOM COMPONENTS 1031

where \langle \cdot , \cdot \rangle is a suitable inner product on \Omega and S(\eta ) is the cumulant generating function of
\vargamma :

(1.8) S(\eta ) = log\BbbE e\langle \eta ,\vargamma \rangle = log

\int 
\Omega 
e\langle \eta ,\theta \rangle d\mu (\theta ) .

We will also show that the minimizer of I(\theta ) in \Omega (z), i.e.,

(1.9) \theta  \star (z) = argmin
\theta \in \Omega (z)

I(\theta ) ,

is the point of maximum likelihood in \Omega (z). The most likely way the event \{ f(u(T, \vargamma )) \geq z\} 
occurs is when \vargamma = \theta  \star (z), which we will also refer to as the instanton realization, since it is a
critical point of the action I(\theta ). Similar estimates hold for (1.3) and (1.5) upon straightforward
redefinition of the set \Omega (z) upon which the optimization is performed.

Establishing the large deviation principle (LDP) in (1.6) is one of the objectives of this
paper. As we will see in section 2, this can be done by proving that \theta  \star (z) is a dominating point
in \Omega (z), building on results derived, e.g., in [5, 31, 7, 24] that provide us with a framework
to justify the saddle-point approximations often used in physics [25, 18]. Equation (1.6) is a
somewhat unusual LDP however because there is no small (or large) parameter associated to
the random variable \vargamma : rather we play with the variable z being large. More precisely, instead
of scaling \vargamma so that events with a finite z become rare, we keep \vargamma as is and look at rare events
that occur in the tail of the distribution when z \gg 1. As a result, the standard approach
developed in [5, 31, 24] must be adapted. In particular, we do not know a priori what is the
speed of the LDP. The formulation we adopt can be viewed as a way to estimate this speed
by estimating how the minimum in (1.6) behaves as z increases toward infinity.

When (1.6) holds, we can reduce the evaluation of PT (z) to the minimization problem
in (1.9), and a second objective here is to design numerical tools to perform this minimization.
As we will see in section 3, this can be done by adapting techniques used in optimal control [41,
6].

We will also illustrate these tools on two examples in section 4: The first one is a model
for an elastic rod with a random elasticity coefficient. The rod gets pulled from one end with a
given forcing protocol, and the response depends nonlinearly on the elasticity coefficient. The
LDP can be used here to infer the probability of atypically large extensions of the rod. The
second application deals with the nonlinear Schr\"odinger equation (NLSE) in nonlinear fiber
optics, in the context of what is known as integrable turbulence. Specifically, we study the
problem of the onset of rogue waves out of a bath of random waves taken as initial condition
for NLSE.

2. Large deviation principle. Here we establish (1.6), using background material that can
be found, e.g., in [5, 31, 24]. For simplicity, we will restrict ourselves to situations where \vargamma is
finite dimensional, i.e., we assume that \vargamma \in \Omega \subseteq \BbbR M with M \in \BbbN . In this case we can also
assume that the inner product \langle \cdot , \cdot \rangle appearing in (1.7) and (1.8) is the standard Euclidean
inner product on \BbbR M . Under appropriate assumptions, the results below will hold also in the
infinite-dimensional set-up, when \vargamma is a random field, but the arguments to establish them
will require generalization (see, e.g., [15, 29] for results in infinite dimension). To treat theD
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1040 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

4. Applications.

4.1. Elasticity of a heterogeneous rod. In this section we study a model for a one-
dimensional rod with random elasticity coefficient subject to a prescribed external mechanical
forcing (i.e., pulling at one end). This model (or generalizations thereof) may be of interest
in actual applications (e.g., as a coarse-grained model of DNA stretching [8, 10, 30]). Here
it is primarily used as a simple illustrative example of the tools and concepts introduced in
sections 2 and 3. In particular, we use LDT to locate the most likely configurations leading to
extreme responses and we show that such realizations dominate the statistics asymptotically.

For a simple linear forcing protocol, we are able to derive analytical results which are
used to validate our numerical method. We also study the extreme events that occur under a
nonlinear forcing, when no analytical solution is available.

4.1.1. Continuous model with random structure. Consider a one-dimensional elastic rod
of length 1 that is being pulled at one end with a time-dependent force and whose energy is
specified in terms of its displacement field u : [0, 1] \rightarrow \BbbR via

(4.1) V (u, t) =
1

2

\int 1

0
\scrD (x) | \partial xu| 2 dx - r(t)u(1) ,

where the first term is the total internal energy of the rod and the second term is the external
energy (negative of the work potential); \scrD (x) > 0 is the elasticity coefficient, assumed to be
spatially dependent, and r(t) is a prescribed external forcing protocol acting on the right end
of the rod---the specific form of r(t) will be introduced later. The dynamics of the rod is
governed by the Euler--Lagrange equation associated with (4.1):

(4.2) \partial 2t u = \partial x(\scrD (x)\partial xu), x \in (0, 1) ,

with initial conditions to be prescribed later and boundary conditions

(4.3) u(t, 0) = 0 , \scrD (1)\partial xu(t, 1) = r(t) \forall t \geq 0 .

In order to introduce uncertainty in the model we make the elasticity random, i.e., we take
\scrD (x) \equiv \scrD (x, \vargamma ). Here we will assume that \scrD (x, \vargamma ) is piecewise constant over blocks of size
1/M for some M \in \BbbN , with independent values in each block. Specifically, we take

(4.4) \scrD (x, \vargamma ) =
M\sum 
k=1

\varphi k(x)g(\vargamma k) ,

where the functions \{ \varphi k\} Mk=1 are given by

(4.5) \varphi k(x) =

\Biggl\{ 
1 if M - 1(k  - 1) \leq x < M - 1k ,

0 otherwise;

g is a given function; and \{ \vargamma k\} Mk=1 are independent and identically distributed random vari-
ables. Below we will consider two cases.D
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Case 1. As a simple test case, assume that g : (0,\infty ) \rightarrow (0,\infty ) with

(4.6) g(y) = y - 1

and we take the variable \{ \vargamma k\} Mk=1 to be exponentially distributed, i.e.,

(4.7) \BbbP (\vargamma k \geq y) = e - \alpha y, y \geq 0, \alpha > 0 .

This choice implies that

(4.8) S(\eta ) = log\BbbE e\langle \eta ,\vargamma \rangle =  - 
M\sum 
k=1

log(1 - \alpha  - 1\eta k), \eta k < \alpha \forall k = 1, . . . ,M,

so that

(4.9) I(\theta ) =

M\sum 
k=1

(\alpha \theta k  - 1 - log \theta k) \theta k > 0 \forall k = 1, . . . ,M .

Case 2. Here we assume that g : \BbbR \rightarrow (0,\infty ) with

(4.10) g(y) = 1
2y +

\sqrt{} 
1
4y

2 + 1,

and we take the variable \{ \vargamma k\} Mk=1 to be normally distributed with variance \sigma 2 > 0, i.e.,

(4.11) \vargamma k = \scrN (0, \sigma 2) .

For this choice, we have

(4.12) S(\eta ) = 1
2

N\sum 
k=1

\sigma 2\eta 2k, I(\theta ) = 1
2

N\sum 
k=1

\sigma  - 2\theta 2k .

Given this random input, our aim is to investigate the statistics of the displacement of the
right end of the rod at time T : this amounts to considering the observable f(u(T )) = u(T, 1)
and studying the behavior of

(4.13) P (z) = \BbbP (u(T, 1, \vargamma ) \geq z) for z \gg 1.

Below we will analyze the behavior of this quantity in two cases: when the forcing r(t) in (4.1)
is linear in t and when it is not---the first situation is amenable to analytical treatment whereas
the second is not in general. Note that in both situations, the behavior of P (z) for large z
will depend on how fast g(u) decays to zero: due to the shape of g this will depend on the
right tail of the distribution of \vargamma k in Case 1 and on its left tail in Case 2.D
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1056 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

with Y the adjoint field to X. Let us start by deriving the adjoint equation. One can easily
check that the linearization of the operator b(X, \theta ) for small variations of X reads

(A.7)
\partial Xb(\theta ) =

\biggl( 
0 Id

B(\theta ) 0

\biggr) 
,

with Bjk =
\scrD j+1

\Delta x2
(\delta j+1,k  - \delta j,k) - 

\scrD j

\Delta x2
(\delta j,k  - \delta j - 1,k).

Id is the N \times N identity matrix and we recall that \scrD j = \scrD (\theta j), by (4.10). It is the adjoint
operator (\partial Xb)

\top that we need to compute, defined implicitly by the identity

(A.8)
\Bigl\langle 
(\partial Xb)

\top Y,X \prime 
\Bigr\rangle 
\BbbR 2N

=
\bigl\langle 
Y, \partial XbX

\prime \bigr\rangle 
\BbbR 2N ,

where \langle \cdot , \cdot \rangle \BbbR 2N denotes the standard scalar product in \BbbR 2N . Using (A.8) we obtain

(A.9)

\bigl\langle 
Y, \partial XbX

\prime \bigr\rangle 
\BbbR 2N =

N\sum 
j=1

\biggl( 
qjv

\prime 
j + pj

\biggl( \scrD j+1

\Delta x2
(u\prime j+1  - u\prime j) - 

\scrD j

\Delta x2
(u\prime j  - u\prime j - 1)

\biggr) \biggr) 

=
N\sum 
j=1

\biggl( 
qjv

\prime 
j +

\biggl( \scrD j+1

\Delta x2
(pj+1  - pj) - 

\scrD j

\Delta x2
(pj  - pj - 1)

\biggr) 
u\prime j

\biggr) 
,

where in the last passage we just reorganized the indices in the sum in an equivalent way,
provided that we assume the boundary condition

(A.10) p0(t) = 0 .

Comparing the last line of (A.9) with the LHS of (A.8), we deduce that

(A.11) (\partial Xb)
\top =

\biggl( 
0 B(\theta )
Id 0

\biggr) 
,

which is the transpose of the RHS of (A.7) (B(\theta ) is symmetric), as we should expect. However,
starting from the identity (A.8) is the rigorous way to obtain the adjoint operator, making the
proper boundary conditions arise naturally. Plugging the result (A.11) into (3.8), we finally
obtain the adjoint equation

(A.12)

\left\{   \partial tqj =
\scrD j+1

\Delta x2
(pj+1  - pj) - 

\scrD j

\Delta x2
(pj  - pj - 1) ,

\partial tpj = qj ,
j = 1, . . . , N ,

with boundary condition (A.10). To obtain the correct conditions at final time, it is sufficient
to observe that the final conditions of (3.8) now read

(A.13) qj(T ) = \lambda \partial ujf(u(T )) = \lambda \delta j,N , pj(T ) = 0.

Let us now compute (\partial \theta b)
\top , again starting from the definition of the adjoint operator:

(A.14)
\Bigl\langle 
(\partial \theta b)

\top Y,w
\Bigr\rangle 
\BbbR N

= \langle Y, \partial \theta bw\rangle \BbbR 2N ,
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where w \in \BbbR N and

(A.15)

(\partial \theta b) =

\biggl( 
0

\nabla \theta B(\theta )

\biggr) 
(two N \times N blocks) ,

(\nabla \theta B)jk =
\scrD \prime (\theta j+1)

\Delta x2
(uj+1  - uj)\delta j+1,k  - 

\scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)\delta j,k.

With the convention that \scrD \prime (\theta N+1 = 0), a straightforward calculation yields

(A.16)

\langle Y, \partial \theta bw\rangle \BbbR 2N =

N\sum 
j=1

pj

\biggl( \scrD \prime (\theta j+1)

\Delta x2
(uj+1  - uj)wj+1  - 

\scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)wj

\biggr) 

=
N\sum 
j=1

\biggl( \scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)(pj  - pj - 1)

\biggr) 
wj ,

from which, comparing with the LHS of (A.14), we observe that

(A.17) ((\partial \theta b)
TY )j = \scrD \prime (\theta j)

uj  - uj - 1

\Delta x

pj  - pj - 1

\Delta x
.

Now, integrating in time according to (A.6),

(A.18)

\int T

0
((\partial \theta b)

\top Y )jdt = \scrD \prime (\theta j)

\int T

0

uj  - uj - 1

\Delta x

pj  - pj - 1

\Delta x
dt

leads to (4.22).
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