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Abstract

An indirect optimization procedure is presented to minimize the propellant
consumption for finite-burn transfers with two practical thrust control models,
namely, inertially fixed thrust and fixed-plane linearly varying thrust direction.
The optimality equations are derived with theory of optimal control and the
consequent boundary value problem is solved with a procedure based on New-
ton’s method. A homotopic approach is used to find suitable tentative solutions
and assure convergence. The method is applied to the optimization of Moon
escape trajectories with accurate dynamic models and proves to be fast and
accurate.

Keywords: Indirect optimization methods, Finite thrust, Chemical
propulsion, Thrust direction constraints

1. Introduction

An indirect optimization procedure is presented to optimize the fuel usage
for finite-burn transfers with practical thrust controls. In the mission design of
finite-burn transfers, impulsive approximation is often used. Once the impulsive
solutions are obtained, the impulses are converted to finite burns with inertially
fixed thrust directions. Although it is valid for high enough thrust-to-mass
ratio, a more realistic finite-burn solution is required when the thrust arc length
is not negligible; these situations often happen when the thrust magnitude is
modest while the required velocity change is significant. Also, in mission design
it is generally assumed that the thrust direction can be adjusted freely without
constraining the thrust steering rate, which however is not practical to carry
out because of the capability limitations of reaction control system.
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The goal of this research is to develop a realistic optimal control strategy.
Motivated by this desire, two realistic thrust models are taken into account. The
first finite-burn model holds the thrust vector inertially fixed for each maneuver.
The second finite-burn model, referred to as the fixed-plane linearly steered
finite-burn model, allows the thrust vector to vary linearly in direction but
constrains it to be normal to a fixed rotation axis, for each finite-burn maneuver.
The latter model offers an improvement over the inertially fixed model while still
remaining simple and practical for spacecraft applications. This paper extends
the analysis of Ocampo and Muthur [1], who have used a direct method to
optimize finite-burn trajectories with the same engine models. In contrast to
past research, the current research focuses on indirect optimization and aims
to avoid using analytical simplifications to the problem dynamics. The purpose
is to produce a faster and more accurate indirect optimization software (in
comparison to existing methods) for the analysis of complex problems with
practical limitations on thrust direction and its rate of change.

The indirect method and realistic thrust models are applied to the optimiza-
tion of Moon escape trajectories with accurate dynamic models. The existing
typical works may simplify the dynamics for this kind of problems using two-
body models [1, 3, 2, 4], the circular restricted three-body model [5], and the
asymptotic expansion [6], and thus can only provide an approximate analysis as
the initial guess, due to the lack of fidelity. Using the high-accuracy dynamic
model, Yan et al. [7] and Park [8] optimized the three-burn Moon escape trajec-
tories using pseudospectral methods, and an intermediate thrust arc (singular
arc) was included in their optimal solutions. However, in a previous work, the
authors of the present paper showed that a bang-bang control structure with-
out singular arcs satisfies the necessary condition of optimality accurately and
performs better in terms of fuel consumption [9].

Since indirect methods are based on optimal control theory, they are intrin-
sically fast and accurate [10]. An indirect optimization procedure is presented
here to obtain the necessary conditions of optimality associated with the prac-
tical thrust models, and then analyze the finite-burn Moon-escape trajectory
using practical thrust as well as accurate dynamic models. Specific strategies
based on homotopy/smoothing must be employed to obtain convergence, such
as the methods proposed in Refs. [11, 12, 13, 15, 14, 16]. Optimal impulsive
solutions and freely steering finite-burn solutions for the problem are here found
with procedures developed by the authors and described in previous works [5, 9].
In the present work, the previous solutions are in turn used as starting guess
for the finite-thrust problem with practical thrust models and no convergence
difficulties are experienced. This work extends the techniques previously devel-
oped and justifies the effectiveness of the indirect method in producing optimal
and accurate solutions for complex as well as realistic optimization problems.

2. Problem Statement

Here we consider the spacecraft trajectory subject to the gravitational effects
of multiple bodies, whose positions relative to the central body are obtained from
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the JPL DE405 ephemeris. This work adopts J2000 Cartesian coordinates, in
which the system state dynamics fT = [ẋ ẏ ż v̇x v̇y v̇z ṁ] is written as:

ẋ = vx (1)

ẏ = vy (2)

ż = vz (3)

v̇x = −
µcx

r3c
−

N
∑

k=1

[

µpk
(x− xpk

)

R3
pk

+
µpk

xpk

r3pk

]

+
Tx

m
(4)

v̇y = −
µcy

r3c
−

N
∑

k=1

[

µpk
(y − ypk

)

R3
pk

+
µpk

ypk

r3pk

]

+
Ty

m
(5)

v̇z = −
µcz

r3c
−

N
∑

k=1

[

µpk
(z − zpk

)

R3
pk

+
µpk

zpk

r3pk

]

+
Tz

m
(6)

ṁ = −
T

c
(7)

where T is the engine thrust and c = g0Isp is the exhaust velocity (which
is proportional to the specific impulse Isp and the standard acceleration of
gravity at sea level g0 = 9.80665m/s2). The gravitational parameters of the
central body and the generic k-th perturbing body are denoted by µc and
µpk

, respectively. The distance between the spacecraft and the central body

is r =
√

x2 + y2 + z2; the spacecraft distance from the perturbing body is
Rpk

=
√

(x− xpk
)2 + (y − ypk

)2 + (z − zpk
)2. The time-varying components of

the perturbing body position vector, with respect to the instantaneous center of
the central body, are denoted as (xpk

, ypk
, zpk

), and they are directly obtained
as functions of time from JPL DE405 ephemeris. As a consequence, Eqs. (4)-(6)

are non-autonomous. Finally, rpk
=

√

x2
pk

+ y2pk
+ z2pk

represents the distance

of the perturbing body with respect to the instantaneous center of the central
body. In order to improve numerical accuracy, variables are made nondimen-
sional by using the radius and gravity constant of the central body as reference
values. However, results are presented in dimensional form for a more direct
interpretation. The thrust components Tx, Ty, and Tz are expressed as func-
tion of azimuth and elevation angles of the thrust vector, α and β, respectively,
which are defined in spherical coordinates, with α ∈ [0, 2π] and β ∈ [−π/2, π/2]:

Tx = cosα cosβ, Ty = sinα cosβ, Tz = sinβ (8)

Thrust T may be freely or restrictively controlled in practical ways as described
in the following section.

To minimize the propellant consumption, the final mass is maximized given
the initial mass; therefore, the performance index is

ϕ = m(tf ) (9)

The mission is specified by assigning initial and target conditions in terms
of position and velocity, in a limited flight time span.
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3. Practical Finite-Thrust Models

3.1. Inertially Fixed Thrust Model

The thrust vector along the finite-burn arc is assumed inertially fixed. Dur-
ing the j-th burn (j = 1, ..., f), the thrust angles remain fixed in the inertial
frame at αj and βj , and the thrust components are

Tx = T cosαj cosβj , Ty = T sinαj cosβj , Tz = T sinβj (10)

The control angles α and β are considered as additional piecewise-constant state
variables with trivial state equations

α̇ = 0, β̇ = 0 (11)

3.2. Fixed-Plane Linearly Varying Thrust Model

Fixed thrust plane

Figure 1: Fixed-plane linearly steered finite-
burn model, showing the fixed rotation plane
and steering parameters.

This case assumes that the thrust
direction rotates at a constant rate in
a fixed plane, which is defined by a
fixed rotation axis, during each finite-
burn maneuver. The thrust magni-
tude remains constant, and the fixed
rotation axis and rotation rate are
optimization variables for each finite-
burn arc. A unit vector J is defined,
orthogonal to the fixed plane in which
the thrust direction u rotates at a
constant rate ω. The relevant vectors
to determine the thrust direction are
represented in Figure 1. The vector J can be defined as

J = [cosαJ cos δJ sinαJ cos δJ sin δJ ]
T (12)

where αJ and δJ are the azimuth and elevation angles of J vector, respectively,
with respect to the reference plane. The ascending node direction between
thrust plane and equatorial plane is denoted as N , which is

N = Z × J = [− sinαJ cosαJ 0]T (13)

K is defined in the thrust plane, orthogonal to N

K = J ×N = [− cosαJ sin δJ − sinαJ sin δJ cos δJ ]
T (14)

Hence, the thrust direction u can be defined at a given time t:

u(t) = cos η(t)N + sin η(t)K (15)

η(t) = η(ti) + ω(t− ti) (16)

where ti represents the initial time of a thrust arc. For brevity, η(t) and η(ti)
are simply denoted η and ηi instead. The augmented variables to be optimized
for this model are αJ , δJ , ηi, and ω, with trivial state equations:

α̇J = 0, δ̇J = 0, η̇i = 0, ω̇ = 0 (17)
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4. Optimal Control

The performance index ϕ, which is given by Eq. (9), is maximized by ap-
plying the theory of optimal control [17, 18]. Adjoint variables are introduced
λT = [λxλyλzλvx

λvy
λvz

λm] to define the Hamiltonian function H = λTf ,
where f is the state differential equation vector, consisting of the right-hand
sides of Eqs. (1)-(7). The adjoint dynamics can be readily derived through the
Euler-Lagrange equations:

λ̇x = λvx

µc

r3c
− 3µc

r5c
x(λvx

x+ λvy
y + λvz

z) + ∆λ̇px (18)

λ̇y = λvy

µc

r3c
− 3µc

r5c
y(λvx

x+ λvy
y + λvz

z) + ∆λ̇py (19)

λ̇z = λvz

µc

r3c
− 3µc

r5c
z(λvx

x+ λvy
y + λvz

z) + ∆λ̇pz (20)

λ̇vx
= −λx (21)

λ̇vy
= −λy (22)

λ̇vz
= −λz (23)

λ̇m =
T ‖λV ‖

m2
(24)

where the velocity adjoint vector λV = [λvx
λvy

λvz
]T , i.e., the primer vector

[19], has been introduced. The sum of the contributions of the perturbations
∆λ̇px, ∆λ̇px, and ∆λ̇pz are easily derived

∆λ̇px = −

N
∑

k=1

{

λvx

[

−
µpk

R3
pk

+
3µpk

R5
pk

(x− xpk
)2
]

+λvy

[

3µpk

R5
pk

(x− xpk
)(y − ypk

)

]

+λvz

[

3µpk

R5
pk

(x− xpk
)(z − zpk

)

]}

(25)

∆λ̇py = −

N
∑

k=1

{

λvy

[

−
µpk

R3
pk

+
3µpk

R5
pk

(y − ypk
)2
]

+λvx

[

3µpk

R5
pk

(x− xpk
)(y − ypk

)

]

+λvz

[

3µpk

R5
pk

(y − ypk
)(z − zpk

)

]}

(26)

∆λ̇pz = −
N
∑

k=1

{

λvz

[

−
µpk

R3
pk

+
3µpk

R5
pk

(z − zpk
)2
]

+λvy

[

3µpk

R5
pk

(y − ypk
)(z − zpk

)

]

+λvx

[

3µpk

R5
pk

(x− xpk
)(z − zpk

)

]}

(27)

The thrust direction and magnitude are the problem control variables, which
must maximize H in agreement with Pontryagin’s Maximum Principle (PMP).
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For a freely-steering spacecraft, in the absence of constraints, the optimal thrust
direction must be parallel to the primer vector λV , that is,

Tx =
λvx

‖λV ‖
, Ty =

λvy

‖λV ‖
, Tz =

λvz

‖λV ‖
(28)

and, the thrust multiplier, i.e., the switching function, becomes

SF = ‖λV ‖ /m− λm/c (29)

The Hamiltonian is linear with respect to the thrust magnitude; H is maxi-
mized by the maximum value of the thrust magnitude if the switching function
SF is positive, whereas T must be set to zero when SF is negative. This bang-
bang control (when SF is null only at a finite number of points) is usually the
optimal strategy for the thrust magnitude control in aerospace problems, where
T appears linearly in the Hamiltonian. Singular arc solutions may exist when SF

is null over a time interval and intermediate thrust is instead used. Bang-bang
control is first assumed, but the switching function must be checked carefully a
posteriori for anomalies in the switching function behavior, which may suggest
the presence of singular arcs [20].

The number and order of the arcs, which define the trajectory switching
structure, must be preliminarily assumed. The optimal solution that corre-
sponds to the assigned switching structure is then checked in the light of PMP.
If PMP is violated, the behavior of the SF suggests a different switching struc-
ture, with the addition/removal of thrust/coast arcs, and an improved solution
is obtained when the correct optimal structure is found. In this formulation, the
arc time-lengths are additional unknowns and are implicitly determined by the
optimality conditions. These conditions state that the switching function must
be null at the extremities of each thrust arc, that is SFj

= 0, j = 1, 2, ..., f − 1.
Due to homogeneous property in the adjoint variables, one can replace the opti-
mality condition λmf

= 1 with λm0
= 1, thus reducing the number of unknowns.

When considering the practical thrust control models, as presented in Section3,
new necessary optimality necessary conditions, which will be presented in the
following section, should be derived according to the PMP.

4.1. Inertially Fixed Thrust

Thrust azimuth and elevation angles are treated as additional state variables
with trivial state equations α̇ = 0, β̇ = 0. Two adjoint variables λα and λβ are
introduced, with associated Euler-Lagrange equations

λ̇α = −
T

m

(

−λvx
sinα cosβ + λvy

cosα cosβ
)

(30)

λ̇β = −
T

m

(

−λvx
cosα sinβ − λvy

sinα sinβ + λvz
cosβ

)

(31)

The switching function becomes

SF =
(

λvx
cosα cosβ + λvy

sinα cosβ + λvz
sinβ

)

/m− λm/c (32)

6



and replaces Eq.(29). Also, the differential equation for λm, i.e., Eq. (24),
should be updated

λ̇m =
T

m2

(

λvx
cosα cosβ + λvy

sinα cosβ + λvz
sinβ

)

(33)

The optimal control theory is applied to determine the optimal thrust directions.
The thrust angles do not explicitly appear in the boundary conditions and
therefore the optimality conditions are

λαj
= 0, j = 1, ..., f (34)

λβj
= 0, j = 1, ..., f (35)

One should note that λα and λβ are null during all coast arcs, where α and
β have no meaning. The four boundary conditions at the extremities of each
thrust arc determine the values of the additional adjoint variables at the start
of the arc (explicitly) and the values of α and β (implicitly).

4.2. Fixed-Plane Linearly Varying Thrust

Accordingly, the augmented Euler-Lagrange equations are

λ̇αJ
= −

T

m

(

−λvx
Ax + λvy

Ay + λvy
Az

)

(36)

λ̇δJ = −
T

m

(

−λvx
Bx + λvy

By + λvy
Bz

)

(37)

λ̇ηi
= −

T

m

(

−λvx
Cx + λvy

Cy + λvy
Cz

)

(38)

λ̇ω = −
T

m

(

−λvx
Dx + λvy

Dy + λvy
Dz

)

(39)

Ax = − cos η cosαJ + sin η sinαJ sin δJ (40)

Ay = − cos η sinαJ − sin η cosαJ sin δJ (41)

Az = 0 (42)

Bx = − sin η cosαJ cos δJ (43)

By = − sin η sinαJ cos δJ (44)

Bz = − sin η sinαJ (45)

Cx = sin η sinαJ − cos η cosαJ sin δJ (46)

Cy = − sin η cosαJ − cos η sinαJ sin δJ (47)

Cz = cos η cosαJ (48)

Dx = Cx(t− ti) (49)

Dy = Cy(t− ti) (50)
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Dz = Cz(t− ti) (51)

In similarity to the previous model, the augmented adjoints at the bound of
each burn arc are null

λαJj
= 0, j = 1, ..., f (52)

λδJj
= 0, j = 1, ..., f (53)

ληij
= 0, j = 1, ..., f (54)

λωj
= 0, j = 1, ..., f (55)

The switching function and differential equation of mass adjoint, which are
similar to those of the first model, are also in general form

SF =
(

λvx
ux + λvy

uy + λvz
uz

)

/m− λm/c (56)

λ̇m =
T

m2

(

λvx
ux + λvy

uy + λvz
uz

)

(57)

The corresponding boundary conditions have been determined, and hence
the optimal control problem has been converted into a multi-point boundary
value problem (MPBVP). Provided a tentative solution is given, the tentative
values are then iteratively corrected to fulfill the boundary conditions. An
impulsive solution is first sought; a homotopic approach [21, 5] was developed
to find optimal impulsive solutions starting from a generic guess, and is here
profitably employed. Then, impulses are replaced by finite burn arcs and the
thrust is gradually reduced to achieve the required finite-burn solution with
free thrust direction; the impulsive solution can be used to estimate the burn
durations (from ∆V , mass, and thrust level) and thus the engine switching
times, which are problem unknowns, in addition to the adjoint variables. In the
specific cases treated here, solutions with the Orion main engine can be directly
obtained by using the impulsive solutions as tentative value, as the thrust level
is quite large; Two intermediate levels between the Orion main and auxiliary
engine thrust values (e.g. 20 kN and 10 kN) allow one to move from Case 1 to
Case 2 solutions. Finally, the free-steering solution is used as tentative guess
to find the optimal solution for the practical thrust models described above.
A classic shooting procedure [22] based on Newton’s method is used for the
solution of the resulting MPBVP in each step.

5. Application to Lunar Escape Trajectories

Initial conditions place the spacecraft on a circular orbit around the Moon;
final conditions fix a desired hyperbolic escape state, through which the space-
craft transfers to a desired Earth interface condition that is designed for Earth
reentry. A maximum time of flight of 48 hours is imposed, like, e.g., in the
case of emergency reentry. The final mass is maximized, that is, the propellant
mass is minimized. The central body is the Moon, and the perturbing bodies
include the Earth and Sun, whose precise positions are computed based on JPL
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ephemeris. This paper uses previous published works of Ref. [7, 8, 9] as a
benchmarking resource. The initial state is given in the J2000 Moon-centered
frame at a 100 km-altitude low lunar orbit (epoch 4 April 2024 15:30:00 TDT):

r (t0) =





−1.2368× 103 km
1.2681× 103 km
4.6838× 102 km



 , v (t0) =





3.2911× 10−2 km/s
5.8927× 10−1 km/s
−1.5281× 100 km/s



 (58)

The terminal conditions are defined by a specified position and velocity vector
also in the J2000 Moon-centered inertial frame:

r (tf ) =





2.1052× 103 km
3.5932× 103 km
6.0825× 102 km



 , v (tf ) =





−1.5103× 10−1 km/s
−3.2129× 10−1 km/s
−1.7944× 100 km/s



 (59)

It is worth noting that the final state vector used here has been slightly adjusted
to fit entry interface conditions better, so they are a little different from the
values used in previous research[7, 8, 9]. The spacecraft total mass (20339.9
kg) and fuel mass (8063.65 kg) are specified, and the flight time is limited to
tf − t0 ≤ 2 days.

Two kinds of engines with different assigned values of thrust and specific
impulse are considered: 1) Main engine of the Orion spacecraft with thrust:
33361.6621 N, specific impulse: 326 s; 2) auxiliary engine of the Orion spacecraft
with thrust: 4448 N, specific impulse: 309 s. These two engines replicate the
conditions of the transfer example [7] using the two realistic finite-burn steering
models presented here. Since the thrust-to-mass ratio of the auxiliary engine
is much lower than that of the main engine, it is expected that the fixed-plane
linear steering thrust model will provide a large benefit over the inertially fixed
thrust steering model for the auxiliary engine.

5.1. Case 1: main engine of the Orion

The first example uses the Orion main engine, both the inertially fixed model
and the linear varying model are considered. A time-free solution is first sought
but the optimal flight time exceeds the 48-hour limit for the cases treated here;
therefore, the equality constraint tf − t0 = 2 days is enforced. The case with
inertially fixed steering is discussed as an example. The optimal solution has
3 burn arcs and four coast arcs, for a total of 19 unknowns: the time length
of the coast arcs τci (i = 1, . . . 4), the time length of the burn arcs τbj (j =
1, . . . 3), the corresponding thrust angles αj , βj (j = 1, . . . 3) and the initial
values of the adjoint variables (except λm0 set arbitrarily to 1). Unknown values
of the optimal solution, made nondimensional by using the Earth-Moon system
canonical units, are shown in Table 1.

Table 2 lists the fuel consumption for different steering models. When thrust
direction can vary freely, the fuel consumptions of the optimal trajectory for the
first, second, and third burn are 3538.05, 1257.29, and 1837.31 kg, respectively,
with the total fuel consumption 6632.65 kg. For an inertially fixed thrust model,
the fuel consumption for the first, second, and third burn are 3544.38, 1256.75,
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Table 1: Nondimensional initial values for Case 1.
τc1 = 1.50704335264591 τb1 = 0.328229581037703
τc2 = 127.987122286458 τb2 = 0.116382150788257
τc3 = 36.4498035498791 τb3 = 0.170088689025220
τc4 = 0.431601172583449 α1 = −0.852875777762097
β1 = −0.295752216445804 α2 = 0.355985006341193
β2 = −0.209472496072177 α3 = 0.09024721408496
β3 = −1.45128957397682 λx0 = −0.120886982074471
λy0 = 0.112474559675909 λz0 = 0.194220406349215
λV x0 = 0.152137708649055 λV y0 = 0.012783664381524
λV z0 = −0.240807211082437

and 1836.70 kg, respectively, with the total fuel consumption 6637.83 kg. There
is a minimal 5.2 kg difference in fuel consumption (0.8%). Since the thrust-to-
mass ratio is high and the burn arcs are relatively short, the optimal solution
with inertially fixed model can be very close to the optimal solution with freely
steering thrust. Such a small performance loss seems acceptable, and inertially-
fixed steering appears to be preferable when its simplicity is taken into account
for a spacecraft with a comparably high thrust-to-mass ratio. The additional
fuel consumption mainly appears in the first burn, as the transfer arc of the first
burn is the longest. As expected, the linear varying thrust model results in lower
fuel cost, and almost exactly matches the optimal solution using unconstrained
thrust direction. The indirect optimizer converges very quickly in terms of CPU
time of an ordinary PC (in minutes).

As already mentioned, the thrust structure is specified a priori in order
to guarantee precise integration, and the optimality of the solution obtained
can be verified by checking the switching function. Figure 2 and Figure 3,
respectively, show the thrust and its associated switching function SF for the
two steering thrust models, as given by Eq.(32) and Eq.(56), respectively. It can
be observed that the necessary conditions arising from the PMP are satisfied
correctly. Although the switching function curves for both cases remain close to

Table 2: Fuel consumption (kg) comparison for different steering models (main engine case).

Steering model Free Inertially fixed Linearly varying

Burn 1 3538.05399 3544.38 3538.05401
Burn 2 1257.28628 1256.75 1257.28634
Burn 3 1837.31379 1836.70 1837.31378

Total burns 6632.65406 6637.83 6632.65413
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Figure 2: Switching function for inertially fixed thrust(case 1)
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Figure 3: Switching function for linearly varying thrust (case 1)

zero during the second burn, which has the task of performing the plane change
and velocity increase, they behave regularly and stay consistently positive, as
shown in Figure 2(b) and Figure 3(b). Similar behaviors are also found during
the third burn, as shown in Figure 2(c) and Figure 3(c). It is important to
note that in the solution obtained by Yan et al. [7] a singular arc constitutes
the second burn; however, the analysis of the switching function and the better
results obtained in previous work [9] show that all the controls should be bang-
bang.
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Figure 4: Position and velocity of the optimal
trajectory for the thrust with constant steering
rate (case 1), bold lines indicate thrust arcs

Figure 4 displays the position and
velocity of the optimal trajectory,
which exhibits four coast arcs sep-
arated by three burns. The first
coast arc is introduced to move on
the parking orbit until the most fa-
vorable phase angle before departure
is reached. The first burn at periap-
sis raises apoapsis to about 30,000km;
the second burn has the main task of
changing the orbit plane after cross-
ing the apoapsis, but it also increases
the orbit energy; finally, the third
burn accelerates the spacecraft to ar-
rive at the desired escape state.
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Table 3: Comparison between inertially fixed and fixed-plane linearly varying steering models
(main engine case).

Linear steering Inertially fixed
Results Duration, s Thrust rotation Total thrust Duration, s

rate, deg/s rotation, deg

burn 1 339.04 3.637e-2 12.33 339.65
burn 2 120.48 4.826e-4 0.06 120.43
burn 3 176.07 9.753e-3 1.72 176.01

Table 4: Fuel consumption (kg) comparison for different steering models (auxiliary engine
case).

Steering model Free Inertially fixed Linearly varying

Burn 1 3998.12 4671.22 4002.52
Burn 2 1265.22 1300.94 1265.74
Burn 3 1901.63 1737.22 1900.91

Total burns 7164.98 7709.37 7169.17

Table 3 shows the amount of thrust vector rotation required for the fixed-
plane linear steering model to outperform the inertially fixed steering model.
It can be seen that the first and third burns require the greatest thrust vector
rotation, while the second burn benefits very little from the ability to steer the
thrust vector. The second burn is not only very short, but also its thrust vector
tends to point along a fixed inertial direction, with only 4.826e-4 deg/s steering
rate and hence results in only 0.06deg rotation. This fact is also reported by
Ocampo and Muthur [1]. This is expected, since the second burn in such a
three-burn sequence is a relatively short-duration plane-change maneuver, so
the optimal thrust direction is nearly fixed and perpendicular to the orbit plane.
On the other hand, the direction is not absolutely fixed, but rather rotates very
slowly.

5.2. Case 2: auxiliary engine of the Orion

The Orion auxiliary engine is associated with different steering models. The
optimal flight time is again at the limiting value of 48 hours. Table 4 shows the
results of fuel consumption for different steering models, from which it can be
seen that reducing the thrust increases the difference between inertially fixed and
linearly varying thrust models. As a reference solution, the fuel consumptions
of the optimal trajectory with freely varying thrust is 3998.12 kg, 1265.22 kg,
and 1901.63 kg for first, second and the third burn, respectively, with total fuel
consumption of 7164.98 kg. The lower specific impulse results in 532.3 kg more
fuel in comparison to case 1.

For an inertially fixed thrust model, the fuel consumption for the first, sec-
ond, and third burn is 4671.22, 1300.94, and 1737.22 kg, respectively, with the
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Table 5: Comparison between inertially fixed and fixed-plane linearly varying steering models
(auxiliary engine case).

Linear steering Inertially fixed
Results Duration, s Thrust rotation Total thrust Duration, s

rate, deg/s rotation, deg

burn 1 2723.77 3.256e-2 88.78 3182.32
burn 2 861.95 4.620e-4 0.38 886.28
burn 3 1295.51 9.564e-3 12.39 1183.50
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Figure 5: Switching function for inertially fixed thrust(case 2)
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Figure 6: Switching function for linearly varying thrust(case 2)

total fuel consumption of 7709.37 kg. The difference with respect to the free-
steering solution for Case 2 is a total of 544.4 kg, or 7.6 % more fuel used. Since
the thrust-to-mass ratio is small, the optimal solution with the inertially fixed
model diverges noticeably from the optimal solution with free thrust. In con-
trast, the benefit of the linear steering model becomes immediately apparent,
which results in a significant fuel reduction compared with that of the inertially
fixed model. The solution is again very close to the optimal one, as a linear
change in thrust direction quite accurately follows the reference free-steering
solution. Similar to the previous case, all the burns appear to require full thrust
(see Figure 5 and Figure 6), in agreement with PMP, and singular arcs do not
seem to be needed.
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Figure 7: Position and velocity of the optimal
trajectory for the thrust with constant steering
rate (case 2), bold lines indicate thrust arcs

Figure 5(b) shows that the switch-
ing function behaves regularly and re-
mains consistently positive during the
burn. The rotation span of the sec-
ond burn is enlarged to 0.38 deg us-
ing constant steering rate of 4.620e-
4 deg/s, due to the lower available
thrust, see Table 5. According to the
optimal trajectory, shown in Figure 7,
the control structure includes 6 arcs.
In comparison to case 1, the first coast
arc becomes very short and the fi-
nal coast arc disappears. The lower
thrust level requires longer burns, and
the behavior of the thrust angles be-
comes more complex; however, the
thrust vector of the second burn tends again to be inertially fixed.

6. Conclusions

Indirect optimization methods are usually considered to be not suited to
problems with complex dynamics and constraints. In this paper, an indirect
method is developed to model high-accuracy finite-burn optimal trajectories,
where two different finite-burn maneuver steering models are introduced to take
practical limitations of the spacecraft steering capabilities into account. The
first is an inertially fixed model, in which the thrust direction is fixed during
each burn arc. The second is a fixed-plane linear steering model, in which the
thrust direction is allowed to rotate at a constant rate about a rotation axis
for each finite-burn maneuver. Conditions for optimality are derived and the
arising boundary value problem is solved numerically.

The developed numerical optimization procedure has been used to find the
optimal strategies of Moon-escape trajectories of a spacecraft with a realistic
steering and thrust model. The total propellant mass for the transfer from a low
lunar parking orbit to specified escape conditions is minimized. The problems
dealt with in this article show that the proposed approach can be profitably
used for the analysis of practical finite-burn transfers. The proposed indirect
method is simple and relatively fast, and provides high-accuracy flyable solu-
tions; convergence difficulties are easily solved by means of continuation tech-
niques. Therefore this optimization procedure combines accuracy, robustness,
and speed and constitutes a powerful tool for trajectory analysis in a complex
dynamical environment using practical controls.

As expected, results show that optimized solutions with inertially-fixed thrust
are close to the freely steering solutions when the thrust-to-mass ratio is rela-
tively high, whereas the linear steering model can provide notable benefit over
the inertially-fixed model when thrust-to-mass ratio is instead low. Results also
show that the switching function of the optimal solutions has a regular behavior
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and suggests the use of a bang-bang control. This precise satisfaction of PMP
comes from the intrinsically higher accuracy of indirect methods compared to
other methods commonly employed.
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