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On the Use of Entire-Domain Basis Functions and
Fast Factorizations for the Design of Modulated

Metasurface
Francesco Vernı̀, Student Member, IEEE Marco Righero, Giuseppe Vecchi, Fellow, IEEE

Abstract—Entire-domain, spectral basis functions have wit-
nessed recent interest in the integral-equation analysis of large
Metasurface antennas modeled via homogenized Impedance
Boundary Conditions. We present a formulation employing classi-
cal Galerkin test via Rao-Wilton-Glisson functions, yet assembled
to represent entire-domain div-conforming basis functions for
the shape of interest (e.g. circular/coaxial Waveguide modes).
On the one hand, the rationale is that entire-domain, spectral
basis functions afford a significant economy in the number of
necessary unknowns; on the other hand, being expressed as
combination of Rao-Wilton-Glisson functions, reaction integrals
are computed with optimum cost via fast methods. This is applied
to reduce the cost of the optimization process used to design
Metasurface antennas based on spatially modulated reactance
profiles. The authors support the method proposed, presenting
criteria to define the entire domain functions, considering the
overall numerical complexity in an optimization framework,
and providing convergence analysis and numerical results for
holographic leaky-wave antennas, relevant in the Metasurface
context.

Index Terms—Integral Equations, Method of Moments, Meta-
surfaces, Design Optimization.

I. INTRODUCTION AND MOTIVATIONS

In this article we show the use of Entire-domain Basis
Functions (EBF) for the Surface Integral Equation (SIE)
analysis and design of Metasurface (MS). MS are planar
single- or multi-layer configurations of electrically thin meta-
material composed of sub-wavelength building blocks usu-
ally printed on dielectric (e.g. [1]) or more recently metal-
only manufactured (e.g. [2]). Due to their peculiar ability to
manipulate electromagnetic waves in microwave and optical
regimes, metasurfaces find an extensive range of applications
for blocking, absorbing, concentrating, dispersing, or guiding
waves [3].

In the initial stages of the design, MS are typically described
through Impedance Boundary Conditions (IBC), leading to the
definition of a spatially variable surface impedance tensor [4].
It is worth noting that different Boundary Conditions (BC) as
the Generalized Sheet Transition Conditions (GSTC) [5], [6]
can be defined and adopted for a more general description of
the MS [7].

Moreover, MS antennas radiation is well described in
terms of a continuous slowly varying electric sheet tensorial
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reactance interacting with a Surface Wave (SW), which is
gradually transformed into a Leaky Wave (LW) [8]. The
typical design of MS antennas starts from an approximate
analytic determination of the surface impedance, which allows
the antenna to radiate a required field. This is followed by the
optimization phase, which of course requires the numerical
solution for each intermediate profile until the radiated field
fits within the given field-mask. This means that all the cost
function evaluations during the optimization involve the solu-
tion of the associated integral equation for variable impedance
profiles but always for the same geometry (i.e. antenna shape).
The goal of an efficient optimization is therefore to minimize
the numerical cost associate to the entire optimization cycle,
as opposed to that for a single solution.

This goal is here pursued by the combination of a “back-
ground” standard full-wave fast-solver for the SIE— based on
the transparent IBC-Electric Field Integral Equation (EFIE) [9]
and Rao-Wilton-Glisson (RWG) Basis Functions (BF) [10]—
and a set of orthogonal (or quasi-orthogonal) entire-domain
basis functions. This “spectral” basis allows a significant
reduction in the number of unknowns necessary for a given
quality of the results; the open issue with this basis is how
to compute the associated reaction integrals (entries of the
system matrix stemming from Galerkin test). The latter task is
here performed using a fast solver that can handle large planar
structure with (proven) optimal computational cost [11].

EBF have been revamped recently in the context of MS
analysis [12]–[15]. These basis functions are typically asso-
ciated with the spectral domain version of the Method of
Moments (MoM) solution to the SIE. In order to be effective,
this usually implies that the two-fold Fourier Transform (FT)
of the basis/test functions has to be known in a form that
allows a fast numerical evaluation of the reaction integrals
[16], [17]. Closed form of EBF are readily available from
Waveguide (WG) theory (e.g. [18]) as orthogonal modes
satisfying Neumann or Dirichlet BC and known for several
separable geometries. A generalization of these modes has
also been introduced by the authors of [19], [20] to deal with
arbitrary shapes and include the field singularity at the edge.

WG modes, under certain conditions, yield div-conforming
basis function as required for the EFIE part of the SIE. For
canonical shapes, non div-conforming bases have been devised
for which only the coplanar reaction integrals are evaluated
in closed form; this was done for circular [12], [14], or
the stretched elliptical version [15]. A closed form spectral
solution might look appealing for our purpose, however there
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are interesting configurations for which the reaction integrals
have been not computed, such as when two MS are cascaded
along the z-axis (i.e. [21], [22]) or the MS is composed of
portion of canonical geometries (i.e. [23]). In this work we do
not need to know the FT of the EBF since the reaction integrals
are evaluated between conventional RWG basis/test functions
using space domain Green’s function for multi-layered media
[24].

The electrical dimension of a MS antenna is often tens of
wavelengths; therefore the number of unknowns when using
RWG basis functions is very large, especially because high
permittivity substrates are typically considered. The iterative
solution necessarily implied by a fast-factorization solver with
a large number of Degrees of Freedom (DoF) has a cost that
renders the optimization process very expensive; moreover,
the linear systems to be solved are often poorly conditioned.
Conversely, spectral basis functions defined over the whole
antenna result in reducing the number of necessary DoF, and
in a regularization of the systems [25]. On the whole, the use
of these functions accelerates repeated solutions.

As mentioned before, in this work we compute the reaction
integrals for the entire-domain basis functions, via projection
onto the usual RWG space. This allows a considerable flex-
ibility and more complex geometries, e.g. annular ring, by
simply using the WG modes associated to the relative support.
Annular (ring) geometry is especially relevant in practice, as
often the feeding region of the antenna is not part of this
design stage and the actual geometry of circular MS antennas
is annular instead of a full circle; on the other hand, the
spectral basis for this case is simply the set of the Coaxial
WG modes.

Preliminary results about circular domains have been al-
ready presented in the conference paper [26].

The notation used in this paper is summarized in the
Appendix A for the sake of consistence and conciseness.

The remainder is organized as follows: in Section II, we
discuss how to use the transparent IBC-EFIE discretization
scheme in an optimization framework, in which a different
IBC profile is considered at each optimization step. In Section
III, div-conforming entire-domain basis functions are build
from the WG theory and used to factorize the IBC-EFIE MoM
system. In Section IV we present the criteria guiding the WG
mode set is selection. Section V explains the advantages of the
system compression when the reaction integrals between EBF
are computed from reaction integral between RWG functions
expressed in a fast factorization. Moreover, we show an
example of the regularization effect of the EBF compression.
In Section VI, we present a convergence analysis of the
compressed IBC-EFIE and numerical results with scalar and
tensorial holographic MS antenna, which validate the method
for circular and annular-ring domains.

II. MOM FORMULATION

Different numerical approaches have been studied and
adopted for the simulation of MS antennas based on guided
surface waves. Most of them suffer from instability problems
in the cases of interest, while the penetrable model of the

IBC, which only models the thin sheet of patches, together
with an EFIE yields a stable discretization and accurate
results [9]. Hence, we adopt the transparent IBC-EFIE with
mixed element surface discretization (i.e. via RWG basis/test
functions [10]) together with a Fast Fourier Transform (FFT)-
based fast-solver for planar structures (i.e. Green’s function
Interpolation with FFT (GIFFT) [11]). The MS is represented
by an electrically thin planar surface Σ with ẑ as its (outward)
normal unit vector. Here, penetrable BC relates the fields on
both sides of Σ as:

Eav
t |Σ =

1

2
(EΣ+ + EΣ−) = Zs ·[ẑ × (H Σ+ −H Σ−)] (1)

where the superscript “av” stands for “average”, indicating
that we evaluate the average of the E-field on either sides, Σ+

and Σ−, of the MTS. The tensorial sheet impedance, Zs, is
defined and spatially modulated all over Σ. The tensor Zs is
denoted by a bold and calligraphic font. More details about
the formulation can be found in [9]. The SIE formulation for
the equivalent current J ,

J = ẑ × (H Σ+ −H Σ−) , (2)

reads:

Z0ẑ × ẑ ×L(J )−Zs · J = ẑ × ẑ ×E i (3)

with Z0 =
√
µ0/ε0 the wave impedance in vacuum, E i the

incident field, and

L(f ) =

∫
Σ

GEJ (r , r ′) · f (r ′)dr ′ (4)

the Electric Field Integral Operator (EFIO) with GEJ the
multi-layer dyadic Green’s function when only electric sources
are considered. The multi-layer formulation employed in the
remainder is the mixed-potential “Formulation-C” introduced
by Michalski et al. in [24]. We approximate the unknown
current J as a linear combination of NΛ RWG basis function
Λ`, namely

J ≈ JΛ =

NΛ∑
`=1

JΛ
` Λ`, (5)

and we test the integral equation (3) on the same RWG
functions Λm, with m = 1, . . . , NΛ, in a classical Galerkin
fashion (MoM), obtaining the linear system(

Z − Zs
)
JΛ = bΛ, (6)

where the matrices entries are:

Zm` = 〈Λm;GEJ ; Λ`〉
Zsm` = 〈Λm;Zs ·Λ`〉.

The m-th element of the right-hand side is:

bΛm = 〈Λm;E i〉. (7)

Due to the large electrical size of the structures, this
discretization based on RWG functions cannot be used in
practice in optimization problems, even using a fast-solver.
The use of EBF reduces the dimension of the system matrix
and often allows for a direct inversion, which, when possible,
bypasses some issues arising from the use of iterative methods,
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and keeps the complexity of the single solution negligible
compared to the overall complexity of the whole optimization
process.

On one hand, letting Ψ` be the `-th EBF to be used to
approximate the solution J ,

J ≈ JΨ =

NΨ∑
`=1

JΨ
` Ψ`, (8)

Galerkin testing of (3) with basis functions Ψ` leads to a
system formally identical to (6). This is the case of [12], [13],
[14], [15].

On the other hand, if EBFs Ψ`, with ` = 1, . . . NΨ, are
expressed as a linear combination of RWG basis functions,

Ψ` =

NΛ∑
p=1

Ψp`Λp, (9)

all terms in the entire-domain basis MoM can be expressed
using terms appearing in the RWG MoM. This can be done
by weighted residual procedure, enforcing that the difference
between JΛ and JΨ is outside the space spanned by the RWG
set, i.e. zero when tested over the set of RWG Λp, with p =
1, . . . , NΛ:

〈Λp,J
Λ − JΨ〉 = 0. (10)

which results in the linear system

ΨT
(
Z − Zs

)
Ψ JΨ = ΨT bΛ, (11)

where Ψ is the basis change matrix containing the coefficients
Ψp` in (9). The basis change matrix entries of course depend
on the chosen EBF, but also on how these latter are projected
on the RWG space. We will explicitly deal with both points
in Section III-C.

For any further use, once the coefficients JΨ
` have been

determined, the current can be easily expressed using RWG
functions as

JΨ =

NΛ∑
p=1

(
NΨ∑
`=1

Ψp`J
Ψ
`

)
Λp, (12)

From (11) it appears clear that once we have computed Ψ

and Z and stored ΨTZ Ψ, if we want to change the values
of Zs, the only computation needed is related to the latter
matrix which has a negligible cost (i.e. scaling as the cost of
matrix-vector product with a Gram matrix).

Hence, the system looks well suited for being solved
multiple times, each time with different values of the tenso-
rial sheet impedance, Zs. In fact, an optimization algorithm
will generally look for the optimal spatial modulation of
the sheet impedance Zs, with a cost function defined by
typical antenna design parameters (i.e. Maximum Directivity,
SSL, etc.) depending on the Far-Field (FF) of the obtained
solution. Different optimization algorithms may be used (e.g.
Genetic, Particle Swarm, Simulated Annealing), but, in any
case, all of them require the evaluation of FF for current
distributions obtained from different impedance profiles. A
rapid computation of these currents is then mandatory for an
efficient optimization.

III. DIV-CONFORMING ENTIRE-DOMAIN BASIS FUNCTIONS

The use of MS implies sub-wavelength geometrical details
[3], [5] all over, and MS antennas are usually electrically
very large. It follows that MS are intrinsically a multiscale
problem; however, a consistent body of literature has shown
that most of the design can be done via MS homogenization
with IBC: the associated problem is then at a macroscale, with
impendance modulations on the scale of the wavelength. This
makes it possible to tackle the optimization task with full-
wave solutions of the “approximate” (IBC) model. At this
macroscale, in fact, the number of spatially-resolved basis
functions, namely RWG, is tolerable; however, “macro” basis
functions with spectral resolution can afford a further reduction
of the necessary degrees of freedom, which is crucial in an
optimization endeavor. A pictorial rendering summarizing the
considered scenario is shown in Fig. 1.

We analyze here how to build div-conforming EBF, well
suited for dealing with the IBC-EFIE, and their practical
implementation in MoM codes.

A. Div-conforming enforcement

Div-conforming EBF can be obtained directly from WG
modes. As J = n̂×H , with J an electric current, n̂ the versor
normal to the WG cross section, and H the magnetic field, it is
convenient to define WG-type basis functions via the magnetic
eigenfunctions, namely h in [18]. The WG eigenmodes are
continuous with bounded derivatives everywhere in the interior
of the WG cross section (in fact, they are infinitely continu-
ous), but with a possible jump at the domain boundary, since
J must be zero outside the domain; hence, the div-conforming
requirement amounts to requiring that J has vanishing normal

Fig. 1. On the bottom, a representation of a sub-wavelength metallic patch
arrangements printed in an annular region on grounded dielectric slab (thick-
ness hd and and permittivity εr). Floating on the top, a possible homogenized
impedance profile with spiral shape (and annular support) defined at the
upper interface of the grounded dielectric slab. Moving up, RWG spatial
discretization and CXWG spectral discretization, respectively.
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component at the domain boundary. This corresponds to van-
ishing tangent H field, or Perfect Magnetic Conductor (PMC),
boundary condition to the transverse Helmholtz eigenproblem.

With n̂ = ẑ , the sought for ẑ × h are the electric
eigenfunctions, e = ẑ × h. In turn, it is easy to see [17]
that the electric eigenfunctions e for the present PMC wall
corresponds to the magnetic eigenfunctions h for the Perfect
Electric Conductor (PEC) wall, with TE and TM interchanged.

Being div-conforming, these basis functions correctly ex-
press the Electric Field Integral Operator, and are able to
approximate the entire solution space [17].

B. Geometry

As for the geometry, while circular domains cover most
current antenna designs, it is worth noting that many other
different geometries (e.g. triangular, rectangular, annular, el-
liptical) and portions thereof, can be explored by applying the
same considerations adopted in the following. In this article,
both circular and annular EBFs are used. As the region around
the feed structure is typically left non patterned, it is conve-
nient to avoid having to define the impedance there. Keeping
the current on the feeding region may mislead to unphysical
solutions, especially when an optimization algorithm looks for
optimal impedance values out of the actual domain of the
impedance, which is annular. This issue is effectively solved
with basis functions defined on an annular domain.

The functions composing h can be explicitly found in Sec. 2
of [18] for rectangular, circular, coaxial (i.e. annular) and
elliptical WG. Both circular and coaxial modes follow a double
indexing mn for the zeros of the axial (m) and radial (n)
components which is shown for the coaxial case also in Fig.2.
To put the reader at ease, details about h are reported in
Appendix B.

C. Basis change matrix entries

The analytic expression of the `th mode, h`, is used to
find the RWG representation of the EBF Ψ` used in (11).
The coefficients Ψp`, with p = 1, . . . , NΛ, are obtained via
weighted-residual, enforcing that the difference between the
analytic expression h` and its RWG representation Ψ` be
outside the space spanned by the RWG set,

〈Λq;h` −Ψ`〉 = 0, ∀q = 1, .., NΛ. (13)

By writing Ψ` as in (9) and rearranging the terms, we have
the linear system

NΛ∑
p=1

Ψp`〈Λq; Λp〉 = 〈Λq;h`〉, ∀q = 1, .., NΛ, (14)

to be solved for Ψp`. Each column of the matrix Ψ is then
obtained solving (14). This step represents a negligible com-
putational cost, as the Gram matrix 〈Λq; Λp〉 in the left-hand
side of (14) is very sparse, positive-definite, and with condition
number O(1), so that convergence with an iterative solver (e.g.
Conjugate Gradient) is attained within few iterations.

IV. MODE SET SELECTION

As already recognized in [14], for radiation assessment, the
solution can in principle be restricted to spatial frequencies up
to free-space wavenumber k0. Spectral filtering is intrinsically
more stable with spectral bases (i.e. orthogonal entire-domain
basis functions) than with RWG (this can be ascertained
elaborating on the results in [27] and [25]). We employ here
a more conservative spectral truncation, to capture the spatial
variations implied in the surface wave manipulation of the
surface wave on the MTS antenna. As the EFIE operator is a
high-pass, and its inverse a low-pass, we choose the spectral
content of the basis so as to correctly represent the term
associated to the modulated surface impedance (this is akin
to the Physical Optics (PO) part of the MFIE).

Based on the spectral content of impedance profile, a-
priori spectral truncation can be assumed in order to select
a conservative number of modes which also guarantees an
acceptable error on the FF. In order to estimate the number of
modes to retain in the compression, empirical tests to represent
possible impedance profiles along radial and axial cuts with
a certain number of modes can be performed at a negligible
cost. Conservative selections are taken to guarantee that the
modes will be able to describe (up to a certain approximation
error) the full-wave solution. The plot in Fig. 2 represents
the spectral division adopted throughout the paper when an
impedance profile defined on a annular region and having a
strong symmetry along the φ axis is considered. In this case,
only a few axial modes are needed to accurately describe the
axial variation of the impedance and consequently the MoM
solution. Further considerations about the number of modes
are presented in Sec. V and Sec. VI.

Finally, a related consideration has to be made about the
minimal underlying RWG discretization to be used in asso-

x/

y/

Fig. 2. Map of the zeros along radial (blue) and axial (red) components of
the highest order mode used in this work for an annular antenna of radius
7.5λ0, λ0 is the free-space wavelength. The chosen order allows to follow a
λ0/3 spatial variation along ρ̂ and a λ0/5 spatial frequency variation along
φ̂ at the inner radius: λ0/2. At this spatial frequencies, the total number of
modes along ρ̂ and φ̂ are 22 and 8, respectively, which results in NΨ = 742.
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Fig. 3. Estimate of floating point operations as a function of the number of
optimization iteration for different problem sizes. We assume a permittivity
of εr = 6.15 and a number of modes to follow a λ0/3 spatial frequency
variation along ρ̂.

ciation with the use of the entire-domain spectral basis. It is
apparent that the spatial discretization, i.e. the RWG mesh
edge size, has to be sufficient to correctly describe the highest
spatial frequency involved in the spectral basis.

V. COMPRESSION AND REGULARIZATION

In this section we discuss two important issues of the
proposed method: a) the overall numerical complexity of the
implied system matrix compression, and b) the regularization
effect of the basis.

A. Compression

The spectral basis representation drastically compresses
the system allowing computation of compressed solution for
various impedance profiles at the cost of O(N3

Ψ); this cost
could be lowered using an iterative solver, as we will see
that the spectral basis significantly improves convergence, but
we will retain the assumption of direct factorization. On the
other hand, the computational cost of the compression is
O(NΨNΛ log(NΛ)+NΛN

2
Ψ). This cost is due to the NΨ FFT-

based matrix-vector multiplications needed to perform the Z Ψ
part, followed by matrix-matrix multiplication of the NΛ×NΨ

matrix ΨT by the NΨ ×NΛ matrix Z Ψ. This constitutes an
initial overhead that has to be recovered during optimization,
and thus sets the break-even. This point is examined in
Fig. 3, which reports an estimate of the computational cost of
repeated solutions, as needed by an optimization algorithm,
as a function of the number of optimization steps. Data
refer to a circular support with different radii, with dielectric
constant εr = 6.15; Λ indicates RWG solutions, Ψ Circular
Waveguide (CWG) solutions. The number of radial modes
allows to follow a λ0/3 spatial frequency variation along ρ̂,
as shown before in Fig. 2. For all examined sizes (radii), the
computational advantage is in excess of a factor of 10.

B. Regularization

The proposed use of a spectral basis aides the convergence,
yielding a stable well-conditioned system. These enhanced

Fig. 4. Analytic impedance profile (x-axis cut) used in the design of the
scalar MS antenna presented in [8], see (15). On the bottom-right hand side
(red square) a zoom of the feeding region of the Antenna when this region
is included. Typically the discretization of IBC-EFIE for circular domains
involves also the part related to the feeder (also circular of radius λ/2): yellow
triangles).

performances regard both the convergence rate when using
iterative solvers for the system solution, and the stability
of the solution with respect to mesh size. These aspect are
investigated more in detail in Appendix C.

Numerical results for real-life structures, including conver-
gence analysis, are presented in sec. VI.

VI. CONVERGENCE ANALYSIS AND NUMERICAL RESULTS

In this section we use holographic antennas, with isotropic
and anisotropic surface impedance, to numerically illustrate
and validate the use of div-conforming Entire-domain Basis
Functions (EBF) based on WG modes to compress Surface
Integral Equation (SIE) in Metasurface (MS) simulations.
Moreover, it is worth noting that in most of the analytic design
procedures involving EBF, the modulated impedance and the
basis functions are defined over a full circular domain, see
Fig. 4 for an example taken directly from [8]. This means
that the induced current, expanded with EBF, is defined even
on the region where the feeder will eventually be positioned
(yellow triangles in Fig. 4). Such a discretization of the IBC-
EFIE may lead to wrong designs, especially when the cost
function in the optimization procedure involves the antenna
matching as well.

There are various approaches to deal with this issue. Two of
them are: (a) to neglect the error introduced by the feeder at
this stage of the design, and (b) to force the solution, obtained
over the full domain, to be zero inside the feeding region:
this second alternative is chosen, for instance, by the authors
of [13]. When circular EBF are used (i.e here the CWG or
the Fourier-Bessel used in [13]), the problem of dealing with
the feeder region always arises. The generality of the method
and the results presented here, on the contrary, allows us to
easily avoid the circular domain, defining annular domains and
compress the system using the CXWG modes.

In the following, the RWG (Λ, not compressed) solution
over an annular domain is taken as reference as the closest to
the physical structure of the antenna. In this case, the solution
is computed via GMRES with a Krylov space large enough
to achieve the desired convergence performance.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,... 6

TABLE I
SUMMARY OF SIMULATION PARAMETERS

frequency εr radius h Zs

Sec. VI-A 17 GHz 3.66 5.7λ0 1.524 mm scalar
Sec. VI-B 15 GHz 6.15 10λ0 1.016 mm tensorial

Sec. VI-A we show the controllability of the error on surface
current and on the directivity for a design of interest, a MS
antenna with scalar impedance. Finally, the analysis of a larger
MS antenna with tensorial surface impedance is reported in
Sec. VI-B. Table I summarizes the geometrical data of both
the examples.

A. Convergence Analysis

We use an antenna described in [8]. In that paper, a planar
Circulary Polarized (CP) LW holographic MS antenna, with
radius 5.7λ0, excited with a single-point feed at f = 17
GHz, is presented. The grounded dielectric slab has thickness
hd = 1.524 mm and permittivity εr = 3.66. The impenetrable
surface impedance in the scalar case is reduced to:

Z+
s = j

[
X 0
0 X

]
, X = Xs [1 +M0 sin(βswρ− φ)] , (15)

which define a spiral-shape reactance profile and the super-
script ’+’ stands for impenetrable impedance.

After removing the grounded slab’s contribution according
to [9], we obtain the penetrable impedance profile needed
for the IBC-EFIE. A vertical probe excites a cylindrical SW
on the isotropic surface impedance, and the latter converts
the excitation into a CP LW. The excitation in (3) has then
transverse component which is asymptotically

E sw
t ≈ ITM jX0H

(2)
1 (βswρ)ρ̂ (16)

where H
(2)
1 is the Hankel function of the second kind and

first order, ITM is the complex coefficient of the SW, and the
reactance X0 and the wavenumber βsw are derived solving

Fig. 5. The plot shows the compression error δJ as a function of M ,
number of modes along φ̂, for different values of N , number of modes along
ρ̂,. The violet hexagram represents the first modes configuration that keeps
the compression error below 10−2. The reference solution is obtained with
approximately 105 RWG.

the characteristic equation of the grounded dielectric slab of
thickness hd and permittivity εr.

To validate the method it is important to make sure that the
compression maintains an adequate accuracy, both in the FF
and at current levels. We compare the solution obtained with
RWG, i.e. solving (6), and the solution obtained with EBF, i.e.
solving (11). As a figure of merit, we consider the L2 distance
between the computed currents, δJ ,

δJ =
∥∥JΛ − JΨ

∥∥
L2 (17)

In Fig. 5 we show the compression error (17) for the
modulated scalar MS antenna presented in [8] as a function of
the number of modes along φ̂, M , for different values of the
number of modes along ρ̂, N . The violet hexagram represents
the first modes configuration (M = 6, N = 30) that keeps
the compression error below 10−2. The reference solution is
calculated with a FFT-based fast-solver using NΛ = 195253.
This plot can be used as a guide to determine the number of
modes needed to achieve a desired accuracy.

Moreover, a visual representation of the error for a fixed
number of CXWG modes (NΨ = 908), is depicted in Fig. 6.
The first two panels, (a) and (b), represent the magnitude of
the surface currents calculated with RWG and CXWG basis
functions, respectively, in log-scale, while the third panel (c)
depicts the relative error. The relative error observed at the
current level is δJ < 10−2 which also corresponds to the
maximum deviation shown in Fig.6c. The FF filtering effect
reduces this difference even more, as seen in the Directivity
plot of Fig. 7, where the two curves, compressed and not, are
almost one on top of each other. This validates the use of WG
modes as EBFs able to provide figures of merit generally used
in optimization routines (i.e Directivity Peak, SLL, AR, etc.).

B. Modulated Tensorial Holographic Impedance

Polarization control is achieved through tensorial impedance
[21]. Here, we consider a high-performance antenna with
broadside beam and low cross-polarization. In this case, the
IBC lead to the definition of a full surface impedance tensor
which, in cylindrical coordinates, takes the following form:

Zs = j

[
Xρρ Xρφ

Xφρ Xφφ

]
(18)

where each component of the tensor Zs is spatially modulated
along ρ̂ and φ̂ following a spiral-shape with modulation
indexes MI(ρ) and X̄0 as in [30]:

Xρρ = Xφφ = X̄0 [1 +MI(ρ) sin(βswρ− φ)] (19)
Xρφ = Xφρ = X̄0 [MI(ρ) sin(βswρ− φ)] . (20)

The antenna is excited by a single-point feed at f = 15
GHz and has a radius of 10λ0. The grounded dielectric slab
has thickness hd = 1.016 mm and permittivity εr = 6.15.
The domain is discretized with 450716 triangular facets,
corresponding to NΛ ≈ 674716. In this case, the compressed
solution is computed using CWG modes instead of CXWG
modes, as done in Fig.7. The solution is obtained with
NΨ = 1098 modes and is compared to the solution obtained
with RWG functions in terms of directivity, see Fig.8. Table II
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Fig. 6. Magnitude of surface currents for an isotropic MS antenna similar to [8]: (a) full RWG system (NΛ = 129713); (b) compressed system with
NΨ = 908 CXWG modes (N = 28 and M = 8); (c) relative error between the current distributions (a) and (b).

summarizes the main quantities of interest to compare the
proposed approach to the RWG case.

Fig. 7. Directivity of isotropic MS antenna similar to [8]: LHCP and RHCP
radiated by the antenna for θ ∈ [−90, 90] and φ = 0 simulated with NΛ =
195253 RWG and with NΨ = 908 Coaxial Entire-Domain Basis Functions.

Fig. 8. Directivity for an anisotropic MS antenna: LHCP and RHCP radiated
by the antenna for θ ∈ [−90, 90] and φ = 0 simulated with NΛ ≈ 7× 105

RWG and NΨ ≈ 103 CWG.

VII. CONCLUSIONS

This paper offers an efficient numerical approach for the
optimization of large planar Metasurface (MS) based on spa-
tially modulated tensorial impedance. The full-wave method
presented dramatically speeds up the optimization loop in the
design process when the surface impedance is considered as
a homogenization type of approximation for electrically thin
structures, i.e. Impedance Boundary Conditions (IBC).

We achieve this numerical efficiency starting by aggregat-
ing RWG functions into div-conforming Entire-domain Basis
Functions (EBF), and computing all matrix entries via fast
factorization.

Especially in MS antennas based on Leaky Wave (LW) radi-
ation, due to the presence of the grounded slab, the geometrical
discretization of the IBC-EFIE is extremely sensitive to the
dielectric properties. Thus, to guarantee a stable solution in a
conventional way, a very large number of Rao-Wilton-Glisson
(RWG) basis functions are needed and a very large Krylov
subspace is required to reach convergence. In this paper, we
discuss how to use div-conforming EBF to compress and
regularize the system matrix, keeping the solution accuracy
controllable with a limited number of Degrees of Freedom
(DoF). We show the flexibility of the method by modeling the
antenna with annular domain, avoiding ambiguous interpreta-
tion of an impedance defined over the feeding region. Eventu-
ally, the problem is well-suited for antenna synthesis, pattern
optimization problems. For structures with radius of 10λ0, the
method allows a reduction in the number of operations to
perform of a factor 10. Results which show benefit in terms
of computational cost have been presented. Application to
arbitrary geometries and use in actual optimization endeavors
are subject of ongoing research.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,... 8

TABLE II
SUMMARY OF COMPUTATIONAL RESULTS OBTAINED WITH INTEL XEON CPU E5-2687W V4 @3GHZ.

Case of Section BF DoF Factorization time Compression time Solving time GMRES steps
Z ΨTZ Ψ

VI-A RWG 195253 48m – 6m 186
CXWG 908 48m 5h2m < 1s 12

VI-B RWG 674716 3h15m – 50m 1658
CWG 1098 3h15m 6h17m < 1s 51

APPENDIX

A. Notation

Throughout this paper, an exp(jωt) time dependence is
assumed and suppressed, where ω is the angular frequency.
A bold-symbol font is used to denote physical vectors (i.e.
elements of C3 or R3), single and double underline is used
to denote one-dimensional and two-dimensional computational
arrays (i.e. arrays and matrices in a numerical code). If f is a
vector-valued function which is a linear combination of vector-
valued functions q` with coefficients a`, with ` = 1, . . . L,
namely

f =

L∑
`=1

a`q`, (21)

we have that the one-dimensional array which collects the
coefficients a` is a.

The pseudo-inner product between the vector quantities f
and g is defined as:

〈f ; g〉 =

∫
S
f(r) · g(r) dS (22)

where r is a three-dimensional vector spanning the surface S.
In Integral Equation (IE) formulations, convolution integral

between f and a dyadic Green’s function G(r , r ′) appears in
pseudo-inner product with g. This case is expressed via the
compact notation:

〈f ; G; g 〉 =

∫
S

∫
S′
f(r) · G(r , r ′) · g(r ′) dS ′dS (23)

where r ′ is a three-dimensional vector spanning the surface
S ′.

B. CWG and CXWG modes

A magnetic eigenfunction, namely h, has the form:

h = hρ(ρ)hρ(φ)ρ̂+ hφ(φ)hφ(φ)φ̂. (24)

where, hρ(ρ), hρ(φ), hφ(φ), hφ(φ) are summarized in Table
III. CWG spatial frequencies depend on χmn, which is the
nth non-vanishing root of the mth-order Bessel functions
Jm(χmn), and χ′mn, the nth non-vanishing root of the deriva-
tive of the mth-order Bessel functions. Similarly, CXWG
modes depend on a different χmn, which is the nth non-
vanishing root of the mth-order Bessel-Neumann combina-
tion Zm (cχmn), and χ′mn, the nth non-vanishing root of
another combination of Bessel-Neumann functions of mth-
order Z ′m (cχ′mn). The parameter c = a/b is the ratio between

Fig. 9. Convergence history of iterative solutions: relative residual of GMRES
iterative solver. Blue line: convergence history with EBF spectral basis,
GMRES with no restart (small number of unknowns). The other lines refer
to RWGs, red and purple: GMRES with no restart, for coarse and dense
discretization, respectively; yellow: restarted GMRES for the coarse mesh,
with restart r comparable to NΨ. Please note the log scale in the number of
iterations. In the central box, the real part of the induced current obtained with
a dense discretization, which is also taken as accuracy reference; a zoomed
version is depicted in Fig.10a.

outer and inner radius. The total number of modes in both
cases is NΨ = 2N(2M + 1), where M is the total number of
axial modes and N is the total number of radial modes.

C. Numerical Regularization

In the MS context, standard RWG discretizations typically
result in poorly conditioned systems with a poor convergence;
an example of this is shown in Figs. 9 and 10, both referring
to a grounded dielectric substrate with with central vertical
probe excitation (see Sec.VI) and εr = 10.8 with a PEC disc
(i.e. Zs = 0) with a radius of 3λ0. Here and in the following
we indicate by λr the wavelength in the dielectric substrate
at the operation frequency, i.e. λr = λ0/

√
εr, where εr is the

relative permittivity of the substrate.
RWG are well known to yield a matrix conditioning that

worsens with mesh density. Thus, with the aim of showing
regularization, we consider both a very dense (Fig.10a) and a
very coarse (Fig.10c) RWG discretization, with a mesh size
h ≈ λr/3, i.e. close to the Nyquist limit. In the case of a
dense discretization is used, a mesh size h ≈ λr/15 is taken.
The induced current density for dense discretization is shown
in Fig.10a and is taken as reference; the relative residue has
a convergence path which follows the yellow line in Fig.9 .
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TABLE III
SUMMARY OF CWG AND CXWG MODES FOR m = 0, 1, . . . ,M AND n = 1, 2, . . . , N .

Support Mode Type hρ(ρ) hρ(φ) hφ(ρ) hφ(φ) NΨ

Circular
TM even Jm

(χmn
a
ρ
) sin

mφ J ′m
(χmn

a
ρ
) cos

mφ
2N(2M + 1)

odd cos sin

TE even J ′m
(
χ′mn
a
ρ
) cos

mφ Jm
(
χ′mn
a
ρ
) sin

mφodd sin cos

Annular
TM even Zm

(χmn
b
ρ
) sin

mφ Z′m
(χmn

b
ρ
) cos

mφ

2N(2M + 1)
odd cos sin

TE even Z′m
(
χ′mn
b
ρ
) cos

mφ Zm
(
χ′mn
b
ρ
) sin

mφodd sin cos
TEM 1

ρ

TABLE IV
SUMMARY OF RESULTS OBTAINED FOR A PEC DISC ON DIELECTRIC

SUBSTRATE, WITH CENTRAL VERTICAL PROBE EXCITATION (SEE SEC.VI)
AT f = 17 GHZ AND εr = 10.8.

Fig. 10 Fig.9 Mesh DoF r-GMRES κ
Num. of

line Size Iter.

(a) purple λr /15 7× 104 7× 104 - 1800
(b) blue λ0/10 330 330 50 8
(c) yellow λr /3 7× 103 250 2000 1800
(d) red λr /3 7× 103 7× 103 2000 1000

Fig. 10. Real part of the induced current. (a) GMRES iterative solver solution
with dense RWG discretization (purple line in Fig.9), (b) GMRES iterative
solver solution of compressed system with 330 EBF (blue line in Fig.9), (c)
GMRES iterative solver solution with a coarse discretization (the solution is
obtained with a GMRES restart parameter r = 250, yellow line in Fig.9),
(d) GMRES iterative solution with coarse discretization after 1000 iterations
(red line in Fig.9).

Both for coarse and dense mesh, following the procedure in
Sec. IV we retained 330 entire-domain CWG basis functions
obtaining a fast convergence rate (see blue line in Fig.9) and
a accurate solution for both cases.

For the small problem, the system can be either solved
directly or iteratively allowing for a convergence test, espe-
cially useful because the value of the residual is only a partial

indication of the achieved accuracy. The RWG system has a
condition number (in 2-norm) κΛ ≈ 2000 which decreases to
κΨ = 50 after compression with the spectral CWG basis,
exhibiting an evident conditioning effect. While with this
coarse mesh discretization the condition number of the RWG
system is relatively small (κΛ = O(NΛ)), convergence is
slow, as seen in Fig.9; as expected and mentioned above, the
compressed system instead converges very rapidly. We observe
that this convergence rate, while not dramatic per se, is not
acceptable in the perspective of a real-life structure with a
radius above 10 wavelengths.

In fact, analysis of the solution in Fig. 10d shows that with
RWG after 1000 iterations the current is still significantly
different from the reference one, as shown in Fig.10d; con-
vergence to a more accurate solution is obtained with more
than 1800 iterations. Obviously, this coarse discretization is
not always sufficient for a stable solution; for example in
Fig. 10c a restarted GMRES, with restart parameter r = 250,
shows a solution affected by spurious oscillations, which is
also the case when other techniques, such as Incomplete LU
(ILU) precoditioner and Flexible GMRES [28], are used to
improve the convergence path.

Table IV wraps up together the results showed in Fig. 9 and
Fig. 10 and explained throughout Sec.V.
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[12] D. González-Ovejero and S. Maci, “Gaussian Ring Basis Functions for
the Analysis of Modulated Metasurface Antennas”, in IEEE Trans. on
Antennas and Propag., vol. 63, no. 9, pp. 3982-3993, Sept. 2015. doi:
10.1109/TAP.2015.2442585
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