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Abstract

In this work, the thermoelastic response of functionally graded beams is studied. To this end, a family of

advanced one-dimensional finite elements is derived by means of a unified formulation that is not dependent

on the order of approximation of the displacements upon the beam cross-section. The temperature field is

obtained via a Navier-type solution of Fourier’s heat conduction equation and it is considered as an external

load within the mechanical analysis. The stiffness matrix of the elements is derived via the Principle of Vir-

tual Displacements. Numerical results in terms of temperature, displacements and stresses distribution are

provided for different beam slenderness ratios and type of material gradation. Linear, quadratic and cubic

elements are used. Results are validated through comparison with three-dimensional finite elements solutions

obtained by the commercial software ANSYS. It is shown that accurate results can be obtained with reduced

computational costs.

Keywords: thermal loads, beam structures, functionally graded materials, hierarchical modelling, one-

dimensional finite elements.
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1 Introduction

Functionally Graded Materials (FGMs) are generally used in structural components operating in extremely

high temperature environments. They are characterised by high temperature resistances and smooth stress

distributions thanks to a gradual variation of the volume fraction of the constituent materials.

Many studies on FGM beams under mechanical or thermal loads are available in the literature. An overview of

recent works about thermo-mechanical analyses and functionally graded structures follows. Thermo-elasticity

problems were discussed in the book by Hetnarski and Eslami [1], where thermal stress analyses of Euler-

Bernoulli beams made of functionally graded materials can also be found. Noda [2] investigated the optimal

gradation laws to minimize thermal stresses in FGM structures. A finite element solution based on Thi-

moshenko’s beam theory was developed by Chakraborty et al. [3], accounting for an exponential and a power

law variation of material properties through the thickness. Analytical solutions for the thermo-elastic stress

analysis of multi-layered functionally graded Euler-Bernoulli beams were given by Carpinteri and Paggi [4].

Wang and Qin [5] presented a meshless method for the thermo-elastic analysis of FGM structures combined

with radial basis functions. The free vibration of FGM beams subjected to initial thermal stress was studied

by Mahi et al. [6]. The temperature field was obtained solving a one-dimensional steady-state heat conduc-

tion equation. Several shear deformation theories were investigated. Wattanasakulpong et al. [7] carried

out thermo-elastic vibration and thermal buckling analyses of FGM beams by means of a third-order shear

deformation theory. Material properties were considered to be dependent on the temperature via a non-linear

polynomial law [8]. Xiang et al. [9] investigated the free and forced vibration of a functionally graded beam

under thermally induced initial stresses assuming Timoshenko’s kinematic hypotheses. Sankar and Tzeng [10]

presented a closed-form solution of the thermoelastic equilibrium equations for a functionally graded beam by

Euler-Bernoulli’s model. The thermoelastic properties of the material and the temperature were assumed to

vary exponentially through the thickness. Sankar [11] obtained an elasticity solution for a functionally graded

Euler-Bernoulli beam subjected to trasverse loads. Lezgy-Nazargah [12] studied bi-directional FGM beams

under thermal stresses. The displacement field was assumed as the combination of polynomials and expo-

nential functions. The temperature field was approximated by a Hermite interpolation along the thickness

direction. As far as the axial variation is concerned, non-uniform rational basis-spline functions were used.

The governing equations were obtained from the principle of stationary potential energy. Kiani and Eslami [13]

analysed the buckling of Euler-Bernoulli beams under various types of thermal loading. A power law across

the thickness of the beam was considered. Nonlinear strain-displacement relations were assumed. A closed

form solution for the critical buckling temperature was obtained. Zhang [14] used a physical neutral surface

theory and a high-order shear deformation model for the bending analysis of functionally graded beams. Non-

linear von Kármán strain-displacement relationships were considered. The material properties were assumed

to be temperature dependent and to vary along the thickness. Ritz method was used in order to obtain a

nonlinear bending approximate solution. Kocaturk and Akbas [15] carried out a post-buckling analysis of

functionally graded Timoshenko beams under thermal loading considering full geometric non-linearity via the

finite element method. Sun et al. [16] used the shooting method to investigate the buckling and post-buckling

deformations of a functionally graded material Timoshenko beam subjected to a temperature rise and resting

on a two-parameter non-linear elastic foundation. Through-the-thickness temperature distribution was deter-
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mined by numerically solving the one-dimensional heat conduction equation. Geometric non-linearities in the

strain-displacement relations were accounted for.

A thermal stress analysis of functionally graded beams via advanced one-dimensional finite elements is ad-

dressed in this paper. The stiffness matrix of the element is derived via a Unified Formulation (UF) that was

previously proposed for plates and shells, (see Carrera [17]) and extended to beams (see Carrera et al. [18],

Giunta et al. [19] [20] [21] [22] and Catapano et al. [23]). UF has been recently employed for thermal stress

analyses of composite beams in the framework of strong form solutions and finite elements method applied to

isotropic and laminated beams (see Giunta et al. [24] [25] [26]). The novelty of the present work consists in

the use of the finite element method to solve, in a weak sense, the governing differential equations governing

the response of a FGM three-dimensional beam under thermal loads. Shear locking phenomenon is avoided

by a classical selective integration procedure that is effective regardless the approximation order over the

cross-section. In the proposed UF, the displacements’ polynomial approximation over the beam cross-section

is written in a compact form. The stiffness matrix of the element is derived through the Principle of Virtual

Displacements in terms of a fundamental nucleus, which is unique regardless the displacement approximation

order as well as the number of nodes per element. Numerical investigations are carried out considering a power

law variation along the beam thickness direction of the elastic and thermal material properties. Slender and

deep beams are investigated with both simply supported and cantilever boundary conditions. Results are

provided in terms of temperature, displacements and stresses. A three-dimensional finite elements solution

provided by the commercial software ANSYS is used for validation.

2 Preliminaries

A beam is a structure whose axial extension (l) is predominant if compared to any other dimension orthogonal

to it. The cross-section is identified by intersecting the beam with a plane orthogonal to its axis. A Cartesian

reference system is adopted, see Fig. 1. The x axis is aligned with the direction of the longitudinal axis of

the beam and it is bounded such that 0 ≤ x ≤ l. y- and z-axis are two orthogonal directions laying on the

cross-section, which is considered to be constant along x. The displacement vector is:

uT (x, y, z) =
{

ux (x, y, z) uy (x, y, z) uz (x, y, z)
}

(1)

where ux, uy and uz are the displacement components. Superscript ‘T ’ represents the transposition operator.

Stress vector σ and strain vector ε are grouped into a part relative to the cross-section (σn, εn) and a part

relative to planes orthogonal to the cross-section (σp, εp):

σ
T
n =

{

σxx σxy σxz

}

σ
T
p =

{

σyy σzz σyz

}

(2)

ε
T
n =

{

εxx εxy εxz
}

ε
T
p =

{

εyy εzz εyz
}

(3)

Under the hypothesis of geometric linearity, strain-displacement relations in vectorial notation are given by:

εn = Dnpu+Dnxu

εp = Dpu
(4)
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where Dnp, Dnx and Dp are the following differential matrix operators:

Dnp =













0 0 0

∂

∂y
0 0

∂

∂z
0 0













Dnx = I
∂

∂x
Dp =

















0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

















(5)

and I is the unit matrix.

The constitutive equations in the case of a thermo-mechanical problem are given by:

σp = σpe − σpt = Cppεp +Cpnεn − λpT
σn = σne − σnt = Cnpεp +Cnnεn − λnT

(6)

where subscripts ‘e’ and ‘t’ refer to the elastic and the thermal contributions, respectively. For isotropic

materials, the matrices Cpp, Cpn, Cnp and Cnn in Eqs. 6 are in the following form:

Cpp =





C22 C23 0
C23 C33 0
0 0 C44



 Cpn = CT
np =





C12 0 0
C13 0 0
0 0 0



 Cnn =





C11 0 0
0 C66 0
0 0 C55





(7)

The coefficients Cij are given by:

C11 = C22 = C33 =
1− ν

(1 + ν) (1− 2ν)
E C12 = C13 = C23 =

ν

(1 + ν) (1− 2ν)
E

C44 = C55 = C66 =
1

2 (1 + ν)
E

(8)

in which Young’s modulus (E) and Poisson’s ratio (ν) are function of the cross-section coordinates. The

coefficients λn and λp:

λ
T
n =

{

λ1 0 0
}

λ
T
p =

{

λ2 λ3 0
}

(9)

are related to the thermal expansion coefficients αn and αp:

α
T
n =

{

α1 0 0
}

α
T
p =

{

α2 α3 0
}

(10)

through the following equations:
λp = Cppαp +Cpnαn

λn = Cnpαp +Cnnαn
(11)

In order to have a general software implementation not depending upon a specific gradation law of the FGM,

a Lagrange approximation on Np Chebyshev points along y and z cross-section coordinates based on Newton

series expansion is assumed for the material stiffness coefficients Cij and thermal coefficients λi:

Cij (y, z) ≈ ωξ (y)ωη (z)Cij [y0, y1, . . . , yξ; z0, z1, . . . , zη]

λi (y, z) ≈ ωξ (y)ωη (z)λi [y0, y1, . . . , yξ; z0, z1, . . . , zη]
with ξ, η = 0, 1, . . . , Np (12)

being:

ωm (ζ) =







1 m = 0
m−1
∏

n=0
(ζ − ζn) m ∈ [1, Np]

(13)

and Cij [. . . ; . . . ] and λi [. . . ; . . . ] the divided difference of the approximated function, see Philips [27]. Cheby-

shev’s points are defined on the domain [−1,+1] via the following equation:

ζm = cos

(

mπ

Np

)

with m = 0, 1, . . . , Np (14)
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The natural coordinates of these points are then transformed into the cross-section coordinates via a variable

transformation. Through this procedure, the software implementation of the proposed models does not depend

upon a specific gradation law that, once defined, will be approximated via a Newton series expansion.

Temperature (T ) is treated as an external load resulting in the internal thermal stresses. Fourier’s heat

conduction equation is analytically solved to obtain the temperature profile over the whole domain of the

beam. The following multiplicative variable separation is used:

T (x, y, z) = Θn (x)ΘΩ (y, z) (15)

where Θn (x) is a sinusoidal function along the beam axis direction and ΘΩ (y, z) an exponential function of

the cross-section coordinates. The solution procedure is presented in the Appendix.

3 Displacement Field Approximation

The variation of the displacement upon the cross-section is postulated a-priori. Several displacement-based

beam theories can be formulated on the basis of the following generic kinematic field:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu (16)

According to Einstein’s notation, subscript τ implicitly represents a summation. Fτ (y, z) is a generic function

of the cross-section coordinates and Nu is the number of terms accounted in the summation.

In this study, Mac Laurin’s polynomials are used as approximating functions Fτ (y, z). The choice of Fτ as

well as Nu is arbitrary. Nu and Fτ as function of the order of the approximating polynomials N are shown

in Pascal’s triangle in Table 1.

The explicit form of a generic N -order displacement field reads:

ux = ux1 + ux2y + ux3z + · · ·+ u
x
(N2+N+2)

2

yN + · · ·+ u
x

(N+1)(N+2)
2

zN ,

uy = uy1 + uy2y + uy3z + · · ·+ u
y
(N2+N+2)

2

yN + · · ·+ u
y

(N+1)(N+2)
2

zN ,

uz = uz1 + uz2y + uz3z + · · ·+ u
z
(N2+N+2)

2

yN + · · ·+ u
z

(N+1)(N+2)
2

zN .

(17)

The displacement variation along the beam axis is approximated via finite element method:

u (x, y, z) = Fτ (y, z)Ni (x)qτ i with τ = 1, 2, . . . , Nu and i = 1, 2, . . . , Ne
n (18)

Ni (x) is a C0 Lagrangian shape function, Ne
n the number of nodes per element and qτ i the unknown nodal

displacement vector. Linear, quadratic and cubic elements are used and they are referred to as “B2”, “B3”

and “B4”, respectively.

4 Element Stiffness Matrix

The stiffness matrix of the element is obtained via the Principle of Virtual Displacements (PVD) for a static

thermo-elastic analysis:

δLint = 0 (19)

Lint represents the strain energy and δ stands for a virtual variation. According to the stress and strain

vectors splitting in Eqs. 2 and 3, the virtual variation of the strain energy is:

δLint =

∫

le

∫

Ω

(

δǫTtnσn + δǫTtpσp

)

dΩdx. (20)
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where le is the element length and Ω the cross-section. If geometrical relations in Eqs. 4, constitutive relations

in Eqs. 6 and finite element formulation in Eq. 18 are considered, Eq. 20 reads:

δLint = δqT
τi

∫

le

∫

Ω

{

(DnxNi)
T Fτ [Cnp (DpFs)Nj +Cnn (DnpFs)Nj +CnnFs (DnxNj)]

+ (DnpFτ )
T
Ni [Cnp (DpFs)Nj +Cnn (DnpFs)Nj +CnnFs (DnxNj)]

+ (DpFτ )
T
Ni [Cpp (DpFs)Nj +Cpn (DnpFs)Nj +CpnFs (DnxNj)]

}

dΩ dx qsj

−δqT
τi

∫

le

∫

Ω

[

DT
p FτNiλp +

(

DT
nx +DT

np

)

FτNiλn

]

ΘΩΘn dΩ dx

This latter can be written in a compact vector form:

δLint = δqT
τiK

τsij
uu qsj − δqT

τiK
τi
uθ. (21)

The components of the stiffness matrix fundamental nucleus Kτsij
uu ∈ R

3×3 are:

Kτsij
uuxx = Ii,xj,xJ

11
τs + Ii,xjJ

16
τs,y

+ Iij,xJ
16
τ,ys

+ Iij

(

J55
τ,zs,z

+ J66
τ,ys,y

)

Kτsij
uuxy = Iij,xJ

12
τ,ys

+ Ii,xj,xJ
16
τs + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

+ Ii,xjJ
66
τs,y

Kτsij
uuxz = Iij,xJ

13
τ,zs

+ Iij

(

J36
τ,zs,y

+ J45
τ,ys,z

)

+ Ii,xjJ
55
τs,z

Kτsij
uuyx = Ii,xjJ

12
τs,y

+ Ii,xj,xJ
16
τs + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

+ Iij,xJ
66
τ,ys

Kτsij
uuyy = Iij

(

J22
τ,ys,y

+ J44
τ,zs,z

)

+ Iij,xJ
26
τ,ys

+ Ii,xjJ
26
τs,y

+ Ii,xj,xJ
66
τs

Kτsij
uuyz = Iij

(

J23
τ,zs,y

+ J44
τ,ys,z

)

+ Iij,xJ
36
τ,zs

+ Ii,xjJ
45
τs,z

Kτsij
uuzx = Ii,xjJ

13
τs,z

+ Iij

(

J36
τ,ys,z

+ J45
τ,zs,y

)

+ Iij,xJ
55
τ,zs

Kτsij
uuzy = Iij

(

J23
τ,ys,z

+ J44
τ,zs,y

)

+ Ii,xjJ
36
τs,z

+ Iij,xJ
45
τ,zs

Kτsij
uuzz = Iij

(

J33
τ,zs,z

+ J44
τ,ys,y

)

+ Iij,xJ
45
τ,ys

+ Ii,xjJ
45
τs,y

+ Ii,xj,xJ
55
τs

(22)

Jgh
τ(,φ)s(,ξ)

is a cross-section moment:

Jgh
τ(,φ)s(,ξ)

=

∫

Ω

CghFτ(,φ)
Fs(,ξ) dΩ (23)

It is computed as a weighted sum (in the continuum) of each elemental cross-section area where the weight

functions account for the spatial distribution of the geometry and the material. Ii(,x)j(,x)
is:

Ii(,x)j(,x)
=

∫

le

Ni(,x)
Nj(,x)

dx (24)

Subscript ‘x’, when preceded by comma, represents derivation versus the x-coordinate. Integrals I are numer-

ically evaluated through Gauss’ quadrature method. Shear locking is corrected through a selective integration

technique. Two, three and four quadrature points are used for full integration for B2, B3 and B4 elements,

respectively. One point less is used for the selective integration. The selected under-integrated term is Iij in

Kτsij
uuxx that is related to shear deformations γxy and γxz.

The components of the thermo-mechanical coupling vector Kτi
uθ ∈ R

3 are:

Kτi
uθx = Iθni,xJ

1
θΩτ + IθniJ

6
θΩτ,y

Kτi
uθy = IθniJ

2
θΩτ,y

+ Iθni,xJ
6
θΩτ

Kτi
uθz = IθniJ

3
θΩτ,z

(25)
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The generic term J
g

θΩτ(,φ)
stands for:

J
g

θΩτ(,φ)
=

∫

Ω

Fτ(,φ)
λg ΘΩ (y, z) dΩ. (26)

whereas Iθnj(,x)
is:

Iθni(,x)
=

∫

le

Ni(,x)
Θn (x) dx. (27)

A classical one-way staggered solution method is used (see Nowiski [28]). The temperature field deriving

by a Navier-type closed form solution of Fourier’s equation is integrated over the cross-section and along

the axis in order to obtain a thermal load variationally consistent with the proposed models. Five Gauss’

quadrature points are used in order to correctly compute the integral in Eq. 27. Once the displacement

approximation order N and the number of nodes per element Ne
n have been fixed, the element stiffness matrix

is straightforwardly obtained by assembling the fundamental nuclei of Eqs. 22 coming from each term of the

displacement expansion in Eq. 16.

5 Numerical Results and Discussion

The beam support is [0, l] × [0, a] × [0, b] with l the length, b the thickness and a the width (see Fig. 1).

The cross-section is square with a = b = 1 m. Slender beams (l/b = 100) and short beams (l/b = 5) are

investigated. Simply supported and cantilever beams made of a functionally graded ceramic-metal material

are considered. A ceramic phase made of Zirconia (ZrO2) and a metallic phase of Monel (70Ni-30Cu), a

nikel-based alloy, are assumed. Materials properties are presented in Table. 2. A power law is assumed for

the variation of the generic material property, f , along the thickness coordinate z:

f = (f1 − f2) (αzz + βz)
nz + f2 (28)

This law is derived from the rule of mixtures, assuming a power gradation law of the volume fraction of the

two constituent materials, see Reddy [29] and Chakraborty et al. [3]. fi is the generic material property

of each constituent, nz is the power law exponent and, for the assumed reference system, αz = 1/b and

βz = 0. Different values of nz are considered in the following analyses. The boundary conditions for the

over-temperature at beam top (z/b = 1) and bottom (z/b = 0) surfaces are: Tt = 150 K and Tb = 50 K.

As far as the temperature variation along the beam axis, the half-wave numberm is equal to one, see Appendix.

Results provided by the proposed family of one-dimensional finite elements are compared with three-dimensional

finite elements solutions obtained via the commercial software ANSYS. For the latter analysis, tri-quadratic

20-node element “Solid90” and “Solid186” are used for the thermal and mechanical problem, respectively.

For the FGM characterisation, each element is considered as homogeneous with the material properties corre-

sponding to the values at its central point. The accuracy of the three-dimensional FEM solution is influenced

by both the FEM approximation and the approximation of the material gradation law. Two different meshes

are considered for the three-dimensional finite element solution for each analysis. In the case of short beams,

the acronym FEM 3D-R stands for a refined model with a 60 × 60 × 60 elements mesh, whereas the coarse

20× 20× 20 mesh solution is addressed by FEM 3D-C. In the case of slender beams, FEM 3D-R refers to a

refined model with a 160× 32× 32 elements mesh, and FEM 3D-C stands for a coarser 100× 20× 20 mesh.

8



About the computational costs, the number of degrees of freedom (NDOFs) of the present one-dimensional

finite elements is related to the expansion order N and the total number of nodes Nn through the equation:

NDOFs = 3 ·
(N + 1) (N + 2)

2
·Nn (29)

In the case of the most refined one-dimensional model used in the analysis (a 13th-order approximation and

121 nodes), NDOFs is about 3.8 · 104. A very refined mesh (60 × 60 × 60 elements) is required for three-

dimensional model in order to accurately predict the stress state induced by the thermal load. NDOFs for

this mesh is equal to about 2.7 · 106. NDOFs for the coarse mesh (20× 20× 20 elements) is about 1.1 · 105.

5.1 Simply supported beams

Simply supported beams are first investigated. The temperature variation along the thickness at the mid-span

section in presented in Fig. 4 for different values of l/b. The temperature profile has been obtained via the

procedure presented in the Appendix. Fourier’s heat conduction equation was analytically solved for a FGM

beam by considering 16 fictitious layers. A good agreement between the closed-form solution and FEM 3D-R

solution is found. The strain energy error versus the dimensionless distance between two consecutive nodes

δii+1/l is evaluated for linear, quadratic and cubic elements:

∆E =
LNav
int − LFEM

int

LNav
int

(30)

Results provided by finite elements are assessed towards an exact Navier-type analytical solution within

the framework of the present formulation. The presented results have been obtained for N = 2 and l/b = 5.

Nevertheless, solutions for different expansion ordersN , length-to-side ratios and FGM gradation law exponent

nz are very similar. As a good compromise between accuracy of results and computational costs, a number

of nodes Nn equal to 121 (corresponding to δii+1/l = 0.0083) is assumed for all the following analyses.

In order to avoid the shear-locking phenomenon affecting linear elements, a selective integration was adopted.

Fig. 3 shows the comparison between selective and full integration strategies. The variation of ûz:

ûz =
uFEM
z

uNav
z

(31)

computed at (x/l, y/a, z/b) = (1/2, 0, 0) via B2 elements versus l/b is presented. It can be clearly seen that a

selective integration is free of locking and that it is effective regardless the beam theory order N .

As far as the following tables are concerned, displacements and stresses are evaluated at the following points:

ux = ux (0, a/2, b) uy = uy (l/2, a, b) uz = uz (l/2, a/2, b/2)

σxx = σxx (l/2, a/2, b/2) σxy = σzz (0, a/4, 0) σxz = σxz (0, 0, b/2)

σyy = σyy (l/2, a/2, b/2) σzz = σzz (l/2, a/2, b/2) σyz = σyz (l/2, a/4, 3/4b)

(32)

Table 3 shows the displacement components for a slender beam in the case of nz = 1. The relative difference

between the results provided by theories with order N > 7 and the three-dimensional reference solution is

1.1%, at worst. Results computed via Timoshenko’s (TBT) as well as Euler-Bernoulli’s (EBT) classical models

are also presented in order to show that higher order models should be used to accurately predict all the three

displacement components. TBT and EBT results have been obtained using a Navier-type closed form solution

valid for simply supported boundary conditions. The displacements for a very short beam with nz = 1 are

presented in Table 4. The relative difference between results provided by a theory with N as low as 4 and
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the reference solution is lower than 1.6%. Tables 5 and 6 show the stress components for a very short beam.

Higher-order theories are in good agreement with the three-dimensional finite element solution. In the case

of a 13th-order theory and cubic elements, the error is 3.3%, at worst.

5.2 Cantilever beams

In the case of cantilever beams, the following displacements and stresses are considered:

ux = ux (l, a/2, b) uy = uy (l/2, a, b) uz = uz (l, a/2, b/2)

σxx = σxx (l/2, a/2, b/4) σxy = σzz (l/4, a/4, b) σxz = σxz (l/4, a/2, b/2)

σyy = σyy (l/2, a/2, b/2) σzz = σzz (l/2, a/2, b/2) σyz = σyz (l/2, a/4, 3/4b)

(33)

Displacement components for a slender beam with nz = 1 are presented in Table 7. The relative difference on

the primary displacements uz and ux between the results provided by one-dimensional finite elements with

N as low as 3 and the three-dimensional reference solution is 1.1%, at worst. The error on the secondary

displacement uy is about 7%. Table 8 shows the displacements for a very short beam with nz = 1. The

error for theories with N as low as 4 is about 1.6%. Tables 9 and 10 present the stress values for a very

short beam. It should be noticed that stresses evaluated at the mid-span section are not influenced by the

boundary conditions at the ends of the beam since they are very close to those for the simply supported case.

Higher-order one-dimensional finite elements lead to results that are very close to the reference solution. In

the case of a 13th-order theory and cubic elements, the error is 3.3% at worst. In Figs. 5 to 12, the variation

of displacements and stresses evaluated in the most representative cross-sections of a short beam in the form

of a colour map for nz = 0.5, nz = 1 and nz = 2 . Figs. 5 and 6 present the variation of displacements ux and

uy over the cross-section. Transverse displacement uz reaches its maximum value at the free section, where

it is constant. The corresponding cross-section figure is not shown for the sake of brevity. Stress components

are presented in Figs. 7 to 12. They are are evaluated at an opportune distance from the clamped end where,

as it is well known, stress singularities are present. Results show that higher-order one-dimensional theories

like N = 13 are able to fairly predict both displacements and stresses for different material gradation laws.

Some major difficulties can be noticed regarding the prediction of σzz for nz = 0.5. In order to further

improve the accuracy of the results in future works, the adoption of a layerwise approach in stead of an

equivalent-single-layer theory could be recommended.

6 Conclusions

A family of one-dimensional finite elements derived through a Unified Formulation was proposed for the

thermoelastic analysis of three-dimensional functionally graded beam structures. The temperature profile was

obtained via a Navier-type solution of Fourier’s heat conduction equation. Simply supported and cantilever

beams were investigated, for different length-to-side ratios and different material gradation profiles. Results

were assessed towards three-dimensional FEM solutions obtained via the commercial code ANSYS. Beams

under thermal stresses present a complex three-dimensional stress state that calls for very accurate models.

Results of the investigations demonstrated that UF-derived one-dimensional finite elements are a convenient

choice for an accurate yet computationally efficient thermal stress analysis of FGM beams.
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Appendix

The temperature is as an external load within the mechanical analysis, as it is shown in Section 4. The tem-

perature profile over the beam domain is obtained by analytically solving Fourier’s heat conduction equation

for FGM beams. The cross-section Ω is divided into Nk
Ω non-overlapping sub-domains along the through-the-

thickness direction z:

Ω =
N

Ωk

∪
k=1

Ωk (34)

Each sub-domain is considered to be homogeneous, being the generic material property equal to the value at

sub-domain’s centre. Fourier differential equation for a kth homogeneous sub-domain reads:

∂2T k

∂x2
+

∂2T k

∂y2
+

∂2T k

∂z2
= 0 (35)

In order to analytically solve this latter equation, a constant temperature along the through-the-width coor-

dinate y is assumed. This also leads to no material gradation along the through-the-width coordinate. At the

interfaces between two adjacent sub-domains, the continuity of the temperature and the through-the-thickness

heat flux qz is imposed :
T k
t = T k+1

b

qkzt = qk+1
zb

(36)

Subscripts ‘t’ and ‘b’ stand for sub-domain’s top and bottom, respectively. The through-the-thickness heat

flux is given by:

qkz = Kk ∂T
k

∂z
(37)

where Kk is the thermal conductivity. Over-temperature boundary conditions are imposed at through-the-

thickness top and bottom of the beam as:

T = Tt sin (αx)

T = Tb sin (αx)
(38)

Tt and Tb are the maximal amplitudes and α is:

α =
mπ

l
, (39)

with m ∈ N+ being the half-wave number along the beam axis. The following temperature profile:

T k (x, z) = Θk
Ω (z) sin (αx) = T k

0 exp (sz) sin (αx) (40)

represents a solution of the considered heat conduction problem. T k
0 is an unknown constant obtained by

imposing the boundary condition, whereas the term s is obtained by replacing Eq. 40 into Eq. 35:

s1,2 = ±α (41)

Θk
Ω (z), therefore, becomes:

Θk
Ω (z) = T k

01 exp (+αz) + T k
02 exp (−αz) (42)

or, equivalently:

Θk
Ω (z) = Ck

1 cosh (αz) + Ck
2 sinh (αz) (43)

where Ck
i are a set of 2 ·NΩk unknowns to be obtained form the 2 (NΩk − 1) interface conditions in Eqs. 36

and the two boundary conditions at beam top and bottom, see Eq. 38. A solution convergence versus NΩk

has been investigated, but it is not reported for the sake of brevity. NΩk = 16 is shown to ensure a converged

temperature profile for the considered FGM.
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Tables

N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2 F (N2+N+2)

2

= yN F (N2+N+4)
2

= yN−1z . . . FN(N+3)
2

= yzN−1 F (N+1)(N+2)
2

= zN

Table 1: Mac Laurin’s polynomials terms via Pascal’s triangle.
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E [GPa] ν K [W/mK] α [10−6 K−1]
Zirconia 151.01 0.300 2.09 10.
Monel 179.40 0.368 25.00 15.

Table 2: FGM constituents elastic and thermal properties.
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10× uz -102 × ux 104 × uy

FEM 3D-Ra 6.0649 4.0744 7.1355
FEM 3D-Cb 6.1071 4.0855 7.0892
TBTc 6.1451 4.0954 0.0000
EBTc 6.1455 4.0953 0.0000

B2 B3, B4 B2 B3, B4 B2 B3 B4
N = 13 6.1325 6.1328 4.0932 4.0933 7.1132 7.1123 7.1126
N = 11 6.1325 6.1328 4.0932 4.0933 7.1102 7.1094 7.1097
N = 8 6.1325 6.1328 4.0932 4.0933 7.1010 7.1001 7.1004
N = 5 6.1319 6.1322 4.0931 4.0932 7.0047 7.0039 7.0042
N = 2 5.9689 5.9692 4.0669 4.0669 6.3885 6.3877 6.3880

a: Elements’ number 160× 32× 32. b: Elements’ number 100× 20× 20.
c: Navier-type solution.

Table 3: Displacement components uz, ux and uy [m] for a slender FGM simply supported beam, nz = 1.
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103 × uz -103 × ux 104 × uy

FEM 3D-Ra 1.4917 1.9976 6.9765
FEM 3D-Cb 1.5089 2.0064 7.0247
TBTc 1.4956 1.9809 0.0000
EBTc 1.4957 1.9808 0.0000

B2 B3, B4 B2 B3, B4 B2 B3 B4
N = 13 1.5160 1.5161 2.0107 2.0107 7.0261 7.0255 7.0256
N = 10 1.5160 1.5161 2.0106 2.0107 7.0203 7.0197 7.0197
N = 7 1.5160 1.5161 2.0111 2.0112 6.9947 6.9942 6.9942
N = 4 1.5158 1.5159 2.0066 2.0066 6.8768 6.8763 6.8763
N = 2 1.4553 1.4554 2.0030 2.0030 6.1463 6.1458 6.1458

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.
c: Navier-type solution.

Table 4: Displacement components uz, ux and uy [m] for a short FGM simply supported beam, nz = 1.
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10−6 × σxx 10−5 × σxy -10−6 × σxz

FEM 3D-Ra 8.5121 9.6899 2.9668
FEM 3D-Cb 8.7013 9.8166 2.9902
TBTc 10.245 0.0000 0.0000
EBTc 10.233 −d −d

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 13 8.7748 8.8411 8.7890 9.8564 9.8253 9.8426 3.0193 2.9964 3.0093
N = 11 8.8734 8.9397 8.8876 9.7936 9.7625 9.7798 3.0138 2.9909 3.0038
N = 9 8.8863 8.9524 8.9005 9.8572 9.8262 9.8435 2.9891 2.9663 2.9791
N = 7 8.8519 8.9186 8.8662 10.057 10.026 10.043 3.0873 3.0645 3.0773
N = 4 6.3049 6.3717 6.3193 1.8705 1.8403 1.8576 2.8007 2.7779 2.7907
N = 2 22.250 22.316 22.264 25.875 25.844 25.860 2.8220 2.8002 2.8125

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.
c: Navier-type solution. d: Result not provided by the theory.

Table 5: Stress components σxx, σxy and σxz [Pa] for a short FGM simply supported beam, nz = 1.
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10−6 × σyy 10−6 × σzz -10−6 × σyz

FEM 3D-Ra 4.7891 6.3622 4.0031
FEM 3D-Cb 4.8664 6.4933 4.1017

B2 B3 B4 B2 B3 B4 B2 B3, B4
N = 13 4.9353 4.9490 4.9229 6.4851 6.4987 6.4726 4.0826 4.0824
N = 11 5.0380 5.0518 5.0256 6.6771 6.6909 6.6646 4.0817 4.0815
N = 9 5.0549 5.0684 5.0426 6.6987 6.7121 6.6863 4.0294 4.0292
N = 7 4.9814 4.9957 4.9690 6.6642 6.6784 6.6518 3.9214 3.9212
N = 4 1.9721 1.9866 1.9599 1.9702 1.9846 1.9580 1.7367 1.7366
N = 2 26.398 26.411 26.385 26.845 26.857 26.832 0.0552 0.0552

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.
c: Navier-type solution.

Table 6: Stress components σyy, σzz and σyz [Pa] for a short FGM simply supported beam, nz = 1.
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-uz 102 × ux 104 × uy

FEM 3D-Ra 1.9053 8.1478 6.6560
FEM 3D-Cb 1.9185 8.1689 7.0411

B2,B3,B4 B2 B3, B4 B2 B3 B4
N = 13 1.9266 8.1865 8.1865 7.1132 7.1123 7.1126
N = 9 1.9266 8.1865 8.1865 7.1067 7.1058 7.1061
N = 6 1.9264 8.1863 8.1863 7.0472 7.0464 7.0467
N = 3 1.9254 8.1852 8.1853 6.8717 6.8709 6.8712
N = 2 1.8752 8.1337 8.1337 6.3885 6.3877 6.3880

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.

Table 7: Displacement components uz, ux and uy [m] for a slender FGM cantilever beam, nz = 1.
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-103 × uz 103 × ux 104 × uy

FEM 3D-Ra 4.6144 3.9723 6.9765
FEM 3D-Cb 4.6669 3.9899 7.0240

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 13 4.6893 4.6895 4.6896 3.9986 3.9985 3.9984 7.0261 7.0255 7.0256
N = 11 4.6893 4.6895 4.6896 3.9986 3.9984 3.9984 7.0229 7.0223 7.0224
N = 8 4.6894 4.6896 4.6897 3.9988 3.9986 3.9986 7.0124 7.0119 7.0119
N = 4 4.6867 4.6868 4.6869 3.9953 3.9952 3.9952 6.8768 6.8763 6.8763
N = 2 4.5242 4.5243 4.5243 3.9814 3.9814 3.9814 6.1463 6.1458 6.1458

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.

Table 8: Displacement components uz, ux and uy [m] for a short FGM cantilever beam, nz = 1.
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10−6 × σxx -10−6 × σxy 10−6 × σxz

FEM 3D-Ra 8.5121 2.3812 1.4490
FEM 3D-Cb 8.7014 2.4166 1.4815

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 13 8.7749 8.8410 8.7890 2.2846 2.4063 2.4050 0.9233 1.4857 1.4767
N = 11 8.8734 8.9397 8.8875 2.3079 2.4295 2.4282 0.9185 1.4810 1.4719
N = 9 8.8864 8.9524 8.9005 2.3342 2.4558 2.4545 0.9242 1.4867 1.4775
N = 7 8.8520 8.9185 8.8661 2.4193 2.5414 2.5398 0.9178 1.4803 1.4712
N = 4 6.3049 6.3715 6.3191 1.2997 1.4227 1.4217 0.7969 1.3593 1.3502
N = 2 22.250 22.315 22.264 1.9555 2.0653 2.0634 −0.5945 −0.0544 −0.0632

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.

Table 9: Stress components σxx, σxy and σxz [Pa] for a short FGM cantilever beam, nz = 1.
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10−6 × σyy 10−6 × σzz -10−6 × σyz

FEM 3D-Ra 4.7895 6.3625 4.0032
FEM 3D-Cb 4.8667 6.4935 4.1018

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 13 4.9357 4.9494 4.9233 6.4854 6.4990 6.4729 4.0826 4.0824 4.0824
N = 11 5.0384 5.0522 5.0260 6.6774 6.6911 6.6649 4.0817 4.0815 4.0815
N = 9 5.0554 5.0688 5.0430 6.6990 6.7124 6.6865 4.0295 4.0293 4.0293
N = 7 4.9819 4.9961 4.9695 6.6645 6.6787 6.6521 3.9214 3.9212 3.9212
N = 4 1.9724 1.9868 1.9602 1.9703 1.9847 1.9581 1.7367 1.7366 1.7366
N = 2 26.398 26.411 26.385 26.845 26.857 26.832 0.0552 0.0552 0.0055

a: Elements’ number 60× 60× 60. b: Elements’ number 20× 20× 20.

Table 10: Stress components σyy, σzz and σyz [Pa] for a short FGM cantilever beam, nz = 1.
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Figures

Figure 1: FGM beam geometry and reference system.
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Figure 2: Relative strain energy error (with reference to Navier closed form solution) versus the dimensionless
distance between two consecutive nodes, short simply supported FGM beam, nz = 1 and N = 2.
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Figure 3: Shear locking correction via selective integration for B2 element, simply supported FGM beam,
nz = 1.
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Figure 5: Axial displacement ux [m] at x/l = 1, cantilever beam, l/b = 5.
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Figure 6: Through-the-width displacement uy [m] at x/l = 1, cantilever beam. l/b = 5.
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Figure 7: Axial stress σxx [Pa] at x/l = 1/2, cantilever beam, l/b = 5.
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Figure 8: Shear stress σxy [Pa] at x/l = 1/4, cantilever beam, l/b = 5.
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Figure 9: Shear stress σxz [Pa] at x/l = 1/4, cantilever beam, l/b = 5.
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Figure 10: Through-the-width normal stress σyy [Pa] at x/l = 1/2, cantilever beam, l/b = 5.
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Figure 11: Shear stress σyz [Pa] at x/l = 1/2, cantilever beam, l/b = 5.
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(b) N=13, nz = 0.5
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XY

Z

-.270E+08
-.230E+08

-.189E+08
-.149E+08

-.108E+08
-.680E+07

-.276E+07
.128E+07

.532E+07
.936E+07

(d) N=13, nz = 1

XY

Z

-.270E+08
-.230E+08

-.189E+08
-.149E+08

-.108E+08
-.680E+07

-.276E+07
.128E+07

.532E+07
.936E+07

(e) FEM 3Da, nz = 2

XY

Z

-.270E+08
-.230E+08

-.189E+08
-.149E+08

-.108E+08
-.680E+07

-.276E+07
.128E+07

.532E+07
.936E+07

(f) N=13, nz = 2

Figure 12: Through-the-thickness normal stress σzz [Pa] at x/l = 1/2, cantilever beam, l/b = 5.
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