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Spider silk is a remarkable example of bio-material with superior mechanical characteristics. Its

multilevel structural organization of dragline and viscid silk leads to unusual and tunable proper-

ties, extensively studied from a quasi-static point of view. In this study, inspired by the Nephila spi-

der orb web architecture, we propose a design for mechanical metamaterials based on its periodic

repetition. We demonstrate that spider-web metamaterial structure plays an important role in the

dynamic response and wave attenuation mechanisms. The capability of the resulting structure to

inhibit elastic wave propagation in sub-wavelength frequency ranges is assessed, and parametric

studies are performed to derive optimal configurations and constituent mechanical properties. The

results show promise for the design of innovative lightweight structures for tunable vibration damp-

ing and impact protection, or the protection of large scale infrastructure such as suspended bridges.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961307]

Many natural materials display outstanding properties

that can be attributed to their complex structural design,

developed in the course of millions of years of evolution.1–3

Particularly fascinating are spider silks, which exhibit unri-

valled strength and toughness when compared to most mate-

rials.4–7 Previous studies have revealed that mechanical

performance of spider webs is not only due to the remarkable

properties of the silk material, but also to an optimized archi-

tecture that is adapted to different functions.8,9

Structural behaviour of orb spider webs has been exten-

sively analyzed under quasi-static6,8,10 and dynamic11,12

loading conditions. However, the spider-web structure has

yet to be exploited for the design of phononic structures.

These are usually periodic composites capable of inhibiting

the propagation of elastic waves in specific frequency ranges

called band gaps. This unique ability opens a wide range of

application opportunities, such as seismic wave insulation,13

noise reduction,14 sub-wavelength imaging and focusing,15

phonon transport,16 strain-dependent thermal conductivity,17

acoustic cloaking,18 and thermal control.19 In phononic

structures, band gaps are induced by either Bragg scattering

from periodic inhomogeneities20 or by local resonances.21

The latter are commonly achieved by employing heavy con-

stituents.21–24 Recently, it has been found that hierarchically

organized continuous25 or lattice-type26,27 structures exhibit

band gaps due to the two mentioned mechanisms. From this

perspective, a spider web-inspired, lattice-based elastic

metamaterial seems to be another promising alternative to

simultaneously control wave propagation at multi-scale fre-

quencies. In this letter, we design a metamaterial inspired by

the Nephila orb web architecture and analyze the dynamics

of elastic waves propagating therein, with the aim of obtain-

ing improved structures compared to simple lattices.28

We consider a spider web-inspired metamaterial in the

form of an infinite in-plane lattice modeled by periodically

repeating representative unit cells in a square array. The pri-

mary structure of the unit cell is a square frame with support-

ing radial ligaments (Fig. 1(a)). The ligaments intersect the

frame at right-angle junctions acting as “hinge” joints (square

junctions in Fig. 1(a)). The secondary frame is defined by a

set of equidistant circular ligaments (or ring resonators)

attached to the radial ligaments by hinge joints, in the follow-

ing called “connectors” to distinguish them from the joints in

the first frame (Fig. 1(b)). The geometry of the metamaterial

is completely defined by 5 parameters: unit cell pitch a, size

of square joints b, thickness of radial and circular ligaments c,

number of ring resonators N, and radius of a ring resonator

RN. We initially consider a ¼ 1m, b ¼ 0:04 � a, c ¼ 0:01 � a,

N¼ 7, and RN ¼ 0:1 � a � ðN þ 1Þ=2. The material properties

FIG. 1. (a) Bearing frame and (b) spider web-inspired unit cells for lattice-

type metamaterials.

a)Authors to whom correspondence should be addressed. Electronic
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of the primary and secondary frames correspond to the param-

eters of dragline (Ed¼ 12 GPa, �d ¼ 0:4; qd ¼ 1200 kg=m3)

and viscid (Ev¼ 1.2 GPa, �v ¼ 0:4; qv ¼ 1200 kg=m3) silks

of the Nephila orb spider web,9 respectively. Material proper-

ties of the connectors can assume dragline or viscid silk

values. The propagation of elastic waves is investigated

numerically by using the Finite Element commercial package

COMSOL Multiphysics. Wave dispersion in infinite lattices

is studied by applying the Bloch conditions23 at the unit cell

boundaries and performing the frequency modal analysis for

wavenumbers along the borders CXM of the first irreducible

Brillouin zone.29

First, we study small-amplitude elastic waves propagat-

ing in an infinite structure formed by the primary frame unit

cell (Fig. 1(a)), called “regular lattice” metamaterial. Fig. 2(a)

shows band diagrams for the regular lattice as a function of

reduced wave vector k� ¼ ½kxa=p; kya=p�. The color scale,

here and in other diagrams, shows polarization of waves

propagating along the x direction that varies from pure shear

(blue) to pure longitudinal (red). Up to 400 Hz, there is one

negligible band gap around 80 Hz. The band structure exhib-

its localized modes at various frequencies represented by

(almost) flat bands. Analysis of the vibration forms reveals

that the motion is localized within the radial ligaments, which

are mainly subjected to flexural deformation (Fig. 2(e)).

Next, the circular elements are introduced to analyze the

wave dispersion in a spider web-inspired metamaterial (Fig.

1(b)). Here, we explore three possibilities: (1) the circular

ligaments have the same material properties as the radial lig-

aments (dragline silk); (2) the circular ligaments are made of

viscid silk, while connectors of radial and circular ligaments

have the properties of dragline silk, and (3) both the circular

ligaments and the connectors are made of viscid silk. This

allows evaluating the influence of material parameters on the

performance in the spider-web structures. Fig. 2(b) shows

the band diagram for the metamaterial made of the dragline

silk with a complete band gap at frequencies from 346.5 to

367.4 Hz, which is shaded in light gray. As the band gap

bounds are formed by non-flat curves and the whole unit cell

is involved in the motion at the band gap bound (Fig. 2(f)),

this band gap is not due to local resonances. Also, the band

gap cannot be induced by Bragg scattering, as it is located at

least twice below the frequencies at which a half-wavelength

of either longitudinal (2314 Hz) or shear (945 Hz) waves in

the silk is equal to the unit cell size. Further analysis of the

band gap origin is beyond the scope of this letter, since we

are focusing on a spider web-inspired structure with different
mechanical properties for radial and circular ligaments.8,9

Another remarkable feature of the band structure in Fig. 2(b)

is the smaller number of localized modes compared to Fig.

2(a), which may be explained with the elimination of local

resonances due to the coupling between motions in radial

and circular ligaments.

By assigning viscid silk material properties to ring reso-

nators, two band gaps appear in Figs. 2(c) and 2(d), regard-

less of the material properties of the connectors joining

radial and circular ligaments. Due to the compliant behav-

iour of the resonators, the band gaps are located at lower fre-

quencies compared to those in Fig. 2(b). These are so-called

hybridization band gaps induced by local resonances, since

FIG. 2. (a) Band structure for the regular lattice. (b)–(d) Band structures and contour plots of dispersion surfaces at the upper and lower BG boundaries for spi-

der web-inspired lattices: (b) stiff ring resonators (dragline silk), (c) compliant ring resonators (viscid silk) and rigid connectors (dragline silk), and (d) compli-

ant ring resonators and connectors. Band gaps are shaded in gray and the color of pass bands represents the mode polarization ranging from pure shear (blue)

to pure longitudinal (red). (e)–(h) Mode shapes referring to points A, B, C, and D of the dispersion diagrams.
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the lower bounds are formed by flat curves representing

localized motions (Figs. 2(g) and 2(h)), and the Bloch wave

vector k� changes by p inside each band gap.31 When the

ring resonators and the connectors have the same mechanical

properties (viscid silk), the band gaps are shifted to lower

frequencies due to a more compliant behaviour of the con-

nectors (compare Figs. 2(c) and 2(d)).

To investigate the wave directionality, we evaluate dis-

persion surfaces for all directions within the first Brillouin

zone. The results are shown as contour plots for pass bands at

the band gap bounds (bottom and top figures on the right of

each band diagram in Fig. 2). The color scales represent the

values at which frequency cuts are performed. The contour

plots reveal preferred directions of propagation at h ¼ 0�

(h ¼ 90�) that indicates strong anisotropy in the wave disper-

sion near the band gaps, as in other phononic structures.30

Another peculiarity of the band diagrams in Figs. 2(c)

and 2(d) in comparison to Figs. 2(a) and 2(b) is a larger num-

ber of localized modes. In the former case, these modes are

associated with standing waves mostly dominated by high

inertia of the resonators (Figs. 2(g) and 2(h)). If the connec-

tors between radial and circular ligaments have the same

material properties as the ring resonators (the closest config-

uration to a real spider web), it appears that the standing

waves may be associated with the resonators only.

The natural frequencies xn for non-axisymmetric in-

plane flexural vibrations of these resonators can be

expressed32 in closed form as: xn ¼ k nðn2�1Þ
R2
ffiffiffiffiffiffiffiffi

n2þ1
p , with n> 1.

Here, R stands for the radius of a ring resonator, and k is a

dimensional constant that depends on the elastic modulus of

the ring resonator, the mass density, and its cross-section.

Vibrational modes for several values of n are shown in the

supplementary material. However, this analytical solution

does not describe the dynamics of spider-web lattice systems

satisfactorily, since their response is governed by the entire

structure and not the individual decoupled resonators (see

the supplementary material for details). More insight into the

wave dynamics in the proposed metamaterials is achieved by

analyzing the mode transformations for varying geometrical

and mechanical parameters (see the supplementary material).

Next, we vary the stiffness of ring resonators by choosing

intermediate values between those of dragline and viscid

silks. The overall band diagrams resemble those shown in

Figs. 2(c) and 2(d). Thus, we focus our attention only on the

band gaps. Fig. 3 shows band gap frequencies versus ratios

Err=Erl, where Err¼ 12 GPa and Erl are the stiffnesses of the

ring resonators and radial ligaments, respectively. In general,

as the stiffness of the ring resonators increases, inhibited fre-

quency ranges are translated towards higher frequencies,

except the lowest band gap around 150 Hz with frequencies

independent of the mechanical parameters of the resonators.

Now we investigate the transmission in finite-size spi-

der-web inspired structures. The analysed model comprises

25 unit cells placed in a square array with traction-free

boundary conditions. The structure is excited at the central

point by applying harmonic in-plane displacement at a fre-

quency of 186 Hz (within a band gap) at an angle of p=4

with respect to the horizontal axis. Fig. 4 presents frequency-

domain responses (scaled by a factor of 45 000) in terms of

in-plane displacements for two structures formed by the reg-

ular and spider-web lattice unit cells with viscid silk ring res-

onators. Maximum and minimum values of displacements

are shown in red and dark blue, respectively. Notice that all

of the regular-lattice structure vibrates (Fig. 4(a)), while the

spider web-inspired system is capable of strongly attenuating

vibrations after a few unit cells (Fig. 4(b)). A similar behav-

iour is observed for other excitation frequencies within the

band gaps. These results confirm the predictions derived

from the wave dispersion analysis. Fig. 4(b) suggests as an

application the generation of a defect mode in a cluster with

localized vibrations around its center for efficient wave

attenuation at desired frequencies.

In summary, we have numerically studied the propaga-

tion characteristics of elastic waves in regular and spider

web-inspired beam lattices, based on the Nephila orb web

architecture. Our results indicate that these lattices possess

locally resonant band gaps induced by either ring-shaped res-

onators or parts of the bearing frame. Dispersion analysis

reveals strong anisotropic dynamics of spider-web lattices and

the mixed character of localized modes. The band gaps can be

easily tuned in a wide range of frequencies by varying the

mechanical properties or the number of the resonators, or

even the properties of the connectors between resonators and

the frame. Despite the fact that the ring resonators are respon-

sible for the generation of band gaps, their eigenfrequencies
FIG. 3. Band gap frequencies for the lowest band gaps as functions of ratio

Err=Erl (Err¼ 12 GPa).

FIG. 4. Frequency domain in-plane displacements (scaled by 45 000) for a

point excitation of frequency 186 Hz applied at an angle p=4 with respect to

the horizontal axis in (a) a regular-lattice structure and (b) spider web-

inspired system with viscid-silk ring resonators. Red and blue colors indicate

maximum and minimum displacements, respectively.
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cannot be directly used to predict the band gap bounds, since

the overall structure plays an important role in their forma-

tion. Though lattice systems with locally resonant band gaps

have already been reported,26,27 this study shows that spider

web-inspired lattice metamaterials are particularly efficient in

inducing low-frequency band gaps despite being light-weight.

Also, they possess more parameters to tune the band gaps to

desired frequencies and are easier to manipulate/manufacture

compared to hierarchically organized lattice structures. Thus,

results from this study can inspire further designs of light-

weight and robust metamaterial structures with tunable prop-

erties. This work also suggests an advanced functionality for

spider webs and future applications for the corresponding

metamaterials and metastructures, e.g., for earthquake protec-

tion of suspended bridges.

See supplementary material for more details.
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