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Freeze-Drying Process for pharmaceutical products in vials 

 

 

 

Abstract 

A new Process Analytical Technology (PAT) has been developed and tested for 

on-line process monitoring of a vacuum freeze-drying process. The sensor uses an 

infrared camera to obtain thermal images of the ongoing process and multivariate 

image analysis (MIA) to extract the information. A reference model was built and 

different kind of anomalous events were simulated to test the capacity of the 

system to promptly identify them. Two different data structures and two different 

algorithms for the imputation of the missing information have been tested and 

compared. The results show that the MIA-based PAT system is able to efficiently 

detect on-line undesired events occurring during the vacuum freeze-drying 

process. 

 

Keywords: multivariate image analysis; process monitoring; infrared image; 

batch process.  
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1. Introduction 

 

Vacuum freeze drying (VFD) is a highly attractive process for the water removal in thermal 

sensitive products, mainly pharmaceutical ones, since water is removed at low temperature by 

sublimation. Monitoring of critical quality attributes of the product, e.g. the residual amount 

of ice and the product temperature, is required to guarantee a true quality-by-design 

manufacturing. To achieve this goal, the development of suitable Process Analytical 

Technologies (PAT), able to monitor/control the key variables of the product without 

interfering with its dynamics, is a mandatory step, as stressed also by the Guidance for 

industry PAT by the American Food and Drug Administration [1].  

In the past, many approaches to this problem, based on the measurement of different 

variables (e.g. product temperature, sublimation rate, heat flux to the product, among the 

others), were proposed and tested [2], in particular at lab-scale. The measurement of the 

temperature of the product, if possible in a well-defined position (e.g. the bottom of the vial), 

was extensively and successfully applied for process monitoring and control [3]. The main 

drawback, up to this moment, of this approach is that the temperature measurement has to be 

performed using a thermocouple stuck into the product, and this does not guarantee neither 

the sterility requirements nor that the sensor is not interfering with the ongoing process. 

Besides, sensor placement can be a challenging issue, in particular in industrial-scale units.  

In this work we used an infrared camera, instead of a thermocouple, for temperature 

measurement. Differently from the system proposed in the literature [4], we placed the 

camera inside the chamber, thus being able to monitor the vials in several positions, and not 

only on the top shelf of the freeze-dryer. Moreover, by this way it is possible to track vial 

temperature along several axial positions, and not only at the top. The spatial position of the 
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vials inside the drying chamber has been proved to have a dramatic effect on the variability of 

the product inside the single batch [5]; any monitoring algorithm, in order to be successful, 

has to account for this source of variability. In this work this aspect has been deeply 

investigated. Obviously, this system is able to monitor directly the temperature of the glass 

wall, and not that of the product, but several studies appeared in the literature evidenced that 

the temperature of the product is very close to that of the glass wall [6].  

Thermal images include a lot of useless (i.e. everything that is outside the vial) 

information and, also the one directly related with the process, i.e. the temperature, is highly 

noisy, redundant and correlated. The first problem is a matter of gray-scale image 

segmentation, whereas the second is a frequent problem when dealing with real industrial 

data. Latent variables based multivariate statistical techniques can easily deal with these 

kinds of problems. In this framework, Kourti [7] discussed the primary role of multivariate 

statistical techniques in the development of PAT for the pharmaceutical industry.  

Multivariate Image Analysis (MIA) is the application of multivariate statistics 

methods to the extraction of information from images, both spectral [8], that is directly 

related to the intensity of each pixel, and textural, i.e. linked to the spatial distribution of 

intensity gradient [9]. Prats-Montalbán et al. [10] published a complete review of MIA 

techniques and possible applications to problems of image segmentation, monitoring and 

defect detection, classification and prediction. Application to hyperspectral images was also 

discussed. Two different possible approaches to MIA were discussed: a global image 

approach and a pixel level one. The latter treats the spectral information in each pixel as a 

sample of the whole image, while, global image MIA is used when a set of features 

describing certain characteristics of the image are extracted and used for classification and/or 

prediction purposes. In this work, a global image approach was used. 
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The idea underlying the development of a latent variable multivariate monitoring 

system is that only a few underlying events are driving the process, and all the measurements 

we obtain are just a different sight on these underlying driving forces. Multivariate Statistical 

Process Control (MSPC) allows us to obtain a model of the process by projecting the 

information into a low dimensional space defined by latent variables and, in this reduced 

space, to build control charts able to detect any deviation from the normal operating 

conditions [11]. Both principal component analysis (PCA) [12] and partial least squares  

(PLS) [13] have been widely studied and applied for this purpose, being also able to 

successfully deal with the highly auto-correlated data typical of batch processes [14-16], such 

as VFD intrinsically is. Multivariate control charts for batch process monitoring were 

proposed by Nomikos and MacGregor [17], while Kourti [18] presented a more general 

discussion of MSPC of batch processes. Ramaker et al. [19] discussed the advantage of 

conjugating these techniques with process specific information in a so called gray model. Van 

Sprang et al. [20] presented a comparative evaluation of five different algorithms to the 

problem of on-line batch process MSPC. Rato et al. [21][22] recently presented a systematic 

methodology to compare batch process monitoring methods and compared different 

approaches in terms of detection strength and speed. 

In more recent years many successful applications of MSPC to real industrial 

problems were published; a definitely not exhaustive list of them includes industrial polymer 

batch process [23,24], a continuous recovery process [25], batch production of PVC [26], 

fed-batch fermentation [27], autobody assembly [28] and continuous slurry stripping [29]. A 

complete discussion of multivariate image analysis in the process industries was published by 

Duchesne, Liu and MacGregor [30], including different examples of image analysis 

application to MSPC and real-time process control and optimization [31]. 
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This paper is thus focused on the design of a new Process Analytical Technology 

(PAT) for on-line process monitoring in a VFD process. The sensor uses an infrared camera 

to obtain thermal images and multivariate image analysis (MIA) to extract the information 

after automatic detection and segmentation of the region corresponding to the product in 

every vial. This information allows detecting on-line undesired events eventually occurring in 

the batch.  

The paper is organized in six sections: section 2 introduces the experimental work and 

some useful nomenclature, section 3 deals with image preprocessing and feature extraction, 

section 4 presents the MSPC scheme and the different approaches to two of the major issues 

related to batch process MSPC (data unfolding and missing data estimation) tested. Section 5 

presents the main results, and section 6 the general conclusions of this work. 

 

 

2. Experimental study and nomenclature 

 

Drying experiments were carried out using a lab scale equipment LyoBeta 25™ freeze-dryer 

(Telstar, Spain). In all tests ten vials (ISO 8362-1 10R) were placed at 30 cm from the 

camera, and a new image was acquired every five minutes for 50 h, corresponding to almost 

600 image acquisitions. The actual elapsed time from the beginning of the process was used 

to report the results of continuous variables “sampled” by the sensor, while the progressive 

number of the image acquisition was preferred to refer to the results of the calculation 

performed by the algorithm on the single images.   

The sensor, together with the infrared camera (FLIR A35), includes a HDTV RGB 

camera. In this work, only the thermal images were used and will be discussed. The data are 
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stored into a microprocessor that can be accessed via wi-fi and monitored in real time through 

a graphical user interface. A case in plastic material was designed (IMC Services s.r.l., Italy) 

to resist and protect the electronics from the low pressure, low temperature and high moisture 

level typical of the drying chamber during the freeze-drying process [32].  

The normal operating conditions (NOC) set was obtained processing 5 ml of a 

solution 10% b.w. of sucrose (Sigma Aldrich, 99.5%) at -20°C and 20 Pa. Five batches were 

processed in the same operating conditions, thus obtaining a total of 50 vials. Each vial in the 

batches was assigned with a number referring to the position on the shelf as Figure 1A shows, 

progressively increasing with the number of the batches. Batch 6 was intended to be another 

NOC batch but, due to the vibrations of the equipment, the vial in position number 7 felt 

down and was, for this reason, regarded as a fault, while the remaining nine vials were 

considered successfully dried. The whole batch was included in the test set. 

The detection ability of the system was evaluated in four additional batches. In batch 

7 a failure in the vacuum system has been simulated: after 5 hours of drying from the onset of 

the primary drying chamber pressure was raised to 50 Pa. In batch 8 the shelf temperature 

was set to -10°C, while in batch 10 a solution 5% b.w. of sucrose was processed. Batch 9 

aimed to prove the ability of the model to detect faults affecting the single vials and, while 

shelf temperature and chamber pressure were set to the NOC values, only four vials 

(corresponding to vials 81, 88, 89 and 90) were filled with a 10% solution. For the remaining 

six vials the configuration was the following: a piece of glass was inserted into two of them; 

another one was filled with pure water; one more with the same 5% b.w. solution used for 

batch 10, and the remaining two with, respectively, 2.5 and 7.5 ml of solution. Batches 11 

and 12 are NOC batches included into the test set and used only to assess the monitoring 

performance of the algorithm. Given the restrictions to obtain a new batch these were 
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assembled randomly by selecting vials from the five batches that constitutes the training set 

(batches 1 to 5). The only restriction imposed during selection was to preserve the position of 

the vial on the shelf (e.g. vial 111, first vial in batch 12 was selected between the vials 1, 11, 

21, 31 and 41), as it is one of the variables studied in this work. Table 1 resumes the number 

of the vials belonging to each batch, the operating conditions tested and whether it was used 

to train the model or to test it.  

The ratio between the pressure measurements obtained from a conductive Pirani 

gauge and a capacitive Baratron manometer was measured on-line in every batch.  This ratio 

is greater than one when the ice is sublimating, while approaches the unitary value at end of 

the primary drying [33]. For this reason, it has been used to determine when the drying was 

completed and as a comparison for the features extracted (see section 3) from the thermal 

images.  

 

 

3. Image segmentation and features acquisition 

 

The thermal images are 256x320 pixels. The camera is equipped with a 63°x50° lens which 

leads to a slight optical distortion, known as “barrel effect”. This second order deviation from 

the ideal rectilinear projection can be compensated by remapping the pixels according to the 

following equation:  

 

 2

new old oldr r f r= +             (1) 

 

where r is the distance from the center of the image of a generical pixel and f a correction 
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factor (negative in this kind of optical aberration) depending on the distance between the 

camera and the object [34]. Since in all our tests the same distance was used, this factor is 

approximately constant and equal to -1.5. 

After optical correction, the Hough transform [35] was used to detect the position of 

the vials in the images, as shown in Figure 1B. Being known the diameter of the vials bottom 

and the length of the line detected by the Hough transform we could infer the width of a 

single pixel and, thus, as we know also the height of the vial, the height of the region to be 

segmented, Figure 1C.  

The whole portion of the image corresponding to the product into every vial was 

segmented and the values of mean, standard deviation (std), skewness and kurtosis of the 

temperature in this region were calculated from the measured values to study the evolution 

over time of the temperature distribution. The results were collected into a three-dimensional 

data structure using two approaches. In the first approach, in the following referred as vial-

wise or VW, each vial has been considered as a single observation, thus X1 is an I × J × K 

data structure where I is the number of vials (fifty, considering 10 vials in each one of the 

batches included in the training set), J is the number of variables measured (mean, std, 

skewness and kurtosis), and K is the number of time instants (six hundred). In the second 

approach, referred as batch-wise or BW, also the position on the shelf was included among 

the modeled variables, thus X2 is a B ×J* × K data structure, where B is the number of 

batches (i.e. five in the training set), K is again the number of time instants while the 

variables (J*) are forty, corresponding to mean, std, skewness and kurtosis for each one of the 

ten positions that a vial could occupy on the shelf. 
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4. Batch process monitoring 

 

Both for the VW and the BW approach the data structures were unfolded, putting all the 

features extracted for a single observation beside each other in order of time acquisition. This 

kind of unfolding preserves the information on the single observation, beside capturing the 

cross-correlation and the auto-correlation along time [16]. The final matrix obtained for the 

BW approach X2(B×J*K) has ten times more columns and ten times less rows of X1(I×JK), 

the unfolded matrix obtained with the VW approach. After mean centering and scaling the 

unfolded data sets X1 and X2, a PCA model with, respectively, A1 and A2 principal 

components was built using only the batches of the training set, that is, the 50 successfully 

dried vials included in batches 1 to 5. The general structure of a PCA model is the following: 

 

=  +X T P' E             (2)     

 

where T is the I×A1 (or B×A2) score matrix, P is the A1×JK (or A2×J*K) loading matrix and 

E is the residual matrix, having the same dimension of the original matrix X. 

Only the batches included into the training set were used to build up the PCA model; 

batches 6 to 12 were used for validation purposes [36]. Once the latent variable subspace is 

known, unusual behaviors can be detected using two multivariate control charts built on the 

following two statistics: Hotelling T2 (T2) and the squared prediction error (SPE), defined by 

Equations 3 and 4, respectively. For each observation: 

 

2
2

1

A
a

a a

t
T

=

=                (3)             
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2

1

KJ

c

c

SPE e
=

=              (4) 

 

where ta is the a-th score, a its corresponding variance and ec is the error obtained after 

predicting the measurement of variable c for a certain observation.  

In on-line monitoring the SPE is computed only on the information measured at 

instant k, and for this reason it is called instant SPE (SPEI): 

 

( )

2

1 1

JK

c

c k J

SPEI e
= + −

=             (5) 

 

where JK becomes J*K in the batch-wise approach. Nomikos and MacGregor [17] proposed 

to use the errors on a moving window of five instant measurements to compute the upper 

control limit (UCL) for this statistic. First guess UCLs for these charts were computed both 

empirically, that is taking the 99.5 % percentile of the actual values of both statistics obtained 

from the training set, and using their theoretical approximations, following the approach of 

Nomikos and MacGregor [17]. 

The percentage of time instants that a single statistic overtakes the UCL in NOC 

batches, is called Overall type I (OTI) risk, and should be close to the imposed significance 

level (ISL = 0.5%): 

 

OTI =100 ×
Nf

I
NOC

× K
%           (6) 

 

where Nf is the number of time instants that a single statistic overtakes the UCL for the 
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overall training set. Notice that the number of vials I should be replaced with B, the number 

of batches in the training set, in the BW approach.  

Due to the limited number of batches available, a one-batch-out cross-validation 

approach was used[37]. It consists in removing in turn each batch (in case of the VW 

approach, all the ten vials obtained in the same batch) from the training data set, build a PCA 

model using the remaining training batches (vials), measure the actual OTI for the deleted 

batch (vials), measure the average OTI after all iterations, modify, if needed, the UCLs and 

repeat the procedure, until the desired OTI is achieved [38].  

The main issue when dealing with on-line batch multivariate SPC is that at time k 

(k<K) the future part of the trajectory of each variable j (or j*) is missing and has to be “filled 

in” [17]. Arteaga and Ferrer showed that among the different scores estimation methods for 

future multivariate incomplete observations from an existing PCA model, the most statistical 

efficient ones are those that estimate the scores for the new incomplete observation as the 

prediction from a regression model: the so-called regression-based methods. Out of these 

methods, two are recommended: the Trimmed Score Regression (TSR) method and the 

Known Data Regression (KDR) [39,40]. These have been tested and compared in this work.  

Given a reference matrix of observations X and its PCA decomposition X = T·P’ + E, 

when a new partially unknown observation z is available at time k, it can be written as          

zT = [ z*T z#T], where z* includes the first Jk (or J*k) known values of z and z# contains all the 

values still unknown. This partition induces a partition also into PT = [P*T P#T] and                

X = [X* X#], see Figure 2. Ferrer and Arteaga proved that z# can be estimated by the general 

formula: 

  

ẑ# = S#* ×L × LT ×S** ×L( )
-1

×LT × z*
              (7) 
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where L is called key matrix, different for each method of imputation used, equal to the 

identity matrix I (K-k×K-k) for the KDR method, and to the partial loading matrix P* (A×K-

k) when the TSR method is used. Given the full covariance matrix S obtained from the know 

data set X, S#* and S** are the partition induced by the separation in z [39]: 

 

* * * *

*

1 1

1 1 1

T TT

T Tn n n

   
= = =   

− − −   

# ** #

# # # #* ##

X X X X S SX X
S

X X X X S S
        (8)        

 

The two regression methods were compared in terms of accuracy of the score estimation, 

accuracy of the prediction of the future observation and, indeed, the fault detection ability 

following the procedure used by Garcia-Muñoz et al. [41]. Three fundamental properties of a 

good predicted score matrix were checked: orthogonality, coherence and stability. The score 

predicted for each principal component must be orthogonal, thus the covariance matrix 

should be diagonal with the terms on the diagonal, in order to be coherent, arranged in a 

decreasing order. Stability means that the estimation of the score must be constant in time and 

equal to the true value, i.e. the one obtained at the end of the process when all the variables 

are known. Also at the beginning of the batch when most of the matrix is missing. The future 

prediction sum of squares (FPRESS) and the future prediction mean square error (FPMSE), 

Equations 9 and 10, introduced by Garcia-Muñoz et al. [41] were used as a measurement of 

the quality of the forecast of the unknow part of the trajectory of variable j, in observation i 

made at time instant k: 
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FPRESS
k

ij = e
k

ij

l
( )

2

l=1

K-k

å           (9)        

FPMSE
k

ij =

1

l
e

k

ij

l
( )

2

l=1

K-k

å

1

l
l=1

K-k

å
                                                (10) 

where 
ij

k l
e  is the error made for each observation i at time instant k when forecasting the 

future part of the unknown trajectory of variable j, that is, the values corresponding to the 

data to be acquired from k+1 to K or, equivalently, for l from 1 to K-k. FPRESS is the 

equivalent of a SPE calculated on the predicted part of the observation and represents a 

measure of global forecast accuracy. In the FPMSE the error at each instant of time is 

weighted by the inverse of the distance to the current time sample giving back a measure of 

the local forecast accuracy at specific time instant k. In every instant of time k, the actual 

value of FPRESS and FPMSE for each observation i reported, is the sum of the FPRESSj and 

FPMSEj measured for each one of the j variables.  

Finally, after the PCA model was created and the control limits tuned, the monitoring 

performances of both T2 and SPEI control charts were compared by projecting the 

observations of the test set onto the reference model. At every time step, only the information 

known up to that time instant was used, the missing part of the observation was forecast, with 

either the KDR or the TSR algorithm, thus simulating an on-line acquisition system. The 

occurrence of false positives and false negatives were investigated, together with the amount 

of time needed to perform the calculation on the whole data set of images.  

 

 

5. Results 
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Figure 3 shows the Pirani-Baratron pressure ratio trajectory (Figure 3a) compared with the 10 

trajectories, one for each vial, described by the four variables: mean, std, skewness and 

kurtosis of the temperature of the pixels corresponding to the product into the vials (Figure 

3b, 3c, 3d and 3e, respectively) measured during the drying of one of the reference batches. 

Average temperature shows a change of slope around 9 hours after the onset of the primary 

drying stage, and an asymptotic behavior up to the thermal equilibrium. The standard 

deviation (std), after a sudden decrease, grows up until a maximum, reached at almost 9 

hours; then, it slowly decreases again until reaching an almost constant value at 36 hours. 

Both skewness and kurtosis show a maximum, followed by a local minimum around 9 hours. 

An almost constant value is kept from 36 hours to the end. The local maxima (or minima, as 

well as the change of slope in the mean temperature) seems to correspond to the first slope 

change of the Pirani/Baratron pressure ratio. The constant values at the end indicates that the 

thermal equilibrium has been reached, i.e. there is no more sublimation, thus the primary 

drying is over. Significant differences in the thermal trajectories obtained in different tests 

may reveal an abnormal heat transfer, that is an anomalous drying kinetic and a lower product 

quality. The features extracted from the thermal images, although based on simple first order 

statistics, contain some relevant information about the process that are required to perform an 

effective process monitoring. Multivariate statistical techniques are, nevertheless, mandatory 

to deal with such amount of noisy and redundant data. 

In the VW approach, the reference model was created extracting 10 PC corresponding 

to 93.6% of variance explained. In the BW approach, two or more principal components, give 

back basically the same results. Thus, the reference model was built extracting two principal 

components. Regarding the UCL for T2, there is a remarkable difference between the 
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theoretical and the empirical values, being the former always lower than the latter. The UCL 

for SPEI computed with the theoretical distribution and the one obtained taking the percentile 

of 99.5% are always very similar. After tuning the control limits, the obtained OTIs for the 

VW approach with TSR and KDR were, respectively, 0.47% and 0.48% for SPEI, and 0.48% 

and 0% for T2; in the case of a BW data approach we obtained 0.47% and 0.47% for SPEI, 

and 0.43% and 0% for T2. It was impossible to achieve a higher OTI in the case of T2 

simulated with KDR because the scores are straight and, as the limits were relaxed, the error 

soon exceeded the ISL. 

 

5.1 Missing information algorithms comparison 

Figure 4 shows the evolution along time of the prediction of the score of the first principal 

component for both TSR and KDR algorithms and both data unfolding approaches for the 

training data set: 50 vials for the VW approach corresponding to 5 batches for the BW 

approach. In both cases the scores predicted with the KDR algorithm are more stable during 

the process and, except for the first few images of the VW approach, they are perfectly 

constant and equal to the true values (i.e. the values obtained at the end of the batch). The 

score predicted with the TSR algorithm asymptotically moves toward the true values, but 

without completely reaching them. In both cases the coherence of the score covariance matrix 

was respected, that is the variance explained by the scores of the first component is greater 

than that of the second component and so on, but the full orthogonality of the scores was 

obtained only applying the KDR. A diagonal matrix was obtained from the first instant of 

time in case of a BW approach and after the first 14 images in the VW approach. 

After the scores were computed, an estimation of the original data matrix X could be 

obtained by multiplying the score matrix and the transpose loading matrix; subtraction of this 
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estimation from the original data matrix gives back the forecast error of the future (unknown) 

part of the trajectory of all the variables in observation i made at each time instant k. From the 

final K-k columns, the values of FPRESS and FPMSE, shown in Figure 5 and 6, were 

obtained. As expected, being a global estimation of the prediction error, FPRESS always 

decreases with time, while FPMSE, that accounts for the local forecast accuracy, could 

increase, decrease or, as in this case, keep an almost constant (except for generalized 

increment towards the end) value. To ease the comparison among the different algorithms, a 

darker line with symbols, representing the mean value of the trajectories, has been reported. 

In Figure 5, corresponding to the VW approach, the mean FPRESS shows a maximum of 21 

at k = 3 for TSR, while the maximum for KDR is 123.5 and is located at the fourteenth data 

acquisition. This five-time difference is kept through all the process and the mean value for 

TSR also goes faster to zero. A slighter difference can be noticed also in the FPMSE, with the 

TSR always behaving moderately better. Same conclusions can be stated from the analysis of 

Figure 6, corresponding to the BW approach. In this case FPRESS is one order of magnitude 

greater than in the VW approach, while FPMSE is basically constant. 

KDR seems to give back a more stationary prediction of the scores, while the TSR 

algorithm better forecasts the original value of the observations. The larger the number of 

columns included in the unfolded data set, the higher the prediction errors are. 

 

5.2 Classification performance - VW approach  

Once a PCA model of the process has been fitted using the observations included in the NOC 

batches and the UCL for both SPEI and T2 have been tuned in order to have an OTI close to 

the imposed ISL of 0.5%, we can evaluate the ability of this model to discriminate a fault 

from a successful drying. The classification performance of this monitoring system has been 
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evaluated by projecting the whole test set on the obtained model. At each time step, only the 

measurements available up to that instant were used while the missing part of the 

observations was forecast with the algorithms previously discussed, thus simulating a real on-

line monitoring system. Tuned empirical limits performed slightly better than the theoretical 

ones and have been used. This could be due to the fact that taking the percentile of the actual 

distribution of the statistics helps to better follow the instantaneous variation of the 

distribution itself and better describe the little misbehavior that could occur.  

The control chart for SPEI is almost the same in both cases while the T2 control charts are 

quite different especially at the beginning. Using the trimmed score regression algorithm, 

while tuning UCLs, the control charts for SPEI detected 8 false positives vials in the training 

set (8, 9, 15, 16, 19, 31, 40 and 50). Comparable results have been obtained with the known 

data regression method; SPEI detected 7 false positives (vials 1, 6, 9, 15, 41, 50, 54) in the 

training data set. Looking at the vials that appeared as false positives in SPEI (they are 1, 6, 8, 

9, 15, 16, 40, 41, 50 and 54) we can notice a certain periodicity in the results. Position 1 and 

10 in every batch corresponds to the external vials, directly radiated by the chamber walls. In 

the first two batches a thermocouple was located inside the vials in position 5 and 6, see 

Figure 1. This slight difference into the data structure of vials 6, 15, 16 might be due to the 

influence of the thermocouple on the drying kinetics. 

These observations mildly overtake the control limits on a limited number of time instants. 

If we accept these spurious errors as part of the unavoidable statistical error rate, that is, we 

assume that the phenomena responsible for these instantaneous faults cannot jeopardize the 

quality of the resulting product, the fault detection performance could be further optimized. 

This new relaxation of the control limits was achieved by considering faults only the vials 

whose SPEI crossed the control limits in more than 5% of the time instants. In this way all 
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the false positives in SPEI where properly classified as successful tests. 

The validation of the obtained model was performed by projecting all the vials of the test 

set onto the obtained model step by step simulating a real-time acquisition. Figure 8 

compares the control charts obtained with the different algorithms for three vials:  

- number 105, a NOC vial, always below the UCL;  

- number 51, a vial expected to be in control, but reported as a fault in the SPEI control 

charts;  

- number 75, dried at a higher shelf temperature and lies over the control limits in all cases 

almost all the time.  

When using the TSR algorithm, vial 57, as well as all the vials of the anomalous 

batches 7, 8 and 10 were detected as faults. In batch 9, six vials were tampered and all of 

them have been correctly discriminated. Only the vials number 88 and 89 and 90 in batch 

9 and 53, 54, 55, 58 and 59 in batch 6 were recognized as NOC. The T2 control chart 

reported nine false negatives and two false positives (vials 52 and 56). Only one of the 

four vials of batch 9 dried with the original 10% sucrose solution (vial 81) has been 

correctly found to be a successful drying test. Vials 88 and 89 and 90 have been 

highlighted as faults by the T2 control chart.  

Using the KDR algorithm four false positives where highlighted into batch 9 together 

with vials number 51, 52, 56, 58, 60. The T2 control charts detected vials 51 to 60 (the whole 

batch number 6) and 81, 88 and 90 as false positives but no false negatives.  The anomalous 

behavior of vials 51, 60, 81 and 90 appears to prove what has been stated about the effect of 

the radiation from the surrounding. The appearance of vials 56 could be due to either the 

effect of the thermocouple used also in this batch, or to a greater amount of radiation from the 

surrounding due to the absence of vial 57 after it felt down. A possible explanation of the 
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anomalous behavior of some vials in position 8 and 9 might be the presence of a cold led, 

required for the illumination of the rgb camera field of view, right in front of them.  

In general, we could state that the trimmed score regression algorithm gives back a 

better SPEI control chart, probably because of the lower error in the estimation of the 

variables, while the known data regression algorithm gave back better T2 control charts, 

which could be a direct consequence of the better score estimate we discussed. The KDR 

requires 13 times the computational time required for a simulation using the TSR. 

 

5.3 Classification performance - BW approach  

Since we segmented and extracted features from each one of the different vials in the 

images, the most natural way to treat the data was the vial-wise approach. The idea to 

organize the data including the potential effect of the vial position on the shelf was conceived 

when we noticed the periodicity in the results just discussed in the previous subsection. There 

is also a matter of variables and matrix dimension, i.e. in the BW approach we have only 5 

batches, but for each image we obtain forty new columns and the resulting matrix is ten times 

wider than the VW one. The computational time required was 28 times greater when TSR is 

used and almost 10 days (instead of a few minutes) with the KDR. In this last case (use of the 

KDR algorithm for a matrix organized taking the single batch as an observation) the time 

required for the analysis of a single image is greater than the 5 minutes required between each 

data acquisition, thus jeopardizing the possibility of a real time application of the algorithm. 

After matching the desired OTI, both TSR and KDR presented three false positives (batches 3, 

4 and 5) in the SPEI control chart; the three batches of the training set that had no 

thermocouples inside the central vials. Again, a 5% threshold was set to correctly 

discriminate the false positives in the SPEI, although just raising the control limits would 
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have fit the purpose. 

As for the VW approach, we tested the behavior of the monitoring scheme by 

projecting all the batches of the test set on the plane defined by the two principal components. 

Also in this case tuned empirical limits performed better and were preferred.  

Figure 8 shows the control charts of both SPEI and T2 for three of the seven batches 

that constitute the test set. Batch 12 was always perfectly classified by both algorithms, batch 

8 was always clearly signaled as an outlier, and batch 10 was detected only by the T2 control 

charts.  

Neither false positive nor false negative were detected with both the TSR and the KDR 

by the SPEI control charts. No false positive where detected in the T2 control charts when 

using either the TSR or the KDR algorithm. In both cases only batches 6 and 8 were detected 

as faults. Even after the limits in the T2 control chart were retuned, it was impossible to set 

apart the faulted batch 7, 9 and 10 from the NOC data set.  

These three batches have a common characteristic: they all simulated faults mainly 

concerning the mass transfer. In the VFD process mass and heat transfer are intimately 

coupled that is, any deviation in the mass transfer affects also the evolution of the 

temperature profiles in the products, but it will always be an indirect and weaker effect. 

Being a weaker effect, also the breakage into the correlation structure of the data will be less 

pronounced. Moreover, the glass of the vials is almost opaque to infrared radiation 

(emissivity 0.9) thus, the temperature we measure is that of the vial wall. The two values 

were proved to be quite similar, but it might partially mask some slight variation in the 

thermal history of the product. The effects on the heat transfer are strong enough to be read 

by the SPEI chart, but not to raise an alarm into the T2 chart. On the other side, in batch 6 a 

vial felt down, and the camera measured the temperature of the front door of the dryer, which 
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is warmer than a normal vial and almost constant during the whole process. This single vial 

misbehavior was strong enough to completely compromise the data structure. In batch 8 the 

whole shelf was set at a higher temperature. Thus, also the glass of the vial, which is always 

in contact with the shelf, is directly heated and both the average temperature and the whole 

temperature distribution change. This direct effect is strong enough to be detected also by the 

less responsive of the control charts. 

This lower detection ability of the T2 control charts in batch processes monitoring has 

already been reported in the literature and is basically due to the strong auto-correlation in the 

data [38].  

As the position of the vial on the batch is, in this approach, part of the model, any 

harmful effect of the position should be highlighted into the contribution plot. In Figure 9 we 

reported the contribution plots of batch 6 (a), 8 (b) and 11 (c), respectively, for SPEI when 

TSR is used, after 6.7 hours of drying. Batch 11 is the reference, a good batch correctly 

discriminated (note the small value of the contributions). In case of batch 6 the bars 

corresponding to the variables in position 7 (variables 25 to 28) are three orders of magnitude 

greater than the others and of those of batch 11, denoting that something in that vial is going 

wrong. In batch 8 all the forty variables are higher than expected, betokening an 

unconventional processing.  

 

 

6. Conclusions 

 

In this work a PAT for MIA based real time monitoring of vacuum freeze-drying has been 

developed and tested. The sensor uses an infrared camera to get thermal images of the 
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ongoing process. These images are segmented, after optical aberration correction, and global 

features of these regions are extracted and used to detected unusual behaviors in the new 

observations.  

Two different approaches of data unfolding and missing data estimation have been 

tested and compared, with the aim to obtain the best combination for addressing the problem 

at hand. The TSR algorithm appears to better forecast the missing values and this gives back a 

slightly more responsive SPEI control chart. On the other side, the KDR algorithm better 

estimates the scores of the future observation that ensures better, although non-optimal, 

performances of the T2 control chart. In any case the nature of batch data makes the T2 

statistics not reliable. The main drawback of the known data regression algorithm is the time 

required for the data analysis, basically due to the need to invert the partial covariance matrix 

of the training data set (S**), whose dimensions increases in time and is normally very ill-

conditioned. For matrix with a great number of columns, the long time required jeopardizes 

the possibility to apply this algorithm on-line.  

Both modeling approaches guarantee a fine fault detection. In a BW approach, 

detection of a fault related to a single vial is deputed to the analysis of the contribution plots, 

and thus less immediate. Using the single vials as an observation, the algorithm is more prone 

to type II (false negative) errors since the effects related to the spatial position of the vial on 

the shelf are not included in the model and could mask a deviation of the same amplitude in 

the control charts. Given the lower number of columns, the computational time is 

dramatically lower in this second case. 

This PAT could be used to assess whether the variation of freeze-drying process is 

only due to common causes, that is the process is in statistical control, or some special causes 

might affect the product quality. Since this information is available on-line, it might strongly 



23 

 

reduce the failure rate of the process, the waste production, the laboratory tests to be 

performed at the end of the batch, and the time required from the end of the process to the 

release of the batch. Anyway, before considering any industrial application, the algorithm 

developed should be, indeed, validated on larger industrial data sets. 

The performance of this algorithm could be further improved including in the data set 

other variables available and currently measured during the process, especially those directly 

related with the mass transfer inside the chamber (e.g. chamber pressure, vapor flow, etc.). 

Future works will aim to prove the possibility to apply other multivariate techniques and the 

infrared imaging technology for process optimization and control. 
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obtained with KDR (graphs B and D) and TSR (graphs A and C) methods 

for the batch-wise approach. Gray lines: value for each one of the single 
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Figure 7. Control charts for vial 105, batch 11 (dark gray line), 51, batch 6 (signaling 
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T2, light gray). Thick black line: tuned empirical UCLs. 

 

Figure 8. Control charts for 3 batches of the test set when using the BW approach. 
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Figure 9. Contribution plot obtained for batch 6 (A), 8 (B), and 11 (C) simulated in 

the batch-wise configuration using the TSR algorithm. 
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Table 1 

 

 

Batch 
Operating conditions tested 

Number Type Observation Set Temperature, °C 
Chamber 

Pressure, Pa 
% Solid 

Volume of solution, 

mL 

 

1 NOC 1-10 Training -20 20 10 5 

2 NOC 11-20 Training -20 20 10 5 

3 NOC 21-30 Training -20 20 10 5 

4 NOC 31-40 Training -20 20 10 5 

5 NOC 41-50 Training -20 20 10 5 

 NOC 51 

Test 

-20 20 10 5 

 NOC 52 -20 20 10 5 

 NOC 53 -20 20 10 5 

 NOC 54 -20 20 10 5 

6 NOC 55 -20 20 10 5 

 NOC 56 -20 20 10 5 

 Fault 57 -20 20 10 5 

 NOC 58 -20 20 10 5 

 NOC 59 -20 20 10 5 

 NOC 60 -20 20 10 5 

7 Fault 61-70 Test -20 
20, raised to 50 

after 5h 
10 5 

8 Fault 71-80 Test -10 20 10 5 

9 

NOC 81  -20 20 10 5 

Fault 82  -20 20 10 5 (glass piece) 

Fault 83  -20 20 10 5 (glass piece) 

Fault 84  -20 20 5 5 

Fault 85 Test -20 20 
0 (pure 

water) 
5 

Fault 86  -20 20 10 2.5 

Fault 87  -20 20 10 7.5 

NOC 88  -20 20 10 5 

NOC 89  -20 20 10 5 

NOC 90  -20 20 10 5 

10 Fault 91-100 Test -20 20 5 5 

11 NOC 101-110 Test -20 20 10 5 

12 NOC 111-120 Test -20 20 10 5 
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