
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HLS-Based Flexible Hardware Accelerator for PCA Algorithm on a Low-Cost ZYNQ SoC / Mansoori, Mohammadamir;
Casu, Mario R.. - ELETTRONICO. - (2019), pp. 1-7. (Intervento presentato al convegno 2019 IEEE Nordic Circuits and
Systems Conference, NORCAS 2019: NORCHIP and International Symposium of System-on-Chip, SoC 2019 tenutosi a
Helsinki, Finland nel 29-30 October 2019) [10.1109/NORCHIP.2019.8906893].

Original

HLS-Based Flexible Hardware Accelerator for PCA Algorithm on a Low-Cost ZYNQ SoC

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NORCHIP.2019.8906893

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2779752 since: 2020-01-16T17:45:01Z

ieee

HLS-Based Flexible Hardware Accelerator for PCA
Algorithm on a Low-Cost ZYNQ SoC

Mohammad Amir Mansoori, Mario R. Casu
Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.

e-mail: {mohammadamir.mansoori, mario.casu}@polito.it

Abstract—Principal Component Analysis (PCA) is a widely
used approach for dimensionality reduction in image processing.
In microwave imaging, for example, it is used as an interme-
diate step toward image reconstruction. An FPGA hardware
implementation of PCA is highly beneficial, especially as an
accelerator for a low-cost embedded environment. In this paper
we propose a flexible PCA hardware accelerator that can be
used for different input data dimensions and input precisions.
In addition, it supports both floating-point and fixed-point
arithmetic representations. The target hardware is a ZYNQ SoC.
We used High Level Synthesis (HLS) to quickly explore the
design space and so to find the best implementation for a given
setting of the application parameters and given the characteristics
of the target hardware. We show the impact on performance
of different hardware optimization techniques enabled by HLS.
The proposed method outperforms a similar state-of-the-art HLS
design in terms of latency and resource usage.

Index Terms—PCA, FPGA, HLS, ZYNQ SoC, Hardware
Optimization

I. INTRODUCTION

Principal Component Analysis (PCA) is a statistical method
useful for data dimensionality reduction. PCA starts by finding
the directions of data (e.g. a set of images or signals) corre-
sponding to maximum variances, which are called Principal
Components (PCs). Then, by ignoring the minimum PCs, the
data are projected into lower dimensions without significant
loss of information. PCA is useful in various applications.
In machine learning, the feature extraction can use PCA as
the first step to obtain the most uncorrelated features from
a dataset, which is also important for the accuracy of the
classification step [1], [2]. In Microwave Imaging (MI), which
is becoming popular in medical image processing, PCA is one
of the main approaches for dimensionality reduction [3]–[5].

PCA is computationally expensive as it typically deals with
large number of arithmetic operations on large datasets. To
accelerate its execution, a dedicated hardware implementation
is extremely helpful, especially in low-cost embedded systems
with limited computing and power capabilities. In the last
two decades there has been a growing interest in using
FPGAs as hardware accelerators in a variety of applications
including machine learning and image processing. FPGAs can
process large data in parallel with lower power consumption
compared to GPUs or multicore CPUs. For this reason, a
significant research effort has been invested into designing
FPGA-based hardware architectures to accelerate the PCA ex-
ecution. One of the critical steps in PCA is the Singular Value
Decomposition (SVD) of the input data, for which there has

been a considerable effort toward designing efficient hardware
implementations. For example, in [6] a novel architecture was
proposed based on two CORDIC modules that proved useful
to reduce the total resource usage. In [7] a modified CORDIC
algorithm was introduced for SVD calculation based on the
Jacobi method, which works also for complex matrices. In
[8]–[10] other RTL implementations of SVD were presented.

Besides SVD, the three other important steps in PCA are
“Mean computation”,“Covariance calculation”, and “Projec-
tion computation,” which are discussed thoroughly in the next
sections. Although they are less complex than SVD, these
steps process a large amount of input data, which affects the
computation time and makes it difficult to design an efficient
low-cost hardware that includes all parts of PCA. For instance,
in [11] PCA is used in a fall detection system as a feature
extraction step, but the PC coefficients are not computed in
hardware due to the high resource usage, and only the Projec-
tion is implemented in hardware. In the application domain of
hyperspectral imaging, Fernandez et al. [12] use a powerful
Virtex-7 FPGA to implement PCA for large data dimensions.
Due to the large dimension of data, Mean and Covariance
calculation were performed in software. Lately, in [14] a new
design for PCA acceleration was introduced for large data
without including covariance and mean computations.

Although manual RTL design using VHDL or Verilog is
still predominant in FPGA design, the design approach using
High-Level Synthesis (HLS), which leverages programming
languages like C or C++, is gaining momentum. Through the
processes of scheduling, allocation, and binding, HLS converts
a software code into its corresponding RTL description. The
main advantage of HLS is the ability to explore the design
space in search of Pareto-optimal solutions more efficiently
and quickly than with a hand-coded RTL design.

Recently, HLS designs have been shown to be effective for
PCA hardware acceleration. I. Bravo et al. [13] redesigned
their previous RTL implementation of the Jacobi algorithm
using HLS and obtained better performance. In [15] the
authors present a HLS-based design targeting a low-cost Xilinx
ZYNQ for computing PCA of spectral images with dimensions
of 12 spectral bands. The SVD part was implemented in
software in the Processing System (PS) of the ZYNQ while
the other parts were designed in the Programmable Logic (PL)
of the ZYNQ and took most of the FPGA resources.

The previous PCA designs either use manual RTL or cannot
implement a complete PCA algorithm efficiently in hardware.

The design in [14], for example, uses HLS for hardware
design, but does not include all parts of PCA. In contrast with
previous works, we propose in this paper a flexible hardware
architecture based on HLS that fully implements all the steps
of PCA in a low-cost ZYNQ (xc7z020clg484-1) and reduces
the overall computing latency with respect to state of the art
[15]. The flexibility is enabled primarily by the use of HLS,
which allows us to use different data dimensions and precision
and to support both floating- and fixed-point computations.

In the following, we first describe briefly the PCA algo-
rithm. Then we explain the proposed design and different
HLS-based hardware optimization techniques in Sec. II. In
Sec. III we discuss the results for different dimensions and
data types. Finally, we draw the conclusions in Sec. IV.

A. PCA description
Consider the input data as a matrix of size R×C, in which

R is the number of data and C are the original dimensions. For
example, each of the R data vectors can be a signal (i.e. its
samples) or an image (i.e. its pixels represented as a single
vector), whereas C can be the number of spectral bands (of
signals or images). PCA computes the principal components
corresponding to maximum variations of data by using the
following procedure:

1- Mean computation: The first step in PCA is data
normalization which requires the mean values of input matrix:

[Mean]1×C =
1

R

R∑
i=1

[Xi]1×C (1)

where [X]i is the ith row of the input matrix X . To use a
matrix representation, [M]R×C is derived from vector Mean:

[Mi]1×C = [Mean]1×C , i = 1, 2, ..., R (2)

where [Mi] is the ith row of matrix M .
2- Covariance calculation: To find the correlation between

input data samples, the covariance matrix is computed:

[COV]C×C =
1

R− 1
(X −M)T × (X −M) (3)

3- SVD of covariance: The next step is to find the singular
values and vectors of the covariance matrix:

COV = UΣUT (4)

where Σ is a diagonal matrix containing all the singular values
of covariance matrix, and U contains the singular vectors.

4- Sort and selection: The singular values and vectors
are sorted in descending order and after selecting a proper
threshold, the first few components (L < C) are preserved:

Σs, Us = Sort(Σ, U) (5)

[PC]C×L = Select(Σs, Us) (6)

The selection of PCs in (6) is based on the cumulative
energy of singular values. At first, the total energy of singular
values (E) is obtained:

E =

C∑
i=1

σi, (7)

where σis are the singular values from Σs. After that, the first
L components are selected in such a way that their cumulative
energy is no less than a predetermined fraction of total energy,
the threshold T (%):

100×
∑L

i=1 σi
E

≥ T (8)

5- Projection: Finally, the normalized input data is pro-
jected into the new base by the following equation:

[Y]R×L = (X −M)× PC (9)

B. PCA application

Although the application of interest for PCA is MI for this
paper, to the best of our knowledge there are no previous
FPGA implementations specifically for MI that we could use
as a reference for comparison. Therefore, we selected the ap-
plication of spectral images for which a similar PCA hardware
design is found [15]. The images are obtained in several bands
in the electromagnetic spectrum and are organized as a matrix
with the rows R equal to the number of pixels and the columns
C equal to the number of bands, thus in the following we use
terms “columns” and “bands” interchangeably.

II. PROPOSED METHOD

A. Hardware Design

The proposed hardware for PCA implementation is de-
scribed in Fig. 1. It consists of one single HLS design (the
large green box) with two core functions, Dispatcher and PCA
cores. Dispatcher reads input data X from an external memory
using a memory controller (the yellow box, a pre-designed
Xilinx IP), and dispatches them to three sets of FIFOs. These
FIFOs are connected to three main PCA components that
directly work on input data: Mean, Covariance (COV), and
Projection Unit (PU). At first, the Mean unit reads data,
computes the mean values according to (1) and stores them in
an internal memory. After that, the COV unit reads data from
its corresponding FIFO and mean values from the memory (to
normalize data) and computes the covariance matrix, which is
stored in another internal memory. The SVD unit reads the
covariance matrix from this memory and computes singular
values and vectors. Finally, after sorting and selecting the
principal components, the Projection Unit reads the selected
PCs and multiplies them by the normalized input data, which
are obtained from the FIFOs and the Mean memory. The final
output from PU is written back to the external memory.

The procedure for reading data from FIFOs is as follows.
In the Mean unit, the mean of every column of input matrix
is computed as in (1). To compute all the C mean values
in parallel, C FIFOs are used so that the Mean unit reads C
inputs at once from these FIFOs and accumulates them. When
all of the input rows are read from FIFOs, the accumulated
columns are divided by the number of rows (R) to store the
final means in the internal memory. It is possible to read C
values in each clock cycle as long as the number of FIFOs
is less than Fmax, otherwise the external memory bandwidth

Fig. 1. Block diagram of the proposed hardware implementation for PCA.

saturates. When C > Fmax it is not possible to process all
the columns at the same time and the minimum achievable
Initiation Interval (II), the time to receive a new set of data,
is equal to C/Fmax clock cycles.

In the Projection Unit the same approach is adopted and
every input row (containing all the columns) is received from
C FIFOs and multiplied, after normalization, by the principal
components according to (9).

For the Covariance unit, due to the high II of reading data
from COV FIFOs, there is no benefit in using C FIFOs. Even
by using one FIFO there is enough time for the dispatcher to
write all the required data to the single FIFO while COV is
processing the previous set of data. This will be illustrated in
detail in subsection II-C.

SVD is less critical, performance-wise, than the rest, be-
cause it does not work directly on the large input data
rows. In this design, we used a built-in HLS SVD function.
Although the latency of SVD is negligible, its resource usage
is comparable to other PCA parts.

It is important to note that all of the previous parts are
designed using a single HLS code, which is advantageous in
providing various flexibility options.

B. Flexibility

HLS allows us to quickly reconfigure the design without
changing significantly the original code. This allows us to
make our PCA design more general and easy to deploy in
different application scenarios. For example, different sensors
used in MI or spectral imaging may have different resolutions
resulting in different data precision.

In this design, we assume the input data are integers
stored in the external memory with data widths of 8, 16,
or 32 bits, and the outputs are stored as 32-bit floating-point
numbers. The number of columns (or bands in spectral images)
is variable up to a maximum determined by the available
hardware resources.

The computations in PCA core can be either in floating-
or fixed-point arithmetic. However, the built-in SVD function

works on floating-point values only, therefore the fixed-point
version of our design requires data conversion before/after the
SVD function. A custom fixed-point version of SVD is left
for future work.

C. HLS Optimizations

HLS provides a hardware designer with the possibility to
create the desired hardware and improve its efficiency by
applying different optimization techniques to the same design.
The hardware interfaces, the level of parallelism in loops, the
loop pipelining option, and specific resource allocation options
can be all determined by proper HLS directives.

Among these directives, the Dataflow one allows two func-
tions to operate concurrently by creating channels between
them. In our design, the two main HLS sub-functions are
connected by using a Dataflow optimization directive. We
specified the channels to be FIFOs to allow data streaming. In
addition, the input partitioning, and so the number of FIFOs,
follows the number of columns (except for C > Fmax) to
maximize the parallelism.

The total latency of the initial unoptimized design was
excessive. To reduce it, we optimized one by one the main
components of the PCA core that were the bottlenecks of the
design: Mean, COV, and PU. The impact of these subsequent
optimizations on the total latency and resource usage is shown
in Fig. 2. Here we report, as an example, the case with
R = 640× 480, C = 12, and 8 bits for the input data width.
Since the dispatcher input is limited to 256 bits in the target
FPGA, this combination results in Fmax = 256/8 = 32.

The default unoptimized design has the least amount of
resource usage and the highest latency: 9.06 s, which includes
5.4 s for COV, 3.04 s for PU, and 0.52 s for Mean units.

We first optimized the Mean unit because it affects other
PCA parts as they use its output for normalization. The
Mean unit implements two loops on the rows and columns
to compute the sum of input data for each column. The code
snippet is shown in Algorithm 1. It stores data from input
FIFOs (Din Mean) in a mean memory and accumulates the

Fig. 2. Impact of HLS optimizations on latency and resource usage.

results in tmp mean. By using the “array partitioning” HLS
directive for a mean and tmp mean, the loops are unrolled
and the input array split so that all of the C mean values are
computed in parallel reading inputs from multiple FIFOs. In
addition, a “pipeline” directive is used for the first loop to
improve the throughput and reduce the latency.

Algorithm 1 (Mean computation)
mean row loop :
f o r (i n t r =0 ; r<R ; r ++){
pragma HLS PIPELINE

mean co l loop :
f o r (i n t c =0; c<C ; c ++){

a mean [c]= Din Mean [r] [c] ;
tmp mean [c]+= a mean [c] ;}}

D i v i d e l o o p :
f o r (i n t c =0; c<C ; c ++)

a mean [c]= tmp mean [c] / R ;

Notice that since the output array a mean is partitioned,
this optimization affects also the other PCA parts that use this
partitioned array as an input. This is the reason why we tackle
the Mean optimization first.

For floating-point arithmetics, the minimum II for loop
pipelining in Mean unit is 5 clock cycles. This is because
the floating-point adder has a 5-cycle latency and since the
accumulation of tmp mean over C values introduces a loop-
carried dependency, it is not possible to exploit finer-grain
pipelining. For fixed-point instead, II can be reduced to 1
clock cycle because the fixed-point adder has a 1-cycle latency.
These optimizations reduce the Mean latency in the floating-
point case from 0.52 s to 0.15 s.

The next optimization is for COV unit. Due to the symmetry
of the covariance matrix, it is sufficient to compute N = (C×
(C + 1))/2 values rather than all of its C2 elements. The

Fig. 3. Covariance loops pipelining with C=3.

internal hardware for COV stores the received data from its
FIFO in a memory and updates the N covariance components
based on (3). The code snippet is shown in Algorithm 2.

In the RAM LOOP , normalized input data are stored in
Din RAM memory and in the next loops the multiplications
between the required elements are computed and stored in
tmp cov of size N . By applying loop pipelining and unrolling
(as shown in Algorithm 2 by the respective “pragma HLS”
directives), different iterations of COV COL2 loop can be
pipelined to reduce the latency.

Algorithm 2 (COV computation)
COV Loop Rows :
f o r (i n t r =0 ; r<R ; r ++){
RAM LOOP:
f o r (i n t c =0; c<C ; c ++){

#pragma HLS PIPELINE
Din RAM[c]= Din Cov [r] [c]−a mean [c] ; }
COV COL1 :
f o r (i n t c1 =0; c1<C ; c1 ++){

#pragma HLS UNROLL
COV COL2 :
f o r (i n t c2=c1 ; c2<C ; c2 ++){

#pragma HLS PIPELINE
. . . / / I n d e x i n g

tmp cov [Index]+=Din RAM[c1]*Din RAM[c2] ;}}}

Fig. 3 shows the schedule for the COV unit when C = 3.
C1 to C3 are 3 column values of one row in input data
which are received from a single FIFO. The three loops in
COV LOOP1 are executed sequentially, but each loop is
pipelined with II=1. The impact on resources is minimal,
but we cannot further optimize the latency by unrolling the
loops: if we unrolled them, the hardware usage would exceed
the available FPGA resources. Therefore, this optimization
choice is a trade-off between resource usage and latency.
Nonetheless, applying these optimizations (and keeping the
previous directives for Mean unit) results in reducing COV
latency significantly, from 5.46 s down to 0.76 s.

As described before, we used only one FIFO for the COV
interface. As shown in Fig. 3, the computation time of the
N = 6 elements of covariance is the sum of iteration latency
of the loops (the number of clock cycles to complete one
loop iteration), and COV has to wait until these computations
are finished before it receives the next set of data. This is the
reason of high II of COV for reading from the FIFO. By using
one FIFO, the Dispatcher writes data in the FIFO while COV
is computing and using more FIFOs would be useless.

The final optimization is for the PU for which the code
snippet is presented in Algorithm 3. Three loops multiply
normalized data and principal components.

Algorithm 3 (PU computation)
P r o j e c t i o n L o o p :
f o r (i n t r =0 ; r<R ; r ++){

COLB: f o r (i n t c1 =0; c1<L ; c1 ++){
#pragma HLS PIPELINE

tmp =0;
. . .

COLA: f o r (i n t c2 =0; c2<C ; n ++){
tmp +=(Din Nrml [c2]*PC [c2] [c1] ; }

Data Trans fo rmed [r] [c1]= tmp ;}}

The best optimization in this case is to pipeline the middle
loop, which unrolls the inner loop and makes the unrolled
loops operate in parallel, resulting in a reduced latency with an
II of 2. This also requires partitioning the arrays involved in the
multiplication. After applying all of these hardware directives,
the PU latency decreases from 3.04 s to 0.18 s.

III. RESULTS

The proposed PCA hardware flexible accelerator is evalu-
ated on the low-cost ZYNQ SoC xc7z020clg484-1 used in the
Zedboard ZC702. The frequency of operation is 100 MHz. The
flexibility is implemented through a set of variables to be set at
design time, which define the value of design parameters like
the AXI width for the Dispatcher input, the number of FIFO
channels, the input data width, and the data dimensions. Some
of these parameters are automatically determined by HLS
based on the maximum bandwidth toward the external memory
(like the maximum number of FIFO channels), whereas the
others depend on the application. Vivado HLS 2018.2 is used
for the evaluation and performance measurements.

In the following experimental results, we set the data size
of rows to 640×480 pixels and measure the performance
in terms of latency and resource usage when we vary the
number of bands (i.e. C, the number of columns), the input
data width (DW), and the data representation for internal
calculations (32-bit fixed or floating point). In addition, we
compare our work with a recent implementation of PCA in
the same target FPGA [15]. In this reference, the number of
bands is C=12, the number of rows (or pixels) is R=640×480,
the input data width is DW=8 bits, and the computations
are in floating-point. Notice that our design includes all PCA
parts, whereas in [15] the SVD is implemented in software.
In addition, the authors used separate HLS blocks and Vivado
IPs because the Processing System (PS) controlled the external
memory addresses, which were transferred separately to the
corresponding blocks (details are found in [15]). In contrast,
we use an unified HLS code for all the PCA functions.

The total latency in our design depends only on the number
of bands (as long as C ≤ Fmax) and is shown in Fig. 4. The
figure highlights also the maximum number of bands that the
target FPGA can support before saturating the resources. It is
evident that the fixed-point arithmetic accepts more bands and
results in lower latency compared to floating-point.

The total resource consumption of Dispatcher, FIFO chan-
nels, and PCA core is in Fig. 5 for DW=8 and different
number of bands. For floating-point representation, LUTs are
the bottleneck of the design, while for fixed-point, DSP48s

Fig. 4. Total latency for different bands for the proposed PCA accelerator.

Fig. 5. Total resource usage for different bands (data width = 8 bits)

are the limitation. The maximum number of bands is 15 for
floating-point and 28 for fixed-point computations.

When DW increases, the use of memory bandwidth in-
creases. As a result, the maximum number of FIFOs (Fmax)
decreases. When C ≤ Fmax, the latency is independent
of DW because i) there is enough bandwidth to write all
the input data to the FIFOs and ii) the PCA computations
are always performed on 32 bits (floating- or fixed-point)
regardless of DW . DW only affects the resource utilization
of the Dispatcher and its FIFO interfaces.

When C > Fmax, the II for Mean and PU increases by
a factor of C/Fmax due to the bandwidth limitation. Note
that in this case we can use fewer FIFOs (F < Fmax) for
the same II. For example, when Fmax = 16 and C = 20,
we obtain II=2 either using 16 or 10 FIFOs. We obtain the
optimum number of FIFOs by finding the lowest integer n for
which F = (C + n)/(n+ 1) ≤ Fmax. In this way we reduce
the resource consumption without affecting the latency.

Fig. 6. Total resource usage for different data widths (floating-point).

Fig. 7. Total resource usage for fixed-point and data widths 16 and 32 bits.

Figs. 6-7 show the impact of DW on the resource usage
when the number of bands C increases, for floating and fixed-
point, respectively. The Dispatcher consumes mainly LUT
resources, which increase for higher DW . In Fig. 6 the LUT
usage is the same for DW=16 and DW=32 when C ≥10.
This is because for these cases more resources are mapped
to BRAMs rather than LUTs. The fact that the BRAM usage
does not always increase is because of the reduction of FIFOs
when C > Fmax, which is especially evident in Fig. 7.

Changing the input data width also affects the total latency
when C > Fmax due to the increase in the II of Mean
and PU. However, since the latency of COV is the dominant
contribution, the overall increase is not significant. In the worst
case, when DW increases from 8 to 32 and the number of
bands is C=28 for fixed-point, the latency increases from
1.88 s to 1.91 s (note that for both values of DW , the COV
computations are done in 32-bit fixed-point).

Compared with reference [15], as shown in Table I, the
final latency and resource usage improve, except for a slight
increase in DSP usage. One possible reason of the superiority

TABLE I
PERFORMANCE COMPARISON BETWEEN THE REFERENCE [15] (SEPARATE

DESIGN) AND THIS WORK (SINGLE HLS), C=12, DW=8.

latency (s) %BRAM %DSP48 %FF %LUT
Ref(float) 1.1 12 19 38 73
Proposed

(float) 0.83 4 21 17 46

Proposed
(fixed) 0.53 5 39 10 24

Proposed
SVD — 5 13 13 21

of our design is that we use a single HLS code, rather than
various blocks implemented individually as done in [15].
This allows the HLS synthesizer to find better solutions that
maximize resource sharing between the subfunctions without
impacting on the overall latency.

The resource usage in the table keeps the SVD unit of
the proposed design separated for a fair comparison with
the reference. The latency of the proposed design, however,
includes the SVD latency (similar to the reference). Even
though the reference does not include the Mean computation,
we could not separate it from our overall resource usage
because, differently from the SVD unit, which is a separate
function, the Mean is simply a loop in the main code and
Vivado HLS does not report resource usage for individual
loops.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a flexible hardware PCA accelerator is pro-
posed and evaluated on a low-cost ZYNQ SoC. It supports
different input data widths and dimensions, as well as both
floating and fixed point arithmetic depending on the ap-
plication needs. The design uses a single HLS code and
several HLS optimization strategies to improve the perfor-
mance. Compared with a reference HLS design implemented
as separate HLS blocks, the proposed design achieves lower
latency and resource usage. In addition, we show that a fixed-
point implementation has lower latency and supports higher
data dimensions. In the future, we will increase the flexibility
by adding support for different FPGA boards. Since we used
a built-in HLS function for SVD based on floating-point, we
had to include type conversion. Therefore, we will also work
on a fixed-point implementation of SVD to further reduce the
resource usage and so to support larger number of dimensions.

ACKNOWLEDGMENT

This work was supported by the EMERALD project funded
by the European Unions Horizon 2020 research and innovation
programme under the Marie Skodowska-Curie grant agree-
ment No. 764479.

REFERENCES

[1] S. Khalid, T. Khalil and S. Nasreen, “A survey of feature selection
and feature extraction techniques in machine learning,” Science and
Information Conference, London, pp. 372–378, 2014.

[2] X. Kang, X. Xiang, S. Li and J. A. Benediktsson, “PCA-based edge-
preserving features for hyperspectral image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 55, no. 12, pp. 7140–
7151, 2017.

[3] E. Ricci, S. di Domenico, E. Cianca et al., “PCA-based artifact removal
algorithm for stroke detection using UWB radar imaging,” Medical &
Biological Engineering & Computing, vol. 55, no. 6, pp 909–921, 2017.

[4] M. N. Tabassum, I. Elshafiey and M. Alam, “Enhanced noninvasive
imaging system for dispersive highly coherent space,” International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brisbane, pp. 912–916, 2015.

[5] Y.Wu, B. Liu, and M. Zhu, “A single-pair antenna microwave medical
detection system based on unsupervised feature learning,” International
Conference on Computational Social Networks (CSoNet): Computa-
tional Data and Social Networks, vol. 11280, pp 404–414, 2018.

[6] I. Bravo et al., “Novel HW architecture based on FPGAs oriented to
solve the eigen problems,” IEEE Trans. VLSI Systems, vol. 16, no. 12,
pp. 1722–1725, 2008.

[7] M. Tian, M. Sima, and M. Mcguire, “Behavioral Implementation of
SVD on FPGA,” International Symposium on Signal Processing and
Information Technology (ISSPIT), USA, pp. 495–500, 2018.

[8] M. Franceschi, A. Nannarelli and M. Valle, “Tunable floating-Point
for embedded machine learning algorithms implementation,” 15th Inter-
national Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), Prague, pp. 89–
92, 2018.

[9] Luis M. Ledesma-Carrillo et al., “Reconfigurable FPGA-based unit for
singular value decomposition of large m × n matrices,” International
Conference on Reconfigurable Computers & FPGAs, pp. 345–350, 2011.

[10] U. Martinez-Corral, K. Basterretxea and R. Finker, “Scalable parallel
architecture for singular value decomposition of large matrices,” 24th
International Conference on Field Programmable Logic and Applications
(FPL), Munich, pp. 1–4, 2014.

[11] A. Ali, M. Siupik, A. Amira, F. Bensaali, and P. Higuera, “HLS
based hardware acceleration on the Zynq SoC: a case study for fall
detection system,”, 11th International Conference on Computer Systems
and Applications (AICCSA), pp. 685–690, 2014.

[12] D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” Journal of Real-Time Image Pro-
cessing, pp. 1–12, 2016.

[13] I. Bravo, C. Vazquez, A. Gardel, J. L. Lazaro, and E. Palomar, “High
level synthesis FPGA implementation of the jacobi algorithm to solve
the eigen problem,” Mathematical Problems in Engineering, vol. 2015,
Article ID 870569, 11 pages, 2015.

[14] M. A. Mansoori and M. R. Casu, “Efficient FPGA Implementation
of PCA Algorithm for Large Data using High Level Synthesis,” 15th
Conference on Ph.D Research in Microelectronics and Electronics
(PRIME), pp. 65-68, Switzerland, 2019.

[15] M. Schellhorn and G. Notni, “Optimization of a principal component
analysis implementation on Field-Programmable Gate Arrays (FPGA)
for analysis of spectral images,” Digital Image Computing: Techniques
and Applications (DICTA), Canberra, Australia, pp. 1–6, 2018.

