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Abstract: The present work focuses on the formulation and numerical assessment of a family of C0 
quadrilateral plate elements based on the refined zigzag theory (RZT). Specifically, four 
quadrilateral plate elements are developed and numerically tested: The classical bi-linear 4-node 
element (RZT4), the serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 
4-node anisoparametric constrained element (RZT4c). To assess the relative merits and drawbacks, 
numerical tests on bending (maximum deflection and stresses) and free vibration analysis of 
laminated composite and sandwich plates under different boundary conditions and transverse load 
distributions are performed. Convergences studies with regular and distorted meshes, transverse 
shear-locking effect for thin and very thin plates are carried out. It is concluded that the bi-linear 4-
node element (RZT4) has performances comparable to the other elements in the range of thin plates 
when reduced integration is adopted but presents extra zero strain energy modes. The serendipity 
8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node anisoparametric 
constrained element (RZT4c) show remarkable performance and predictive capabilities for various 
problems, and transverse shear-locking is greatly relieved, at least for aspect ratio equal to 5 × 102, 
without using any reduced integration scheme. Moreover, RZT4c has well-conditioned element 
stiffness matrix, contrary to RZT4 using reduced integration strategy, and has the same 
computational cost of the RZT4 element. 

Keywords: refined zigzag theory; finite plate elements; quadrilateral element; transverse shear 
locking; anisoparametric interpolation; multi-layered composite and sandwich plates 

 

1. Introduction 

In the last decades, multi-layered composite and sandwich structures have been increasingly 
used in different engineering fields (aerospace, automotive, marine, nuclear, and civil), thanks to 
their advantages over the traditional metallic structures due to their high specific stiffness and 
strength and their tailoring capabilities. Commonly built up with a sequence of layers of composite 
materials arranged thorough thickness, such structures typically exhibit a transverse shear 
deformability higher than their metallic counterpart, thus their structural analysis requires adequate 
models to take into account these effects. 

In the framework of the displacement-based beam, plate, and shell theories, equivalent single 
layer (ESL) theories, where the displacement field is assumed smoothly continuous through-the-
thickness, and layer-wise (LW) theories, where a local displacement field is assumed for each layer, 
are commonly used; see the recent review of Abrate and Di Sciuva [1,2]. Among the ESL theories, for 
engineering applications, the classical plate theory (CPT) is widely used especially for thin plates. In 
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thick laminates, the shear deformability is no longer negligible and must be taken into account. 
Contrary to the CPT, the first-order shear deformation theory (FSDT), first formulated by Mindlin 
and extended to the heterogeneous anisotropic plates by Whitney and Pagano [3], allows the rotation 
of the normal to the reference surface to be independent of the slope of the reference surface. In the 
FSDT, the thickness-wise distribution of the transverse shear stresses in a multi-layered plate is a 
piecewise constant function, thus due to the step-wise variation of the transverse shear moduli along 
the thickness, it violates the continuity requirement of the transverse stresses at the interfaces and the 
vanishing transverse shear stresses conditions on the top and bottom surfaces of the plate. It also 
needs an appropriate shear correction factor due to the assumption of linear transverse shear stresses 
distribution along the plate thickness. Generally speaking, these models are not capable to predict 
the stress distributions along the thickness with acceptable accuracy, the range of their applicability 
being limited to compute the global responses, like maximum deflection, natural frequencies, and 
buckling loads [4]. To improve the accuracy of the estimates of the in-plane displacements and 
stresses distribution along the thickness, the higher-order shear deformation theories (HOSDT) are 
used. In the framework of HOSDT, polynomials, trigonometric, exponential, and hyperbolic 
expansions of the axial displacement are commonly used; see Abrate and Di Sciuva [1,2]. These 
theories are generally more accurate than FSDT and do not require the use of ad-hoc shear correction 
factors but are unable to satisfy the transverse shear stresses continuity condition at the layer 
interfaces. Moreover, from a computational point of view, finite elements based on such theories 
require C1 continuity shape functions for the transverse displacement [5–9], while FSDT element-
based require only C0 continuity [4]. In LW theories, each layer has its own displacement fields, each 
independent from the others, which leads to a quasi-3D description of the displacement and stress 
fields. This assures a high degree of accuracy, but for laminates with several numbers of layers or 
complex structures, the computational cost of these theories can become prohibitive [10–13]. A 
compromise between the computational efficiency of ESL theories and the accuracy of LW theories 
is represented by the so-called zigzag theories (ZZT). In order to simulate the distortion of the normal 
and the step-wise distribution of the transverse shear stresses along the thickness typical of multi-
layered structures, in the ZZT the in-plane displacements are written as a superposition of a through-
the-thickness polynomial distribution (global contribution such as in the ESL theories) and a 
piecewise linear continuous function, (local or zigzag contribution). Unlike the LW theories, the 
kinematics of ZZT has a fixed number of kinematic unknown variables, independent on the number 
of material layers. Generally, the ZZ theories provide more accurate response predictions for 
relatively thick laminated composite and sandwich structures than the corresponding ESL theories, 
and generally comparable to those given by LW theories, at a lower computational cost. The first to 
investigate displacement-based zigzag theories was Di Sciuva [14–16]. From a computational point 
of view, the main drawback of the classical ZZT is that the finite element formulation requires C1 
shape functions, according to Di Sciuva [17–20]. In order to develop a zigzag theory free of the 
drawbacks of classical Di Sciuva’s ZZ theory, Tessler et al. [21–24] developed the refined zigzag 
theory (RZT) for beams, plates, and shells. The reader interested in a comparison of the performances 
and range of applicability of various zigzag functions is invited to read the paper of Gherlone [25]. 
From a computational point of view, the formulation of finite elements based on the RZT requires 
only C0 continuity of shape functions [26–38]. Although C0-continous elements are the most-widely 
used in commercial finite element software due to their computational efficiency, it is well known 
that overstiff unrealistic numerical results are obtained when using the conventional low-order 
isoparametric C0 finite elements (bi-linear shape functions for both deflection and bending rotation) 
in the analysis of thin and very thin plates; this phenomenon is known in the literature as the 
transverse shear-locking effect, according to Oñate [38–40]. 

There are many approaches to overcome this difficulty. 
Generally, using higher-order isoparametric shape functions alleviates the shear-locking 

problem, but the computational cost increases. Therefore, higher-order elements are not well-suited 
for the nonlinear analysis (post-buckling analysis, transient nonlinear analysis, crash simulation, etc.) 
and failure analysis [41,42]. 
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One of the more successful strategy of overcoming this problem in the 4-node bi-linear 
isoparametric plate element is to use the procedure commonly known as the reduced/selective 
integration technique to compute the transverse shear strain energy [38,43–46]. 

Unfortunately, there is an undesirable effect associated with this scheme, i.e., there may be 
instances where extra zero strain energy modes will appear. 

Other strategies investigated in the open literature are based on the penalty constraints [38]. 
Among these, the discrete penalty constraints, such as the discrete Kirchhoff theory (DKT) [47,48], 
where the transverse shear strain energy is neglected in the formulation and the Kirchhoff 
assumption of zero transverse shear strains are imposed at specific discrete points in the element are 
commonly used; the mixed interpolation of tensorial components (MITC) strategy [49,50], in which 
ad hoc chosen strain fields are tied to the displacement-based strains; B-bar method [51]; and F-bar 
method [52,53], which relies on the concept of deviatoric/volumetric split and the replacement of the 
compatible deformation gradient with an assumed modified counterpart. 

Another strategy is the assumed natural strain (ANS) method [49,54], which consists of 
interpolating the strain field at a set of chosen points, known as tying points, where the strain values 
coming from the quadrature points are replaced, in a weighted manner, by assumed strains. A 
synergic use of the DKT and ASN strategies can be found in References [55,56]; the discrete shear gap 
(DSG) method [57], where the discretized shear gap field is determined by the interpolation of the 
nodal shear gaps. The anisoparametric interpolation strategy was proposed by Tessler et al. [58] for 
beam finite element and by Tessler [59] for plate elements. It requires that the shape functions for the 
transverse deflection be a complete polynomial one degree higher than the shape functions used to 
interpolate the bending rotations. This element was named anisoparametric virgin element [58]. To 
achieve simple nodal patterns, the constraint condition of constant effective transverse shear strain 
along the edges of the element is imposed. This allows one to eliminate the extra degree of freedom 
in the transverse deflection. The resulting element is named constrained anisoparametric, and it is 
simple, variationally consistent, and, more interestingly, computationally efficient. 

This strategy was successfully applied to the formulation of beam, plate, and shell elements,  
[58–67]. Recently, Gherlone et al. [26] and Di Sciuva et al. [34] formulated beams elements based on 
the RZT using the constrained anisoparametric strategy. In Versino et al. [28], the approach has been 
used to formulate triangular shell elements. The numerical assessment shows how these new 
elements can alleviate the shear-locking phenomenon using the full integration (i.e., “full” Gaussian 
quadrature). 

In the present work, the attention is focused on the formulation, implementation, and numerical 
assessment of a family of C0 quadrilateral plate elements based on RZT, with special emphasis on 
their numerical performances not only for thick, but also for thin and very thin plates. Using full 
integration Gaussian quadrature scheme the stiffness and mass matrices and nodal loads vector are 
computed. This work is an extension to the plate of the approach successfully applied to the beam in 
Gherlone et al. [26] and Di Sciuva et al. [34]. 

The first two elements of the family (RZT4 and RZT8) are isoparametric quadrilateral plate 
elements. RZT4 is a 4-node element with bilinear shape functions; RZT8 is an 8-node element with 
quadratic serendipity shape functions. Each node has seven degrees of freedom (dof’s): Three 
displacements (u1, u2, w), two bending rotations (θ1, θ2), and two amplitudes of the zigzag functions, 
(ψ1, ψ2). The third one, named RZT8v (v stands for virgin), is an anisoparametric quadrilateral plate 
element, i.e., it is an RZT4 plate element for the six kinematic variables (u1, u2, θ1, θ2, ψ1, ψ2) and a 
RZT8 plate element for the transverse displacement, w. The last one, named RZT4c, is a 4-node 
anisoparametric constrained element. It is obtained from the RZT8v element by imposing the 
constraint condition of constant effective transverse shear strain along the edges of the element. 

To numerically assess the relative merits of these four C0 plate elements, in particular, of the 
RZT4c element, several cases are examined. Convergences studies and parametric investigations, 
under various boundary conditions and transverse pressure distribution, with regular and distorted 
meshes, are carried out by considering static and free vibration problems. 
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It is concluded that the bi-linear 4-node element (RZT4) has performances comparable to the 
other elements in the range of thin plates when reduced integration is adopted but presents extra 
zero strain energy modes. The serendipity 8-node element (RZT8), the virgin 8-node element 
(RZT8v), and the 4-node anisoparametric constrained element (RZT4c) show remarkable 
performance and predictive capabilities, at a reduced computational cost, for various problems, and 
the transverse shear-locking is greatly relieved without using any reduced integration schemes, for 
thin plate (aspect ratio equal to 5 × 102), at least for 8 × 8 mesh. Moreover, RZT4c has well-conditioned 
element stiffness matrix, contrary to RZT4 using reduced integration strategy, and the same 
computational cost. 

2. Theoretical Basis of Refined Zigzag Theory (RZT) and Finite Element Modeling 

We consider a rectangular multilayered flat plate of length a, width b, and total thickness h, 
assumed constant (Figure 1). It is composed of a finite number N of orthotropic elastic layers of 
uniform thickness perfectly bonded together. The material of each layer is assumed to have a plane 
of elastic symmetry parallel to the reference surface (here chosen to be the midsurface of the plate) 
and principal orthotropy directions arbitrarily oriented with respect to the laminate reference frame 
(x1, x2). 

The points of the plate are referred to an orthogonal Cartesian co-ordinate system 

{ }  ( 1,2,3)jx j= =X , where { }  ( 1, 2 )xx b b= =  is the set of in-plane co-ordinates on the reference 

plane, and 𝑥 ≡ 𝑧  is the co-ordinate normal to the reference plane (Figure 1); the origin of the 
reference frame is fixed at the center of the middle-plane of the plate. So, 𝑥 ∈ (− , + ),  𝑥 ∈ (− , + ), and 𝑥 ∈ (− , + ). 

If not otherwise stated, the superscript (k) is attached to quantities of the kth layer (k = 1, N), 
whereas the subscript (k) is attached to quantities evaluated at the kth interface (k = 1, N−1) between 
the k and (k + 1) layer. Also, we use the subscript b and t to indicate the top and bottom surfaces of 

the plate. For example, (0) 2b
hz z= =- , ( ) 2N t

hz z= =+  and ( )
( ) ( 1)  ( 1, 2, ..., )k
k kh z z k N-= - =  (see 

Figures 1,2). The symbol ,
( )( ) i
ix

¶
=

¶
  refers to the partial derivative of the function ( )  with respect 

to the coordinate ix ; a dot over a quantity refers to the partial derivative with respect to time of that 
quantity. Finally, the Einsteinian summation convention over repeated indices is adopted, with Latin 
indices ranging from 1 to 3, and Greek indices ranging from 1 to 2. 

 
Figure 1. Multilayer plate: Geometry and reference frame. 

The displacement field at time t in the RZT theory can be written as 
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is the vector of the displacement components of the generic point belonging to the plate and ( , )jx tu  
is the vector of the in-plane displacement components. As usual in the plate theory, the transverse 
displacement is assumed to be constant along the thickness, i.e., 3 3( , ) ( , ) ( , ).ju x t u x t w x tβ β= =  In the 
refined zigzag theory, the in-plane kinematics is based on the superposition of a global (G) firs-order 
kinematics (that of the FSDT plate theory) and a local (L) layer-wise correction of the in-plane 
displacements (see, Figure 2). Thus, the in-plane displacement field at time t is assumed to be (see 
Figure 2) 

1

2

( , )
( , ) ( , ) ( , )

( , )
j G L

j j j
j

u x t
x t x t x t

u x t
  = = + 
  

u u u





 (3) 

where 

1

2

( , )
( , ) ( , ) ( , )

( , )

G
jG

j G
j

u x t
x t x t z x t

u x t
  = = + 
  

u u θ

 β β  (4) 

gives the contribution, which is continuous with its first derivatives with respect to the z-coordinate 
(the global (G), contribution of the first-order kinematics) and 

( )
1( ) ( )

( )
2

( , )
( , ) ( ) ( , )

( , )

L k
jL k k

j L k
j

u x t
x t z x t

u x t
φ

  = = 
  

u ψ

 β  (5) 

gives the local (L), contribution to the in-plane displacement, which is continuous with respect to z, 
but with jumps in the first derivative at the interfaces between adjacent layers. In Equations (4) and 
(5), 

1 1 1 ( )

2 2 2

( )
1

( )
2

( , ) ( , ) ( , ) ( ) 0
( , ) ,   ( , ) , ( , ) ,   

( , ) ( , ) ( , ) 0 ( )

k

k
ku x t x t x t z

x t x t x t
u x t x t x t z

φ
            = = = =       
            

u θ    ψβ β β
β β β

β β β

ψ
ψ φθ

φθ
 (6) 

where 𝑢  and 𝑢   are the displacements along the 𝑥 − and 𝑥 − axis of a point belonging to the 
middle plane of the plate; 𝜃   and 𝜃  are the bending rotation of the normal to the middle surface 
along the directions +𝑥  and −𝑥 , respectively; 𝜓  and 𝜓  represent the spatial amplitudes of the 
zigzag functions 𝜙( ) and 𝜙( ), respectively. It should be noted that FSDT is a special case of the 
RZT, i.e., RZT reduces to FSDT when 𝒖 ( ) = 𝟎 (see Equations (1) and (2)). By taking into account 
these definitions, in Equation (1) 
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For the 𝑘th layer of thickness ℎ( ), the refined zigzag functions have the following expressions 
[34]: 
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  (𝑘 = 1, … , 𝑁) (9) 

where 

( )

( ) ( )
1

1 1 k
t

k
b

N z

kz
kj jj

dz
G h Q=

=        𝑗 = 4,5   (10) 

and 𝑄( ) is the transformed reduced transverse shear stiffness modulus of the kth layer (see Equation 
(22)). 

Equations (9) and (10) show that the refined zigzag functions 𝜙( ) are a-priori known piecewise 
continuous functions of z, depend only on the thickness and transverse shear mechanical properties 
of the constituent layers, and vanish on the bottom 𝑧 = −  and top 𝑧 = +  surfaces of the plate 
(see Figure 2). 

In Equation (8) and in the body of the paper, I stands for the identity matrix and 0 for the null 
rectangular matrix, which dimensions follow from the rule of the matrix product and partitioning. 

 

Figure 2. Contributions to the in plane refined zigzag theory (RZT) kinematics for a three-layered 
laminate. 
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2.1. Virtual Work Principle and Discretized Equations of Motion 

The discretized equations of motion are obtained via the dynamic version of the principle of 
virtual displacements (D’Alembert principle) 

ext inU W W− =δ δ δ  (11) 

where (δ is the variational operator) Uδ  is the virtual variation of the work done by the internal 
forces (stress); inWδ  is the virtual variation of the work done by the inertia forces, and exWδ  is the 
virtual variation of the work done by the applied forces. 

2.1.1. Virtual Variation of the Strain Energy, Uδ  

The virtual variation of the work done by the internal stresses (strain energy) reads 

2 2
1 2

2 2

a b
T

a b
U dx dxδ

+ +

− −
=   ε σ δ  (12) 

with 

3

3

( )

3( 1)
1

( )
−

=

• = •
N x s

x s
s

dx .  

In Equation (12), σ  and ε  are the vectors of stress and linearized strain components, 
respectively. By taking into account the assumed displacement field, Equation (1), and assuming, as 
usual in plate theory, 33 0σ = , yields 

( )2 2
1 2

2 2
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U dx dxεδ δ

+ +

− −
=   d R∇  (13) 

where 

( )T k
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is the vector of the stress and moment stress resultants for unit length, 
( ) T ( )T T T T Tφ φ =  R N M M T T (15) 
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(18) 
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The constitutive equations for a generally orthotropic layer are 

( ) ( ) ( )k k k
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In Equation (22), 𝑄( ) (i, j = 1, 2, 6) and 𝑄( ) (i, j = 4, 5) are the plane stress transformed stiffness 
moduli of the kth layer, that are functions of the z-coordinate. Substituting Equations (20) and (22) 
into Equations (16) and (17) yields the plate constitutive equations in terms of the generalized 
displacements 

( )=R S dε∇ (23) 

with 

T p T T
T

t
t t
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t t

φ
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φ φ
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(25) 

2.1.2. Virtual Variation of the Inertia Forces, inWδ  

The virtual variation of the work done by the inertia forces reads 

2 2
1 2

2 2
 

a b
T

in a b
W dx dxδ ρ δ

+ +

− −
= −  d du   (26) 

Substituting Equation (1) into Equation (26) yields 
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2.1.3. Virtual Variation of the Work of Applied Forces, exWδ  
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 (30) 

In writing Equation (30), it is assumed that the plate is subjected to a transverse pressure zq  
applied on the top surface of the plate, and to boundary transverse loads per unit length 3  ( 1, 2)=Tα α  
applied on the edge parallel to 𝑥 -axis. 

Obviously, 

0exW =δ  (31) 

for free vibration. 
In the previous equations, 3( )xρ  is the material mass density and an overbar indicates the 

prescribed value of a quantity. The other symbols have been defined above. 
Due to difficulty to obtain closed form solutions, we search for an approximate solution. 

3. Finite Element Formulation 

As is well known, the accuracy of the finite element solution depends on the ability of the 
assumed shape functions to accurately model the deformation modes of the structure. 

In the following sections, several C0 quadrilateral plate elements derived using the displacement 
approach in conjunction with the RZT summarized in the previous Section will be described. 

3.1. General Equation 

Let us consider a general quadrilateral plate element with NN surrounding nodes. A generic 8-
node (NN = 8) quadrilateral plate element is shown in Figure 3. The reference plane is the physical 
plane (𝑥 , 𝑥 ). From a computational point of view, each element can be mapped in a conventional 
square element on the natural plane (𝜉, 𝜂) where (𝜉, 𝜂) ∈ (−1, 1), thus the numerical integration 
using the Gaussian quadrature can be easily implemented. 
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Figure 3. Eight-node quadrilateral plate element in the physical plane (a) and natural plane (b). 

As usual in the finite element method, let us expand the vector of unknown generalized 
displacements (Equation (7)) of points belonging to element e in the form 

( ) ( ) ( )( , ; ) ( , ) ( )e e et tξ η ξ η=d N q  (32) 

where ( ) ( )e tq  is the vector of the nodal degrees-of-freedom of the element e and ( ) ( , )e ξ ηN  is the 
matrix of the element shape functions in the natural co-ordinates ( , )ξ η . 

In expanded format, 

( )( ) ( ) ( )

( ) (0) ( ) ( ) ( ) ( )

( ) ( ) ( )

( , )

ee e e
m m m

e e e e e
w w

e e e
r r r

wξ η
     
     = = =    
    
     

d N 0 0 q
d 0 N 0 q N q

d 0 0 N q
 (33) 

( ) ( ) ( ) ( )
( ) ( ) ( ) (0) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

;   ;   
e e e e
ux uxe e e e e e e e

m m m w w r r re e e e
uy uy

e e
x xe e e

e e
y y

w θ θ

ψ ψ

θ θ
θ θ θ

θ θ

          = = = = =      
            

    = =    
      

N 0 q N 0 q
d N q N q d N q

0 N q 0 N q

N 0 q
d N q

0 N q

( ) ( )
( ) ( ) ( )

( ) ( );   
e e
x xe e e

e e
y y

ψ ψ
ψ ψ ψ

ψ ψ

    = =    
      

N 0 q
d N q

0 N q

. (34) 

In Equation (33), ( ) ( )  ( 1, 2, , 1, 2, 1, 2)e
i t i u u w θ θ ψ ψ≡q  is the vector of the nodal dof’s of the 

generalized displacement “i” and ( ) ( , )e
i ξ ηN  is the matrix of the element shape functions for the same 

generalized displacement. 
Substituting Equation (32) into Equations (13) and (27) and taking into account Equation (23) 

yields 

( ) ( ) ( ) ( )  e e T e eUδ δ= q K q ; ( ) ( ) ( ) ( )e e T e e
inW = − q M qδ δ  (35) 

with 

( ) ( )1 1( ) ( ) ( ) ( )

1 1

Te e e e Jd dε ε ξ η
+ +

− −
=  K N S N∇ ∇ ; 1 1( ) ( ) ( ) ( )

1 1

e e T e e dJdξ η
+ +

− −
=  M N m N . (36) 

Further (see, Equation (30)), 
( ) ( ) ( )e e T e
exW = q Pδ δ  (37) 

where 
( )eP = 0  (38) 

for free vibration; 
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1 1( ) ( ) ( )
3 31 1

  0 0 0 0 0 0 0 0 0 0 0 0
p

e T e ep Jd Td d
+ +

− −
Γ

  = + Γ     P N Nξ η  (39) 

where 

( )

2( )
3 23 1 1 23 1 1 1

2

2
13 2 2 13 2 2 2

2

23 231

( , ) ( , ) ( , ) ( , )
2 2 2 2

                 ( , ) ( , ) ( , ) ( , )
2 2 2 2

                ( , 1) ( , 1) ( ,1) ( ,1)
2

p

a
e w w

a

b
w w

b

w w

b b b bT d T x x T x x dx

a a a aT x x T x x dx

a T T

+

−
Γ

+

−

+

−

 Γ = − − + + 
 

 + − − + 
 

= − − +

 



N N N

N N

N Nξ ξ ξ ξ

( )

1

1

13 131
                   ( 1, ) ( 1, ) (1, ) (1, )

2
w w

d

b T T d
+

−

+

+ − − +



 N N

ξ

η η η η η

 (40) 

for bending. 
In Equations (26) and (39), J  is the determinant of the Jacobian matrix of the co-ordinate 

transformation from the physical plane to the natural plane. 

3.2. Shape Functions and Constrained Technique 

From the variational statement used to derive the element governing equation, Equation (11), 
only the first derivatives of the kinematic variables appear in the virtual variation of the strain energy 
expression, Equation (13). Like FSDT, in formulating finite elements, refined zigzag theory (RZT) 
requires only C0 shape functions, which makes it attractive in formulating beams, plate, and shell 
elements [38]. 

In this Section, the attention is focused on the formulation of the shape functions of a family of 
C0 quadrilateral plate element based on RZT. 

Table 1 summarizes the topology and the shape functions of the developed family of C0 
quadrilateral plate elements. The first two (RZT4 and RZT8) are isoparametric quadrilateral plate 
elements. RZT4 is a 4-node element with bilinear shape functions; RZT8 is an 8-node element with 
quadratic serendipity shape functions. Each node has seven dof’s: Three displacements (u1, u2, w), 
two bending rotations (θ1, θ2), and two amplitudes of the zigzag functions, (ψ1, ψ2) (see, Figure 1). 
For these elements, the same set of shape functions is used for approximating all the generalized 
displacements vector, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2
e e e e e e e
u u w θ θ ψ ψ= = = = = =N N N N N N N  (41) 

As well known, a drawback of low-order C0 finite elements (bi-linear shape functions for both 
deflection and bending rotation) coupled with the full Gaussian quadrature to compute exactly the 
integrals of the element matrices, is the shear-locking effect. To eliminate shear-locking, reduced 
integration strategy is often used. Unfortunately, there is an undesirable effect associated with this 
scheme, i.e., there may be instances where extra zero strain energy modes will appear. 

Tessler and Dong [58], for the Timoshenko beam element, identified the reason of shear-locking 
effect in the Kirchhoff constraints of the shear strain measure for very thin structures. As a possible 
solution, they proposed to use the anisoparametric interpolation, where the deflection w is 
approximated by a polynomial with one order of degree higher than the others used for the 
remaining kinematic variable (bending rotation, θ). These elements, named Virgin elements by 
Tessler and Dong [58], have one extra node in the middle beam point having only the w-dof. This 
approach has been extensively used to formulate C0 beam elements based on the RZT in Gherlone et 
al. [26] and Di Sciuva et al. [34]. When the anisotropic interpolation scheme is applied to quadrilateral 
plate elements, the shape functions are bilinear for all kinematic variables except for the transverse 
displacement, for which the 8-node serendipity shape functions are used, i.e., the extra node in the 
middle point of each edges have only the w-dof (see, Table 1 and Figure 4). This plate element is 
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named RZT8v (v stands for virgin) in Table 1: It is an RZT4 plate element for the six kinematic 
variables (u1, u2, θ1, θ 2, ψ1, ψ2) and an RZT8 plate element for the transverse displacement, w. 
Therefore, the shape function matrices for the RZT8v element read (see Table 1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2 3 4

e e e e e e e
L u u L L L Lθ θ ψ ψ= = = = = =  = N N N N N N N  (42) 

( ) ( ) ( )
1 2 3 4 5 6 7 8

( ) ( )
1 2 5 63 74 8;         

e e e
w wr wo

e e
w wor

N N N N N N N N

P P P P P P P P

 = =    
= =      

N N N

N N
. (43) 

The vector of the nodal transverse displacements can be split in two subvectors 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6 7 8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 5 6 7 84   ;       

e T e e e e e e e e e T e T
w wr wo

e T e e e e e T e e e e
wr wo

w w w w w w w w

w w w w w w w w

   = =   
   = =   

q q q

q q
. (44) 

Constrained Technique 

The last one, named RZT4c in Table 1, is a 4-node anisoparametric constrained element (RZT4c). 
It is obtained from the RZT8v element applying the constrained-edge-strategy, as suggested by 
Tessler and Dong [58] and Tessler and Hughes [60,62], i.e., by imposing the constraint condition of 
constant effective transverse shear strain along the edges of the element. 

For the FSDT, it is possible to refer either to the transverse shear strains (𝛾  and 𝛾 ) or to the 
transverse shear stress resultants (𝑇  and 𝑇 ) using the following relations. 

Table 1. The family of C0 quadrilateral plate elements formulated and assessed in this study. 
Acronyms, topology, degrees of freedom (dof’s), and shape functions. 

Element 
Type 

Nodal 

Configuration 

Degrees of 

Freedom 
Shape Functions Note 

RZT4 

 

28 ( ) ( ), ,   ( 1 4)i iN L i= = ÷ξ η ξ η  - 

RZT8 

 

56 ( ) ( ), ,   ( =1 8)w
iiN P i= ÷ξ η ξ η  - 

RZT8v 

 

32 

( ) ( ) ( )
( )

  ( =1 4)

,

,

,

,

, , ,

iid

x y x y x x

N L i

d u u

= ÷

≡

ξ η

θ θ ψ

η

ψ

ξ
 

( ) ( ), ,   ( =1 8)w
iiN P i= ÷ξ η ξ η  

- 

RZT4c 

 

28 

( ) ( ) ( )
( )1 2 1 2 1 2

  ( =1 4)

, , , , ,

, ,id i
N L i

d u u

= ÷

≡ θ θ ψ

ξ η η

ψ

ξ

 

+ 

1 2 1 2
, , ,θ θ ψ ψS S S S  see Equations (63) 

and (64) 

3, 0s sγ =
 

(see, 

Equation 

(46)) 
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( ) ( )( )( ) ( )1 1 1  ( 1 4)
4

, =i i
iL i= + + ÷ξ η ξ ξ η η  

( ) ( )

( ) ( ) 2 ( ) 2 ( ) ( )2 ( )2

2 ( ) ( )2 ( )2 2 ( ) ( )2 ( )2

1( , ) (1 )(1 ) (1 )(1 ) (1 )(1 )
4
1               (1 )(1 ) 1 (1 )(1 ) 1  ( =1 8)    
2

i i i i i i
i

i i i i i i

P

i

 = + + − − + − − + + 

 + − + − + − + − ÷ 

ξ η ξ ξ η η ξ η η η ξ ξ ξ η

ξ η η ξ η η ξ ξ η ξ

 

 

Figure 4. Eight-node virgin quadrilateral plate element. Geometry, physical co-ordinates (x1, x2), and 
natural co-ordinates (ξ, η). Boundary co-ordinate system (n, s). Definition of the parameters aij and bij 
entering in Equations (56) and (63) and the positive rotations (θ1, θ2) and (θn, θs). 

( ) ( )

( ) ( )

( ) 1
1 44 ,1 1 13 ,1 1

44

( )
55 ,2 23

13

2
2 23 ,

5
2 22

5

k

k

VT A w w
A
VT A w w
A

= = +  = = +

= = +  = = +

τ θ γ θ

τ θ γ θ
 (45) 

Considering the RZT, the previous relations (Equation (45)) have an additional term (see 
Equations (17), (24), and (25)) 

( ) ( )

( ) ( )

( ) 1
1 44 ,1 1 44 1 1

2

3 ,1 1 1
44

( )
55 ,2 23 ,2 2

55

13

2
2 3 2 55 2 2

k eff
L

k eff
T

TT A w B w r
A
TT A w B w r
A

φ

φ

τ θ ψ γ θ ψ

τ θ ψ γ θ ψ

= = + +  = = + +

= = + +  = = + +
 

(46) 

where 

( ) ( ) ( ) ( )
1 13 5 2344

( ) ( )
3

25

44 551 23

;          
k k k

kL

k

k T

G
r

A
B
AG G

GB r
φφ β β

= = = = . (47) 

It has been shown by Gherlone et al. [26] and by Di Sciuva et al. [34] that these two non-
dimensional transverse-shear-parameters have a range of values , ( 1, 0)L Tr r ∈ − , with 𝑟 , 𝑟 = 0 for 
homogeneous material properties through-the-thickness (when 𝛽( ) = 0 𝛼 = 1,2), and 𝑟 , 𝑟 → −1 
for highly heterogeneous cross-sections, such as laminated composites and sandwiches. As said, to 
generate a constrained element from the virgin type element defined before, following Tessler and 
Dong [58] and Tessler and Hughes [60,62], we enforce along the edges of the element the following 
condition 

( )

3, 0
eeff

s sγ =  (48) 
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i.e., constant effective transverse shear strain along the edges of the element. The transverse shear 
deformation along the edge can be expressed as 

3 ,
eff
s s n nw rγ θ ψ+ +=  (49) 

s is the coordinate running along an element edge; 𝜃 , 𝜓  are the tangential edge rotation and the 
tangential zigzag amplitude, respectively; see Figure 5. 

1 212 sin ;   cos cos sin  n n= =+ +θ θ α θ α ψ ψ α ψ α  (50) 𝛼 is the angle between the direction s and 𝑥  axis, 

3 , 211 2 sicos cos sinneff
s s L Tr rw + ++ +=γ θ α θ α ψ α ψ α  (51) 

Therefore, constraint (48) reads 

1,3, , 1, 2 , 2 ,scos cos s 0ni ineff
s s ss s s L Ts sr rw + + + == +γ θ α θ α ψ α ψ α  (52) 

The edge-coordinate is 𝒔 ∈ (− 𝒍𝒊𝒋𝟐 , 𝒍𝒊𝒋𝟐 ) where 𝒍𝒊𝒋 is the length of the edge defined by nodes i an j 
(see Figure 5). In the natural plane, the non-dimensional coordinate is 𝝃 or 𝜼, in particular for the 
edges along the 𝝃 direction 𝝃 = 𝟐𝒔𝒍𝒊𝒋 and for the edges along the 𝜼 direction 𝜼 = 𝟐𝒔𝒍𝒊𝒋. 

 

Figure 5. Nodal dof’s (transverse deflection, bending rotations, and zigzag amplitudes) and edge co-
ordinate, s. 

Imposing constraint Equation (52) on the four edges of the plate elements yields the following 

set of four equations with 
( )
wo
eq  as unknown 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Te e e e e T e T e T e T e T
wo wr x y x ywo wr r

    =     B q B B q q q q qθ θ ψ ψ  (53) 

where 

( ) ( ) ( ) ( ) ( )
, , , ,1 1 1 1

1
2

T
e e e e e
wo wo wo wo wo=− =+ =− =+

 = −   
B N N N Nξξ ξξ ηη ηηη η ξ ξ

 (54) 

( ) ( ) ( ) ( ) ( )
, , , ,1 1 1 1

1
2

T
e e e e e
wr wr wr wr wr=− =+ =− =+

 =   
B N N N Nξξ ξξ ηη ηηη η ξ ξ

 (55) 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )12 12 12 12

, , , ,
1 1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,
1 1 1 1( )

( ) ( ) (
( ) ( )41 41 41

, ,

34 34 34 3

1

4

1

4 4 4 4

4 4 4 4

4 4

e e e e
e e e e
L L L L T L

e e e e
e e e e
L L L L T L

e
r e e

e e
L L L

b b

b

a ar r

a a b
r r

a b ar

=− =− =− =−

=+ =+ =+ =+

=− =−

=

N N N N

N N N N

B
N N

ξ ξ ξ ξ
η η η η

ξ ξ ξ ξ
η η η η

η η
ξ ξ

) ( )
( ) ( )41

, ,
1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )23 23 23 23

, , , ,
1 1 1 1

4 4

4 4 4 4

e e
e e
L T L

e e e e
e e e e
L L L L T L

r

a a
r r

b

b b
=− =−

=+ =+ =+ =+

 
 
 
 
 
 
 
 
 
 
 
 
 
 

N N

N N N N

η η
ξ ξ

η η η η
ξ ξ ξ ξ

 (56) 

where (Figure 5) 

( ) ( ) ( ) ( )
12 2 1 1
( ) ( ) ( ) ( )
1

23 3 2 34 3 4 41 4

23 3 2 34 3 4 12 1 42 14

;      ;      ;      ;
;      ;      ;      .

e e e e

e e e e

a x x a x x a x x a x x
b y y b y y b y y b y y

= − = − = − = −

= − = − = − = −
 (57) 

are the projections onto the axes of the edge’s lengths (see Figure 5). 
Solving Equation (53) for the unknown ( )e

woq  gives 

( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 

Te e e e e e T e T e T e T e T
wo wo wr wo r wr

− −     =     q B B B B q q q q qθ θ ψ ψ  (58) 

Finally, substituting Equation (58) into Equation (44) yields 

( )
( ) ( ) ( ) ( ) ( )

( ) 1 ( ) ( ) 1 ( )( )

e
e e T e T e T e Twr
wr x y x ye e e ee

wo wr wo rwo
− −

       =          

I 0q q q q q q
B B B Bq θ θ ψ ψ . (59) 

Therefore, the interpolation for the transverse deflection reduces to 

( )
( ) ( ) ( )

( )

( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) (
1 1

)
2

(
2

) ( )     

e
e e e wr

wr e
wo

e e e e e e e e T e T e T e T e T
wr wo wr wo r

wo

wo wo wr

w

θ θ ψ ψ
− −

   =      
    = +    

qN N
q

N N B B N B B q q q q q
. (60) 

It can be shown that the first term of row matrix in Equation (60) reduces to 
( ) ( ) ( ) 1 ( ) ( )e e e e e
wr woo Lwrw

−+ =N N B B N  (61) 

and that the second term can be rewritten as follows 

( ) ( ) 1 ( )
2 1 21

e e e
wo rwo

−  =  N B B S S S Sθ θ ψ ψ  (62) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 12 5 41 8 12 5 23 6 23 6 34 7 34 7 41 8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 5 41 8 12 5 23 6 23 6 34 7 34 7 41 8

( ) ( )
12

2

51 41

     

     

    

1
8
1
8
1
8

 

e e e e e e e e

e e e e e e e e

e e
L

a N a N a N a N a N a N a N

b N b N b N b N b N b N b b N

a N

N

a N

a N

r

 = − − − + + 

 = − − − + − + 

= − −

−S

S

S

θ

ψ

θ

( ) ( ) ( ) ( ) ( ) ( )
8 12 5 23 6 23 6 34 7 34 7 41 8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 5 41 8 12 5 23 6 23 6 34 7 34 7 41 82  1

8
   

e e e e e e

e e e e e e e e
T

a N a N a N a N a N

r b N b N b N b N b N b N b b N

a N

N

 − + + 

 = − − − + − +

−

 Sψ

. (63) 

Thus, the RZT4c element has only the four corner nodes with the shape functions matrix 
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2 11
( )

2

L

L

L
e

L

L

L

L

 
 
 
 
 =  
 
 
 
 
 

N 0 0 0 0 0 0
0 N 0 0 0 0 0
0 0 N S S S S

N 0 0 0 N 0 0 0
0 0 0 0 N 0 0
0 0 0 0 0 N 0
0 0 0 0 0 0 N

θ ψ ψθ

 (64)  

The stiffness and mass matrices and the nodal force vector of the RZT4c, with respect to the 
RZT4 and RZT8, must be taken into account of the new correction introduced with the Equation (64). 
Substituting Equation (42) into Equation (34) and comparing the result with Equation (64), it is 
evident that RZT4c element has the same topology of RZT4 bilinear element (28 dof’s), but has better 
behaviour in thin regime, due to the presence of the iS  matrices in the third row, alleviating the 
shear locking problem. 

4. Numerical Results 

In order to assess the relative merits (convergence characteristics and numerical accuracy) of the 
developed family of C0 quadrilateral plate elements when applied to the linear elastodynamic 
analysis of thick, thin, and very thin laminated composite and sandwich plates, several numerical 
tests have been carried out. The investigation was conducted on sample problems for which 
analytical solutions are available. 

The static and free vibration behaviour of laminated composite and sandwich square plates 
simply supported on all edges is investigated, by comparing the global and local behaviour as 
estimated by Finite Element Method (FEM)with the analytical solutions. The results presented in this 

Section refer to centre non-dimensional deflection, 
3

2
4

0

100 h Ew w
q a

= , and to the undamped frequency 

parameter, 
2

2

af f
h E

ρ= . 

The non-dimensional in-plane displacements and stresses are defined as follows ( 0q  is the 
maximum intensity of the applied transverse pressure) 

3

1 1
2
4

0

100 , 0,
2

h E au u z
q a

 = − 
 

; ( ) ( ) ( )( )11

2

1 22 2 221
0

, 0, 0, , 0, 0,h z z
q a

σσ σσ = ;.
0

13 13 , 0,
2

h a z
q a

σ σ  = − 
 

 

Table 2 gives the mechanical characteristics and material density of the unidirectional layers 
constituting the laminated composite and sandwich plates investigated in this study, whose 
acronyms (S stands for Sandwich, L for Laminate composite, and I for Isotropic), number and 
thickness of the layers, lamina orientation of the principal material direction 1, and material of the 
single layer, are given in Table 3. In order to compare results from analytical computations and those 
coming from the finite elements, some results are given using the following ratios: 

;           FEM FEM
w f

analytical analytical

wr r f
fw

= =  

where (.)FEM and (.)analytical stand for the FEM solution and the analytical one, respectively. 

4.1. RZT Analytical Performances 

The accuracy and reliability of the RZT plate theory in predicting the static, dynamic, and 
buckling behaviour of thick laminated composite and sandwich beams, plates, and shells have been 
assessed elsewhere [21–24,35,36]. Thus, no special emphasis will be given here to analytical results. 

We consider a symmetric thick (span-to-thickness ratio, a/h = 6) sandwich square plate with thin 
two-layered cross-ply face-sheets (S) simply supported on all edges, under bi-sinusoidal transverse 
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pressure of intensity 0q . As an example of the accuracy of RZT model, Figure 6 shows the thickness-
wise distribution of the non-dimensional in-plane displacement 𝑢 , maximum transverse 
displacement, 𝑢 , bending stresses, 𝜎  and 𝜎 , and transverse shear stress, 𝜎 . For the purpose 
of comparison, the exact elasticity solution obtained using Pagano approach [68] is also plotted. Note 
that transverse shear stress distribution along the thickness is obtained by integration of the local 3D 
elasticity equilibrium equations in the absence of body forces. Notice the great accuracy of the RZT. 
It is also important to remark that in RZT no shear correction factor is used, contrary to the FSDT. 

Table 2. Mechanical characteristics and material density of the unidirectional layers. 

Material 
Name 

𝑬𝟏 (𝐌𝐏𝐚) 𝑬𝟐 (𝐌𝐏𝐚) 𝑬𝟑 (𝐌𝐏𝐚) 𝑮𝟏𝟐 (𝐌𝐏𝐚) 𝑮𝟏𝟑(𝐌𝐏𝐚) 𝑮𝟐𝟑 (𝐌𝐏𝐚) 𝝂𝟏𝟐 𝝂𝟏𝟑 𝝂𝟐𝟑 𝝆 (𝐊𝐠𝐦𝟑) 

A 73,000 73,000 73,000 28,077 28,077 28,077 0.30 0.30 0.30 2700 

CE 110,000 7857 7857 3292 3293 1292 0.33 0.33 0.49 1600 

R 40.3 40.3 40.3 12.4 12.4 12.4 0.30 0.30 0.30 60 

Table 3. Laminate composites and sandwich plates. 

Laminate Name h(k)/h Lamina Orientation Materials 

I 1 0 A 

S 0.05/0.05/0.8/0.05/0.05 0/90/core/90/0 CE/CE/R/CE/CE 

L 0.2/0.2/0.2/0.2/0.2 0/90/0/90/0 CE/CE/CE/CE/CE 
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Figure 6. Bending of a square sandwich plate (S), simply supported on all edges under transverse 
sinusoidal pressure (span-to-thickness ratio, a/h = 6). (a) Normalized in-plane displacement (𝑢 ); (b) 
Normalized transverse displacement (𝑤); (c) Normalized in-plane stress (𝜎 ); (d) Normalized in-
plane stress (𝜎 ); (e) Normalized transverse shear stress (𝜎 ). 

4.2. Convergence Analysis 

In this Section, the static convergence characteristic of each element of the family (RZT4, RZT8, 
RZT8v, and RZT4c) is investigated. 

Due to geometry, boundary conditions, and loading symmetry with respect to the reference 
axes, if not otherwise specified, all FEM results have been obtained meshing only one-quarter of the 
plate with a regular mesh, i.e., all the elements in the physical plane are square elements (see 
Subsection 4.5). Thus, the number of elements indicated below refers to the number of elements along 
the side of one-quarter of the full-plate. 

Thick (a/h = 10) and very thin (a/h = 103) square plates, simply supported on all edges, under 
uniform pressure of intensity 0q , are considered for this analysis: A sandwich plate with thin two-
layered cross-ply face-sheet (S), a five-layered cross-ply plate (L), and an isotropic plate (I). The 
reference (analytical) solutions (Table 4) have been obtained using the Ritz method [69] for the 
deflection. For the implementation and the convergence analysis of this approximate method, see 
Reference [69]. In particular, as it is shown in Reference [69], 10 orthogonal polynomials in both x1 
and x2 directions are enough to assure the converged Ritz solution. It is clear that when the numerical 
analyses are performed using the RZT (analytical or with FEM) for the isotropic plate (I), the zigzag 
terms vanish. Thus, the finite elements formulated on the RZT, for this particular case, coincide with 
the FSDT ones when the classical shear correction factor is equal to 1 (k2 = 1) and these results are 
quoted with FSDT4, FSDT8, FSDT8v, and FSDT4c*. 

In the RZT4c element, two non-dimensional transverse-shear-parameters (𝑟 , 𝑟 ) appear. For 
this element, three cases are considered: In the first one, 𝑟  and 𝑟  are computed as defined by 
Equation (47) and results are quoted with the label RZT4c ; in the second one, only for the sandwich 
(S) and laminated (L) plates, we assume the material highly heterogeneous with 𝑟 = 𝑟 = −1 and 
results are quoted with the label RZT4c ; in the third one, we assume 𝑟 = 𝑟 = 0, such as the isotropic 
case (I), also for the sandwich (S) and laminate (L) plates and results are quoted with the label RZT4c∗. 

Table 4. Analytical solutions for the non-dimensional maximum deflection under uniform pressure 
square thick (a/h = 10) and very thin (a/h = 103) plates, simply supported on all edges. 

Span-to-Thickness (a/h = 10) (a/h = 103) 
Analytical Solution 𝒘 𝒘 

I 4.4361 4.6276 
L 1.5120 1.1201 
S 46.9567 2.3082 
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All the FEM results have been obtained using full integration strategy. 
Examination of the results plotted in Figures 7–9 reveals that the convergence for the most of all 

elements is monotonic in character, with the exception of the constrained element when used in very 
thin regime (a/h = 103) and coarse meshes (2 × 2 or 4 × 4). Generally, the convergence rates are different. 

  
Figure 7. Convergence analysis of the Finite Element Method (FEM) solution for the isotropic plate 
(I). Regular mesh. 

  

Figure 8. Convergence analysis of the FEM solution for the laminated plate (L). Regular mesh. 

Figure 9. Convergence analysis of the FEM solution for the sandwich plate (S). Regular mesh. 
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Among the four elements, RZT8 is the element with the best convergence rate, followed by 
RZT8v and RZT4c elements (with different values for non-dimensional transverse-shear-parameters) 
that are very close to each other and to RZT8 element. On the other hand, RZT8 element has a large 
number of nodes when compared to the other elements (see Table 5), so its use in the nonlinear static 
and transient dynamic and failure analyses can result in a very high computational cost, also if 
meshes with few elements are used. RZT8v has bilinear shape functions for all kinematic variables, 
with the exception of the deflection, for which quadratic serendipity shape functions are used. 
Therefore, the number of degrees of freedom is less than the RZT8 element, but higher than RZT4 
and RZT4c elements (see Table 5). RZT4c has the same number of nodes as RZT4, but its convergence 
characteristics are comparable to that RZT8v element. Only the classical four-node RZT4 with bilinear 
shape functions has a low convergence rate for maximum deflection. Considering the isotropic case 
(I) the FSDT8v and FSDT4c elements are equivalent in thick and very thin regimes. Except for the 
RZT4 element, for the 16x16 mesh, the error in the FEM results is not higher than 3%. The convergence 
rates of RZT4c are very similar to the RZT8v, without a great influence of the non-dimensional 
transverse-shear-parameters (𝑟 , 𝑟 ). In particular, this element guarantees the same accurate results 
of the RZT8v with the same dof’s of the RZT4 element. Due to this, the RZT4c element is very 
interesting from a computational point of view. In Table 5 are reported the total dof’s for each mesh 
discretization using the various elements: It appears that the RZT4c gives the best compromise 
between accuracy and low computational cost. 

Thus, in the following analyses, if not otherwise specified, an 8 × 8 regular mesh for a quarter of 
plate is used. 

Table 5. Dof’s for the various mesh discretization and for each element. 

Number of elements RZT4 RZT8 RZT8v RZT4c 

2 × 2 63 147 75 63 

4 × 4 175 455 215 175 

8 × 8 567 1575 711 567 

16 × 16 2023 5831 2567 2023 

32 × 32 7623 22,407 9735 7623 

4.3. Effect of Non-Dimensional Transverse Shear Parameters 

In the derivation of the RZT4c element from the RZT8v one, there is an element-material 
dependency by the presence in the element formulation of the two non-dimensional transverse shear 
parameters 𝑟  and 𝑟 . In the previous figures (Figures 7–9), the effect of these parameters is shown 
in the convergence results. For the isotropic case, these parameters are no relevant because there is 
not the zigzag effect. For the cross-ply (L) and sandwich (S) plates, this effect become important in 
the FEM results. When these parameters are enforced to be 𝑟 = 𝑟 = 0, such as the isotropic case, 
also for the non-homogeneous case, the convergence to the analytical solution is lower than the other 
cases. This condition is not the best to characterize this element. 

Now we consider the RZT4c  and RZT4c  cases. Table 6 shows the values for 𝑟  and 𝑟  
computed for the cross-ply (L) and the sandwich (S). 

Table 6. 𝑟  and 𝑟  values for cross-ply (L) and sandwich (S). 

Laminate 𝒓𝑳 𝒓𝑻 

L –0.1841 –0.1841 

S –0.9667 –0.9667 
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The approximation, used for RZT4c  cases, is good if we consider the sandwich case, but some 
differences are present for the cross-ply plate. However, if we consider the results for the cross-ply, 
there are very few differences between considering 𝑟  and 𝑟  exactly computed or use  𝑟 = 𝑟 = −1 . Furthermore, it is preferable not having a material dependency in the element 
transverse shear strains. This could be a problem if we consider two or more adjacent elements where 
the material properties are different from one element to another, because at that point there will be 
two different transverse shear strains. 

By taking into consideration these aspects and the good accuracy of the results for the RZT4c  
case, in the remaining part of the paper, the RZT4c element is used only considering the case  𝑟 = 𝑟 = −1. 

4.4. Shear Locking Phenomenon 

In order to assess the behaviour of the four plate elements with respect to the shear-locking 
effect, Figure 10 shows results for the maximum deflection (rw) ratio as a function of the span-to-
thickness ratio, a/h, for a simply supported five-layered symmetric cross-ply plate (L) under bi-
sinusoidal transverse pressure, considering a 4 × 4 and an 8 × 8 mesh. The results quoted as RZT4 
refer to the 4-node quadrilateral element using full integration. 

  
  

Figure 10. Shear-locking effect analysis. Laminate L, (a) mesh 4 × 4, and (b) mesh 8 × 8 of a quarter of 
the plate. 

As is well known, the shear-locking effect is pathological for the full integrated RZT4 element—
as is well known, the use of stabilisation techniques could avoid the appearance of hourglass modes; 
other code-specific techniques that have been also proposed (typically based on EAS or ANS), do not 
introduce any spurious mode, for both 4 × 4 and 8 × 8 mesh patterns. RZT4 is suitable only for the 
analysis of thick and moderately thick plates. RZT8 shows very good performances over a very large 
range of span-to-thickness ratios (from 6 to 103), with some initial effects of transverse shear locking 
appearing for very thin plate (a/h = 103). A good compromise between the accuracy of the RZT8 and 
the computational efficiency of the classical four node appears to be RZT8v. RZT4c perform very 
similar to RZT8v, but with a lower computational cost, equal to that of RZT4 element. 

As we said, in the literature and in the FEM commercial codes, the shear locking effect is 
typically addressed using the reduced integration technique when computing the shear terms in the 
stiffness matrix. 

Figure 11 shows the behaviour of the RTZ4 element using full and reduced integration. It is 
easily concluded that the reduced integration strategy improves the performances of RTZ4. Yet, one 
typical problem affecting the reduced integration technique is the singularity of the stiffness matrix 
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for very thin plate. This leads to the appearance of extra zero strain energy modes (called spurious 
mode), the so-called hourglass effect. 

 
Figure 11. Shear-locking effect analysis for RZT4 element using full and reduced integration. 
Laminate L. Mesh 8 × 8 of a quarter of the plate. 

Table 7 gives the number of rigid body modes for the various plate elements. As expected, we 
have three rigid translations along the axes and three rigid rotation around the axes for all the 
elements, with the exception of the RZT4 with reduced integration, where an extra zero-energy mode 
(spurious mode) appears. The other elements, RZT8, RZT8v, and RZT4c, are free from this unlikely 
effect. 

Table 7. Number of rigid-body modes. 

Element Type of Integration N° of Rigid Body Modes 

RZT4 Full 6 

RZT4 Reduced 7 

RZT8 Full 6 

RZT8v Full 6 

RZT4c Full 6 

In the remaining part of the paper, the full integration is used for all the C0 family elements. 

4.5. Distorted and Regular Mesh Analysis 

As is well known, the performances of the plate finite elements depend also on their skewness 
ratio, i.e., on the degree of the distortion of their plan form geometry. Figure 12a,b respectively gives 
the regular and distorted 16 × 16 mesh for the whole plate used in this study. 

To assess the relative performances of the RZT elements when used in distorted geometry, a 
cantilever square sandwich plate (S) and multi-layered cross-ply plate (L) are investigated. Thick  
(a/h = 8) and very thin (a/h = 103) plates are considered. 

Table 8 gives the percent errors of FEM results on the maximum non-dimensional deflection 
under three types of load distribution (in Figure 13 are shown: Uniform distribution, constant 
uniform edge load, and two vertical opposite tip forces), using regular and distorted 16 × 16 meshes. 
For simplicity, the load cases are named as follows: C1 for the uniform transverse load pressure, C2 
for the constant uniform edge load, and C3 for the two vertical opposite tip forces. For the same plates 
and meshes, Table 9 gives the percent errors of FEM results on the undamped fundamental frequency 
parameter. The percent error is defined as 
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The analytical solutions have been obtained using the Ritz method [69]. In particular, as it is 
shown in Reference [69], 10 orthogonal polynomials in both x1 and x2 directions are enough to assure 
the converged Ritz solution. 

  
Figure 12. Regular (a) and distorted (b) 16 × 16 mesh. 

 

Figure 13. Load distributions for cantilever plates: (a) Uniform pressure (C1), (b) uniform pressure 
along the free edge (C2), (c) two opposite vertical forces (C3). 

Table 8. Percent errors of FEM results on the maximum deflection of thick (a/h = 8) and very thin  
(a/h = 103) cantilever square plates under various load distributions. Regular and distorted 16 × 16 
mesh (Figure 11). 

CFFF (C1) 

S RZT4 RZT8 RZT8v RZT4c 

a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –9.67 –10.08 –0.13 –0.18 –0.47 0.58 –0.48 –0.54 

1000 –98.29 –98.29 –0.04 –0.06 –0.14 6.73 –0.14 –0.11 

L RZT4 RZT8 RZT8v RZT4c 
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a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –0.70 –0.82 0.00 0.00 –0.15 8.17 –0.32 –0.35 

1000 –99.09 –99.01 –0.13 –0.16 –0.16 6.45 –0.16 –0.50 

CFFF (C2) 

S RZT4 RZT8 RZT8v RZT4c 

a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –5.76 –6.08 0.02 –0.01 –0.14 0.79 –0.16 –0.19 

1000 –98.29 –98.24 0.31 0.29 0.23 4.18 0.24 0.14 

L RZT4 RZT8 RZT8v RZT4c 

a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –0.19 –0.33 0.67 0.67 0.57 6.38 0.41 0.39 

1000 –99.09 –99.04 0.67 0.64 0.62 4.41 0.64 0.42 

CFFF (C3) 

S RZT4 RZT8 RZT8v RZT4c 

a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –8.66 –10.31 –0.31 –0.75 –0.86 –2.72 –0.94 –1.58 

1000 –96.68 –96.00 0.00 –0.08 –3.17 31.38 –3.17 –5.66 

L RZT4 RZT8 RZT8v RZT4c 

a/h Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 –3.23 –4.29 –0.82 –1.36 –1.51 26.32 –1.96 –2.38 

1000 –98.45 –98.06 –0.10 –0.25 –5.46 28.83 –5.46 –9.87 

Table 9. Percent errors of FEM results on the undamped frequency parameter of thick (a/h = 8) and 
very thin (a/h = 103) square plates. Regular and distorted 16x16 mesh (Figure 11). F (Flexural mode), T 
(Torsional mode). 

CFFF 

S Mode RZT4 RZT8 RZT8v RZT4c 

a/h - Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 

1F 6.71 7.04 0.07 0.09 0.23 –0.27 0.24 0.27 

1T 4.31 5.73 0.05 0.08 0.27 0.51 0.28 0.34 

2F 13.42 14.83 0.11 0.16 0.39 0.55 0.40 0.45 

2T 10.99 14.51 0.09 0.16 0.37 1.72 0.38 0.49 
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3F 10.02 10.70 0.04 0.04 0.14 –0.35 0.15 0.16 

1000 

1F 736.06 515.76 0.02 0.03 0.08 –9.90 0.08 0.07 

1T 467.25 649.44 0.02 0.07 1.96 12.60 1.97 0.50 

2F 711.42 859.57 0.07 0.11 1.27 2.70 1.25 1.68 

3F 667.86 644.64 0.16 0.23 0.70 –0.94 0.70 1.14 

2T 618.00 646.91 0.17 0.36 3.08 11.76 3.01 3.60 
L  RZT4 RZT8 RZT8v RZT4c 

a/h  Regular 
Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 
Regular 

Non-

Regular 

8 

1F 0.40 0.47 0.00 0.00 0.08 –11.10 0.17 0.19 

1T 0.44 0.81 0.01 0.01 0.24 8.42 0.36 0.41 

2F 1.24 1.35 0.00 0.00 0.21 –0.60 0.28 0.30 

3F 1.00 1.24 0.01 0.01 0.29 1.30 0.71 0.75 

2T 0.98 1.47 0.01 0.01 0.35 4.80 0.76 0.91 

1000 

1F 948.03 727.45 0.07 0.09 0.09 –11.18 0.09 0.24 

1T 724.96 985.67 0.09 0.16 3.22 15.31 3.22 5.37 

2F 1423.40 1385.52 0.20 0.27 4.94 6.94 4.95 6.69 

3F 952.74 970.28 0.50 0.60 0.54 –0.17 0.54 1.30 

2T 899.00 1080.79 0.48 0.73 4.57 12.45 4.57 7.09 

As expected, regular meshes give results closer to the analytical ones. As before, RZT8 has the 
best performances also for distorted meshes, but at expense of higher computational costs. Again, 
RTZ4c appears to be a good compromise between accuracy and computational cost. 

To further assess the performance of the RZT elements, the bending behaviour of a sandwich (S) 
cantilevered plates is investigated, comparing the bending moment and the transverse shear force 
distributions along the midline of the plate with the analytical ones. Two square plates (S) are 
considered, both loaded with the load distribution C1 (uniform transverse load) and C2 (uniform 
constant edge load) and meshed with 17 × 17 elements: (i) A thick plate (a/h = 8; a/b = 1) and (ii) a thin 
plate (a/h = 102; a/b = 1). The analytical solutions have been obtained using the Ritz method [69] with 
10 orthogonal functions in x1 direction and 10 orthogonal functions in x2 direction. Plots of the 
distributions of shear force and bending moment along the midline of the plates parallel to x1 axis are 
given in Figure 14 (thick sandwich plate) and Figure 15 (thin sandwich plate) for the C1 load 
condition and in Figure 16 (thick sandwich plate) and Figure 17 (thin sandwich plate) for the C2 load 
condition. The shear force and bending moment were computed using the finite element correspond 
to the centroid of each elements on the midline of the plate. The shear force and bending moment are 
normalized as follows for the C1 load condition: 

11
1 11 2

1

0 0

;       T T M
q

M
a q a

= =  

and for the C2 load condition as follows: 

11
1 11

13

1

13

;       T M
T T a

T M= = . 

Also, in this test, RZT4c element shows its good accuracy in estimating the shear force also near 
the clamped edge for thick sandwich plates. 
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Figure 14. Cantilever thick sandwich (S) square plate under uniform transverse pressure (C1). 
Transverse shear force and bending moment distribution. 

  

Figure 15. Cantilever thin sandwich (S) square plate under uniform transverse pressure (C1). 
Transverse shear force and bending moment distribution. 

  
Figure 16. Cantilever thick sandwich (S) square plate under uniform edge transverse pressure (C2). 
Transverse shear force and bending moment distribution. 
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Figure 17. Cantilever thin sandwich (S) square plate under uniform edge transverse pressure (C2). 
Transverse shear force and bending moment distribution. 

4.6. Stress Distributions 

In order to show the ability of FEM solutions to capture also the local behaviour (distribution of 
the stresses along the thickness), we consider bending under transverse uniform pressure of simply 
supported sandwich plate (S) for a/h = 8. 

Figure 18 compares the distributions of in-plane stresses at the centre of the plates and the 
transverse shear stress at the midpoint of the left edge, computed using the Ritz method [69] and the 
family of C0 RZT plate elements. For this study, in order to have a better distribution of the stresses, 
a regular mesh 16 × 16 for a quarter of plate has been adopted. 
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Figure 18. Non-dimensional bending and transverse shear stresses. Simply supported sandwich (S) 
square plate under uniform transverse pressure (a/h = 8). (a) Normalized in-plane stress (𝜎 ); (b) 
Normalized in-plane stress (𝜎 ); (c) Normalized transverse shear stress (𝜎 ). 

These results confirm in general the good accuracy of these elements to estimate the thickness-
wise distributions of the in-plane stresses, while some difference when the transverse shear stresses 
are considered. As expected, for both sandwich (S), the RZT8 shows the best performances, followed 
by the RZT8v and the RZT4c. By taking into account that RTZ8 is computationally more expensive 
and that RTZ4 with reduced integration is penalized by the zero energy strain modes, it can be 
concluded that RZT4c represents the best compromise between accuracy and computational costs. 

5. Concluding Remarks 

A family of four C0 quadrilateral plate elements based on the refined zigzag theory has been 
developed and numerically tested. 

The numerical assessment given in the previous Section reveals that: 
1. The convergence of the FEM solution for all the elements of the family is in general monotonic 

in character, although with different rates. 
2. The bi-linear 4-node element (RZT4) is strongly affected by the shear locking effect in thin plates 

when full integration is used. 
3. The bi-linear 4-node element (RZT4) has performances comparable to the other elements in the 

range of thin plates when reduced integration (RI) is adopted, but presents extra zero strain 
energy modes, if no stabilization technique is used. 

4. The serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node 
anisoparametric constrained element (RZT4c) show good performance and predictive 
capabilities for various problems, and the transverse shear-locking is greatly relieved without 
using any reduced integration schemes, for thin plate (aspect ratio equal to 5 × 102) at least for 
mesh 8 × 8. 

5. All elements, except for the conventional bi-linear RZT4 element with full integration, are 
adequate to predict the bending global response (transverse displacement, distribution of the 
transverse shear resultant, and bending moment) and undamped frequencies. The same holds 
for the predictive capabilities of the local behaviour (thickness-wise distributions of the bending 
stresses and transverse shear stresses). 

6. RZT4c has well-conditioned element stiffness matrix, contrary to RZT4 when reduced 
integration strategy is used. 

7. The computational cost of RTZ4c is much lower than that of RTZ8 and RTZ8v elements. 
8. The accuracy of all the elements is sensitive to their degree of planform distortion. 

Therefore, due its good numerical accuracy (generally comparable to that of RZT8 and RZT8v 
elements) and low computational cost (equal to that of RZT4 element), RTZ4c quadrilateral plate 
element appears to be a good candidate for the FEM analysis of laminated composite and sandwich 
plates, mainly when nonlinear or transient linear and nonlinear analyses are involved. As a general 
concluding remark, the presented results show clearly that RZT8 is the most robust element among 
those considered in the present investigation. Moreover, as it is well known, the quadrilateral 
isoparametric 8-node FE is not an optimal element. The final conclusion is that further studies based 
on different approaches should be carried out to propose a locking-free RZT plate FE. Therefore, 
following Tessler and Hughes [60,62] suggestions, in a work in progress, the concept of an 
appropriate element shear correction factor is adopted in conjunction with the anisotropic 
constrained strategy to further alleviate the shear locking effect (extend the range of the plate aspect 
ratios until 106). 
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