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Abstract— Massive adoption of Electric Vehicles (EVs) could 

create issues in the electrical distribution system operation, in 

terms of currents and voltages. The analysis of the EV impact is 

a complex task, as the EVs loads are variable in space and time 

depending on people routines, traffic conditions and recharge 

strategies. In this paper, an agent-based tool is presented to 

study the evolution of a city system with different EV 

penetrations. The system representation is divided into a static 

part referring to the environment, and a dynamic part where 

EV agents interact with each other. This agent-based 

framework concurs in constructing a comprehensive bottom up 

approach to study the EV impacts. 

Keywords— electric vehicle, distribution network, agent-based 

system, driver, road traffic. 

I. INTRODUCTION  

A. Motivation 

De-carbonization of the transport sector is a top priority of 

the European policy, to reduce the emission of greenhouse 

gases and improve air quality [1]. For this reason, the 

European Commission has launched an observatory for 

electrical mobility, denoted as EAFO (European Alternative 

Fuels Observatory) [2]. Among the various alternative 

technologies, Electric Vehicles (EVs) are considered one of 

the most prominent and efficient solutions as they tackle both 

local and global pollution. The EV diffusion is causing the 

installation of new power charging infrastructure, whose 

numbers are rising in the whole Europe, especially for 

chargers less than 22 kW. These chargers could have a great 

impact on electrical distribution networks, and need to be 

carefully evaluated considering the drivers’ realistic 

behaviour, the road and electrical network real-time loading 

status, and the topological characteristics and constraints. 

Carrying out a realistic preliminary analysis on EV impact is 

fundamental to plan and optimize the use of chargers and 

incentivize the use of Vehicle-to-Grid (V2G) technology [3].  

B. Literature review  

Extensive research is dedicated to the impact of EVs on 

the distribution grid and the possibility of performing 

economic optimization and/or ancillary services like 

frequency regulation, load levelling, loss minimization, etc. 

Nevertheless, the approaches used to model drivers’ 

behaviour are often insufficient. In fact, various approaches 

do not consider realistic driver behaviour and road/electric 

network presence and real time status. For example, in works 

like [4] and [5] simple rules in order to build the EV driving 

pattern and energy requirements are used. In [4] it is assumed 

that all vehicles are charged for 4 hours at 1.5 kW at specific 

hours and travel for a daily distance of 40 km. Small delays 

are randomly assigned to introduce some variability. In [5], 

while an agent-based approach is used to create new EV users 

as explained later, the rules to describe the EV use patterns 

are limited to the choice of 2 or 3 random actions with time 

range decided by an extraction from a normal distribution. 

Real data and probability distributions functions (for 

example, the Lognormal distribution) to decide the travel 

characteristics are also used in [6]-[10]. For example in [10], 

real EV data from a demonstrator were used to characterize 

the normal distributions used to set trip start time, duration 

and energy use, without considering any correlation between 

the three parameters. Multi-modal probability distributions 

are determined in [11] from real data. Generally speaking, the 

approaches presented in previous papers are essentially 

aimed to reproduce a single trip pattern, without creating 

consistent travel schedule structure for the drivers, neglecting 

the expected correlation between travel parameters (distance, 

start time, length, etc.). Moreover, they over-simplify spatial 

and temporal details [12].  

In order to gain more realistic behavior, real data from 

surveys or from on-field measurement campaigns were 

exploited to generate archetypal driving patterns [13] or by 

using real car diaries coming from non-electric vehicles or 

already existing EV deployed in some countries [14][15]. 

While in this case more consistency can be obtained, these 

studies are based on an exogenous set of data to characterize 

trips, with the underlying assumption that the EV driving 

patterns will be similar even in the case of massive 

deployment, which cannot be the case. More importantly, the 

model variability is pretty much fixed and driving patterns 

will not change due to policy or other constraints. To obtain 

a better simulation framework, there is the need to step from 

a top-down approach, where single driving patterns depend 

on simple rules or real data, to a bottom-up approach in which 

EV driving requirements are computed explicitly starting 

from the single consistent (both spatially and temporally) 

activities the agent could perform. Moreover, it is also 

important to model the road network to explicitly compute 

the EV energy losses. In [5][16][17] some of these challenges 

are addressed. In [5] an attempt to use real EV agents is made, 

where eight traffic/electric nodes grids are integrated among 

each other, and agents drive in random ways towards random 

directions, but taking into account their need to recharge and 

their status as traffic-unaware or traffic-aware drivers. The 

road network and traffic models are accurate enough to 

capture the possible vehicle congestion and battery losses, 

and are based on graph theory and the Dijkstra’s algorithm 

[18]. In [17], even if typical drivers’ patterns and distribution 

were used, the EV fleet use is coordinated to decrease 

congestion in road network and at the same time minimize 

operating cost of the electric grid. Finally, in [16], Matsim (a 

tool for agent based activity-based transport models), and 

PMPSS (a power system tool) were integrated to study the 

impact of new price policy in EV drivers. The goal is to 

optimize the agent daily plan of activities considering 

different charging cost and traffic congestions. Agents have 

consistent behaviour and they can even respond to changes in 

pricing strategies trying to maximize their utility.  

It is clear from these previous studies that a possibility to 

gain more realism and insights in simulating and studying the 



impact of EV could come from considering EV drivers as 

agents, whose interaction in predefined and common 

environments (for example road network or electric grid) 

influence the global results and the system response. The 

most suited theoretical framework to approach the problem is 

therefore the agent-based simulation [19], which provides a 

systematic framework to approach the study of complex 

systems. Under this framework, the system is divided into 

five fundamental components: 

 Agents: a self-contained program capable of controlling 

the decision making of each individual, and able to 

influence or be influenced by the environment. 

 Environment: It represents the space and dimensions 

where agents move and interact. 

 Object: populates the environment along with agents. 

 Relationship: links agents and objects. 

 Operations: allows agents to perceive and transform 

objects.  

C. Original contribution 

This paper proposes the foundation to build a truly agent- 

and activity-based model to describe and study the interaction 

and impact that EV drivers have on the electric distribution 

grid. In the framework described, new agents’ parameters and 

methods and new environment objects and characteristics 

could be easily integrated, as the framework expands 

considering also economical and technical optimizations 

such as the ones researched in the previously cited studies. 

For this purpose, a three-layer framework has been built 

(Figure 1) considering AGENTS, OBJECTS and 

ENVIRONMENTS. A time loop routine has been 

programmed to keep consistency of the time line.  

D. Paper organization 

In Section II the three layers are explained. In Section III 

the data and preliminary analysis are presented, and the 

simulation proposed is illustrated. In Section IV the main 

results are shown to validate the approach. Section V 

concludes the paper.  

II. MODELS OF THE LAYERS  

A. Environment Layer  

The environment that the agents populate is composed of 

three networks, namely, the electrical network, the road 

network, and the city structure (Figure 2).  The description is 

divided between the static part, which deals with the 

structural representation of the network, and the dynamic 

part, which gathers the methods to evaluate the time-

dependent impact of the agents moving in the environment 

(Figure 3). 

 

1) Static part  

The distribution network is generally weakly meshed, 

usually operated radially. Each node is therefore connected 

with the HV/MV electric substation through a unique and re-

constructible path. In this study, two power grids are 

combined and used as inputs to build the city layer. This is 

because, due to the difficulty to obtain real electricity 

distribution grid models, it is quite usual to use reference 

ideal network constructed to guarantee realistic results [21]. 

The generic electric node k is characterized by a certain 

nominal active power 𝑃𝑛𝑜𝑚
(𝑘)

 and reactive power 𝑄𝑛𝑜𝑚
(𝑘)

 which 

are the sum of different nominal power components 

corresponding to different human activities. These 

components are related to residential, industrial, commercial, 

tertiary and agriculture areas. Starting from this description, 

the city layer is built by using k-means clustering to gather 

the electrical nodes into a certain number of groups, which 

represent the city districts and, like electrical nodes, can be 

described in terms of nominal power and geographical 

position. The nominal power characteristics of the nodes will 

be very important for defining the activity of the agents, as 

seen in the next section. In general, based on the 

characteristics of each city node, an agent has more or less 

probability of interaction. While the implementation of city 

nodes has apparently little significance in this study, from a 

conceptual point of view the presence of this mid-layer 

between road network and city layer is compulsory and opens 

the possibility of more precise sociological and urban 

descriptions. Note that if in the k-means clustering the 

number of groups is chosen equal to the number of electrical 

nodes, the electrical nodes will be equal to the city districts. 

Finally, the road network is obtained starting from the city 

districts. Since the starting point is a combination of two 

reference electric grids, a customized road network was built. 

 

Figure 1: Layer structure of the work. 

 
 

Figure 2. Environment Layer details  

 

Figure 3: Main steps to create the System environment  

.  

 



Taking inspiration from [22], a quadratic graph was built 

around city nodes. The algorithm, called “Quadratic-tree 

algorithm” inputs the city nodes and provides as output the 

branches and road nodes. The algorithm is implemented such 

that areas with more city nodes will be surrounded by a bigger 

number of roads, as expected in a typical city area. Every 

branch is then described by three parameters referring to the 

traffic (see the top diagram in Figure 4): 

 𝑢𝑓 [km/h]: average travel speed of the vehicle without 

traffic (called free mean velocity); 

 𝑘𝑐 [veh/km]: minimum vehicle density to make the 

vehicles starting to decrease velocity due to traffic; 

 𝑘𝑗  [veh/km]: road vehicle density that creates road 

congestion and stops the traffic. 

The nodes represent the entry/exit points for the vehicles 

driven by the agents, and the branches represent the roads of 

the network.  

 

2) Dynamic part  

Entire days are simulated with a fine temporal distribution 

(1 minute). For every time step a power flow is calculated, by 

means of the Backward-Forward Sweep method. The 

voltages at every node and currents in every branch are 

computed starting from the voltage at the MV side of the 

HV/MV substation (slack node), the loads connected to the 

networks (among which there are also the EVs), and the 

network impedances. Voltages, currents and losses can be 

computed as outputs. In general, for every branch a maximum 

temperature can be tolerated by the conductor insulation. The 

maximum temperature imposes a limit on the maximum 

current a conductor can withstand, taking into account the 

ambient temperature, the joule losses, and the heat transfer 

processes.   

The city layer does not possess (in the present version) an 

independent dynamic. It basically serves to construct a 

consistent road network. The road network is indeed 

important, being where the interactions of agents (making use 

of the vehicles objects) work towards the creation of the 

traffic. The traffic dynamics are modelled following a 

microscopic traffic pattern method [23] able to trace the 

vehicle position at every time step. The goal is to compute the 

instantaneous vehicle density q in every road and 

subsequently the vector 𝒖𝑖 for every vehicle i containing all 

the average speeds of cars (Figure 4). With these parameters 

it is possible to compute the energy consumption of the EV 

based on an aerodynamic model of the vehicle itself taken 

from [5]. The traffic method starts from a list of vehicles that 

enter the road network graph and update the vehicles position 

and velocity in every road based on the lines defined in Figure 

4. The possibility of vehicles finishing their journey entering 

a new road before the one-minute time step is also taken into 

account. 

B. Agent and Objects Layer 

The agents of our simulation are the drivers. Each driver 

is distinguished in a proper and independent way, and is 

described by a unique set of parameters with which the 

weekly routine of the driver itself is built, as a collection of 

journeys detailed in time and space that the driver aims to 

fulfill in order to perform some activities. The following six 

activities have been defined: 

 

1. HOME: the agent is at home 

2. WORK: the agent is at work. 

3. LEISURE: the agent is outside home to perform some 

social or spare time activity. 

4. ERRAND: the agent is not home for mandatory activity 

(buying food, pharmacy, bureaucracy, doctor, etc.) 

5. OUT: the agent is outside the city/simulated environment 

(for work, holidays, etc.). 

6. ILL: the agent is ill at home (while in normal conditions 

should be outside home). 

 

Manifold characteristics define a unique agent: 

1. NODE HOME: it is the city node/district where the agent 

lives. The assignment of this node is not random, but is 

obtained by an extraction from the Cumulative 

Distribution Function (CDF) of residential power 𝑃𝑟𝑒𝑠. So 

nodes with higher 𝑃𝑟𝑒𝑠 installed have bigger probability to 

be chosen as HOME of the agent. 

2. NODE WORK: this is composed of a principal node, 

which is the primary working environment, extracted in 

the same way as NODE HOME considering the sum of 

industrial, commercial, tertiary and agricultural powers of 

city nodes (through a sum on electrical nodes). A second 

node is extracted to represent a secondary working place 

which could be used by some agents in some special days.  

3. WORK TYPE: depending on the node where the driver 

works, the work sector is extracted from the cumulative 

work power installed. Then, by using real or reasonable 

statistics, the type of employment is chosen between full 

time worker, part time worker, and freelance.  

4. SEDENTARINESS: the nodes where agents go to 

perform non-working actions are actually not fixed, and 

are extracted trip by trip according to a CDF influenced 

by three parameters: (a) the distance of the agent from the 

surrounding nodes; (b) the level of installed commercial 

power (for ERRANDS), and the tertiary installed power 

(for LEISURE activities); (c) the sedentary level of the 

agent, which is the tendency of performing LEISURE and 

ERRANDS activities far outside home. A high level of 

sedentariness means that the agent tends to use the car 

even to reach near places (from 500 meter to 1.5 km, for 

shorter paths the agent always goes on foot: for longer 

paths the agent always uses the car) and it will anyway try 

to perform activities near home. The sedentary parameter 

introduces an exponential condition on the previously 

computed CDF.  

5. FAMILY: this binary flag [0, 1] indicates if a person has 

a family or is single, since this greatly influences agent 

activities like ERRAND and LEISURE. The activities at 

 
Figure 4. Parameters referring to the traffic model 



this level, using the first 5 parameters, are divided on an 

hourly basis. To obtain sub-hourly and minute division 

the parameter ACCURACY and DELAY are used. 

6. EV USER: Every agent is assigned a vehicle object to 

perform its activities inside the city. The possibilities are 

two: private non-electric car, or car-sharing EV. In the 

latter case, this means that the driver does not own an EV, 

but makes use of whatever electric vehicle is available. 

The EV car makes uses of an aerodynamic model to 

convert the average speed velocity of the power into 

energy consumed by the EV. 

7. ACCURACY&DELAY: Normally the agent will start its 

journey considering the hour at which it should arrive at 

destination, subtracting the ideal time of travel (computed 

without considering the traffic). The true starting time is 

computed considering other two time steps: (a) a first 

extraction (ACCURACY) from a normal distribution 

with expected value of zero and variance 30 minutes to 

take into account the possible delay/advance of the agent 

due to the activity starting time differing from an hourly 

schedule, (b) a second component (DELAY) which add a 

stochastic delay (positive or negative) due to driver faults.  

8. EVENTS: override all the other activities and could last a 

DAY or a WEEK. In particular ILL or OUT could be 

extracted and last one day or one week or a weekend (in 

case of OUT for short holidays). 
 
In order to create an agent’s routine, the actions are 

divided in three categories: fixed actions, semi-aleatory 

actions and aleatory actions. Depending mainly on the type 

of WORK and FAMILY status, every driver has a certain 

type of fixed actions (for example WORK) in predetermined 

days and hours of the week. Semi-aleatory actions are instead 

usually LEISURE or ERRAND activities, for which there is 

a fixed number of hours for the agents to fulfil, but the choice 

of the specific days and time when it is fulfilled depends on 

random extractions. A typical example could be the agent 

with family which two or more times a week will take the 

children to school before going to work. Finally, aleatory 

actions have to respect some basic constraints (as maximum 

number of times and hours) and depend on agent 

characteristics, but are quite random in nature and give the 

agent a more realistic routine. An example to explain the 

semi-aleatory activities is shown in Error! Not a valid 

bookmark self-reference. These activities provide a list of 

vehicle trips to perform with starting times and trip details 

(see Figure 5a). Finally the system dynamics are simulated. 

Figure 5b shows the main steps of the tool. In “load variable” 

the databases and the parameters to define the simulations are 

loaded. “Scenario initialization” deals with initialization” 

with the creation of the vehicle trip lists. “Minimal planning” 

is a particular initialization procedure to choose the number 

and initial position of EV such that the number is neither too 

small nor too big with respect to EV users, and positions are 

consistent with the request of the EV users. Finally in 

“Temporal loop” the dynamics of the networks are solved. 

III. CASE STUDY 

The electric grid used is the reference network developed 

by JRC [24], with semi-urban and rural grids to represent a 

rural city environment with more than 300 nodes. 

TABLE I.  ACRONYMS AND ACTIONS FOR THE AGENTS 

Acronym Meaning Start 

hour 

End 

hour 

Prob. Action 

NFWD No Family 

Working Days 

18 20 0.5 ERRANDS 

NFWE No Family 

Week End 

20 23 0.6 LEISURE 

WFWD With Family 

Working Days  

18 19 0.4 ERRANDS 

WFWE With Family 

Week End 

10  13 0.45 LEISURE 

 

 
Figure 5: (a) A scheme summarizing the driver trip creation procedure. (b) 

Main Temporal loop steps of the simulation 

 

The nominal installed power in every node is divided 

between the relevant city sectors (industrial, residential etc.). 

Typical power profiles time series are also provided to run 

the power flow. The road network was created following the 

procedure explained in Section II.A, while the road 

parameters were extracted from a normal distribution with an 

average value and standard deviation shown in Table II.  

Four types of roads were considered: 

1. Backbone: bigger roads that cross the city in length 

customized and chosen by the software user. 

2. Urban: shortest branches in the center of the city, 

characterized by medium values of free-mean 

velocities. 

3. Semi urban: extra-urban roads, characterized by longer 

lengths and higher speed limits. 

4. Rural: most outlying streets, with limited width and 

difficult to travel in the presence of traffic.  

5. Bad road: a fifth type of road used to create a different 

road graph and compare results between two different 

road conditions. 

 

The three networks (electrical, city and road) are shown 

in Figure 6. To define the Type of work of the agents and their 

family conditions, and make other reasonable assumptions, 

data from the Italian institute of statistics and city 

municipalities were used [25][26]. 

A. Parametric Analysis proposed 

A considerable number of simulations were performed by 

changing the most meaningful parameters. In these scenarios, 

the EVs recharge with a dumb strategy, which means that 

they are recharged at a fixed power as soon as they connect 

to the grid. The parametric analysis is summarized in Table 

III. GOOD road makes use of the first four road types 

presented in Table II, while BAD roads create the road graph 

with only the fifth road type. EV users% represent the 

percentage of drivers making use of the EV car sharing. 



Power refers to the power rate at which EVs are recharged 

once they reach the EV car parking (by hypothesis there is 

always the possibility to park). All the possible combinations 

of the parameters were simulated, for a total of 72 simulations 

(every simulations consists of 7 simulated days). All the 

simulations were performed in Matlab® in commercial 

available Desktop computers.   

IV. RESULTS 

A sample of the results that can be obtained from the 

proposed framework is shown below. In general, the agents 

tend to live in the city, while particular rural nodes with very 

high industrial power attract many workers. Figure 7 shows 

the nodes where people live and work for the case of 15000 

people. Figure 8 shows the cumulative presence of vehicles 

in the case of 20000 drivers. The model is able to grasp the 

morning and night peak of working days, while the travels 

along the day are rather variable, less smooth than expected 

from typical traffic curves [27]. This suggest that new kind of 

work types could populate the model, such as retired or 

unemployed people, people who uses the car to work and 

perform multiple trips a day in not standard hours, and so 

forth. Moreover a better use of ACCURACY and DELAY 

parameters can help smoothing the traffic curve. The road 

characteristics influence the time spent by drivers in the grid 

and the energy spent by EVs. Figure 9 shows the energy 

discharged by all the EVs in the whole week. The energy 

discharged is higher when BAD road characteristics are used 

due to bigger traffic problems and more time spent by the 

drivers on the road. 

 
 

Figure 7: Nodes where drivers live/work. The size of the bubble is 

proportional to the number of driver agents.  

 
Figure 8: Vehicles presence for one working day 

 

 
Figure 9: total Energy spent by EV considering different populations 

considering good and bad road characteristics 

 

For what concerns the electric network, Figure 11 shows 

the time-spatial distribution of voltages (computed as Δ𝑉𝑖,𝑡 =

𝑉𝑖,𝑡 −  𝑉𝑛𝑜𝑚  for every node i and time step t) for the rural 

network for one of the days in the case of 20000 people with 

a recharge power for EVs of 11 kW. The Δ𝑉 is caused both 

by the loads and the EVs recharging. By analyzing all the 

time-spatial series coming from the simulations, it is possible 

to evaluate that: 

 the rural network, due to the resistive nature of the line 

impedances and less nominal power, tends to be more 

affected by EV introduction, both in terms of voltages and 

currents even if the presence of EVs is smaller. The semi-

urban network is already characterized by a bigger 

installed load capacity, which makes more difficult for 

EVs to affect the grid. Figure 11 shows the maximum ΔV 

caused by EVs. With 20000 people and 11 kW used for 

recharging, the voltage changes more than 3.5% in the 

rural network and slightly less than 1% in the semi-urban 

network. 

 The current in the branches almost reaches the thermal 

limits in the case with 20000 drivers, 60% EV adoption in 

the rural network (Figure 12) due to the EV recharging in 

the morning. In general, EVs could increase the 
𝐼𝐵𝑅𝐴𝑁𝐶𝐻

𝐼𝑙𝐼𝑀
 

ratio more than 20% in both grids. 

TABLE II.  ROAD CHARACTERISTICS  

Road Type 𝒖𝒇 𝒌𝒄 𝒌𝑱 𝟑𝝈 

Backbone 25 8 20 1 

Urban  10 4 10 2 

Semi-urban 20 6 12 2 

Rural 15 3 15 15 

Bad road 10 3 9 1 
 

TABLE III.  PARAMETERS USED IN PARAMETRIC ANALYSIS 

Num. drivers EV users% Road type Power [kW]  

1000 10 GOOD 3 

5000 30 BAD 6 

10000 60  11 

20000    

 

 
Figure 6: on the left the original electrical networks, on the right the 

quadratic road network (in blue) with city districts (in red). 

 



V. CONCLUSION 

This paper presented a new agent-based model to evaluate the 

impact of EVs on the electric grid and road network. The 

characteristics of each agent (driver) make the agent unique, 

with its own trip list to fulfill. The drivers interact in the road 

network and electric grid, by creating traffic and influencing 

grid voltages and currents. The framework is able to 

reconstruct sound road network and city districts and 

moreover handle the time loop analysis and provide realistic 

impact results. Possible expansions can be built, in particular 

to improve the agent layer, by adding new work type and 

parameters (such as INCOME) and flexibility to different 

policies, to construct load curves starting from the agent 

behavior in a similar fashion to what done with their trip 

behavior, and to construct an aggregator for car sharing, with 

technical-economic optimization able to minimize the cost 

for acquiring energy and deploy smart charging techniques. 
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Figure 10: spatio-temporal distribution of Voltages in the rural network 

Figure 11: ΔVmax caused by EVs in the grid  

 
 

Figure 12: branch loading spatio-temporal distribution in rural network 
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