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Generation of Stochastic Interconnect Responses via
Gaussian Process Latent Variable Models

Simon De Ridder, Dirk Deschrijver, Paolo Manfredi, Tom Dhaene and Dries Vande Ginste

Abstract—We introduce a novel generative model for stochastic
device responses using limited available data. This model is
oblivious to any varying design parameters or their distribution
and only requires a small set of “training” responses. Using this
model, new responses are efficiently generated whose distribution
closely matches that of the real data, e.g. for use in Monte
Carlo-like analyses. The modeling methodology consists of a
Vector Fitting step, where device responses are represented by
a rational model, followed by the optimization of a Gaussian
process latent variable model. Passivity is guaranteed by a-
posteriori discarding of non-passive responses. The novel model
is shown to considerably outperform a previous generative model,
as evidenced by comparing accuracies of distribution estimation
for the case of differential-to-common mode conversion in two
coupled microstrip lines.

Index Terms—Gaussian Process Latent Variable Model
(GP-LVM), High-speed connectors and links, Statistical link
analysis, Stochastic modeling, Generative Models

I. INTRODUCTION

Manufacturing variability in modern electronics has recently
sparked a broad interest in stochastic modeling techniques
capable of capturing this uncertainty. A key part of most such
analyses consists of obtaining a large number of statistical
samples or instances, which is time-consuming and costly.
Some techniques that are more efficient than a Monte Carlo
approach have been developed to allow collection of such
instances in large number, such as generalized polynomial
chaos (gPC)-based methods [1–6]. A limitation of gPC is
the requirement to know the varying parameters and their
distributions, or a number of samples at specific points in
the design space. When these parameters or distributions are
difficult to determine, or when they are too numerous, these
techniques experience difficulties, to the point of intractability.

In [7], a model was proposed that uses only a limited
number of device responses to generate additional ones, re-
gardless of the number or distribution of the varying design
parameters. In this letter, a considerably improved version
of this approach is put forward, which is more flexible in
capturing nonlinear dependencies and correlations, by making
use of a Gaussian process latent variable model (GP-LVM) [8].
First, a small number of S-parameters (or any other frequency-
domain responses), dubbed the “training set”, are transformed
into a pole-residue form by means of the Vector Fitting (VF)
algorithm [9, 10]. Next, in contrast to [7], the distribution
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of the fitted residue matrices is modeled using a GP-LVM,
which is itself a generative model. Thus, in the last step,
new sets of residue matrices can be generated, which in turn
are transformed to new response instances whose distribution
closely matches that of the true underlying distribution, of
which the training set is a limited subset. Stability and
reciprocity are guaranteed due to the VF characterization.
Other physical constraints such as passivity and causality
are enforced by rejection. The proposed technique is applied
to the case of a pair of coupled microstrip lines, prone to
manufacturing variability. In particular, we investigate the
effect of stochastic geometric imbalance on the differential-
to-common mode conversion, which causes electromagnetic
interference (EMI) issues [11]. The novel generative modeling
strategy is carefully compared to the technique presented
in [7], clearly demonstrating its improved performance. The
remainder of the letter is organized as follows. In Section II,
the problem statement and the modeling approach are outlined.
Validation using the representative application example of a
pair of coupled microstrip lines is provided in Section III.
Finally, conclusions are drawn in Section IV.

II. GENERATIVE MODELING FRAMEWORK

A. Goal

Due to manufacturing tolerances, measurement errors or
variations in material properties, the response of an electronic
device is subject to stochastic variability. The goal of the
newly proposed model is to generate new instances of device
responses (typically S-parameters), based on a limited number
of measured or simulated instances (the training set), that
accurately represent the distribution of this training set. More-
over, the generated instances should obey the same physical
constraints (such as passivity) among the different elements of
the responses for a multiport structure.

The training set consists of a small number of distinct
random instances of the device response. They can be obtained
via Monte Carlo simulation, by varying the physical parame-
ters, or by measuring a limited number of different fabricated
instances of a given device. The more complex the distribution
of instances is, the larger the size of the training set should
be to obtain the same accuracy. A detailed discussion on this
matter is outside the scope of this letter, but was treated in [7].

B. Vector Fitting

As a first step of the modeling process, the device responses
in the training set (sampled at a number of frequencies),
are fitted using the well-known VF algorithm [9, 10]. For a
training set of size K, the Np-port S-parameter matrix Sk(s)
of the kth instance is represented as a finite sum of partial
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Figure 1. Flowchart of the proposed modeling and analysis framework.

fractions dependent on the complex frequency variable s:

Sk(s) ≈
N∑
i=1

Rk,i
s− ai

+Dk + Eks, k = 1, . . . ,K. (1)

Here ai and Rk,i are called poles and residue matrices,
respectively. These are real or pairwise complex conjugate
valued. If the device is stable, all poles must lie in the left
half of the complex plane. Dk and Ek are optional terms that
define the asymptotic behavior for frequencies s → 0 and
s → ∞, respectively. All K S-parameter instances are first
fitted using a common pole set {ai}Ni=1. Second, each instance
k is fitted separately to allow both poles and residues to vary.
The problem is now reduced to building a generative model
for these poles and residue matrices.

C. Gaussian Process - Latent Variable Model

A Gaussian process (GP) is an infinite collection of ran-
dom variables, any finite subset of which is jointly Gaus-
sian distributed [12, 13]. This means that for a set of K
M -dimensional inputs x1, x2, . . . , xK , the GP can be rep-
resented by a set of K P -dimensional random variables
y1,y2, . . . ,yK , which, for each of the P dimensions are
jointly Gaussian distributed:

yp ∼ N
(

0,Σ
)
, p = 1, . . . , P. (2)

The dimension of each yk is given by P =
(
N2
p + 1

)
× N ,

being all elements of the residue matrices and poles for
that instance. The model is thus completed by specifying a
covariance matrix function or kernel:

σij = K
(
xi, xj

)
(3)

A popular choice for K, also adopted here, is the Automatic
Relevance Detection (ARD) kernel. This kernel features length
scales lm for each of the M input dimensions as hyperparam-
eters. A long length scale indicates that a certain dimension
is not very relevant to the change in the function, hence its
name. It takes the following form:

K
(
xi, xj

)
= σ2

y exp

(
−1

2

M∑
m=1

(
xim − xjm

)2
l2m

)
(4)

Usually, GPs are employed to interpolate or predict new
function values, given data in the form of observed (x, y)
pairs. The GP Latent Variable Model (GP-LVM) [8], however,
leverages the GP infrastructure to infer the distribution of the
input variables from a given number of observed output points
{yk}Kk=1. The hyperparameters σy and {lm}Mm=1 are optimized
using a variational lower bound to the marginal likelihood. A
GP-LVM can thus be used to reduce the dimensionality of a
distribution while modeling it in a nonparametric and nonlin-
ear way. For the model proposed here, the yk are constructed
by vectorizing all poles and residue matrices for each training
instance. The inferred xk are not readily interpretable, but
represent a training instance in a lower number of dimensions
(M � P ), while their prior distribution is an independent
standard Gaussian.

D. Generative Statistical Model

New instances can now easily be generated as follows. A
sample x∗ is drawn from the GP-LVM’s input prior distri-
bution, a standard Gaussian distribution. The GP-LVM then
provides an output y∗ for this sample, which is reshaped into
a set of complex poles and residue matrices. This constitutes
a VF model for a new instance.

In order to ensure passivity of the generated instances
without creating a bias, those instances that violate passivity
are discarded, and new instances are generated in their stead.

Owing to the sparse inference used (and required) by the
GP-LVM, the asymptotic complexity of inference for the GP-
LVM model is O

(
PN2

i

)
= O

((
N2
p + 1

)
NN2

i

)
, with Ni the

number of inducing variables, typically a small fraction of
P . That of the VF step is O

(
KN2

p (Ns +N)N2
)
, with Ns

the number of frequency points. Generating new instances is
done in O

(
PK3N∗

)
, where N∗ is the number of required

instances.
III. APPLICATION EXAMPLE AND NUMERICAL RESULTS

In this section, the proposed methodology is demonstrated
on a representative example of two coupled microstrip lines.

A. Validation

εr = 3.7

tan δ = 0.02

50 µm

1/2

40 µm

3/4
10 µm

60 µm

Figure 2. Cross-section of the microstrip lines with indication of mean,
nominal values. The lines have a length of 10 cm. Above each conductor
pair, the corresponding port numbers are shown (near-end/far-end).

The differential to common mode S-parameters [14] of two
coupled microstrip lines, depicted in Fig. 2, are studied. 1000
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S-parameter instances were simulated by varying 5 parameters:
the relative permittivity, the line separation, the substrate thick-
ness and both of the line widths. These parameters were varied
according to independent Gaussian distributions, each with a
standard deviation that is 10% of their mean, nominal value
that is indicated in Fig. 2. Only 50 of these instances were
used to train the proposed model. The model was then used
to generate another set of 1000 instances, which was in turn
compared to the 950 unused simulated instances (validation
set).
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Figure 3. Magnitude and phase of the mode conversion parameter SC1D1

for the coupled microstrip lines. The 50 training instances are shown in red on
top, the 1000 generated instances are plotted in blue, and the 950 validation
instances are shown in the background in green. The black lines represent the
minimum and maximum of all simulated samples.

Figs. 3 and 4 show the validation, generated, and training in-
stances for some of the S-parameters. A good correspondence
between the validation instances and the generated instances is
apparent. A more detailed assessment is given in Fig. 5, where
the cumulative distribution function of SC1D1 at a frequency
of 1.5 GHz for each set (training, validation and generated) is
displayed, showing good agreement.

On a Dell Optiplex 760 PC with an Intel Core 2 Quad CPU
(at 3 GHz), and 7.7 GiB RAM, building the model took 254 s,
while generating new samples took 22 s without rejection of
non-passive samples, and 27 s with rejection.

B. Comparison to KDE-based Generative Model

The model introduced in [7] uses a Principal Component
Analysis (PCA) and a Kernel Density Estimation (KDE) to
model nonlinear correlations in a nonparametric way. Because
PCA reduces dimensionality by assuming only linear corre-
lation, and because each kernel in the KDE shares the same
Gaussian shape, the flexibility of this model is limited. The
GP-LVM models the high-dimensional data directly, and only
assumes a covariance measure between latent input variables,
which can be optimized. This makes the GP-LVM more
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Figure 4. Magnitude and phase of the mode conversion parameter SC2D1

for the coupled microstrip lines. Colors are as in Fig. 3.

100 80 60 40 20
Magnitude (dB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 5. CDF of the validation (green), generated (blue) and training (red)
sets for the magnitude of the SC1D1-parameter of the coupled microstrip
example at 1.5GHz.

flexible to deal with nonlinear data, as is shown by the
following accuracy comparison.

To compare both models, we introduce a goodness-of-fit
measure for two empirical distributions, called the two-sample
Cramér-von Mises (CM) test statistic [15]. This is the integral
over the squared difference of two empirical CDFs F (x) and
G (x) of sample sizes m and n respectively:

TCM (F,G) =
mn

m+ n

∫ +∞

−∞
[F (x)−G (x)]

2
dH (x), (5)

where H (x) is the empirical CDF of both samples together.
With this measure we can compare the distribution of the
n = 1000 generated instances to that of the m = 950
withheld validation instances at a single frequency point. A
comparison of the CM statistic across frequencies for different
generative models can indicate which model produces a more
accurate approximation of the true distribution. Fig. 6 shows
the Cramér-von Mises statistic for both the model outlined
in [7] (blue) and the GP-LVM model introduced here (green).
It is apparent that the GP-LVM variant outperforms the model
in [7] for the magnitude in the entire frequency range, while
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Figure 6. Cramér-von Mises statistic for the PCA+KDE model outlined
in [7] and for the GP-LVM model proposed here, for the magnitude (top) and
phase (bottom) of SC1D1.

performing in a comparable manner for the phase.

IV. CONCLUSIONS

This letter introduces a novel generative model capable
of generating a large set of device responses from a small
training set of simulated or measured responses. It starts by
representing the responses as a rational model using the VF
algorithm. The poles and residues of these rational expansions
are modeled by means of a GP-LVM. New instances are
generated by the GP-LVM and transformed back into device
responses by the VF expansion. Rejecting non-passive in-
stances ensures unbiased and physically consistent responses.

The modeling power of the generative model is demon-
strated by applying it for a 4-port coupled microstrip line,
focusing on mode conversion induced by geometric unbalance.
The distributions of simulated and generated S-parameters is
found to be in very good agreement. A quantitative com-
parison shows that the GP-LVM-based model significantly
outperforms the KDE-based model previously proposed in [7]
to model the magnitude of S-parameters.
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