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Abstract Data-driven models are becoming of fundamental importance in
electric distribution networks to enable predictive maintenance, to perform
effective diagnosis and to reduce related expenditures, with the final goal of
improving the electric service efficiency and reliability to the benefit of both
the citizens and the grid operators themselves.

This paper considers a dataset collected over 6 years in a real-world medium-
voltage distribution network by the Supervisory Control And Data Acquisition
(SCADA) system. A transparent, exploratory, and exhaustive data-mining
workflow, based on data characterisation, time-windowing, association rule
mining, and associative classification is proposed and experimentally evalu-
ated to automatically identify correlations and build a prognostic-diagnostic
model from the SCADA events occurring before and after specific service in-
terruptions, i.e., network faults.

Our results, evaluated by both data-driven quality metrics and domain
expert interpretations, highlight the capability to assess the limited predictive
capability of the SCADA events for medium-voltage distribution networks,
while their effective exploitation for diagnostic purposes is promising.

1 Introduction

Electric grid operators welcome predictive maintenance to avoid the costs of
scheduled inspections and reactive maintenance interventions. To this aim,
datasets describing the electric grid operations and historical data about fail-
ures and alarm signals are exploited to design predictive maintenance solu-
tions. Although this data has been collected for different purposes, companies
are interested in determining their predictive maintenance capability: to reduce
management costs, to speed up intervention-time, and to improve efficiency
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and reliability.
For our study, we rely on a Big-Data collection spanning over 6 years, col-
lected by a leading Italian electric grid operator. The dataset describes the
operations of the medium-voltage distribution network in northeastern Italy,
and it records events and failure through the Supervisory Control And Data
Acquisition (SCADA) system. Our aim is to assess whether this dataset could
be exploited to (i) predict future electric network failures (predictive mainte-
nance) and/or (ii) effectively diagnose the failures after it is reported by the
maintenance system. Since the predictive capability of such dataset and the
capability to model system degradation are unknown, we address these tasks
by means of an exploratory and exhaustive predictive-maintenance analysis.
The main contributions of our study can be summarised as follows.

– We combine different exploratory approaches to evaluate the dataset ca-
pability of predicting the possible occurrence of future faults, the affected
component, and the fault cause, and to perform such diagnosis after faults
are detected.

– We exploit a transparent and exhaustive method based on association rule
mining to automatically extract from the dataset all correlations, above
specific statistical thresholds, among SCADA events occurring before each
fault of interest (prognostic), and separately, after the faults (diagnostic).

– We design a transparent associative-classification model based on human-
readable rules to predict and diagnose the type of fault and the affected
component.

– We perform a thorough comparison between the prognostic and diagnostic
approaches by means of both data-driven quality metrics and domain-
expert analysis.

To the best of our knowledge, our work is the first study that investigates
both the prognostic and diagnostic capabilities of a real-world large historical
dataset collected by a Supervisory Control and Data Acquisition (SCADA)
system in an electric grid, with respect to the occurrence of severe service in-
terruptions. Thanks to the application of an exhaustive analysis methodology,
i.e. the extraction of association rules among faults and events, we address
the issue of providing smart grid operators an assessment of the exploitation
potential of currently available datasets for predictive maintenance and diag-
nosis. The proposed methodology can be applied to similar datasets from any
grid operator.

2 Related work

With the shift from the traditional electric grid to the Smart Grid paradigm
where the energy generation becomes distributed and more complex consumers
arise, huge efforts are required to deploy solutions to make the electric sys-
tem more reliable and robust towards faults [1]. The remarkable advances in
instrumentation, communication and data analysis have made it possible to
introduce effective solutions for grid monitoring and management. Recently,
several studies show the key role that data analytics and related applications
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are acquiring in power networks [2,3]. However, few research efforts have been
specifically devoted to predictive maintenance, whereas various studies are
available about fault monitoring and characterisation. Some studies aim at
performing fault detection in power networks based on historical weather data
mining [4], on extreme learning machine models [5], or on electrical feature
extraction techniques [6]. Authors in [7] deploy an effective method to detect
faults in smart grids, trading off the need for reducing the volume of collected
data, related to the Phasor measurement unit, and the need for keeping critical
information. Other studies aim not only to detect faults, but also to further
characterise them by identifying and exploiting significant features. Classi-
fiers based on clustering and dissimilarity learning techniques [8] or on feature
extraction algorithms [9] are used to analyse massive data to perform fault
recognition or distribution fault diagnosis. In [10], authors apply a learning
intelligent system for classification and characterisation of localised faults in
Smart Grids. In addition, SCADA event datasets are typically considered and
investigated for monitoring purposes and fault diagnosis in different types of
systems, especially in renewable power plants [11–14].
Regarding failure prevention, several authors employed various data mining
methods for fault prediction in the most disparate fields, from aircraft security
to industrial systems to renewable power plants. Studies from the literature
show that neural networks,support vector regression, generic data-driven based
approaches, and techniques exploiting classifiers or association rule extraction
can be adopted in fault prediction [11,14–19]. In particular, techniques based
on association rules learning are currently often applied in fault prediction of
industrial systems, but no studies are available for electric MV distribution
networks [18, 19]. A data mining method based on similarity association rule
is proposed in [19] to detect sensor faults in power plants. In [18], authors
propose a novel algorithm capable to deal with huge and sparse datasets, ex-
ploiting multidimensional time-series data to extract association rules without
the need of reducing the data, hence possibly causing the loss of information
and missing relevant rules. Nevertheless, the deployment of fault detection
methods with prognostic purposes in MV distribution networks is not well
investigated in the literature [1]. Only authors in [20] aim at reducing the out-
ages in Medium Voltage distribution networks by exploiting rule-based, data
mining and clustering techniques to design a method providing diagnostic and
prognostic functions for Distribution Automation systems.
The first part of our study exploits a well known approach based on asso-
ciation rule mining. However, unlike the majority of the papers available in
the literature, our work considers a MV distribution network aiming at jointly
investigating both the diagnostic and prognostic potential with respect to elec-
tric service interruptions -in terms of fault type and affected component- of
an already existing real-world historical dataset that collects events registered
by the SCADA system. Furthermore, to the best of our knowledge, no work
is available exploiting association rule classifiers to detect or predict faults in
an electric distribution grid.
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Fig. 1: Main steps of the proposed approach.

3 The proposed approach

Medium-voltage distribution networks provide extensive collections of events
through their SCADA systems. Given such a dataset from a real-world sce-
nario, a classic data mining task entails extracting useful patterns and corre-
lations to improve the network maintenance. Hence the problem is twofold:
(i) identifying a methodology able to automatically assess the prognostic and
diagnostic potential of the provided dataset, and (ii) addressing such a task
with transparent approaches, able to provide human-readable explanations of
the identified patterns. Here, we preliminarly perform a dataset characterisa-
tion stage (Sec. 4), to identify the most frequent SCADA events, and how long
we should monitor the events before and after a fault to collect useful infor-
mation for the prognostic and diagnostic analysis. We present the main steps
of our methodology in Figure 1: (i) a time-based windowing stage, where we
process the raw SCADA dataset to extract time windows in the pre-fault and
after-fault periods (Sec. 5), based on the evidence provided by the dataset char-
acterisation stage. (ii) The rule-mining extraction process (Sec. 6) to identify
in an automatic, exploratory, transparent and exhaustive way all the statisti-
cally relevant patterns and correlations representing the pre- and after-fault
windows. Finally, (iii) an associative-classifier-based analysis (Sec. 7) is used
to test the prognostic potential of the dataset.

4 Dataset

The dataset under analysis contains events recorded by the SCADA system
of a leading Italian grid operator on its medium-voltage distribution network.
The dataset spans over a period of 6 years (2010-2016), covering two northeast-
ern Italian regions (Veneto and Friuli-Venezia-Giulia). The dataset contains
by 3,901 faults of interest, 30 different affected components, 153,094 general
SCADA events recorded during network operations. The SCADA events are
divided into 67 different event types, with the generic failure event accounting
for 79,833 events. Here we are interested in those faults: (i) lasting more than
180 seconds, (ii) with the location in the network identified, and (iii) with
the cause determined. These events are named Permanent Service Interrup-
tions (PSIs), tagged with a cause among 45 different reasons and linked to one
among the 30 affected components.
We briefly characterise the dataset by analysing the distribution of PSIs causes
and types of SCADA events. Considering the probability distribution of the
most frequent causes of PSIs among the 45 available, we observe an heavy
tailed shape, with the top 4 causes accounting for 75% of the PSIs, with “elec-
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tric fault” being the most frequent cause (45%). More than 20% of PSIs are
due to natural causes, such as weather issues, plant falls, snow overload, wind,
and animal contacts. All these causes are unpredictable without contextual
knowledge outside the electrical grid operational events. Furthermore, another
20% of PSIs are due to unknown “other causes” (second most frequent value).
Regarding the probability distribution of the most common SCADA events
types, it is similarly skewed, with about 75% of SCADA events belonging to
just 6 different types, and with the most frequent one with a frequency above
30%.

5 Prognostic-diagnostic approach

Since we aim at investigating both the prognostic and diagnostic potential of
SCADA events with respect to PSIs, we focus on the analysis of those events
occurring both before and after a PSI, in the same portion of the network,
under the assumption that the time and space correlations might capture
causalities of the system.
In the time dimension, we define a time window preceding the occurrence of a
PSI, denoted as Pre-Fault Window (PFW), and a time window immediately
following the PSI, denoted as After-Fault Window (AFW). In the space di-
mension, we consider only SCADA events observed in the same portion of the
network where the PSI occurs, i.e., reported by the same feeder as origin of the
collected data, since according to the domain experts they are more likely to
be correlated to the considered PSI. Considering that the grid operator is in-
terested in predicting future PSIs occurring within the next month at most,we
consider time windows of 1, 7, 30 days for PFW, and 1 hour, 1 day or 7 days
for AFW. These values result from wider preliminary analyses, with the aim
of capturing behaviours of the distribution network at different time scales of
interest for domain experts of the electric grid company.
The time-window-based characterization of the SCADA event distribution
during the PFWs and the AFWs shows that 60% of the PSIs have no SCADA
events in their 7-day PFW, whereas 10% of the PSIs have no SCADA events in
their 1-day AFW [21]. In addition, most diagnostic events occur in the 1-hour
AFW. Finally, many events occur more then 1 week before the PSI (PFW);
however, they include events generated as a consequence of other minor faults,
i.e., they are in the AFW of non-permanent Service Interruptions. This hap-
pens in 60% of the cases for a 30-day PFW, and in 26% of cases for a 7-day
PFW. These results suggests a limited prognostic potential of the SCADA
events with respect to PSIs due to the few events, mostly time-unrelated.
Conversely, the diagnostic exploitation seems better supported by more data
that is recorded after the event of interest.

6 Rule Mining

To address challenges identified in Section 5, we exploited a transparent, ex-
haustive and exploratory data mining approach: association rule mining. In
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the following, we describe the technique and evaluation metrics, as required
by the scope of the current work, are defined as follows.

6.1 Association Rule Extraction

Let D be a dataset whose generic record r consists of a set of co-occurring
events, i.e., events that occur in the same time window. Each event, also called
item, is a couple (attribute, value). In the current work, the attribute is either
a SCADA event type, or an alleged cause, or a failed component, and the value
is 1 if that attribute is true in the time window under exam (e.g., the SCADA
event is present, the component failed, or the specific cause was determined),
or 0 otherwise. Note that a SCADA event might represent another PSI or a
minor fault occurring before or after the analysed PSI. An itemset I is a set of
co-occurring events, failed components, and alleged causes among the records
r in the dataset D. Such set of items I in a PFW or, separately, in an AFW
constitutes the input feature vector of the rule mining extraction.
The support count of an itemset I is the number of records r containing I.
The support s(I) of an itemset I is the percentage of records r containing I
with respect to the total number of records r in the full dataset D. An itemset
is frequent when its support is greater than or equal to a minimum support
threshold MinSup.
Association rule mining aims at identifying collections of itemsets (i.e., sets of
co-occurring events) that are frequently present in the dataset under analysis,
according to statistically relevant metrics. The extracted rules are all and only
those adhering to the thresholds of statistical relevance defined as parameters
of the mining process, hence being an exhaustive, thus powerful, exploratory
approach within the boundaries of the problem formulation (i.e., itemset def-
inition and threshold settings).
Association rules are usually represented in the form X → Y , where X (rule
antecedent) and Y (rule consequent) are disjoint itemsets (i.e., they include
different attributes). To identify the most meaningful rules among those ex-
tracted by the mining process, quality measures can be exploited as ranking
criteria. The following popular quality measures are used in the current work:
rule support, confidence, and lift. Rule support s(X,Y ) is the percentage of
records containing both X and Y . It represents the prior probability of X ∪Y ,
i.e., the support of the corresponding itemset I = X ∪ Y in the dataset. Rule
confidence is the conditional probability of finding Y given X. It describes the

strength of the implication and is given by c(X → Y ) = s(X∪Y )
s(X) [22].

All and only association rules with support and confidence above (or equal to)
a support threshold MinSup and a confidence threshold MinConf are to be
extracted. Among those surviving the thresholds, a rank based on descend-
ing support, confidence and lift values can drive the attention to focus on the
most statistically-relevant patterns. The lift [22] of a rule X → Y measures the
(symmetric) correlation between antecedent and consequent. If lift(X,Y )=1,
itemsets X and Y are not correlated, i.e., they are statistically independent.
Lift values below 1 show a negative correlation between itemsets X and Y ,
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Fig. 2: Association rules extracted from the 7-day PFW (a-b) and from the 1-
day AFW (c-d), with causes or components as conclusion (x-axis in log scale).

while values above 1 indicate a positive correlation, with higher lift indicating
stronger rules, hence typically more meaningful and interesting correlations.

6.2 Rule quality analysis

The analysis of the extracted rules has been performed for various parameter
values. Due to space constraints, we report only the most meaningful results
based on the rules obtained by (i) setting MinSup 0.02, then focusing on
rules (ii) whose lift is higher than 1.5, and (iii) having a cause or component
as conclusion. We report the number of rules resulting from such selection in
Figures 2a-2b for a 7-day PFW (red stars) and, for comparison, for an AFW
of 1 day (blue dots). The scatter-plot shows support and confidence versus
lift values. The diagnostic potential (AFW) is confirmed by a larger number
of rules with better quality metrics with respect to the prognostic capability
(PFW): overall, we have 45 rules in the AFW vs 3 in the PFW, with 50% max
rule confidence in AFW vs 25% in PFW, 2.73 max lift value in AFW vs 1.9 in
PFW, and 8% max support in AFW vs 4.5% in PFW. We inspect top rules
according to lift, confidence and support with the help of domain experts from
the grid company, allowing to transparently evaluate the correlation model
and the prognostic-diagnostic approach.

6.3 Domain-expert analysis

From the results of Table 1, we can see that the most interesting combinations
of the SCADA events and the components are related to PSI affecting the
highest percentage of the components of the distribution network, i.e. electric
conductors, including the aerial lines and cables.

Take the results of the opening of MV line for max current 2nd threshold as
example. It signifies that the system has a fault happening with a large current
while the relay does not immediately trip the line. The fault current harms the

Table 1: Sample of association rules for PFW, considering causes of faults as
consequent.

Antecedent Consequent Supp Conf Lift
[%] [%]

Opening of MV line for max current 2nd threshold Conductor 2.05 25.32 1.95
RG CTO intervention Conductor 3.23 21.80 1.68
Telesegn Disp 180 Cable 4.56 12.33 1.62
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insulation of the equipment and over time, with repeated faults, the equipment
will eventually introduce ground fault at any time in the future. The RG CTO
intervention would have a similar effect with a higher magnitude, as the fault
current in this case would be much larger.

As the antecedent events in Table 1 appear in the PFWs as the prognostic
signals, it might be inferred that, after an introduction of fault in the system,
the accumulated effects of the deterioration of the insulation over time would
account for a noticeable amount of PSIs in the future. However, due to the
lack of the time labels of the events, we cannot exclude other possible causes
where that the PSI in study is a consequence of an immediately preceding
fault related to another PSI.

By contrast, for the AFW, if the opening of MV line for max current 2nd

threshold has been recorded by the SCADA system, it is not surprising that
the highest percentage of the related PSIs will affect the largest number of
equipment, i.e. conductors in the system.

If we compare the last two items of the results in Table 2, we can clearly see
that the confidence values are quite high, i.e., higher than 41%, which shows
that the T-junction is the most vulnerable elements against the premises.
However, if we check the SCADA event closely, the most decisive one for such
a conclusion is the Permanent opening round 2nd threshold, which indicates
that the fault could not be cleared by itself and developed into a permanent
one. For other types of fault, such as branch touching with the conductor, they
can be cleared by themselves, and the automatic reclosing relay (RDA) would
reclose the line and restore its services. On the other hand, the most typical
permanent fault would be the fault on the equipment itself, in this case, the
T-junction. Therefore, our study clearly captured the phenomenon in which
the T-junction has a failure and generates fault current. Since it cannot be
cleared by itself, the concerning relay permanently trips the relevant lines.

7 Associative classification analysis

Association rules extracted from the general-purpose prognostic-diagnostic ap-
proach, as in Sec. 6, describe all the correlations among attribute values above
given thresholds (support and confidence) in the overall SCADA-event dataset.
Those attributes include (i) the component affected by a fault and (ii) the
reason of a fault, which are two desired target variables in our prognostic-
diagnostic context.
Indeed, selecting only the subset of association rules whose heads are restricted

Table 2: Sample of association rules for AFW, considering causes of faults as
consequent

Antecedent Consequent Supp Conf Lift
[%] [%]

Opening of MV line for max current 2nd threshold Conductor 2.91 39.24 2.73

Opening of MV line for ground fault 2nd threshold,

Permanent opening ground 2nd threshold, T-junction 2.03 50 2.18

SC TC ground 2nd threshold

Permanent opening ground 2nd threshold, T-junction, 2.01 41.05 2.16

SC TC ground 2nd threshold electric fault



Title Suppressed Due to Excessive Length 9

to the target attributes (i.e., Class Association Rules) can help [23]. However,
for association rules, the target of mining is not predetermined. Instead, we
introduce in this section an analysis based on the associative classification ap-
proach, which optimises the choice of the extracted rules with respect to a
pre-determined target attribute, i.e., the class.
Such approach, in a predictive-maintenance context, specifically addresses the
common question of automatically assessing the capability of a given dataset
to be able to determine the component affected by a fault, or the specific
reason for such a fault. This information is useful to reduce maintenance oper-
ations of the electric grid, for instance by providing the intervention team with
suitable tools to fix the fault. The associative classifier exploited in our study
is L3 [24]. According to this approach, association rules are exploited to build
a classifier. While the rule consequent is restricted to the class labels, the rule
antecedent represents a set of feature-value couples that should be matched
to predict the considered class. We recall that features are represented by the
presence or absence of each SCADA event, as registered in the time window
under analysis, with a record for each fault. Labels can be (a) the type of
component interested by the PSI, or (b) the PSI cause.

7.1 Data preparation

To apply the associative classifier, we perform a data-preparation workflow on
the input dataset, that includes two steps: (i) class removal and (ii) feature
selection.
Since the associative classifier is built upon the frequency of the events, many
samples describing the behaviour of each class are required to effectively learn
to predict a class label from the data. Hence, we remove classes with a number
of samples less than a threshold Sn from the dataset. Avoiding such removal
would lead to rules with limited interest, since they would model spurious
behaviours, hardly capturing general patterns applicable to new data. Such
pruning reduced the number of classes, from 30 components and 45 fault causes
to the final numbers reported in Tab. 3, whose results have been obtained
setting Sn = 100.
We next run a random-forest-based [25] feature selection provided in Scikit-
Learn [26] to select the most relevant attributes, hence reducing the model
complexity. We remove those features with an importance score lower than a
threshold Fi with respect to the value of the most important feature. Tab. 3
reports the number of features available after the feature selection procedure
with Fi = 10%. A qualitative analysis of the selected attributes let us note
that the SCADA event types describing the presence of other faults within the
time window are included as valuable features for the PFW, while they are
filtered out for the AFW. This is due to the window length, which is 1 week
long for the PFW but only 1 hour long in the AFW.

7.2 Experimental results

The associative classifier results have been analysed for different values of the
minimum support and confidence thresholds. Specifically, we determined 5%
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Table 3: Dataset description and number of rules selected by the associative
classifier with Sn = 100, Fi = 10%, minsup = 5%, and minconf = 40%.

Class label Window Attributes Classes Rules
Component PFW 13 5 107
Component AFW 19 10 200

Cause PFW 17 3 195
Cause AFW 20 9 291

and 40% to be, respectively, the highest values yielding to a non-empty set
of rules in the first level of L3 [24]. Note that the minimum relative support
threshold for the associative classifier is referred to each class, whereas for
association rule mining in Sec. 6 the minimum support threshold was on the
whole dataset. Hence, a 5% threshold for the associative classifier means that
the corresponding rule will be extracted for a given class label only if its sup-
port is at least the 5% of the number of samples of that class label.
To evaluate the prognostic-diagnostic potential, we analyse the distribution
of the quality metrics of the rules of the associative classifier, separately for
PFW (prognosis) and AFW (diagnosis), and for each class label (faulty com-
ponent or cause of fault). We report results in Fig. 3 by exploiting two quality
metrics: confidence and lift, including also the support metric did not lead
to additional insights. A common pattern in most cases, emerging from the
comparison of the PFW (prognosis) and AFW (diagnosis) results, is that the
diagnostic rules have better (higher) quality metrics. Specifically, when the
target class is the component (see Fig. 3a), the trend is present not only in
the reported confidence-lift plot, but also in any pair of metrics. The group of
top quality rules always belong to the AFW, with much higher support and
lift, and a slightly higher confidence. When the classifier targets the cause (see
Fig. 3b), instead, AFW and PFW rules seems to have similar values for qual-
ity metrics. However, we should consider that the Cause-PFW classification
problem is much easier due to the lower number of classes (3) with respect to
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Fig. 3: Analysis of the quality metrics of the rules selected by the associative
classifier.
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the Cause-AFW (9 classes), as reported in Tab. 3. As a consequence, we can
expect PFW rules to be generally less powerful, and the dataset predictive
potential to be limited with respect to its diagnostic capability.
To this aim, we train an L3-based prediction model on 70% of the dataset,
and test the model-generated rules on the remaining 30% to predict either
components or causes of faults. Classification results confirm the poor pre-
dictive power indicated by the rule-mining analysis. The cause-prediction L3
model provides a label for 927 samples (96% of the test set) with an average
precision of 0.34 and an average recall of 0.54, with an unbalanced prediction
towards the majority class. The component-prediction L3 model yielded even
lower results, with an average precision as low as 0.01, an average recall of
0.12, and an extremely unbalanced prediction towards the majority class.

7.3 Domain-expert analysis

Tab. 4 reports the prevalent patterns of SCADA events that are observed
during a PFW or AFW and the corresponding consequent for the associa-
tion rules having the highest confidence. Within each set (Component/Cause,
PFW/AFW), the top 15 rules have been examined, showing the following val-
ues of minimum confidence within each subset: Component, PFW - 64.3%;
Cause, PFW - 83.6%; Component, AFW - 63.3%; Cause, AFW - 69.4%.
In the case Component - PFW, all the examined rules show the conductor as
component interested by the PSI. This is quite reasonable, as the majority
of protections, switches, as well as breakers are installed for operating them.
Besides that, the combinations of the short type of fault and opening of MV
line in the antecedent are dominating, suggesting that if the short faults occur
more frequently than before, an expected fault will happen in the same moni-
toring area. In addition, the short circuit fault also appears multiple times in
the rules as they would bring relatively high impact on the system. Regarding
the case Cause - PFW, less meaningful rules are identified. The first type of
rule says that given the occurrence of some SCADA events (permanent fault,
opening of MV line) some tree may touch a component of the grid, but it is
unlikely that the those events are specifically predictive for that kind PSI. The
latter rule type is not helpful, since links the occurrence of an electric fault to
the absence of any event in the PFW. Even for the case Component - AFW,
it is not unreasonable that most rules point out to the conductors. Various
types of MV line opening may lead to a PSI affecting this type of component.
Finally, in the case Cause - AFW, it can be observed that when a grounding
fault is registered and the automatic reclosing relay (DRA) cannot resolve the

Table 4: Prevalent patterns of SCADA events in the top 15 rules having the
highest confidence within each subset (Class label, Window).

Class label Window Antecedent Consequent

short fault conductor
Component PFW short fault, Opening of MV line (generic) conductor

short fault, RG CTO intervention (short circuit) conductor
Cause PFW permanent fault, opening of MV line (various types) plant fall

no SCADA events detected electric fault
Component AFW opening of MV line (various types) conductor

Cause AFW opening of MV line (ground), electric fault
opening of MV line (DRA excluded)
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problem, this is due to an electric fault. This is coherent with the operation
experience, as the DRA is only useful in the case that in a short time the cause
of the fault can be self-solve, such as shortly contacting of foreign objects.

8 Conclusions

The work analysed 6 years of data recorded from a medium-voltage distribu-
tion network, with the purpose of estimating both the prognostic and diagnos-
tic potential for severe faults, i.e., permanent service interruptions. The pro-
posed approach, consisting of time-window data characterisation, exhaustive
rule-mining extraction, and associative classification rules, has been able to
assess the potential of the data for fault prognosis and diagnosis. Specifically,
the collected SCADA events effectively support the diagnostic task, includ-
ing the diagnosis of the affected components and fault causes, whereas their
prognostic potential is limited since only few and poor predictive correlations
are present in the data, and the predictive model based on such rules yielded
to very poor results both in recall and precision with unbalanced predictions
towards the majority class.

Future works include wider analyses of the rules for different thresholds
and changes to the transactional dataset derived from the raw data to enable
the extraction of additional correlations.
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