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This paper proposes a new framework to analyze two vulnerability features, impactability and susceptibility, in electrical networks
under deliberate attacks based on complex network theory: these two features are overlooked but vital in vulnerability analyses. To
analyze these features, metrics are proposed based on correlation graphs constructed via critical paths, which replace the original
physical network. Moreover, we analyze the relationship between the proposed metrics according to degree from the perspective
of load redistribution mechanisms by adjusting parameters associated with the metrics, which can change the load redistribution
rules. Finally, IEEE 118- and 300-bus systems and a realistic large-scale French grid are used to validate the effectiveness of the
proposed metrics.

1. Introduction

Critical component identification is an important part of
security analyses for electrical networks [1–3]. The main idea
is to rank the weakness of the equipment in an electrical
network via a set of metrics.

As an artificial network, electrical grids have topological
similarities to other general networks. They also exhibit
several typical features of complex networks, such as small-
world properties [4–6]. Therefore, complex network theory
(CNT) is a popular method to assess the vulnerability of
electrical networks[3, 4, 7–13].The construction of structural
metrics is an important branch of vulnerability evaluations
[14] based on CNT. CNT uses the connectivity information
abstracted from the network to create indices based on
statistics and, sometimes, physical features of the network are
added to improve the effectiveness of the indices [10, 11].

However, there are still several problems with this
method. Compared to general networks (or systems), an
electrical network has its own characteristics that limit the
wide application of CNT. First, analyzing the topological

structures of electrical networks without considering their
operational status does not disclose the real features of the
systems [10, 11]. Secondly, in most general networks, when a
vertex (or an edge) of a network fails, the direct neighbors
are the first to be affected or have the largest impact based
on CNT. However, this is not generally true for electrical net-
works [15]. Moreover, the structural metrics are static indices
[12, 13, 16] that only consider the normal operational status
of the network. To overcome the above problems, statistical
graphs [17, 18] are employed to analyze the vulnerability or
cascading failures of electrical networks. For example, [19,
20] proposed a sequential attack graph (SAG) to identify
critical nodes while [21] proposed a correlation matrix. In
addition, [22] proposed influence graphs to analyze cascading
failures. Statistical graphs have also provided promising
options for security, because they comprehensively consider
the topological, physical, and operational characteristics of a
system.

In addition, another problem inwhich features of vertices
(edges)(For clarity, hereinafter the terms “network, branch
and node” are used only for electric systems and “graph,
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2 Complexity

edge and vertex” only for complex networks.) in complex
network vulnerability detection, especially in electrical net-
works, should be distinguished, is often overlooked. For
example, some vertices can easily spread faults leading to a
high probability of a network failure event. Conversely, some
vertices are easily affected by propagated faults. Therefore, it
is necessary to devise a method to identify these two features
of vertices and to better reveal the vulnerabilities of net-
works.

In summary, our main contributions are as follows.
First, we propose a new framework that employs sta-

tistical graphs to represent the useful information for ana-
lyzing the network vulnerability from the original physical
grid, using CNT, compared to a traditional framework that
employs the original topological structure of the gird.

Secondly, inspired by [19–24], we propose a correlation
graph (CG) generated via critical paths to analyze the electri-
cal network vulnerability.

Thirdly, using benchmarks, we analyze the topological
properties of the CGs based on CNT via the cumulative
distributions of the vertex degrees. According to the analysis,
the CGs are scale-free graphs, which verifies that electrical
networks have scale-free properties under deliberate attacks,
as opposed to traditional complex network methods, which
verify the properties by correlating the drop in the network
demand (or efficiency) with the attacked branches.

Finally, we define two vulnerability features from the
perspective of CNT and then map the features onto electrical
networks. Further, we employ the scale-free structures of the
CGs to construct vulnerability metrics for the first time to
differentiate the two features from the perspective of the load
redistribution mechanism of CNT.The features of the metrics
are explained in detail, including their relationship with the
degree.

In addition, note that, even though dynamic models ana-
lyzed by real-time simulation platforms[25] are more com-
prehensive for security analyses in the real world, they require
much longer simulation times and result in an immense
computational burden, which makes it difficult to analyze
a large-scale network. Meanwhile, as a media connecting
equipment in the power system, the transmission network
has notably fast dynamics/transients, compared to rotating
devices. In other words, the transmission network per se can
usually be considered to be a static component. Therefore,
static models from the perspective of the load redistribution
are widely employed to analyze the network vulnerability
in existing literature [10–24]. Based on above, we focus on
understanding the nature of the transmission network using
static models by the load redistribution from the entire
network.

2. Correlation Graph

We constructed a CG to incorporate both the structural
features and the operational status of power systems, using
critical paths from the point of view of load redistribution
mechanism (LRM). The constructed graph considers both
the topological structures and the operational features under
fault operation of the system. For example, branches of an
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Figure 1: Comparison between proposed idea and existing litera-
tures based on CNT.

electrical network can be transformed into vertices in a
new graph while edges are formed to reflect the adjacent
relationships between branches.

2.1. Vulnerability Assessment: A New Framework. To over-
come the limitations of structural vulnerability identification
methods by applying CNT to the electrical network vulner-
ability assessment, we need to consider the following two
aspects: (1) the importance of a vertex and (2) the adjacent
relationships between vertices. To assess the importance of a
vertex, there are many indices (e.g., degree and betweenness)
that can be used to qualify it from the perspective of LRM.
Comparatively, there are few indices for quantifying the
importance of branches because it is difficult to assess edges
under LRM. In addition, in most general networks, when a
vertex (or an edge) of a network fails, the adjacent relationship
between vertices usually imply that the immediate neighbors
are the first to be affected or suffer the largest impact based
on CNT. However, this is not generally true for electrical
networks; sometimes, nonadjacent branches are the first to
be affected due to the physical laws of electric circuits and
the physical and operational constraints [15]. Therefore only
using the information of the structure of an electrical network
cannot effectively identify the critical branches.

In summary, it is spatially insufficient to analyze the
network vulnerability using only the topological structures
of the girds. Therefore, we propose a new framework that
employs statistical graphs [19–24] to represent information
useful for analyzing the network vulnerability from the
original physical grid, using CNT, as shown in Figure 1. In
the existing methods, the topological structures are employed
to assess the electrical network vulnerability based on the
CNT on the original physical networks. Its main idea is
to focus on the importance of branches by constructing
statistical metrics without the evolvement of the operational
feature of the system. However, we construct statistical
graphs comprehensively considering topological, physical
and operational features of power systems, and further based
on the constructed statistical graphs which can reveal not
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Figure 2: An example to explain the electrical vulnerability.

only importance of branches but also adjacent relationships
among branches we assess the vulnerability with two features
by replacing the original electrical networks.

2.2. Correlation Graph. Although many statistical graphs are
proposed in references [19–21], there are still many limita-
tions in the construction of statistical graphs to identify criti-
cal branches. In references [19, 20], a SAGwas constructed by
investigating different node combinations under sequential
attacks. However, a SAG cannot be used to identify the
critical branches of a large-scale electrical network because
the different branch combinations will increase exponentially
with increasing network scales. In reference [21], a correlation
matrix was constructed under N-1, but an N-k contingency
was not considered and the proposedmethodwas not verified
on a large-scale grid. Meanwhile, the above statistical graphs
are only analyzed from the perspective of static statistical
indices (e.g., degree).

Therefore, it is necessary to construct a new statistical
graph to apply to the identification of vulnerable branches
of large-scale networks under the N-k contingency and the
corresponding properties should be analyzed in depth. To
explain the rationale of the construction of a statistical graph,
we use a cup of water as an example. The cup represents
the topological structure of an electrical network and the
water in the cup represents the operational status, as shown
in Figure 2. Under normal operation, the system opera-
tor decides on an optimal/appropriate operational point,
considering different constraints, including the necessary
security margin. The optimal/appropriate point corresponds
to a certain electric load level in the electrical network,
represented by the water level in the cup. When a hole “A”
in the cup is created, for example, by a contingency 1 due to
structural damage, the optimal level for the water will change.
Therefore “A” decides the optimal/appropriate water level,
analogous to the electric load level, which can be viewed
as the importance of the elements inside the contingency 1.
Further, we assume that there are two potential holes, i.e.,
“B” and “C,” which can only be revealed after contingency 1,
and that “C” is more decisive for the appropriate water level
than “B.”This infers that the adjacent relationship “A”󳨀→“C”
is more important than that of “A”󳨀→“B.” Therefore, the
adjacent relationship “A”󳨀→“C” and the properties of “C”
decide the appropriate water level. Accordingly, “A”󳨀→“C”
can be viewed as the adjacent relationship between two
branches during fault propagation.

Note that, in every step, we only need to pick the most
decisive “hole” in the cup,which is nearest to the optimal level
of the water.

To trace the adjacent relationships between branches, we
need to consider different combinations. Now, the computa-
tional burden becomes an issue. For example, if we consider
theN-k criterion, for an electrical network withN𝐿 branches,
we need to calculate N𝑘 contingencies. For a French grid with
2596 branches, we need to calculate 17.5 billion contingencies
for N-3.

Therefore, to simplify the calculation, we constructed
critical paths [17, 18] to trace the adjacent relationships.
We employed a Branch loading assessment index (BLAI)
introduced in our precious work [17, 18, 26] to select an
attacked branch, having the largest impact on the electrical
network, as the next contingency. In addition, a commonly
used termination condition, i.e. the blackout size, was used
to mark the end of the critical paths [20].

To select a branch, the BLAI is employed to reflect the
loading burden and its possibility of failure under the current
contingency from the perspective of the load redistribution.
The index can be calculated as

𝛼𝑗 = 𝑓𝑥𝑗 − 𝑓0𝑗𝑓𝑀𝑗 exp(𝑓𝑥𝑗 − 𝑓𝑀𝑗𝑓𝑀𝑗 ) (1)

The blackout size is adopted tomark the end of the critical
paths and is viewed as a measure of the gravity of a critical
path. The blackout size is defined as

𝛿𝑥𝑧 = 1 − ∑𝑑∈B𝑧 𝑃𝑥𝑑∑𝑑∈B𝑧 𝑃(𝑥−1)𝑑 (2)

Λ = 𝑁𝑆−1∑
𝑥=1

𝑍𝑥∑
𝑧=1

𝛿𝑥𝑧 (3)

and when Λ ≥ Δ, we terminate the process.
Based on the above-mentioned considerations, we

employ the structural features and the operational status of
the electrical network to construct a CG to reveal the adjacent
relationships between the branches. Using the CG, the spatial
association network between branches was translated into
a CG. However, before introducing the CG, we define
the vulnerability relationship to describe the relationship
between the two branches.

Vulnerability Relationship. We denote two adjacent links on a
critical path as having a vulnerability relationship.
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Critical Path Generation Method. To explore the vulnerability
relationship, we use the critical paths of a network to con-
struct a CG. For a network with 𝑁 branches, we treat every
branch as a triggering fault.We canobtain𝑁 paths of a critical
path. Note that some paths may contain only one vertex.
DC-OPF (optimal power flow) is employed to optimize
the operation status in different topological structures. The
critical path is generated as follows.

Step 1. Input the electrical network information. InitializeS =𝜙 and Δ. Select a branch as a triggering fault.

Step 2. Remove the selected branch from the electrical
network and add it to S.

Step 3 (island detection and partition). Calculate the DC
power flow [27–29] of every island. Employ (1) to calculate𝛼 for every branch.

Step 4. Take (2) as the objective function. Calculate the
minimum 𝛿 of every island using the DC-OPF algorithm
[1, 28]. Employ (3) to calculate Λ.
Step 5. If Λ ≥ Δ, end the critical path generation process;
otherwise select the branch whose 𝛼 is the maximum of all
the branches as the candidate branch under next contingency
scenario and go to Step 2.

Step 6. Output S.

By above process, we can simply and quickly develop crit-
ical paths and efficiently reduce the computational burden.

CG Generation Method. To map a critical path S𝑖 ={𝐿𝑖1󸀠, 𝐿𝑖2󸀠, . . . , 𝐿𝑖𝑁𝑆 󸀠} onto a graph G𝑖, let the branches in S𝑖 be
the vertices of G𝑖, i.e., V𝑖 = {V𝑗 | V𝑗 = 𝐿𝑖𝑗󸀠, 𝑗 = 1, 2, . . . , 𝑁𝑖𝑁𝑆}.
Then the edges can be defined asE𝑖 = {𝑒𝑖𝑞 | 𝑒𝑖𝑞 = 𝐿𝑖𝑗󸀠𝐿𝑖𝑗+1󸀠, 𝑗 =1, 2, . . . , 𝑁𝑖𝑁𝑆 − 1}. By merging corresponding 𝑁𝐿 graphs, we
can obtain the CG, i.e., G = G1 ∪ G2 ∪ . . . ∪ G𝑁𝐿 . Finally the
CG is represented as

G = {(V,E) | V = V
1 ∪ V
2 ∪ ⋅ ⋅ ⋅ ∪ V

𝑁𝐿 ,E = E
1 ∪ E
2

∪ ⋅ ⋅ ⋅ ∪ E
𝑁𝑆} . (4)

Obviously, the CG is an undirected and unweighted graph.

CG Topological Features. To analyze the topological features
of the CG, we employ four benchmark systems (described
in Table 1). We set the threshold Δ = 20% [20]. The CG
of the IEEE 14-bus system, shown in Figure 3, manifests
the adjacent vulnerability relationship between the branches.
Using the CG, the spatial association network between the
branches in the electrical network can be translated into a
statistical graph.

The cumulative distributions of the vertex degree
[29]𝑃(𝐾 > 𝑘) = ∑𝐾>𝑘 𝑃(𝑘) in CGs are all power laws whose𝑟 and 𝑅2 are given in Table 2, except for the CG of the

Table 1: Description of test benchmarks.

Test benchmarks 𝑁𝐵 𝑁𝑊 𝑁𝐿
IEEE 14-bus system 14 5 20
IEEE 118-bus system 118 54 186
IEEE 300-bus system 300 69 411
French Grid 1951 391 2596
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Figure 3: Mapping between IEEE 14-bus system and CG.

Table 2: Parameters 𝑟 and 𝑅2 of cumulative distributions of the
vertex degree in three CGs. Generally, 𝑅2 ≥ 80% has a satisfactory
fitting effect.

Test benchmarks 𝑟 𝑅2
IEEE 14- bus system 0.8880 0.7254
IEEE 118-bus system 1.3023 0.9338
IEEE 300-bus system 1.3500 0.9166
French grid 1.2180 0.9497

IEEE 14-bus system because its vertices are too few to allow
statistical conclusions to be drawn. Table 2 indicates that CGs
are scale-free graphs (i.e., 𝑃(𝐾 > 𝑘) ∼ 𝑥−𝑟), which have high
robustness under random vertex attacks, but low robustness
under intentional attacks. In addition, we can employ the
CGs to verify the scale-free properties of electrical networks
under deliberate attack, and compared them to traditional
complex network methods which verify the properties by
correlating the drop in the network demand (or efficiency)
to the attacked branches. Due to its scale-free features, its
statistics of under faults operation and its vulnerability
relationships between branches, we can indirectly assess the
electrical network vulnerability using the CG.

3. CG Based Vulnerable Indices with
Two Vulnerability Features Using CNT

In this section, we define the two vulnerability features.
Then we propose CG based metrics to differentiate the two
features to assess the electrical network vulnerability from
the perspective of LRM. Before defining the two vulnerability
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features, we briefly introduce the taxonomy from CNT used
in this paper.

Flow is a tangible or intangible substance that exists in a
specific network. For example, in physical networks, such as
water networks, the water flow is the flow. In social networks,
the flow is the communication between people.

Load is defined as the quantity of a flow that a vertex owns
for a certain status of the network [30].

Load capacity is the maximum load that a vertex can
withstand [31]. Once the load of a vertex is beyond the load
capacity, the vertex is then in overload.

Load redistribution is the process where, when a vertex
fails or is removed, its corresponding load needs to be reallo-
cated or transferred to other vertices following certain rules.
In particular, when the corresponding load is reallocated to
the adjacent vertices that are directly connected to the fault
vertex, the redistribution rule is called neighbor distribution
rule (NDR)[32]; meanwhile when the load is reallocated to all
the other vertices, the redistribution rule is called the global
distribution rule (GDR) [31]. When the corresponding load is
evenly reallocated to selected vertices, the redistribution rule
is called a uniformity distribution rule.

In this paper, we analyze the vulnerability from the angle
of LRMof CNT [33, 34].That is, we assess the vulnerability of
the network by the changes due to load redistributions when
a vertex fails.

3.1. Two Vulnerability Features. At present, a popular vulner-
ability analysis is to identify the critical vertices (or edges) of
an electrical network, which easily leads to a network failure
event under deliberate attacks [1]. Such approaches only
identify critical branches that can easily affect the network
when they fail, as shown in Figure 4(a). However, they ignore
the other feature of critical branches which are easily affected
by faults of other branches, as shown inFigure 4(b).Therefore
it is necessary to differentiate the two vulnerability features
and we call impactability and susceptibility.

When a branch fails (is attacked), it causes obvious or
serious changes in the original status of the network in one
or more aspects, such as the topological structure and the
function, and in such a case, the branch is called an impactable
vertex.

When one or more network branches fail, if a branch
is easily affected by the faults, leading to changes in the
original status of this branch, such as the load increasing

(even overload), branch failure, then the branch is called a
susceptible vertex.

The impactability of a branch in an electrical network
describes how the failure of that branch can cause a con-
siderable load increase in other branches, leading to serious
system changes. The susceptibility of a branch in an electrical
network describes, when other branches fail, the branch, and
how easily the branch is affected by a fault, leading to a severe
load increase or failure.

The differentiation of these two features of branches
has practical implications. First, it provides useful lists of
critical branches corresponding to different operation states
for power dispatchers tomonitor. For example, under normal
operation, dispatchers need to give priority to impactable
branches because they can easily spread faults when they
are attacked. Conversely, under fault operation, dispatchers
should also pay attention to susceptible branches because
they can easily be affected by other faults. Secondly, ana-
lyzing the impactability of branches provides suggestions to
offenders about how to cause significantly large disturbances
to a system and to defenders about how to protect the safe
operation of a system at the lowest cost. By analyzing the
susceptibility of branches, it can reduce or avoid further
deterioration of the system under a deliberate attack. In
summary, the differentiation of the two features can improve
the management of system security.

3.2. Proposed Vulnerability Metrics with the Two Features.
Previous studies of the load in LRM in complex networks
have primarily focused on the load model (e.g., the initial
load) and the load redistribution strategy. For example, the
betweenness or degree is generally employed to define the
initial load of a vertex [32, 33, 35–37]. Similarly, we employ
the degree to define the load of a vertex because the degree
can reflect its importance in the propagation process. For
the load redistribution strategy, [33, 36] investigated NDR
while [37] proposed stochastic probability redistribution
models. However, the redistribution rule they proposed is not
adjustable. References [32, 34] first considered the adjustable
redistribution rules for the load. To define the vulnerability
metrics by means of LRM, we adopted the adjustable load
redistribution strategy to study LRM. Before defining the
metrics, we introduce some new concepts based on CNT as
follows.
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The vulnerability flow is a virtual substance that reflects
the vulnerability relationship between the branches. For
example, we can define the flow that exists in the CG as
the vulnerability flow. The vertices of the CG carry a certain
proportion of the vulnerability flow called the load.The edges
of the CG reveal the paths of transmitted load. When a
branch of an electrical network fails, it causes changes in other
branches in terms of their loads. If we map a contingency
onto the CG, it describes the corresponding vertex failures,
causing the reallocation of the load onto other vertices (i.e.,
load redistribution) via the edges.

Initial Load. In a CG, a higher degree vertex plays a more
important role in the fault propagation process; therefore we
employ the degree of the vertices to quantify the amount of
the initial load [34]. The initial load of vertex V𝑗 is expressed
as

𝜌𝑗 = 𝐷𝑗𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏 (5)

Distance. In a CG, there may be more than one path between
any two vertices. Therefore, to quantitatively depict the
distance between any two vertices, we use the minimum
path between them [32, 34] to quantify their vulnerability
relationship.

In an electrical network, the failure of a branch will cause
the redistribution of the initial power flow in the fault branch
to other branches, leading to an increase in the transmitted
power over other branches. Correspondingly, when wemap a
contingency onto the CG, the relevant fault vertex will lead to
the redistribution of its initial load to other vertices.Therefore
we use the increase in the vulnerability flow at other vertices
to quantify the impact of the corresponding fault branch on
the electrical network.

The load redistribution Δ𝜌𝑗󳨀→𝑘 from vertex V𝑗 to vertex V𝑘
in the set of affected vertices Q𝑗 (V𝑘 ∈ Q𝑗) is defined as

Δ𝜌𝑗󳨀→𝑘 =
{{{{{{{

𝑙−𝜆𝑗𝑘∑𝛾∈Q𝑗 𝑙−𝜆𝑗𝛾 𝜌𝑗, 𝑘 ∈ Q𝑗

0, 𝑘 ∉ Q𝑗

(6)

Q𝑗 = {{{𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑙−𝜆𝑗𝑘∑𝑁𝐿𝛾=1 𝑙−𝜆𝑗𝛾 > 𝜂, 0 < 𝜂 ≤ 1𝑁𝐿 − 1 }}} (7)

Obviously, the load redistribution is proportion to the
distance between V𝑗 and V𝑘. 𝜆 controls the portion of the
load that V𝑗 reallocates to V𝑘, and 𝜂 is used to define the set
Q𝑗. Equation (6) reflects not only the importance of a vertex
but also the vulnerability relationships between that vertex
and others. We employ the parameters 𝜏 and 𝜆 to adjust
the proportion between the importance of a vertex and its
vulnerability relationships.

Impactability Metric (IM). To describe the impactability
of a fault vertex V𝑗 in a CG, we introduce the entropy
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Figure 5: An example to understand (8).

expressed in the following to measure the load change in the
graph.

𝐸𝑗 = − ∑
𝑘∈Q𝑗

Δ𝜌𝑗󳨀→𝑘 lnΔ𝜌𝑗󳨀→𝑘 (8)

Eq. (8) considers the severity of the fault in terms of the
affected number of vertices and measures the uniformity
of the load redistribution. Further, E𝑗 is larger for more
severe faults and/or more even load redistributions between
affected vertices. To illustrate the two aspects we mentioned
for Equation (8), we use 3 vertexes depicted in Figure 5.
Assuming under even load redistribution strategy, the 𝐸𝑗−2
of V𝑗−2 is greater than 𝐸𝑗−1of V𝑗−1 solely because V𝑗−2 affects
more vertexes. In contrast, with the same number of affected
vertexes, 𝐸𝑗−2 of V𝑗−2 is greater than 𝐸𝑗−3 of V𝑗−3 due to amore
uniform load redistribution.

However, note that some vertices may exist whose
entropy is greater than that of others, due to more even load
redistributions between larger affected number of vertices,
yet cause small load increases for other vertices, resulting in
a small overall impact. To exclude these vertices, we further
refine

𝐼𝑉𝑗 = 1𝑁𝑄𝐸𝑗 = − 1𝑁𝑄 ∑𝑘∈Q𝑗Δ𝜌𝑗󳨀→𝑘 lnΔ𝜌𝑗󳨀→𝑘 = − 1𝑁𝑄
⋅ ∑
𝑘∈Q𝑗

𝑙−𝜆𝑗𝑘∑𝑟∈Q 𝑙−𝜆𝑗𝛾 (
𝐷𝑗𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏)

⋅ ln 𝑙−𝜆𝑗𝑘∑𝛾∈Q𝑗 𝑙−𝜆𝑗𝛾 (
𝐷𝑗𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏)

(9)

We define 0 ln 0 = 0.
Susceptibility Metric (SM). To describe the susceptibility of an
affected vertex V𝑘 in a CG, we use the average incremental



Complexity 7

load redistribution from all other fault vertices into that
vertex:

𝑆𝑉𝑘 = 1∑𝑁𝐿𝑗=1 𝜎 (Δ𝜌𝑗󳨀→𝑘)
𝑁𝐿∑
𝑗=1

Δ𝜌𝑗󳨀→𝑘
∀V𝑗 ∈ G, 𝑗 ̸= 𝑘

(10)

𝜎 (Δ𝜌𝑗󳨀→𝑘) = {{{
1, Δ𝜌𝑗󳨀→𝑘 > 0
0, Δ𝜌𝑗󳨀→𝑘 ≤ 0 (11)

3.3. Load Redistribution Rules for IM and SM. In this subsec-
tion, we discuss two rules for the load redistribution: NDR
and GDR which explore the relationship between the two
metrics and the degree.

Neighborhood Distribution Rule. When 𝜆 = +∞, the load
redistribution rule is NDR.

(1) For IM, (9) is simplified as

𝐼𝑉𝑗 = − 𝐷𝑗𝜏−1∑𝑁𝐿𝑗=1𝐷𝑗𝜏 ln
𝐷𝑗𝜏−1∑𝑁𝐿𝑗=1𝐷𝑗𝜏 (12)

When 0 < 𝜏 < 1, 𝐼𝑉𝑗 is inversely proportional to 𝐷𝑗.
When 𝜏 = 1, 𝐼𝑉𝑗 is constant, i.e., 𝐼𝑉1 = 𝐼𝑉2 = ⋅ ⋅ ⋅ = 𝐼𝑉𝑁𝐿 .
Clearly, 𝐼𝑉𝑗 is invalid in terms of identifying the impactability
for IM under NDR. When 𝜏 > 1, 𝐼𝑉𝑗 is proportional to𝐷𝑗.

(2) For SM, (10) is simplified as

𝑆𝑉𝑘 = 1𝐷𝑘
𝐷𝑘∑
𝑗=1

𝐷𝑗𝜏−1∑𝑁𝐿𝑗=1𝐷𝑗𝜏 (13)

When 𝜏 = 1, 𝑆𝑉𝑘 is a constant and 𝑆𝑉1 = 𝑆𝑉2 = ⋅ ⋅ ⋅ =𝑆𝑉𝑁𝐿 . When 𝜏 ̸= 1, 𝑆𝑉𝑘 is determined by𝐷𝑗 and𝐷𝑘. If for two
existing vertices 𝐷𝑘1 = 𝐷𝑘2 and ∑𝐷𝑘1𝑗=1 𝐷𝜏−1𝑗 > ∑𝐷𝑘2𝑗=1 𝐷𝜏−1𝑗 , then𝑆𝑉𝑘1 > 𝑆𝑉𝑘2. This indicates that a vertex is more susceptible
to its high vertex degree neighbors.

Global Distribution Rule. When 𝜆 = 0, then the load
redistribution rule is the GDR.

(1) For IM, (9) is simplified as

𝐼𝑉𝑗
= − 1𝑁𝐿 − 1 (

𝐷𝑗𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏) ln 1𝑁𝐿 − 1 (
𝐷𝑗𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏)

(14)

(2) For SM, (10) is simplified as

𝑆𝑉𝑘 = 1
(𝑁𝐿 − 1)2 (1 − 𝐷𝑘𝜏∑𝑁𝐿𝑗=1𝐷𝑗𝜏) (15)

Equations (14) and (15) show that 𝐼𝑉𝑗 is proportional
to the degree 𝐷𝑗, while 𝑆𝑉𝑘 is inversely proportional to the
degree𝐷𝑘.

The analysis shows that when 𝜏 has different values; the
impactability and susceptibility of the branches are different
under the same redistribution rule. In addition, one can infer
that compared with all other topologies, the central vertex in
a star graph has the largest impactability and susceptibility
(refer to the proof in the appendix).

4. Simulation and Analysis

The simulations were performed for the IEEE 118-bus system,
the IEEE 300-bus system, and a French gird and were
implemented in MATLAB to verify the validity of the pro-
posed method by sequentially attacking branches to calculate
the total amount of affected loads and the relevant load
decreasing speeds. For all the simulations conducted below,
we set the parameter 𝜂 = 5.40×10−3, 2.43×10−3, and 3.85×10−4
in the IEEE 118- and 300- bus systems and the French gird,
respectively.

4.1. Relationship between the Two Metrics and the Degree
under Different Load Redistribution Rules. To visualize the
relationships under different rules, we employ the TSCG of
French grid and change the values of 𝜆 (𝜆 = 0, +∞, 0.5) and𝜏 (𝜏 = 0.1, 1, 1.5).
(1) 𝜆 = +∞ (NDR). It can be seen from Figure 6 that when𝜏 = 1, both IM and SM are constant and do not change with
the degree of vertexes.When 𝜏 = 0.1 and 𝜏 = 1.5, the values of
the IM of a vertex are inverse and direct power law functions
of the vertex’s own degree, respectively. In contrast, the values
of the SM of a vertex are not closely related to the vertex’s
own degree. In other words, the degree is invalid to identify
the vulnerability of the vertexes. However, in this case, our
proposed SM is still valid to identify the vulnerable vertexes.

(2) 𝜆 = 0 (GDR). Figure 7 shows that the IM and SM of a
vertex are inverse and direct proportional to the vertex’s own
degree, respectively. It demonstrates that, under the GDR, the
metrics of a vertex are only dependent on its own degree.

(3) 𝜆 = 0.5 (an example of some value in (0, +∞)). When𝜆 ∈ (0, +∞), the corresponding redistribution rule can be
regarded as somewhere in between the GDR and the NDR.
For example, in Figure 8(a), when 𝜏 = 0.1, the IM of a vertex
is not obviously in proportional relationship with its own
degree. It indicates that the distance plays a more important
role in (12) in this case. On the contrary, when 𝜏 = 1 or𝜏 = 1.5, the values are approximately of power law with
respect to a vertex’s own degree. By simulations performed on
different systems for many times, the authors find that when𝜆 takes any fixed value in (0, +∞), with the increase of 𝜏,
the degree have more impact on the IM than the distance.
In Figure 8(b), the SM is decided jointly by both the distance
and degree, and when 𝜆 takes any fixed value in (0, +∞), the
SM increases with the growth of 𝜏.

Further, we analyze the changes of metrics with 𝜆 when𝜏 is fixed. Figures 9(a) and 9(b) display the changes of two
randomly chosen branches: the IM of branch 513 and the
SM of branch 2372, respectively. When 𝜆 changes from 0.1
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Figure 6: The relationship between metrics and degree in NDR. (a)IM and (b)SM.
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Figure 7: The relationship between metrics and degree in GDR. (a)IM and (b)SM.
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Figure 8: The relationship between metrics and degree in between. (a)IM and (b)SM.
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Figure 9: The trend of the change of metrics with 𝜆 increasing. Here, (a) IM of branch 513 and (b) SM of branch 2372.

to 0.8 with an interval of 0.1, both the IM and the SM exhibit
stepwise features, which indicates that there exists points that
divide 𝜆 into different segments, and the values of the IM and
SM are insensitive to 𝜆 in each segment. In practice, in order
to enlarge the discriminative ability of the proposed metrics,
a larger 𝜆 is recommended.

In summary, our proposed metrics can identify the
vulnerability when degree fails. The 𝜆 is vital in the two
metrics as it defines the elements in Q𝑗, which further
affects the relationship between the metrics and degree. The
proposed metrics can be applied to both neighborhood and
global redistribution rules by simply adjust 𝜆 and 𝜏.
4.2. Vulnerability Analysis of Electric Networks. To verify the
validity of the proposed method, we sequentially attack the
20, 40 and 140 critical branches in the IEEE 118- and 300-
bus systems and the French gird, respectively, as identified
by IM and SM, and evaluated the remaining load and rate of
load decrease. For all the attacks, after removing an identified
branch, DC-OPF was used to redispatch the network, with
the objective of minimizing the load shedding.

The remaining loadwas used to evaluate the gravity of the
attack, and is obtained at the end of the simulation.

The rate of load decrease was adopted to reflect the speed
at which the load decrease reached important vertices. We
calculated the slope between the adjacent samples and then
the average slope was used to represent the rate of load
decrease, as shown in

𝜅 = 1𝑌
𝑌∑
𝑦=2

(𝜓𝑦 − 𝜓𝑦−1) (16)

In our simulations, 𝜆 varied from 0 to 2 with an interval
of 0.2 and 𝜏 varied from 0 to 2 with an interval of 0.2. In
addition, to considerNDR,we also set𝜆 = +∞.With all these

Table 3: Performances of the metrics by remaining load.

Test benchmarks 𝜓 IM SM

IEEE 118-bus system >80% 52.81% 80.32%>90% 23.87% 58.74%

IEEE 300-bus system >80% 35.09% 74.67%>90% 16.02% 43.32%

French grid >80% 100% 100%>90% 52.46% 100%

Table 4: Comparisons between the IM & SM using remaining load.

Test benchmarks 𝜓𝐼𝑀 < 𝜓𝑆𝑀 𝜓𝐼𝑀 > 𝜓𝑆𝑀
IEEE 118-bus system 96.28% 3.72%
IEEE 300-bus system 94.29% 5.71%
French grid 94.47% 5.53%

Table 5: Comparisons of the metrics by the rate of load decrease.

Test benchmarks 𝜅𝐼𝑀 < 𝜅𝑆𝑀 𝜅𝐼𝑀 > 𝜅𝑆𝑀
IEEE 118-bus system 76.37% 23.63%
IEEE 300-bus system 79.21% 20.79%
French grid 67.19% 32.81%

combinations, for the IM and SM, we can obtain 12 × 11=132
sets of critical branches.

The simulation results are given in Tables 3–5. Table 3
gives the statistical results of the 132 attacks. IM is better at
identifying critical branches than SM. For example, removing
branches according to the IM can cause the grid to lose more
than 10% of its load in approximately half of the simulations
of the French grid, compared to SM.
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Figure 10: Distribution of removing load under different parametric combinations on the French grid. (a)IM and (b)SM.

To be more quantitative, Table 4 shows the performance
difference of the two metrics according to the residual load
of the systems under the same 𝜆 and 𝜏. The second to
the third columns list the percentage of the two metrics
in which (1) IM is better than SM and (2) SM is better
than IM. It is clear that a load associated with a fault can
easily be redistributed to many other branches; therefore, the
branches can distinctively exhibit one of the two features, i.e.,
impactability or susceptibility.

In addition to the percentage of the remaining load, we
compared the performance of the metrics according to the
speed of the load decrease, as shown in Table 5. Similarly, in
themajority of the simulations, the speed of the load loss after
an attack following IM is faster than that after SM in the three
benchmarks. The speed signifies the intensity of the attack.
The faster the load decreases the more difficult it is for the
system operator to apply control strategies to stop cascades.

Combining the results from Tables 3–5, we can infer that
the identification of the two features becomes increasingly
important, becasue they reveal different features in terms of
the fault propagation. In general, both from the perspective
of a power grid and a general graph, the branches with high
impactability more easily spread faults; therefore, they decide
the speed of the consequences (in the power system cases
used in this paper, this is the loss of the load) and the affected
area. Conversely, when branches with high susceptibility are
attacked, the fault propagation is slow and load loss is small.
This is because the susceptible vertices do not propagate
faults as easy as impactable vertices do; they usually work
as propagation sinks. So they define the consequences of a
cascade.

Accordingly, in practice, with the distinction of the two
features of the branches, a system operator can deploy
better defense strategies resorting to the most relevant fea-
tures under different operation states. Protecting impactable
branches can effectively avoid triggering failures. However,

during a cascading process, particularly under deliberate
attacks or fault propagation, susceptible branches can be
easily affected by a fault, which can deteriorate the network
functionality due to the enhanced consequences from them.
Therefore susceptible branches also need to be protected and
considered as well.

Furthermore, we investigated the distribution of removed
load for different parametric combinations. Due to space
limitations, we offer only the French grid (Figure 10) as an
example. In Figure 10, when there are different combinations
of 𝜆 and 𝜏, the load removed from the system is different,
which demonstrates the importance of the branches and
the adjacent relationships between vertices on determining
the vulnerability of a system. In addition, the distribution
of the removed load is relatively centralized. For example,
the removed load is less when 𝜆 and 𝜏 are 0-1.8 and 0-0.8,
respectively. Meanwhile, note that to obtain the optimum of
parametric combination, which is analogous to the parameter
selection of deep-learning algorithms, some optimization
algorithms, such as genetic algorithms, can be employed.

4.3. Comparison with Existing Methods. Compared to sus-
ceptible branches, because impactable branches can eas-
ily spread faults, which cause the gird to collapse faster,
impactable branches will be primary targets for deliberate
attacks. To verify this, we compared the proposed impactable
branches to the critical branches as ranked by the degrees
of the CGs, betweenness, electrical betweenness, network
efficiency [11] and network ability [19] of system structures
on the French grid, and the IEEE 118- and 300- bus systems.

In the three benchmarks, when (1) 𝜆 = 0.6 and 𝜏 = 2,
(2) 𝜆 = 0.6 and 𝜏 = 1.4, and (3) 𝜆 = 0.6 and 𝜏 = 1,
the rankings of the impactable branches had the optimum
values, respectively. Figure 11 shows that the remaining load
after the removal of the branches ranked by IM of the
branches is generally smaller than the degree of the CG.This
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Figure 11: The remaining load with the number of the critical branches increasing. (a) IEEE 118-bus system; (b) IEEE 300-bus system; (c)
French grid.

indicates that the vulnerability of branches is related not only
to the importance of the branches but also to the adjacent
relationships between the vertices. Therefore, considering the
relationships to construct indices is necessary to improve the
accuracy of vulnerability assessments.

Further, we compared our proposed method to other
indices and random attacks for the three benchmarks. For
random attacks, some branches are randomly selected and
successively removed from benchmarks. Figure 11 shows
that the remaining load after the removal of the branches
identified by our model is smaller, which indicates that
our proposed method has better accuracy when identifying
vulnerable branches. In addition, in the three benchmarks,
when 𝜆 = 1 and 𝜏 = 1, our results have also the relatively

better accuracy than other indices even if we did not set the
adjustable parameters (𝜏 and 𝜆).
5. Conclusions

In this paper, we employed structural, physical, and oper-
ational features to construct a CG to analyze the electrical
network vulnerability. On this basis, IM and SM are built
to distinguish these two vulnerability features. Adjusting
the parameters associated with the metrics can dynamically
change the load redistribution rules. Simulations based on
benchmarks systems proved the validity of the proposed
method. Both IM and SM can identify critical branches of a
system; however, IM is more effective than SM in most cases.
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Thanks to the general features of the proposed method,
i.e., from the perspective of the LRM of the CNT, the IM
and SM can also be applied to identify the impactable and
susceptible vertices of other networks, e.g., water networks
and transportation networks. Similarly to the application we
conduct in this paper for electric network, the IM and SM are
also expected to not only identify the vulnerability in these
networks but also reveal their roles in it.

However, there are still some existing problems to over-
come. First, it is important to reduce the time complexity
so that our proposed method can be applied to an online
assessment of large scale electrical networks. Parallel or dis-
tributed computing such as PC clusters and, cloud computing
may help to combat the time complexity issue. Secondly, even
though adjusting the associated parameters of the twometrics
can dynamically change the redistribution rules, there is
currently no guidance available as to how to choose them.

Appendix

Proof of the Maximum of the IM and SM

We are interested to find when the IM and SM reach their
maximum, regardless of the values of 𝜆 and 𝜏. For the IM,
supposing that 𝑁𝑄 and 𝐷𝑗𝜏 are fixed, if (9) reaches its maxi-
mum, (A.1) needs to be satisfied by themaximum principle of
the entropy. Obviously, the necessary and sufficient condition
for (A.1) is (A.2).

𝑙−𝜆𝑗1∑𝑟∈Q 𝑙−𝜆𝑗𝑟 = 𝑙−𝜆𝑗2∑𝑟∈Q 𝑙−𝜆𝑗𝑟 = ⋅ ⋅ ⋅ = 𝑙−𝜆𝑗𝑁𝑄∑𝑟∈Q 𝑙−𝜆𝑗𝑟 (A.1)

𝑙𝑗1 = 𝑙𝑗2 = ⋅ ⋅ ⋅ = 𝑙𝑗𝑁𝑄 = 1 (A.2)

From (A.4), it is manifested that if and only if the other
vertexes are all neighbors of the vertex V𝑗, which means V𝑗 is
located at the central position in a star graph, 𝐼𝑉𝑗 reaches its
maximum expressed in (12).

For the SM, supposing𝑁𝑄 is fixed, we firstly focus on one
of the vertexes affecting the vertex V𝑘 , say vertex V𝑗. If and only
if (A.3) and (A.4) are satisfied, Δ𝜌𝑗󳨀→𝑘 takes the maximum
value, which indicates that only degree of V𝑗 can be greater
than or equal to 1 and the degree of other vertexes including
V𝑘 must be equal to 1. Further, we analyze the impact
of 𝑁𝑄 vertexes on V𝑘. When Δ𝜌1󳨀→𝑘, Δ𝜌2󳨀→𝑘, . . . , Δ𝜌𝑁𝑄󳨀→𝑘
simultaneously reaches their maximum values, i.e., (A.3) and
(A.4) are satisfied at the same time, 𝑆𝑉𝑘 arrives themaximum.
To simultaneously satisfy (A.3) and (A.4) for all Δ𝜌𝑗󳨀→𝑘 (𝑗 =1, 2, . . . , 𝑁𝑄), if and only if 𝐷𝑗 = 1 (𝑗 = 1, 2, . . . , 𝑁𝑄) and𝐷𝑘 = 𝑁𝑄, i.e., V𝑘 is located at the central position in a star
graph, 𝑆𝑉𝑘 reaches its maximum value expressed in (13).

𝑙−𝜆𝑗𝑘 = 1 (A.3)

𝐷𝑟 = {{{
𝐷𝑗, 𝑟 = 𝑗
1, 𝑟 ̸= 𝑗 ∧ 𝑟 ̸= 𝑘 (A.4)

Symbols

Electrical Network

L: Set of branches (i.e., lines, transformers) in
a transmission network, = {⋅ ⋅ ⋅ , 𝐿𝑗, ⋅ ⋅ ⋅ },
dim{L} = 𝑁𝐿

B: Set of nodes (i.e., buses) in a transmission
network, dim{B} = 𝑁𝐵

S: Critical path. S = {⋅ ⋅ ⋅ , 𝐿󸀠𝑗, ⋅ ⋅ ⋅ }, S ⊆ L,
dim{S} = 𝑁𝑆𝛼𝑗: Loading assessment index of the branch 𝑗,𝐿𝑗 ∈ L𝑓0𝑗 : Power flow of the branch 𝑗 under normal
operation, 𝐿𝑗 ∈ L𝑓𝑥𝑗 : Power flow of the branch 𝑗 during the
contingency 𝑥, 𝐿𝑗 ∈ L𝑓𝑀𝑗 : Flow limit of the branch 𝑗, 𝐿𝑗 ∈ L𝑃𝑥𝑑 : Active load during the contingency 𝑥,𝑑 ∈ B𝛿𝑥𝑧 : Load shedding percentage in the 𝑧th
island during contingency 𝑥𝑍𝑥: Number of islands during the contingency𝑥Λ: Normalized total load shedding
percentage (0 ≤ Λ ≤ 1)Δ: Threshold for total load shedding
percentage

Correlation Graph

V: Set of vertices in a graph, dim{V} = 𝑁𝐿
E: Set of edges in a graph, dim{E} = 𝑁𝑞
G: A correlation graph, G = {V,E}
V𝑖: Set of vertices in critical path 𝑖,

V𝑖 = {⋅ ⋅ ⋅ , V𝑗, ⋅ ⋅ ⋅ }, V𝑗 = 𝐿𝑖𝑗󸀠, V𝑖 = S𝑖,
dim{V𝑖} = 𝑁𝑖𝑆

E𝑖: Set of edges in critical path 𝑖,
E𝑖 = {⋅ ⋅ ⋅ , 𝑒𝑖𝑞, ⋅ ⋅ ⋅ }, 𝑒𝑖𝑞 = 𝐿𝑖𝑗󸀠𝐿𝑖𝑗+1󸀠, 𝑞 = 𝑗,
dim{E𝑖} = 𝑁𝑖𝑆 − 1

G𝑖: Graphic representation of critical path 𝑖,
G𝑖 = {V𝑖,E𝑖}𝑟: Power exponent of cumulative
distributions𝑅2: Fitting effect of the power law𝜌𝑗: Initial load of the vertex V𝑗𝐷𝑗: Degree of the vertex V𝑗𝜏: Scale factor for initial load, 𝜏 > 0

Q𝑗: Set of vertices affected by vertex V𝑗.
Q𝑗 = {⋅ ⋅ ⋅ , V𝑘, ⋅ ⋅ ⋅ }, Q ⊆ V, dim{Q𝑗} = 𝑁𝑄Δ𝜌𝑗󳨀→𝑘: Load variation of vertex V𝑘 due to failure
of vertex V𝑗𝑙𝑗𝑘: Distance between the vertices V𝑗 and V𝑘𝜆: Portion control factor for load
redistribution, 𝜆 ≥ 0𝜂: Threshold for selection of vertices into Q𝑗𝐸𝑗: Entropy of the vertex V𝑗
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𝐼𝑉𝑗: Impactability of the vertex V𝑗𝑆𝑉𝑘: Susceptibility of the vertex V𝑘𝜎(⋅): Impulse response function𝜓𝑦: Percentage of remaining load when
attacking 𝑦 branches𝜅: Descent rate𝑌: Number of adjacent samples.
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