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Summary

Bitcoin and other blockchain-based cryptocurrency do not scale, because the
blockchain limits transaction throughput. Payment channel networks are the most
promising solution to address scalability, as they enable off-blockchain payments
that are not subject to the blockchain throughput limit. The Lightning Network
(LN) is the mainstream payment channel network, built on top of the Bitcoin
blockchain. The LN leverages the Hashed Timelock Contract (HTLC) to transfer
off-chain payments in a trustless and secure way. However, the Lightning Network
and HTLC-based payment channel networks present critical features that might
undermine their correct functioning and therefore need to be investigated. Some
examples of these critical features are channel economic capacity, which limits pay-
ment amounts, channel unbalancing, which makes payment channels unusable in
one direction, and uncooperative behavior of nodes, which causes increased pay-
ment time and failures.

This work presents CLoTH, a simulator for HTLC payment networks. CLoTH
is an original payment network simulator, as it constitutes a precise mapping of
the LN code functions. As input, it takes parameters defining a payment channel
network (e.g., number of channels per node, average channel capacity) and parame-
ters defining payments (e.g., payment amounts and payment rate). It simulates the
input-defined payments on the input-defined HTLC payment network. It produces
performance measures in terms of payment-related statistics, such as probability
of payment failure and time to complete payments. CLoTH is a valuable tool to
identify issues, analyze solutions and steer future developments of payment channel
networks.

This work discusses three groups of simulations conducted using the CLoTH
simulator. In the first group a snapshot of the Lightning Network was given as
input to the simulator. The goal of these simulations was to find configurations
in which a payment is more likely to fail than to succeed in the LN. Simulations
of the second group were conducted on synthetic networks, i.e., payment networks
generated by the simulator using their statistical description. The goal of these
simulations was to study the impact of each simulator input parameter on payment
network performance. The third group of simulations aimed to analyze the effects
of network and protocol modifications in the Lightning Network, like for instance
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the removal of network hubs and channel rebalancing approaches.
Simulation results prove that the current most relevant issues of the Lightning

Network are limited channel capacities and channel unbalancing, which both cause
payment failures. A rebalancing approach designed and simulated in this work effec-
tively addresses channel unbalancing. At the same time, the simulations performed
prove that the Lightning Network is resilient to the removal of the most connected
network hubs and can support a contained level of node uncooperativeness.

This work is one of the first attempts to thoroughly examine capabilities and
limitations of payment channel networks, and to provide viable solutions. The
CLoTH simulator is a valid and useful tool for systematically studying payment
channel networks and assisting their development.
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Chapter 1

Introduction

Bitcoin is a decentralized cryptocurrency that allows mistrusting peers to send
and receive monetary value without the need for intermediaries [29]. Bitcoin relies
on the blockchain, a distributed peer-to-peer public ledger which stores all the
history of Bitcoin economic transactions. The replication of the ledger and the
synchronization mechanism of the replicas entail a capped transaction throughput
[38], which prevents cryptocurrencies from scaling and from becoming world-wide
payment systems.

Payment channels are the most explored technical proposals that address the
issue of blockchain scalability [33, 6, 28, 35, 3, 20, 34]. They enable off-chain pay-
ments, i.e., payments that do not need to be registered on the blockchain and thus
are not subject to the blockchain throughput limit. A payment channel is a two-
party ledger which is updated off-chain: the two involved parties, the channel end-
points, can bidirectionally exchange an unbounded number of off-chain payments
through the channel. The blockchain is only used to open and close channels, and
it does not register the payments that take place in the channels.

Two-party payment channels can be linked together to build a payment chan-
nel network. This allows parties not directly connected by a payment channel to
send/receive off-chain payments which are routed across a network of linked pay-
ment channels.

The Lightning Network (LN) [33] is the most developed and mainstream pay-
ment channel network, built for Bitcoin. In March 2018, the first beta version
of one of the implementations of the LN protocol was released. Since than, the
Lightning Network can be used with bitcoins of real value. At the time of writing,
the LN is constituted by more than 3 thousands nodes and almost 25 thousands
payment channels, with around 660 bitcoins in the network (being worth more than
3 millions of dollars).

The LN protocol leverages a particular contract called Hashed Timelock Con-
tract (HTLC). The HTLC allows the transfer of off-chain payments through mul-
tiple payment channels in a trustless way. Henceforth, in this work the HTLC
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1 – Introduction

payment network is defined as a payment channel network where payments are
transferred using HTLC contracts.

At their current state of development, the Lightning Network and payment
channel networks are characterised by features that, if not properly understood,
implemented and controlled, may undermine the development of a healthy payment
network that supports fast and successful payments. Some examples of these critical
features that need to be studied are the following: (i) routing, i.e., a good routing
path that does not cause a payment failure depends on the knowledge of an up-
to-date network topology; (ii) channel economic capacity, which limits payment
amounts; (iii) channel unbalancing, namely, the condition of a skewed channel that
has one endpoint depleted due to a number of unidirectional payments, an issue
not internally addressed by the LN protocol; (iv) uncooperative behavior of nodes
involved in a payment route, which causes lock of funds in transfer and increased
payment time.

In this work CLoTH was developed, a simulator for HTLC payment networks.
The originality of CLoTH is that it constitutes a precise and complete mapping of
the LN code functions which implement an HTLC payment network. The simula-
tor allows the identification of issues of HTLC payment networks and the estima-
tion of optimization actions before deploying them. CLoTH is a valuable tool for
systematically analyzing payment channel networks and for steering their future
developments.

The CLoTH simulator is a discrete-event simulator that simulates payments
on HTLC payment networks. As input, it takes parameters defining an HTLC
network (e.g., number of nodes and number of channels per node) and parameters
of the payments to be simulated on the defined HTLC network (e.g., payment rate
and payment amounts). As output, it generates performance measures in the form
of payment statistics, such as the probability of payment failure and the mean
payment complete time.

Some examples of questions that can be answered by CLoTH are: “How many
channels per node are required to generate a well connected network?”; “How do
uncooperative nodes influence payment time?”; “How does payment rate influence
the chance of payment failure?”; “How is performance affected by adding a node
with a specific set of payment channels in a specific section of the network?”.

The general purpose of this work is to systematically analyze capabilities and
limitations of payment channel networks using the CLoTH simulator. Three re-
search questions are addressed in this thesis.

RQ1 Which are the non-operative cases of the LN mainnet?

The LN mainnet is the network of channels and nodes running the LN protocol.
The term mainnet indicates the main network in the cryptocurrency jargon, to
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1 – Introduction

differentiate it from the test network. Here, the LN mainnet is defined as non-
operative when a payment is more likely to fail than to succeed.

To answer this research question, a set of simulations were conducted in which
CLoTH took a snapshot of the LN mainnet as input. These simulations searched
for configurations of input parameters causing non-operative cases. Multiple non-
operative cases were found, which were mainly due to insufficient channel capacities
and to channel unbalancing.

RQ2 Which is the impact of the simulator input parameters on performance of
payment channel networks?

To answer this research question, multiple simulations were run on synthetic
networks, i.e., networks generated by CLoTH using the simulator input param-
eters. In general, simulation results prove that the synthetic networks analyzed
have a good performance. For instance, they can support a contained level of node
uncooperativeness.

RQ3 How do network and protocol modifications affect performance of the LN
mainnet?

To answer this research question, simulations were conducted on the LN mainnet
when different protocol and network modifications were applied.

With regard to the protocol modifications, rebalancing approaches were imple-
mented in the simulator to tackle the issue of channel unbalancing. Simulation
results prove that one of the approaches analyzed reduces by one fourth the proba-
bility of payment failure for unbalanced channels with respect to the case in which
no rebalancing approach is implemented.

Two separate network modifications were analyzed. The first consisted in re-
moving hubs (i.e., the most connected nodes) from the LN mainnet. Simulations
conducted on the resulting networks without hubs prove that the LN mainnet is re-
silient to hub removal. In the second network modification, classes of nodes (payees
only, payers only and hybrid payee-payer nodes) were defined in order to simulate
a typical use case of the Lightning Network, in which most of the payments are
directed to a few service-provider nodes. Simulation results show that channels
directing to the service providers become unbalanced, thus causing a significant
probability of payment failures for unbalancing.

The remainder of this work is organized as follows. Chapter 2 provides the
background on Bitcoin, blokchain and payment channel networks. In Chapter 3
the CLoTH simulator is described in detail. Chapter 4 discusses the first group
of simulations conducted on the LN mainnet to answer Research Question 1. In
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1 – Introduction

Chapter 5 the simulations on synthetic networks are described and Research Ques-
tion 2 is answered. Chapter 6 presents the third group of simulations on network
and protocol modifications and Research Question 3 is answered. Finally, Chapter
7 provides conclusions and delineates the future work.
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Chapter 2

Background on Bitcoin and
Payment Channel Networks

This Chapter provides the background on Bitcoin and the Lightning Network
required to understand the rest of the thesis. It is organized as follows. Section
2.1 is on Bitcoin and the blockchain. Section 2.2 discusses the issue of scalability
and possible solutions. Finally, Section 2.3 describes payment channel networks and
especially the Lightning Network, including also a brief literature on such networks.

2.1 Bitcoin and the Blockchain
This Section provides the background on Bitcoin and the blockchain. It is not

meant to be complete and exhaustive. Readers are referred to [30, 1] for detailed
explanations of the system.

Bitcoin cryptography and transactions Bitcoin is a digital payment system
and digital money. It is implemented by a free software, which anyone is free to
download and use. A computer running the Bitcoin software is called Bitcoin node,
it is connected to the other Bitcoin nodes and it is part of the Bitcoin peer-to-peer
network.

Bitcoin makes use of asymmetric cryptography. Each node has a public and a
corresponding private key1. The public key serves as a pseudonymous identity of
the node and as an address where the node receives the Bitcoin currency (whose
unit is called bitcoin, symbol BTC). The corresponding private key allows the node
to prove ownership of the received bitcoins and to spend them.

1In practice, for unlinkability and privacy purposes it is recommendable that each node has
more than one pair of public and private keys.
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2 – Background on Bitcoin and Payment Channel Networks

A bitcoin transaction allows parties to exchange bitcoins. A transaction is made
of inputs and outputs. An output contains the bitcoins transferred and a locking
script, which codes the conditions necessary to spend the bitcoins contained in the
output. An input is a reference to a previous output and an unlocking script, which
satisfies the spending conditions and spends the bitcoins contained in the referenced
output.

Figure 2.1: Bitcoin transactions.

For example, Figure 2.1 shows a transaction in which Alice transfers one bitcoin
to Berto. The input is a reference to a previous transaction output containing one
bitcoin earlier sent to Alice and the digital signature of Alice, necessary to spend
that bitcoin. The output is made of one bitcoin and a locking script, which contains
the public key of Berto.

It is possible to perform more elaborate transactions than simple transfer of
bitcoins from one party to another, by coding complex locking scripts. An example
is the multisignature script, which contains N public keys and requires M out of
those N corresponding private key signatures to spend the output locked by the
script.

Double-spending problem The main problem affecting digital money is double-
spending, namely, the fact that the very same coin can be spent twice. In fact,
digital money can be copied without effort, as any other digital object.

Ecash [4], introduced by David Chaum in 1983, was the first digital payment
system that solved the double spending problem. Chaum invented a scheme where
all spent digital notes, identified by a unique serial number, are registered on a
ledger. In that way it is easy to check against the ledger whether a certain note
has already been spent.

6



2.1 – Bitcoin and the Blockchain

Ecash is a centralized payment system. A trusted central entity, like a bank, is
required to maintain the ledger and check for double-spending.

Also in Bitcoin the double-spending is solved by storing transactions in a ledger,
called blockchain. However, differently from Ecash, the Bitcoin blockchain is not
managed by a centralized entity, instead by all Bitcoin nodes. For this reason,
Bitcoin is the first payment system which achieves decentralization: it operates
without the need for a trusted central entity.

The blockchain The blockchain is the ledger storing all occurred Bitcoin trans-
actions. It is called “blockchain” because its structure is a chain of blocks, as
Figure 2.2 shows. A block is a group of transactions. Each block has a reference
to the previous block, thus creating a chain. In particular, each block contains the
hash to the previous block. Such structure makes the blockchain tamper-proof: if
a transaction in a block is modified, the block hash becomes invalid, and also all
the hashes of the blocks following the block of the modified transaction.

Figure 2.2: The Bitcoin blockchain.

The blockchain is distributed: several Bitcoin nodes maintain a copy of it. To
keep consistent the replicas, a distributed consensus protocol is necessary. Having
multiple replicas managed by multiple nodes, a distributed consensus protocol en-
sures that all the replicas remain consistent among them and store correct values,
even in presence of faulty or malicious nodes.

All distributed consensus protocols preceding Bitcoin work only under a specific
assumption. In particular, they work only if, having N nodes in the distributed
system, at maximum a certain fraction (e.g. one third) of N is malicious/faulty
[23]. As a consequence, all those distributed consensus protocols are vulnerable to
the Sybil attack. In that attack, the attacker can create any number of nodes which
seem different but are all under its control. The attacker can thus undermine the
distributed consensus, by creating more malicious nodes that the ones tolerated by
the protocol. The only solution is to count and identify participating nodes, which
are trusted and not malicious.
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2 – Background on Bitcoin and Payment Channel Networks

On the contrary, the key novelty introduced in Bitcoin is a distributed consensus
protocol which is Sybil-attack resistant and works in a permissionless environment,
where any node, without begin trusted and identified, has the right to participate
in the system.

The Bitcoin consensus protocol The first step of the Bitcoin consensus proto-
col is that all new transactions are broadcast to the Bitcoin peer-to-peer network.

After that, new transactions are collected by nodes called miners. A miner is
a node that groups new transactions into a block. Any node in Bitcoin can be a
miner, no special permission is required.

At this point, the Bitcoin distributed consensus protocol selects the miner which
stores the next block in the blockchain. The selection of the miner is done via a
cryptographic puzzle. The miner which for first solves the puzzle has the right to
append the block it assembled to the blockchain.

The solution to the cryptographic puzzle is called Proof of Work (PoW). The
puzzle consists in repeatedly computing the hash of the block until the hash results
lower than a certain target value. The only way to solve the puzzle is via repetitions:
a nonce present in the block is changed until the produced hash is lower than the
target.

The probability for a miner to find a PoW is directly proportional to the fraction
of the network computational power the miner owns. If a miner with its hardware
owns 1% of the total computational power of the Bitcoin network, that miner has
the probability to produce one block every hundred.

The PoW is difficult to compute: a new block is produced on average every ten
minutes. Periodically, the difficulty is automatically adjusted, to keep the block
latency fixed even if nodes computational power increases. The rationale of the
ten-minutes latency is to ensure that all nodes in the network have enough time to
know the new block and to add it to their own copy of the blockchain, thus keeping
all the blockchain replicas consistent.

A miner which finds a PoW and stores a block in the blockchain receives bitcoins
as a reward. The rationale is to incentivize miners to produce valid blocks with
valid transactions. In fact, an invalid block would be rejected by the network, it
would not be added to the blockchain and the miner would not be rewarded. In
addition, a misbehaving miner would not only lose the reward, but would also incur
in economic loss, as computing the PoW requires expensive specific hardware and
consumes significant amount of electricity.

The reward for the miner of a block is constituted by two parts:

• Transaction fees of the transactions included in the block. A transaction
fee is computed as the difference between the total amount of bitcoins of
the transaction outputs and the total amount of bitcoins referenced by the
transaction inputs.

8
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• Freshly minted bitcoins. Each new block has a special transaction, called
coinbase transaction, which creates a protocol-defined amount of new bitcoins.
The coinbase transaction has no input and the output address can be decided
by the miner which assembled the block.

To recap, these are the steps of the Bitcoin protocol, as summarized in [1]:

1. New transactions are broadcast to the Bitcoin peer-to-peer network.

2. Each miner collects new transactions into a block.

3. Each miner works on finding a Proof of Work for its block.

4. When a miner finds a PoW, it broadcasts the block to the Bitcoin network.

5. Nodes accept the block only if all transactions in it are valid.

6. Nodes express their acceptance of the block by working on creating the next
block in the chain, using the hash of the accepted block as the previous hash.

By means of this protocol, Bitcoin works in a permissionless decentralized en-
vironment. Any node that has sufficient computational and bandwidth capacities
can verify new transactions and blocks and insert them in the blockchain, without
having specific permissions or being trusted.

Forks If two miners solves the PoW in the same moment, a fork in the blockchain
occurs, as Figure 2.3a shows: the two new blocks, B1 and B2, both have a reference
to the same previous block.

Forks are not permitted in Bitcoin as they break consensus and may cause
double spending. It may happen, in fact, that in the two blocks of the fork there
are two transactions spending the same bitcoins, and it is not clear which one of
the two is valid.

The solution adopted in Bitcoin is that the longest branch is valid. As Fig-
ure 2.3b shows, after a fork, the miner producing the next block (B3) inserts the
hash of one of the two competing blocks (B2) in that block. In this way, block
B1 becomes part of the shortest branch, and is discarded. Transactions in the
discarded block are not considered confirmed.

Six confirmations To be sure that a transaction is stored in the longest valid
chain and not discarded, it is recommendable to wait for six confirmations.

A transaction is said to have one confirmation when the block containing it is
added to the blockchain. Each other block extending the chain which the transac-
tion block belongs to adds one more confirmation.

A transaction with six confirmations will very likely remain in the valid blockchain,
as a fork made of more than six blocks is very improbable to happen.
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B1

B2

(a) Fork occurrence.

B1

B2 B3

(b) Fork resolution.

Figure 2.3: A fork in the blockchain.

51% attack In Bitcoin a 51% attack refers to the situation in which a single
entity owns more than 50% of the network computational power.

In this case, the attacker cannot create invalid blocks or invalid transactions, as
they would be rejected by the other nodes. It cannot steal others’ bitcoins, as it
does not know other nodes private keys.

However, the attacker has the monopoly on the production of blocks. For this
reason, it could cause forks which undermine consensus. It could succeed in cre-
ating a branch of blocks which overcome the current valid branch. Transactions
in the current branch, which were thought confirmed, are instead discarded, thus
destabilizing the payment system and causing possible double spending.

Decentralization The key novelty and fundamental feature of the blockchain is
decentralization, that is achieved via a novel distributed consensus protocol which
combines Proof of Work and economic incentives. Ideally, such protocol aims to
ensure that the Bitcoin payment system works without any central trusted entity, in
a permissionless way: in principle any node, without being identified and requiring
special permissions, can actively participate to the system.

However, in practice, although the blockchain limits centralization, Bitcoin is
not purely decentralized, as Gervais et al. show in [11]. In particular, the authors
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prove that the top-three (centrally managed) group of miners control more than 50%
of the Bitcoin computational power. In addition, they demonstrate that updates
and incident resolution are controlled by a small number of administrators which
have specific function and influence in the Bitcoin community.

Attacks to Bitcoin It has been systematically proved that Bitcoin may be vul-
nerable to certain attacks.

One of these attacks is called selfish mining [8]. The authors show via simula-
tions that a group of miners, even without owning the majority of Bitcoin compu-
tational power, can successfully cause forks. The attacking miners can succeed in
incentivizing rational miners to mine blocks in their forked branch.

Another attack is called eclipse attack [17]. In such attack, an adversary that
controls a sufficient number of IP addresses monopolizes connections to a Bitcoin
node. In this way, the adversary filters the blockchain view of the victim node,
which thus can be exploited for performing attacks on Bitcoin, such as double-
spending and forks.

In [13], the authors show that an attacker could delay delivery of blocks or
transactions to other nodes in the Bitcoin peer-to-peer network. This could bring
to: more advantages in selfish mining, if the attacker is able to avoid delivering of
blocks from honest miners to a portion of the network; denial of service, because,
if the attacker controls several nodes, it can prevent dissemination of information.

Anonymity is yet another open issue in Bitcoin. Some works prove that it is
possible to link a Bitcoin address (a public key) to the IP address of its owner
through analysis of network traffic [22], and it is possible to discover that different
Bitcoin addresses are actually owned by the same user [18].

2.2 The Issue of Scalability
In Bitcoin the transaction throughput is capped to a maximum of around seven

transactions per seconds [27]. Such transaction throughput is far lower than the
thousands of transactions per second which world-wide payment systems are sup-
posed to support [39]. This prevents Bitcoin from scaling.

Two parameters caps the transaction throughput of the Bitcoin blockchain.
First, the block size: the maximum allowed block size, specified in the Bitcoin
protocol, is less than 4 MB. Secondly, the block latency: because of the mechanism
of the distributed consensus protocol, a block is found on average every ten minutes

The reason of imposing a block size limit is to keep the decentralization degree
high. In [5] the degree of decentralization of Bitcoin is measured as the number
of functioning nodes in the network. Functioning nodes are nodes that are able to
receive new blocks and transactions and validate them. The higher the number of
functioning nodes, the higher the degree of decentralization, because the tasks of
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validating blocks and transactions are charged to several different nodes, instead of
a few centralized nodes.

A functioning node must have specific storage, computational and bandwidth
requirements. Storage requirements are necessary to save the entire blockchain and
the set of unspent transaction outputs. These two databases are needed to validate
the new transactions, checking whether a party is not attempting to spend more
funds than it owns. Bandwidth capacities are necessary to receive and transmit
transactions and blocks. Computational capacities are required to perform crypto-
graphic verification on new transactions and blocks.

The block size influences the amount of storage, bandwidth and computational
resources needed to be a functioning node. The higher the block size, the faster the
growth of the blockchain, which thus requires more storage capacity. Moreover, the
higher the block size, the higher the bandwidth necessary to receive and transmit
new blocks on the network.

For this reason, an higher block size produces a corresponding lower decentral-
ization degree of the network, as more nodes would not have sufficient resources
to actively participate in the network. They wouldn’t have sufficient storage ca-
pacity to store the blockchain and sufficient bandwidth to receive new blocks and
keep updated. In addition, an higher block size would disadvantage more nodes in
the mining competition, since miners with higher bandwidth would more quickly
download a new block (thus beginning earlier to mine on a next block), and would
faster transmit their mined block to the rest of the network.

There exist at least four possible solutions to the issue of scalability: re-par-
ametrization of the block parameters, alternative consensus protocols, sharding and
payment channel networks. They are briefly discussed in the following.

Re-parametrization A possible solution that addresses scalability is to change
the parameters capping the throughput: reducing the block latency and increasing
the block size.

However, the authors of [5] prove that, to ensure that 90% of the nodes are able
to be functioning nodes, block size should not be greater than 4 MB and block
latency should not be lower than 12 seconds. This entails a maximum transac-
tion throughput of 27 transactions per seconds. The authors of [12] go further
and show via simulations that re-parametrization can increase the Bitcoin transac-
tion throughput up to maximum 60 transactions per second: if higher, the system
security can be compromised.

For these reasons, if an high decentralization degree is an essential Bitcoin re-
quirement, re-parametrization of block size and latency could not be the most
effective solution to the scalability issue. In fact, the throughput resulting from the
re-parametrization is still incomparably lower than the throughput of world-wide
payment systems.
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Alternative consensus protocols Another category of solutions to the issue
of scalability is represented by alternative consensus protocols, which improve or
replace the Proof of Work.

For example, Bitcoin-NG [9] constitutes an improvement of the Bitcoin protocol.
While keeping the same decentralization degree of Bitcoin, Bitcoin-NG reduces the
Bitcoin inter-block latency and increases the transaction throughput, up to the
maximum allowed by network and node processing limits.

Proof of Stake (PoS) [14, 21], instead, is an alternative approach to Proof of
Work. In PoS, the right of a node to add a block to the blockchain is proportional to
the amount of coins owned by the node: it is not necessary to solve a cryptographic
puzzle. Therefore, since the computational expense of the PoW is eliminated, PoS
allows the increase of transaction throughput. However, the security properties of
Proof of Stake approaches constitute an open research field.

Sharding In the field of databases, sharding is a well-known technique that con-
sists in distributing portions of a database across different nodes. Sharding the
blockchain [25, 10] could improve scalability, since nodes do not need to process
and store the entire blockchain, but only portions of it. Whether sharding ap-
proaches preserves blockchain decentralization is an open research question.

Payment channel networks A radically different approach addressing the scal-
ability is constituted by payment channel networks. The goal of such networks is
to move as many payments as possible off the blockchain. In fact, throughput of
off-chain payments is not capped by the block parameters, as those payments do
not need to be stored on the blockchain.

Payment channel networks seem to constitute the most promising solution to
the issue of scalability, as they probably do not significantly compromise blockchain
security and decentralization. They could enable payments that, with respect to
transactions registered on the blockchain, are: cheaper, as lower fees are required
than the fees for on-blockchain transactions; faster, as they do not need to be
registered on the blockchain; and more privacy preserving, as they are not visible
in the public blockchain. Payment channel networks are discussed in detail in
Section 2.3.

2.3 Payment Channel Networks
This Section provides the background on payment channel networks and espe-

cially the Lightning Network.
Payment channel networks are networks of payment channels where it is possible

to route off-chain payments, which are not subject to the blockchain throughput
limit.
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A payment channel is a two-party bidirectional channel whereby two parties can
exchange off-chain payments. In the rest of this Section, to explain the operation of
a payment channel, the following example of a payment channel between Alice and
Berto is used. The first step taken by Alice and Berto to open the payment channel
is to fund the channel with some of their bitcoins, for example Alice allocates 0.5
BTC in the channel and Berto allocates 0.5 BTC. In this case, the payment channel
has a total capacity of 1 BTC, the Alice’s balance in the channel is 0.5 BTC and
Berto’s is 0.5 BTC.

Once the channel is funded, when Alice wants to pay Berto 0.1 BTC, instead
of issuing a transaction to the blockchain, they update their balances to reflect the
transfer of bitcoins. Therefore, after a payment of 0.1 BTC from Alice to Berto,
Alice’s balance is updated to 0.4 BTC and Berto’s balance to 0.6 BTC.

Payment channels are two-party. To avoid that each pair of nodes has to open
a payment channel to exchange off-chain payments, payment channels are con-
nected together, thus creating a payment channel network. Two parties, albeit not
connected by a direct payment channel, can exchange off-chain payments through
multiple payment channels which link payment sender and payment recipient. In
the rest of this Section, the following example of a payment network is presented:
Alice has a channel with Berto, Berto with Carola and Carola with Davide. Even
if Alice and Davide are not connected by a payment channel, Alice can send an off-
chain payment to Davide, which is routed across multiple intermediary channels:
the channel between her and Berto, the channel between Berto and Carola and the
channel between Carola and Davide.

The Lightning Network is the mainstream implementation of a payment channel
network. The remainder of this Section is organized as follows. First, the Lightning
Network protocol details are explained (Section 2.3.1). Finally, a brief literature
on payment channel networks is presented (Section 2.3.2).

2.3.1 The Lightning Network
The Lightning Network is the most developed and used payment channel net-

work. It is built on top of the Bitcoin blockchain. The Lightning Network protocol
specifies how to open and manage payment channels and how to route off-chain
payments in a network of payment channels. In the following, such specifications
are described.

The LN Payment Channel

In the following the protocol specifications for managing a payment channel in
Lightning Network are presented.
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Channel opening To open a payment channel in Lightning Network, a fund-
ing transaction is created by Alice and Berto. The funding transaction serves for
funding the channel. As inputs, it has the funds allocated in the channel by Al-
ice and Berto: 0.5 bitcoin owned by Alice, which constitutes the initial Alice’s
balance in the channel; 0.5 bitcoin owned by Berto, which constitutes the initial
Berto’s balance in the channel. The output amount of the funding transaction is 1
BTC, which constitutes the total channel capacity2. The output script is a 2-of-2
multisignature: this output can be spent only by a transaction that contains the
signatures of both Alice and Berto.

The funding transaction is sent to the blockchain and once confirmed, the chan-
nel is considered open.

Alice and Berto also create a commitment transaction. The commitment trans-
action returns the balances of the channel to the respective owners. The commit-
ment transaction input is signed by both Alice and Berto and spends from the
funding transaction. The transaction outputs are two: one output returns 0.5 BTC
to Alice and the other returns 0.5 BTC to Berto.

It is important to highlight that the commitment transaction is not sent to the
blockchain (unless a party wants to close the channel).

Payment execution To execute a payment in the channel, Alice and Berto
create off-chain a new commitment transaction with the balances updated. When
Alice wants to pay Berto 0.1 BTC, they create a new commitment transaction
which returns 0.4 BTC to Alice and 0.6 BTC to Berto.

Such operation is done totally off-chain, without the need for interacting with
the blockchain. It is repeated for each payment exchanged between Alice and
Berto, in both directions. Unlike on-chain transactions, throughput of such off-
chain payments is not bounded (except by the network connection speed of Alice
and Berto).

Channel closing When the channel parties want to close the channel, they
broadcast the most recent commitment transaction to the blockchain, which re-
turns the balances to the respective owners. Once the commitment is confirmed,
the channel is closed.

This can be done also in case a party becomes unresponsive/uncooperative. The
other party can still broadcast the most recent commitment to the blockchain and
recover its own funds.

2In practice it is slightly less, as a certain amount is devoted for the fee necessary to store the
transaction on the blockchain
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Punishment After Alice pays Berto 0.1 BTC and they create a new commitment
with the updated balances, Alice could be incentivized to cheat Berto by sending to
the blockchain the previous commitment. Such commitment, in fact, would return
her more bitcoins than the new commitment.

For this reason, the Lightning Network protocol allows to punish a cheating
party. It allows to revoke the old commitment when a new commitment is cre-
ated and to punish a party if it broadcasts a revoked commitment. If a cheating
party sends a revoked commitment to the blockchain, the channel counterparty can
take all the funds in the channel, including the funds of the cheating party, which
therefore would lose all its funds.

Punishment guarantees trustlessness: a party does not need to trust its channels
counterparty. Even if Alice is not trustworthy and cheats, Berto can recover his
funds.

Punishment, however, is not automatic. Berto has to actively monitor the
blockchain to check whether a revoked commitment has been broadcast by Alice.
If Berto does not notice within a certain timeout that a revoked commitment is
present in the blockchain, Alice will succeed in cheating Berto and in taking funds
from the revoked commitment.

HTLC Payment Channel Network

The Lightning Network protocol specifies how to route payments across multiple
payment channels, thus enabling a payment channel network for off-chain payments.
In the following such specifications are described in detail.

HTLC In Lightning Network routing of a payment across multiple channels is
done via a specific contract called Hashed Timelock Contract (HTLC). The HTLC
ensures trustlessness: a party involved in a payment route is guaranteed not to
lose money, even in case the other parties in the route are not trustworthy and
misbehave.

The HTLC implements off-chain conditional payments in a payment channel.
When Alice establishes an HTLC with Berto of value 0.1 BTC, it means that
Alice will pay Berto 0.1 BTC if Berto shows a certain value R (called preimage).
Otherwise, if Berto does not show R within a certain timeout, the payment does
not take place.

The HTLC is coded as an output script in the commitment transaction of a
payment channel. As already explained, the commitment transaction in the channel
of Alice and Berto where Alice’s balance is 0.5 BTC and Berto’s balance is 0.5 BTC
has two outputs: one output that gives 0.5 BTC to Alice; one output that gives
0.5 BTC to Berto.

When an HTLC of 0.1 BTC is established between Alice and Berto, a new
commitment transaction is created, made of three outputs: one output which gives
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0.4 BTC to Alice; one output which gives 0.5 BTC to Berto; the HTLC output,
which contains 0.1 BTC. The HTLC output locking script is constituted by two
parts:

• One part contains the hash of R. This ensures that Berto has to know R to
correctly compute its hash and take the funds of the HTLC.

• One part contains a timelock. A a timelock in Bitcoin implements the timeout,
ensuring that after a certain date from the establishment of the HTLC (say,
one day), Alice can take the funds of the HTLC3.

With this construction, if Berto shows R within one day, the HTLC is fulfilled,
so the payment takes place, and the value of the HTLC is transferred to Berto’s
balance. A new commitment transaction is created, where the HTLC output is
deleted, an output gives 0.4 BTC to Alice and the other output gives 0.6 BTC to
Berto.

On the contrary, if Berto does not show R within one day, the HTLC is failed,
so the payment does not take place and the value of the HTLC is transferred to
Alice’s balance. A new commitment transaction is created where the HTLC output
is deleted, an output gives 0.5 BTC to Alice and the other output 0.5 BTC to Berto.

Also payments via HTLC are performed totally off-chain, without any interac-
tion with the blockchain. When establishing, failing or fulfilling an HTLC, each
new commitment transaction is created off-chain.

In addition, also payments via HTLC are protected against cheating parties.
If a party broadcasts to the blockchain a revoked commitment transaction, the
counterparty can take all the channel funds, including the ones of the HTLC.

Multihop payment via HTLCs Figure 2.4 shows a payment of 0.1 BTC routed
across multiple channels from Alice to Davide. To do that, an HTLC is established
in each channel traversed by the payment. All these HTLCs require the same
preimage R to be fulfilled.

First, Davide generates R and gives Alice the hash of R. Secondly, an HTLC
with the hash of R is established in all the involved channels. In particular, the
following HTLCs are established:

• an HTLC of 0.1 BTC in the channel of Alice and Berto with timelock of, say,
3 days;

• an HTLC of 0.1 BTC in the channel of Berto and Carola with timelock of 2
days;

3In practice, the timelock is expressed as number of blocks: after a certain number of blocks
a transaction output can be spent.

17



2 – Background on Bitcoin and Payment Channel Networks

Alice Berto Carola Davide

BA = 0.5 BTC
BB = 0.5 BTC

Alice-Berto 
Channel

BB = 0.5 BTC
BC = 0.5 BTC

Berto-Carola 
Channel

BC = 0.5 BTC
BD = 0.5 BTC

Carola-Davide 
Channel

Alice Berto Carola Davide

BA = 0.4 BTC
BB = 0.5 BTC
HTLC = 0.1 BTC

Alice-Berto 
Channel

BB = 0.4 BTC
BC = 0.5 BTC
HTLC = 0.1 BTC

Berto-Carola 
Channel

BC = 0.4 BTC
BD = 0.5 BTC
HTLC = 0.1 BTC

Carola-Davide 
Channel

HTLC 
establishment

HTLC 
establishment

HTLC 
establishment

Alice Berto Carola Davide

BA = 0.4 BTC
BB = 0.6 BTC

Alice-Berto 
Channel

BB = 0.4 BTC
BC = 0.6 BTC

Berto-Carola 
Channel

BC = 0.4 BTC
BD = 0.6 BTC

Carola-Davide 
Channel

HTLC 
fulfillment

HTLC 
fulfillment

HTLC 
fulfillment

Figure 2.4: Multihop payment via HTLCs.

• an HTLC of 0.1 BTC in the channel of Carola and Davide with timelock of
1 day.

Finally, HTLCs from Davide to Alice are fulfilled. Davide shows R to Carola
within 1 day and gets 0.1 BTC from the HTLC with Carola. Carola shows R to
Berto within 2 days and gets 0.1 BTC from the HTLC with Berto. Berto shows R
to Alice within 3 days and gets 0.1 BTC from the HTLC with Alice. At the end,
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0.1 BTC has been transferred from Alice to Berto.
It is important to notice that, from Davide to Alice, HTLCs have increasing

timelocks. This ensures that each party has enough time to know R and claim the
funds: Davide shows R to Carola in one day, Carola pays 0.1 BTC to Davide; after
that, Carola still has one day to claim 0.1 BTC from Berto, as the timelock with
Berto is set to two days.

In the case R is never revealed, HTLCs must be failed and, after the timelock
expiration, funds of the HTLC return to the payer in each channel. If Davide
does not reveal R, after one day, when the timelock expires, Carola takes back the
funds of the HTLC. This can be done cooperatively with Davide, by creating a new
commitment transaction off-chain. Instead, if Davide is not cooperative, Carola can
send the most recent commitment to the blockchain and closes the channel. Then
Carola propagates back the failure, so that the HTLCs in all the other involved
channels are failed. It is important to notice that, if R is not revealed, funds in the
HTLC stay locked up to the timelock expiration.

The last detail that has still to be mentioned is fees for forwarding off-chain
payments in the payment network. When Alice wants to transfer 0.1 BTC to
Davide, in practice she adds a small amount of bitcoins, which serve as a fee for
paying all the intermediary nodes (Berto and Carola) that forward the payment in
their channels.

2.3.2 Brief Literature
Although the general idea of a payment channel is as old as Bitcoin and was

introduced by Bitcoin inventor Satoshi Nakamoto [15], the first working code for
unidirectional micropayment channels dates back to June 2013 [16]. In 2015, Decker
et al. [6] introduced bidirectional channels and proposed a payment channel net-
work, which enables off-chain payments even between nodes not directly connected
by a payment channel. In the same year, the Lightning Network white paper was
published by Joseph Poon and Thaddeus Dryja [33]. With respect to Decker’s
approach, the key novelty of the LN is the possibility of punishing a misbehaving
party in a payment channel. Nowadays, the Lightning Network is the mainstream
payment channel network.

Although the most developed, the Lightning Network is not the only approach
for creating a payment channel network in the literature. Raiden [35] uses smart
contracts to implement the same fundamental concepts of the LN on top of the
Ethereum blockchain. Sprites [28] is an attempt to improve both the LN and
Raiden, as it aims to minimize the time during which funds are locked while in
transfer among multiple channels.

The Lightning Network leverages source routing: when routing a payment, the
path of channels connecting the payment sender and the payment receiver is found
by the payment sender, basing exclusively on its view of the network. There exist
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alternatives to this routing approach in the literature. Flare [34] proposes the usage
of beacon nodes randomly scattered in the network to increase a node knowledge
of the network. In SilentWhispers [26] landmark routing is used: a path between
a sender and a receiver is calculated using an intermediary node called landmark,
where landmarks are dedicated nodes.
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Chapter 3

CLoTH: a Simulator for HTLC
Payment Networks

This Chapter introduces CLoTH, a simulator for HTLC payment networks de-
veloped in this work. It is organized as follows. Section 3.1 explains lnd, the im-
plementation of the Lightning Network taken as reference for developing CLoTH.
Section 3.2 illustrates workflow and implementation details of CLoTH. Section 3.3
presents the formal model of the simulator. Section 3.4 discusses the simulator
performance in terms of execution time. Section 3.5 explains the assumptions for
the simulations performed by CLoTH. Finally, Section 3.6 illustrates the related
work on simulations on payment channel networks.

3.1 Analysis of lnd

For implementation level details of HTLC mechanisms, lnd was taken as refer-
ence, which is the implementation of the Lightning Network in Golang language.
lnd, as the other LN implementations (e.g., c-lightning1 and eclair2), fully
conforms to the so-called Basis of Lightning Technology (BOLT) [24], the Light-
ning Network specifications. The reason of choosing lnd is that it is the most
documented of the LN implementations in terms of comments to the code.

Figure 3.1 shows the multi-hop payment call graph resulting from the analysis
conducted on the release lnd-v0.5-beta3. The call graph represents the main
functions called when a payment flows from a sender to a receiver through an
intermediate hop. These functions implement the routing of a payment through
HTLCs. (see Section 2.3.1).

1https://github.com/ElementsProject/lightning
2https://github.com/ACINQ/eclair
3https://github.com/lightningnetwork/lnd/releases/tag/v0.5-beta
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The figure describes three nodes, as they call different functions with different
behaviors: the payment sender S, the payment receiver R and a generic inter-
mediate hop H. This case can be easily generalized to n-intermediaries since the
behaviour of each intermediate hop is always the same.

HTLC messages (i.e., HTLCAdd, HTLCFulfill and HTLCFail) that flow through
nodes are represented by arrows. HTLCAdd is sent from S to R through H for
the establishment of HTLCs among the nodes. HTLCFulfill is sent from R to S
through H, for the fulfillment of the HTLCs. HTLCFail is sent in case of failures,
for failing the HTLCs.

The function handleUpstreamMsg in the gray box represents the first function
called by a node when an HTLC message is received. The gray line represents the
commitSig procedure that establishes an HTLC: the creation of a new commitment
transaction containing the HTLC between the two involved parties.

In Appendix A, details of the lnd code and of the functions of the call graph are
provided, while what follows is an high-level description of the flow of a payment
in lnd.

Payment routing and sending lnd relies on source routing, so the route for
a payment must be found by the payment sender. Therefore, when sending a
payment, S first searches for a route connecting it to the payment receiver R.
S uses its view of the network when searching for the route. The view is built

with the channel announcements received: each time a new channel is open, the
channel is announced to the network via a gossip protocol. A channel announcement
contains all the information on the channel such as the channel capacity and the two
sets of channel policies, one for each channel direction. A channel policy represents
the set of policies applied by a channel node to the payments that the node forwards
in that channel. Two of these policies are the fees and the timelock applied to the
HTLCs that traverse the channel.

Using all these data, S runs a modified version of Dijkstra’s algorithm to find
the shortest route to D. The distance metric adopted in that modified version is
a combination of fee and timelock, which aims at preferring channels that apply
lower fees and lower timelocks.

During Dijkstra’s algorithm execution, the node excludes a channel if it has not
enough capacity to forward the payment or if the payment amount is lower than
the minimum amount allowed by the channel policy. It excludes also a set of nodes
and channels that were blacklisted in previous payment executions (for the reasons
of blacklisting, see the following paragraph on payment re-attempt).

It is possible that the payment receiver generated an invoice for the payment
and included some routing hints in the invoice. In this case, Dijkstra’s algorithm
uses also these routing hints when searching for a route.

If a route capable of transferring the payment is not found, the payment fails.
Otherwise, S crafts an HTLCAdd packet which is forwarded hop-by-hop up to R
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Figure 3.1: Multi-hop payment call graph of lnd.

to establish the HTLCs in the channels of the route. The sender builds all the
HTLCs with the values of timelocks and fees that respect the channel policies of
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the channels in the route.
lnd uses Sphinx to exchange HTLC messages. Sphinx is an onion-routing pro-

tocol which ensures privacy of payments. In particular, it ensures that each inter-
mediary hop in the route only knows the previous and next hop of the route: it
does not know nor its position in the route, neither the length of the route. The
drawback of Sphinx is that it limits the maximum length of a route to twenty hops.

Finally, it is worth noticing that in the lnd release examined, the maximum
amount of payment that can be sent over the Lightning Network is 4.29 millions of
satoshis4.

Payment forwarding The generic intermediate hop H in the route is in charge
of forwarding the payment. Before forwarding the payment in the channel to the
next node, it checks for possible errors. Among the others, it checks:

• whether it has enough balance in the channel to forward the payment;

• whether the HTLC satisfies its channel policy.

If the conditions are not met, it propagates an HTLCFail message to the previous
node in the route, until it arrives to the payment sender. This message fails the
HTLCs established for the payment. Otherwise, it forwards the HTLCAdd message
to the next node in the route.

Payment reception Upon receiving an HTLCAdd message, the payment receiver
R checks for possible errors before accepting the payment. Among the others,
before establishing the HTLC in its channel, it checks whether the timelock for the
HTLC has not already expired.

If there are errors, it propagates back an HTLCFail message. Otherwise, it
propagates back an HTLCFulfill message, which fulfills the HTLCs for the payment
and executes the payment.

Payment re-attempt When the payment sender S receives an HTLCFail for
its payment, it may re-attempt the payment. It searches for a new route, possibly
excluding from the search nodes and channels which caused the payment failure and
which therefore are blacklisted. If no new route is found, the payment is considered
definitively failed.

Possible errors during a payment attempt are the following:

• An intermediate node claims it did not receive enough fee. In this case S
update its information on the fee policy of the node. If this same error is
received again by the same node, the node is blacklisted.

41 satoshi corresponds to 10−8 bitcoins.
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• An intermediate node claims that the HTLC timelock for its channel does
not respect its channel policy. In this case, S blacklists the node.

• There is not enough balance in a channel to forward the payment. S blacklists
the channel.

• A node in the route is unknown or offline. In this case, S blacklists the
channel connecting to that node.

S removes nodes and channels from the blacklist after a certain expiration time.
For nodes, this expiration time is five minutes; for channels, it is five seconds.

In any case, the payment is not re-attempted if a timeout of 60 seconds has
expired from the first payment attempt.

3.1.1 Update of CLoTH
For the simulations in Chapters 4 and 5 an earlier version of the simulator

was used, which took as reference a previous version of lnd5. For simulations
in Chapter 6, the simulator was updated to reflect a more recent version of lnd
(lnd-v0.5-beta). The following are the main updates implemented in CLoTH:

• A payment fails if a timeout of 60 seconds expires.

• Blacklisted nodes and edges are removed from the blacklist after five minutes
and five seconds respectively.

• The minimum HTLC channel policy is introduced.

• Dijkstra’s algorithm considers also fees as distance metric (while in the pre-
vious version of lnd it considered only timelocks).

3.2 The CLoTH Simulator
In this Section, a detailed description of the CLoTH simulator is provided6.

Here, the HTLC payment network is defined as a payment channel network where
off-chain payments are routed using HTLC contracts.

The CLoTH simulator is written in C. It takes as input a definition of HTLC
network and payment script to be played during simulation. It simulates payments
in the HTLC network by locally running a discrete-event mapping of the lnd code.

5https://github.com/lightningnetwork/lnd/commit/4d6cd2ee36885d3df4d38fc90fd3058885486d83
6The code of the simulator in pre-alpha is available online at

https://researchdata.nexacenter.org/payment-network-simulator/cloth-0.0.2.zip
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It produces performance measures in the form of payment-related statistics (e.g.,
the probability of payment failures and the mean payment complete time).

The computation flow of the simulator is constituted by three phases, as Fig-
ure 3.2 shows. In the rest of this Section, each phase is explained.
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Figure 3.2: CLoTH simulator workflow.

3.2.1 Pre-Processing Phase
The pre-processing phase serves for generating the HTLC payment network and

the payments which are executed in the network during the simulation phase.
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Figure 3.3: CLoTH simulator data structures.

Data structures The payment channel network and the payments are repre-
sented in the simulator by the data structures in Figure 3.3. A channel connects
two node (each one represented by an ID) and has a certain capacity. In addition,
since a channel is bidirectional, namely, payments can traverse it both from node1
to node2 and from node2 to node1, it contains two edges, each one representing
a direction of the channel. An edge contains: the ID of the channel the edge
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belongs to; the available balance in the direction represented by the edge; base
and proportional fee, which constitute the fee required for forwarding a payment
in the direction of the edge (proportional fee is the part of the fee which depends
on the payment amount, while base fee is the constant fee applied regardless of the
payment amount); the timelock set in the HTLCs established in the direction of
the edge; and the minimum value allowed for payments forwarded in the direction
of the edge. A payment is described by a sender, a receiver, the payment amount
and the payment start time, that is the instant in which the payment occurs in the
simulator.

Input modes There are two possible input modes for populating the simulator
data structures:

1. by directly providing a complete specification of each attribute of the data
structures (files 3, 4, 5 and 6 in Figure 3.2);

2. by providing few input parameters that statistically define an HTLC network
and a script of payments to be simulated (files 1 and 2 in Figure 3.2). In
this case, the network and payment generator engines of the simulator - using
random variables - generate an instance of HTLC network and an instance of
payment script that match the input description.

Although verbose, the first input specification allows the most detailed definition
of the simulation scenario. This is useful to simulate payments on an existing
payment channel network, fetching the nodes and channels data of the network
and providing them as input to the simulator. It is also useful to modify specific
attributes of the network or payments generated by the respective generators, e.g.,
by removing a certain node or increasing a certain channel capacity. The second
input mode, instead, allows a concise description of a simulation from a statistical
point of view, using just a few input parameters.
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Table 3.1: CLoTH simulator input parameters.

Type Symbol Definition

Network

Nn Number of nodes
Nch Average number of channels per node
σt Tuner of network topology
Pc̄b

Uncooperative nodes probability before HTLC establishment
Pc̄a Uncooperative nodes probability after HTLC establishment
Cch Average channel capacity
G Gini index of channel capacity

Payments

rπ Payments per second (off-chain)
Nπ Number of payments
σa Tuner of payment amounts
Fsr Fraction of same-recipient payments

Input parameters Table 3.1 shows the input parameters of the simulator with
their symbols . Here follows an explanation of the parameters:

• Nn is the total number of nodes in the payment network.

• Nch specifies the average number of channels per node. For each node, its
channels counterparties are chosen using a uniform random distribution, ex-
cept one, which is selected with a Gaussian distribution (see below the expla-
nation of σt).

• σt tunes the presence of hubs in the network topology. It is the width of the
Gaussian distribution defining the probability of connection among nodes.
For each node, this Gaussian probability distribution is used for choosing the
counterparty of one of the channels of the node. Therefore, if the width of
this Gaussian is zero, all nodes have one channel open with the same node,
which, consequently, will be a hub. On the other hand, if the Gaussian width
is infinite, any node has the same probability to be connected to any other,
thus producing a totally decentralised network.

• Pc̄b
and Pc̄a are the probabilities that a node, when interested in a payment,

becomes uncooperative (because it is malicious or faulty). The first is for
uncooperativeness before the establishment of an HTLC, the second after the
establishment. For the behavior of the protocol in case of uncooperativeness,
see Section 3.2.2.

• Cch is the average channel capacity.
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• G models the distribution of funds in the channels. The total available funds
(given by the average channel capacity multiplied by the total number of
channels in the network) are distributed in the channels such as to produce
a certain level of Gini index.

• rπ is the average number of payments per second. In particular, the payment
inter-arrival time is modeled as a negative exponential random distribution.

• Nπ is the total number of payments simulated during a simulation.

• σa tunes payment amounts. It is the width of the Gaussian distribution
whose tail is used to choose the orders of magnitude of payment amounts.
The greater this width is, the higher the payment amounts.

• Fsr is the fraction of the total payments directed toward the same recipient.
By means of this parameter, it is possible to model the use case of many
small payments sent to the same destination node, e.g., to a provider of video-
streaming services which is paid for each short segment of video streaming.

If the second input mode is used, the simulator sets also the values of the
following attributes:

• Channel balances. Having defined the capacity of a channel, to establish the
two edge balances as fractions of the capacity, a gaussian distribution is used,
which most probably produce equally balanced channels.

• Base and proportional fees. Base fees are random values uniformly distributed
between 1000 and 5000 millisatoshis; proportional fees are random values
uniformly distributed between 1 and 10 millisatoshis. These are the typical
fee values currently adopted in the Lightning Network.

• Timelock. Timelock of the edges are between 10 and 100 number of blocks.
These are the orders of magnitude of timelocks currently used in LN.

• Minimum HTLC. The simulator specifies values of the minimum HTLC poli-
cies between 0 and 1000 millisatoshis (low values are more probable than high
ones). Also these are the typical minimum HTLC values currently used in
LN.

• Network latency. For the inter-node communication the simulator sets a
network latency uniformly distributed among 10 and 100 milliseconds, which
is a reasonable latency value considering that lnd uses onion routing.

• Faulty latency. This is the time waited when trying to contact a node which
is faulty/malicious and does not respond. It is set to 3 seconds, that is the
typical TCP faulty time.
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Multi-thread execution Finally, before the simulation phase, once the pay-
ments have been defined, the simulator runs in multi-thread to compute the initial
routes for all the payments. The rationale of this design choice is that Dijkstra’s
algorithm is the most computationally expensive and time consuming task of the
simulator, and it is convenient to execute it in parallel.

3.2.2 Simulation Phase
During the simulation phase, the simulator simulates the execution of the input-

defined payments in the input-defined HTLC network. In particular, the simulator
runs a discrete-event simulation.

Discrete-event simulation Events are instantaneous time occurrences which
change the state of the system. It is discrete because the simulation time, that is
the time represented in the simulation, advances through discrete steps from one
event to the next.

The core engine of the discrete-event simulator is the event scheduling. It is
modeled as a queue, in which events are inserted and ordered according to their
instant of occurrence. When an event is extracted from the queue, the simulation
time is advanced to the instant of occurrence of the event and the event is processed.
Processing of an event may cause the generation of a new event, which is inserted
in the event queue. The simulation ends when a pre-defined simulation end time is
reached

Figure 3.4: CLoTH simulator events state diagram.

In the CLoTH simulator, an event represents a state of a payment. An event
is generated each time a payment changes its state according to the state diagram
in Figure 3.4, and it is processed by a function of the same name of the event. For
example, the event “find route” represents a payment for which a route has to be
found. When such event is extracted from the queue, a function of the same name is
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called, which searches for a payment route. If the route is found, a “send payment”
event is generated for that payment, which represents the state of a payment that
has to be sent by the payment sender. And so on, the payment flows as described
in Section 3.1.

Table 3.2: Mapping between CLoTH simulator functions and lnd functions.

Simulator
Function

Description Simulated Functions Node Message

find_route Search for a pay-
ment route

SendPayment, RequestRoute,
findPath, newRoute

Sender -

send_payment Send a payment handleLocalDispatch,
handleDownStreamPkt,
SendMessage

Sender HTLCAdd

forward_payment Forward a pay-
ment

handleUpstreamMsg,
processRemoteAdds,
handlePacketForward,
handleDownStreamPkt,
SendMessage

Hop HTLCAdd

receive_payment Receive a pay-
ment

handleUpstreamMsg,
processRemoteAdds,
SendMessage

Receiver HTLCAdd

forward_success Forward the suc-
cessful result of a
payment

handleUpstreamMsg,
processRemoteSettleFails,
handlePacketForward,
handleDownStreamPkt,
SendMessage

Hop HTLCFulfill

forward_fail Forward the fail
result of a pay-
ment

handleUpstreamMsg,
processRemoteSettleFails,
handlePacketForward,
handleDownStreamPkt,
SendMessage

Hop HTLCFail

receive_success Receive the suc-
cessful result of a
payment

handleUpstreamMsg,
processRemoteSettleFails,
handleLocalResponse

Sender HTLCFulfill

receive_fail Receive the fail
result of a pay-
ment

handleUpstreamMsg,
processRemoteSettleFails,
handleLocalResponse

Sender HTLCFail

Functions of the simulator Table 3.2 shows the functions of the simulator
that process the events with their description. For each simulator function, the
table shows the functions of lnd which are simulated by the considered simulator
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function. The completeness of the mapping between functions of CLoTH and each
function of the lnd computation flow ensures the validity of the simulated results.

Table 3.2 makes a clear distinction between specific behaviors of each lnd func-
tion which depends on two parameters: the type of node that invokes it (i.e., sender,
receiver or intermediate hop) and the type of the triggering message (HTLCAdd,
HTLCFail or HTLCFulfill). For example, the function send_payment of the sim-
ulator simulates the functions handleLocalDispatch, handleDownStreamPkt and
SendMessage of the lnd code, when they are called by the payment sender in the
case of HTLCAdd message.

Listing 3.1 presents the simplified C code of the simulator functions. Here
follows a detailed explanation of each function.

void find_route (){
if(payment -> duration > 60000) {

register_payment_stats ();
return ;
}

update_blacklist ();

route = dijkstra ();
if(route == NULL ){

register_payment_stats ();
return ;

}

next_event_time = current_time ;
create_event ( send_payment , next_event_time );

}

void send_payment (){

if( unknown_forward_edge ){
blacklist ( forward_edge );
next_event_time = current_time ;
create_event (find_route , next_event_time );
return ;

}

if( forward_edge -> balance < payment -> amount ){
blacklist ( forward_edge );
next_even_time = current_time ;
create_event (find_route , next_event_time );
return ;
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}

forward_edge -> balance -= payment -> amount ;

next_event_time = current_time + network_latency ;
create_event ( forward_payment , next_event_time );

}

void forward_payment (){

if( uncooperative_before_HTLC ){
blacklist (edge );
next_event_time = current_time + faulty_latency ;
create_event ( receive_fail , next_event_time );
return ;

}

if( uncooperative_after_HTLC ){
blacklist (edge );
next_event_time = current_time + timelock ;
create_event ( receive_fail , next_event_time );
return ;

}

if( unknown_forward_edge ){
blacklist ( forward_edge );
next_event_time = current_time + network_latency ;
create_event ( receive_fail , next_event_time );
return ;

}

if( forward_edge -> balance < payment -> amount ){
blacklist ( forward_edge );
next_even_time = current_time + network ;
create_event (find_route , next_event_time );
return ;

}

forward_edge -> balance -= payment -> amount ;

next_event_time = current_time + network_latency ;
create_event ( receive_payment , next_event_time );

}
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void receive_payment (){
if( uncooperative_before_HTLC ){

blacklist (edge );
next_event_time = current_time + faulty_latency ;
create_event ( forward_fail , next_event_time );
return ;

}

if( uncooperative_after_HTLC ){
blacklist (edge );
next_event_time = current_time + timelock ;
create_event ( forward_fail , next_event_time );
return ;

}

backward_edge -> balance += payment -> amount ;

next_event_time = current_time + network_latency ;
create_event ( forward_success , next_event_time );

}

void forward_success (){
if( uncooperative_after_HTLC ){

blacklist (edge );
next_event_time = current_time + timelock ;
create_event ( receive_fail , next_event_time );
return ;

}

backward_edge -> balance += payment -> amount ;

next_event_time = current_time + network_latency ;
create_event ( receive_success , next_event_time );

}

void receive_success (){
register_payment_stats ();

}

void forward_fail (){
forward_edge -> balance += payment -> amount ;

next_event_time = current_time + network_latency ;
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create_event ( receive_fail , next_event_time );
}

void receive_fail (){
forward_edge -> balance += payment -> amount ;

next_event_time = current_time ;
create_event (find_route , next_event_time );

}

Listing 3.1: The CLoTH Simulator Functions.

Function find_route() This function simulates the search for a payment route
from the payment sender. It is called either for a new payment or for a payment
which previously failed and has to be re-attempted.

First, the function checks whether more than 60 seconds are elapsed since the
first payment attempt. If so, the payment is not re-attempted and fails definitely.
Therefore, the function register_payment_stats() is called to register the statis-
tics for the payment, which will be useful to produce the simulator performance
measures (e.g., the payment end time and the reason of the failure - see Section 3.2.3
for the complete list of payment statistics).

Then, the function updates the blacklist of nodes and edges, removing nodes
and edges that have been staying in the list for more than 5 minutes and 5 seconds
respectively.

At this point, the function calls the modified version of Dijkstra’s algorithm
to find a payment route, considering fees and timelocks as distance metric and
excluding blacklisted nodes and edges. If no route is found, the payment fails.

Finally, the function creates a send_payment event.

Function send_payment() This function simulates the sending of a payment by
the payment sender.

The function first checks whether forward_edge, the edge where to forward
the payment, is known. If not, the edge is blacklisted and a find_route event is
created, in order to search for a new route without the unknown edge.

The second check regards the balance of the forward edge. If the balance is
lower than the payment amount, the edge is blacklisted and a find_route event is
created to search for a new route.

It is important to notice that, in each hop of the route, payment->amount takes
into account also the correct amount of fees to be payed to the hop.

If the previous checks passed, the function decreases the forward edge balance
by the payment amount, since an HTLC of amount equal to the payment amount
is established in the edge. Finally, a forward_payment event is created.
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Function forward_payment() This function simulates the forwarding of a pay-
ment by an intermediate hop in the payment route.

The first two checks of the function are on cooperativeness. In particular, using
probability distributions (see Pc̄b

and Pc̄a in Section 3.2.1), the function checks
whether the hop is uncooperative before or after establishing the HTLC. In the
first case, the receive_fail event is scheduled after a faulty latency; in the second
case, after the timelock, since the HTLC is already established and the timelock
must expire before unlocking the funds. In both cases, the function blacklists the
edge directed to the current intermediate hop.

As in function send_payment(), another check is on the presence of the forward
edge. If the forward edge is not known, a receive_fail event is created, which
informs the payment sender on the payment fail. If there are other intermediate
hops in the route between the current hop and the payment sender, the function
generates a forward_fail event, to propagate the the payment fail to the previous
hop.

The last check verifies whether there is enough balance in the forward edge, as
done in function send_payment().

After all the checks, the function reduces the balance of the forward edge by the
payment amount and generates a receive_payment event (or another forward_pay-
ment event in case there are other intermediate hops before the payment receiver).

Function receive_payment() This function simulates the reception of a pay-
ment by the payment receiver.

After the checks on the uncooperativeness, the function increases the balance of
the backward edge of the receiver channel, which is the edge in the reverse direction
of the payment, pointing to the previous hop of the route.

Finally, the function generates a forward_success event.

Function forward_success() This function simulates the forwarding of a pay-
ment success by an intermediate hop of the payment route.

First, the function checks the uncooperativeness. It is important to notice that
in this case a node can be uncooperative only after establishing the HTLC, which
in fact was already established when forwarding the payment.

If the intermediate hop is not uncooperative, the function reduces the bal-
ance of the backward channel in the route. Moreover, the function generates a
receive_success event (or another forward_success event if there are other in-
termediate hops in the route to which forward the payment result).

Function receive_success() This function simulates the reception of a pay-
ment success by the payment sender. The function registers the statistics on the
payment and does not generate further events, as the payment is complete.
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Function forward_fail() This function simulates the forwarding of a payment
fail by an intermediate hop in the payment route.

It increases the balance of the edge where the payment was previously forwarded,
to recover the balance state preceding the payment execution. Finally, it generates a
receive_fail event (or a forward_fail event in case there are other intermediate
hops in the route).

Function receive_fail() This function simulates the reception of a payment
fail by the payment sender.

It increases the balance of the edge where the payment was forwarded. It
generates a find_route event, in order to re-attempt the payment.

3.2.3 Post-Processing Phase
The post-processing phase of the simulator transforms the raw per-payment out-

put attributes, collected during the simulation phase, into statistically meaningful
performance measures.

Output attributes The per-payment output attributes generated by the simu-
lation phase (File 7 in Figure 3.2, raw-per-payment-data.csv) are the following:

• the payment end time;

• the payment result: success or failure (and the reason of failure);

• number of times the payment was attempted;

• whether the payment encountered an uncooperative node;

• whether the payment timeout expired;

• route traversed by the payment, if present.

To transform these attributes into performance measures (File 8 in Figure 3.2,
payments-statistics.json), the batch means method [19] is used. Using this
method, it is possible to produce performance results that are not influenced by
the initial transient state, where the system is not stable, and to compute sta-
tistical mean, variance and 95% confidence interval for each measure. The batch
means method consists in dividing a simulation run into multiple batches, which
are statistically independent among each other. Output measures are zeroed and
re-computed at each batch. Each final output measure is the statistical mean of
that measure over the batches and comes also with variance and 95% confidence
interval.
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Simulator performance measures Table 3.3 shows the performance measures
produced by the simulator with their symbols. Here follow some clarifications:

• Pfr is the probability that a payment fails due to the absence of a route
connecting sender and receiver.

• Pfb
is the probability that a payment fails because a channel in the route was

unbalanced (namely, its balance was lower than the payment amount) and an
alternative route without the unbalanced channel is not found.

• Pfc̄ is the probability that a payment fails because a node in the route was
uncooperative and an alternative route is not found.

• Pt̄ is the probability that a payment fails because it took more than a timeout
of 60 seconds to complete.

• Pk̄ represents the remaining fraction of payments for which it is impossible to
know whether they failed or succeeded, as they ended after the time window of
the simulation. For example, this category can encompass payments delayed
after a long timelock, as a node was uncooperative after establishing the
HTLC for the payment.

• T is the average time for a successful payment to complete.

• Natt is the average number of times a successful payment is re-attempted.

• Lr is the average route length traversed by a successful payment.

Table 3.3: CLoTH simulator performance measures.

Symbol Definition
Ps Probability of payment success
Pfr Probability of payment failure for no route
Pfb

Probability of payment failure for unbalancing
Pfc̄ Probability of payment failure for uncooperative nodes
Pt̄ Probability of payment failure for timeout expiration
Pk̄ Probability of unknown payments
T Payment complete time

Natt Number of payment attempts
Lr Payment route length
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3.3 Formal Model
Having a network with N nodes connected by payment channels and having

M payments to be executed on this network, the simulator formal model can be
expressed using the following formulas:

rk = ϕ(pk,Gk, bk) (3.1)

Gk+1 = µ(pk, rk) (3.2)

Function ϕ is the function which finds a route rk for a payment pk. It takes as
input the following parameters:

• pk = (nik
, njk

, ak) for k = 1, 2, ..., M is the payment for which a route has
to be found: nik

and njk
are the sender node and the receiver node of the

payment, for i, j = 1, 2, ..., N and i /= j; and ak is the payment amount.

• Gk is the graph of nodes ni for i = 1, 2, ..., N connected by payment channels.
The subscript k indicates the state of the graph at the moment in which pk is
processed, with the available nodes and channels and their attributes at that
moment.

• bk is the blacklist of possible nodes and channels excluded when searching for
a route for pk (see Section 3.1).

Given the payment pk and the route rk, the function µ executes the payment pk

along the route rk. µ produces a new state of the graph, namely Gk+1, because the
payment execution causes some changes in the channels involved in the payment,
such as the update of channel balances according to payment amount ak. A whole
simulation is therefore the transition from G0 to G|M |+1, the initial state of the
network and the final one (i.e., the state reached after the execution of the last
payment), respectively.

3.4 Performance Analisys
Table 3.4 shows the performance of the CLoTH simulator in terms of execution

time. Simulation times refer to experiments run on a machine of model DGX-1,
manufactured by Nvidia, located in Rome, Italy. The machine is equipped with 80
CPUs of model Intel® Xeon® CPU E5-2698 v4 @ 2.20 GHz and 512 GB of RAM.

Table 3.4a shows that execution time increases with the increase of the number
of nodes of the simulated network. This is due to the fact that time spent by
Dijkstra’s algorithm, used to find payment routes, grows with the number of nodes.
With 1 million nodes, a simulation run requires more than four days.
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(a)
Nodes Execution Time (h)
100,000 6.64
200,000 15.92
500,000 49.25
700,000 64.68

1,000,000 104.15
(b)

Dijkstra calls Execution Time (h)
58927 4.98
303374 28.3

Table 3.4: CLoTH simulator execution time.

Table 3.4b shows that the execution time also increases with the increase of
the number of calls to Dijkstra’s algorithm. An execution of Dijkstra’s algorithm
is required each time a payment is attempted. As more and more payments are
re-attempted, calls to Dijkstra’s algorithm grow as well as simulation execution
time.

Therefore, the execution of Dijkstra’s algorithm constitutes a simulator perfor-
mance bottleneck. However, there are no limits to the values of input parameters.
The only effect of setting high values (e.g., an high number of nodes or payments)
is a correspondingly long execution time.

3.5 Assumptions
An HTLC payment network relies on a blockchain as a securing mechanism for

all its payment channels. The underlying blockchain is therefore a fundamental
prerequisite of each HTLC payment network.

CLoTH, however, does not consider blockchain interactions during a simulation
execution, since the performance measures produced by the simulator are related
to payments, which are completely performed off-chain. Simulations run on a net-
work in which no new channel is opened. This condition is implicitly guaranteed if
the whole simulation time is shorter than the time required to fund a new channel
with an on-chain Bitcoin transaction. An on-chain Bitcoin transaction is usually
considered final after 6 confirmations, statistically 50 minutes after the first confir-
mation. This implies a relationship between simulation duration and likelihood of
simulation results: the shorter the simulation, the more plausible the results. With-
out loss of generality, the channels that might have been established early enough
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before the simulation starting time to become operational during the simulation
time window are not considered too. Simulations of around 15 minutes are a good
compromise between meaningfulness of the experiment and accuracy of results.

Another assumption is that each node has a perfect knowledge of all other nodes
and channels in the network. In reality, as already mentioned, new channels and
nodes are announced through a gossip protocol. Therefore, real performance may
be slightly worse than the one measured by CLoTH, as nodes may have a slightly
imprecise knowledge of the network due the nature of the gossip protocol.

3.6 Related Work
Several works in the literature analyzed payment channel networks through

simulations.
In [37], the author proposes and evaluates through simulations a routing proto-

col for payment channel networks. The authors of the Flare routing protocol [34]
runs simulations with 100,000 nodes to study the performance of the protocol. In
[32] Piatkivskyi et al. developed a Lightning Network simulator called Blyskavka
to evaluate the approach of splitting payments when routing them in the LN. Their
simulator is a multi-agent discrete-event simulator built for general purpose pay-
ment network simulations and it also simulates HTLCs. In [41], Ruozhou Yu et al.
implemented a simulator to evaluate CoinExpress, a payment routing mechanisms
for payment channel networks. Their simulator is a payment channel network simu-
lator based on the network simulator ns-3. Stasi et al. [7] developed a simulator to
evaluate improvements to the LN protocol: a novel fee policy that aims at reducing
channel unbalancing and a multipath routing payment scheme. Finally, Reynolds
[36] developed ocalm code for basic simulations on LN.

Differently from all the above-mentioned simulators, CLoTH is a precise map-
ping of the Lightning Network code. In particular, the functions of lnd coding
the modified version of Dijkstra’s algorithm and the HTLC scheme are exactly im-
plemented also in CLoTH. This is the original feature of CLoTH which makes it
different from the other simulators and ensures the validity of the results produced
by the simulator.
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Chapter 4

Simulations on the Lightning
Network Mainnet

This Chapter presents a group of simulations conducted on the Ligthning Net-
work mainnet, namely, the network of channels and nodes implementing the LN
protocol. In this set of simulations, the input of the simulator was constituted by
nodes and channels taken from a recent snapshot1 of the LN mainnet. The goal
of this set of simulations was to discover the cases (if any) in which a payment is
more likely to fail than to succeed on the LN mainnet.

The Chapter is organized as follows. First, the design of these simulations
is discussed in Section 4.1. Then, the results of these simulations are showed in
Section 4.2. Finally, Section 4.3 discusses the main findings of the simulations and
answers Research Question 1.

4.1 Simulations Design
In this Section, the design choices of the simulations on the LN mainnet are

described and motivated. First, the independent variables of the simulations are
presented (Section 4.1.1). Then, the strategy adopted to conduct the simulations
is discussed and motivated (Section 4.1.2).

4.1.1 Independent Variables
In general, the simulation independent variables are a proper subset of the

simulator input parameters, while the dependent variables are the simulator output
measures. Specifically for the simulations on the LN mainnet, the only independent
variables were the input parameters of the payments and the two probabilities

1Downloaded on June 14th 2018 at 14:32 CEST from https://rompert.com/recksplorer/
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defining nodes uncooperativeness: all the other simulator input parameters were
the fixed attributes of the mainnet nodes and channels.

Each independent variable was studied in a proper variation interval. A vari-
ation interval is defined by its extreme values and by its sampling rate (i.e., the
grain of its subdivisions, how many intermediate steps are considered). Table 4.1
shows the variation intervals for each independent variable.

Table 4.1: Variation intervals of the independent variables.

Variable Interval Unity of Measure
Pc̄b

[0 0.01 0.1 1.0 10.0] %
Pc̄a [0.01] %
rπ [10 100 1,000] payments per second
Nπ [10,000 100,000 1,000,000] -
σa [1 2 3 4 5] -
Fsr [0 10 20 40 50] %

To define the intervals of the independent variables, some initial tuning simula-
tions were run. Here follow the rationales of each variation interval:

• Uncooperative nodes probability before HTLC establishment Pc̄b
. With re-

gard to the choice of the upper limit, a probability that a node is uncooper-
ative more than one every 10 times is unrealistic.

• Uncooperative node probability after HTLC establishment Pc̄a . Payments
failing for such uncooperative nodes are not captured by simulations since
they end after the simulated time interval (because of the timelock). However,
it is realistic to have this value different from zero, as it may happen with a
certain small probability that a node experiences a fault and goes offline after
establishing an HTLC.

• Average payment rate rπ. A payment rate lower than 10 payments per second
is too low for a world-wide payment system as LN aspires to be. The high-
est value is the average rate supported by mainstream traditional payment
systems.

• Number of payments Nπ. The values of this interval depend on the average
payment per second, and on the fact that, for the assumptions made (see
Section 3.5), a simulation lasts around 15 minutes.

• Payment amount tuner σa. Table 4.2 shows, for each value of σa, the payment
amounts generated, in the form of: order of magnitude expressed in satoshis
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and ratio of payments whose amount has that order of magnitude. The lowest
value is chosen to produce only small payments. The highest value is chosen
to produce a certain fraction of high payments, however not higher than 0.1
BTC, as the Lightning Network at least at this stage is not supposed to
support large payments.

• Fraction of same-recipient payments Fsr. With regard to the upper limit, it is
unrealistic to send more than half of the total payments to the same recipient
during a single simulations.

Table 4.2: Ratio of payments with a certain order of magnitude for each value of
σa.

Order of Magnitude (Satoshi)
σa

1 2 3 4 5
100 67.83% 35.26% 26.33% 20.38% 18.00%
101 27.61% 29.57% 23.76% 19.85% 17.43%
102 4.3% 18.80% 18.40% 17.14% 15.53%
103 2.6% 8.81% 13.79% 13.88% 14.14%
104 0.0% 3.32% 8.80% 11.48% 11.49%
105 0.0% 0.98% 5.08% 8.19% 9.69%
106 0.0% 0.20% 2.58% 5.55% 8.19%
107 0.0% 0.06% 1.26% 3.53% 5.51%

4.1.2 Simulation Strategy
As already stated, the goal of this set of simulations was to discover non-

operative cases. Here, the network is defined as non-operative when a payment
is more likely to fail than to succeed, which means that the probability of payment
success Ps is below 50%. A branch-and-bound-like strategy was adopted to discover
non-operative cases.

To do so, for each independent variable a non-stressing and a stressing value
are defined. The non-stressing value is a value of the variation interval which is
not supposed to negatively impact performance. For example, the non-stressing
value for the uncooperative nodes probability is zero, as in this case all nodes are
cooperative and do not cause payment failures. The stressing value is a value of
the variation interval which is supposed to negatively impact performance. For
example, the stressing value for the probability of uncooperative node is 10%, as
it is the highest probability of uncooperative behavior specified in the variation
interval.
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Table 4.3 shows the full list of stressing and non-stressing values for the inde-
pendent variables of these simulations.

Table 4.3: Stressing and non-stressing values of independent variables.

Variable Non-Stressing Value Stressing Value
rπ 10 100
Nπ 10,000 100,000
σa 1 5
Fsr 0% 50%
Pc̄b

0% 10%

The branch-and-bound tree of the simulations performed is depicted in Figure
4.1. Each node represents a simulation, and the name of the node refers to the
independent variable stressed in that simulation. The simulation strategy consisted
of the following steps:

• First, the non-stressing simulation was run, where all variables were set to
their respective non-stressing values.

• Secondly, one independent variable at a time was stressed, thus forming a
branch for each simulation with one stressed independent variable.

• If the simulation with the stressed variable produced a non-operative case,
no further simulation were performed in the branch. Otherwise, that branch
was examined, stressing additional variables.

Figure 4.1: Branch-and-bound-like strategy for simulations on the LN mainnet.
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Algorithm 1 shows the formal algorithmic description of such strategy, where
ST represents the set of stressed independent variables and P (ST ) the probability
of payment success resulting from the simulation with the stressed variables in ST .

Algorithm 1 Branch-and-bound-like simulation strategy.
1: for each independent variable v do
2: ST ← v

3: for each independent variable u /= v do
4: if P (ST ) < 50% then
5: break
6: else
7: ST ← ST + u

8: end if
9: end for

10: end for

4.2 Simulation Results
This Section presents the results of the simulations on the LN mainnet.
At the time of the snapshot, the LN mainnet showed the following features:

• Number of nodes: 1221.

• Number of channels: 5167.

• Average degree (number of open channels per node): 9.92.

• Average channel capacity: 381,350 satoshis.

• Gini index (concentration of bitcoins in channel capacities): 0.85.

As it can be noticed, the LN mainnet analyzed is in its early development and
adoption stage. It is small, as few nodes and channels are present, and channel
capacities are still low. Such premature state explains at least partially the non-
operative cases found by the simulations.

The simulation results are presented branch by branch (see the branch-and-
bound tree in Figure 4.1) to show the path followed to discover non-operative
cases. For each discussed branch, the results of the simulations corresponding to
that branch are showed, starting from the non-stressing simulation (the root of the
tree), up to the last simulation in the branch (the leaf of the branch). The results
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of each simulation are presented in the following way: the values of the indepen-
dent variables in that simulation, underlining the stressed ones; the probability of
payment success Ps (underlined when it is below 50%, as this corresponds to a
non-operative case); the probability of payment failure for no route Pfr ; the prob-
ability of payment failure for unbalancing Pfb

; the probability of payment failure
for uncooperative nodes Pfc̄ . The results which include all output measures are
showed in Appendix B.1, while the complete results including also variances and
confidence intervals are available online2. Confidence intervals are not discussed in
the following because, for what concerns probability of payment success and fail-
ures, those intervals resulted very strict, as it can be noticed in the online results:
the largest difference between maximum and minimum values of the intervals was
of the order of 0.01%.

4.2.1 Branch: Payment Amounts
In these simulations, the effects of stressing payment amounts was studied.

Starting from the non-stressing simulation, a simulation was run in which σa was
stressed. Table 4.4 shows the results.

Table 4.4: Simulation results of the branch of payment amounts.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr
Pfb

Pfc̄

10 1 0.0% 0.0% 65.43% 24.40% 10.11% 0.0%
10 5 0.0% 0.0% 46.13% 46.11% 7.72% 0.0%

A non-operative case was found, as with a stressed σa the probability of payment
success resulted 46.13%, i.e., below 50%. Comparing the probabilities of payment
failure between the non-stressing case and the amount-stressed case, an increase of
the probability of payment failure for no route (46.11% against 24.40%) occurred,
while the other probabilities of payment failure remained almost the same. This is
due to the fact that capacities of channels are not enough to forward payments of
higher amounts, thus a viable route for those payments cannot be found.

Further simulations were performed varying the value of σa within its variation
interval (see Table 4.1), to investigate how it influences the network performance.
The other input parameters were set to their non-stressing values. Table 4.5 shows
the results of these simulations.

2https://researchdata.nexacenter.org/payment-network-simulator/LN-mainnet-results.zip
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Table 4.5: Simulation results varying payment amounts.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr Pfb
Pfc̄

10 5 0.0% 0.0% 46.13% 46.11% 7.72% 0.0%
10 4 0.0% 0.0% 50.77% 41.18% 8.00% 0.0%
10 3 0.0% 0.0% 56.87% 33.81% 9.30% 0.0%
10 2 0.0% 0.0% 63.35% 26.62% 9.96% 0.0%
10 1 0.0% 0.0% 65.43% 24.40% 10.11% 0.0%

With σa set to 4, the probability of payment success was higher than 50%, since,
with respect to σa equal to 5, the probability of not finding a route decreased by 5%.
Therefore, with σa equal to 4, the network is operative according to the definition
of operativeness given in this Chapter.

In general, decreasing the value of σa caused an increase of payment success, due
to the fact that low-amount payments more probably found a route with enough
channel capacities. At the same time, a decrease of σa entailed a slight increase of
payment failure for unbalancing, because some payments, although they found a
route, failed for absence of sufficient balance in the route.

4.2.2 Branch: Payment Rate
In these simulations, the effects of a stressed payment rate was studied. Start-

ing from the non-stressing simulation, a simulation with a stressed payment rate
(100 payments per second) was performed. Table 4.6 shows the results of these
simulations.

Table 4.6: Simulation results of the branch of payment rate.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr
Pfb

Pfc̄

10 1 0.0% 0.0% 65.43% 24.40% 10.11% 0.0%
100 1 0.0% 0.0% 43.88% 25.17% 30.92% 0.0%

A non-operative case was found, as the stressed payment rate caused a prob-
ability of success of 43.88%. The main reason is the increase of the probability
of payment failure for unbalancing, which was around 20% higher with respect to
the non-stressing simulation (30.92% against 10.11%). This is caused by the fact
that channel balances were depleted by the increased number of payments to be
forwarded.
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4.2.3 Branch: Same-Recipient Payments
In this branch, starting from the non-stressing condition, first the fraction of

payments directed to the same recipient was stressed, setting it to half the total
number of payments (i.e., 5000 payments). The results in Table 4.7 show that such
stress did not worsen performance. The probability of payment success increased
with respect to the non-stressing simulation (69.45% against 64.43%). Such increase
corresponds to a decrease of the probability of payment failure for no route: from
24.4% to 18.81%. The cause of this behavior is that the node to which half of
payments were directed has many open channels. Consequently, payments directed
to this node more probably found a viable route, with respect to the non-stressing
case, in which payments were sent to different randomly-selected nodes.

To avoid to miss a non-operative case, a further simulation stressing a second
parameter was ran. The only parameter that was possible to stress was the prob-
ability of uncooperative nodes. In fact, it was not possible to stress the payment
amount, as the use case of payments directed to the same recipient is realistic only
when the payments have low amount. And it was not possible to stress the pay-
ment rate, since it has been already showed that with 100 payments per second the
network is non-operative. The results of this simulation show that, when both Fsr

and Pc̄b
were stressed (the latter set to 10%), the LN mainnet remained operative.

With respect to the case of only Fsr stressed, the probability of failures for unco-
operative nodes increased to 14.84%, however, the probability of success was above
50% (57.1%), therefore the network resulted operative in this case too.

Table 4.7: Simulation results of the branch of same-recipient payments.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr
Pfb

Pfc̄

10 1 0.0% 0.0% 65.43% 24.40% 10.11% 0.0%
10 1 50% 0.0% 69.54% 18.81% 11.61% 0.0%
10 1 50% 10.0% 57.10% 18.80% 9.21% 14.84%

4.2.4 Branch: Uncooperative Nodes Probability
In this last branch of simulations, the effect of stressing the probability of un-

cooperative nodes was studied. The results in Table 4.8 show that, when the only
stressed value was the probability of uncooperative nodes (set to 10%), the network
resulted operative. In this case, the probability of payment failure for uncooper-
ative nodes was 11.92%, but the probability of payment success remained above
50% (55.21%). The other probabilities of failure were almost the same as the non-
stressing case.
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Table 4.8: Simulation results of the branch of uncooperative nodes probability.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr Pfb
Pfc̄

10 1 0.0% 0.0% 65.43% 24.40% 10.11% 0.0%
10 1 0.0% 10.0% 55.21% 24.31% 8.51% 11.92%
10 4 0.0% 10.0% 38.27% 46.10% 6.47% 9.13%

Again, to search for other non-operative cases, another parameter was stressed,
i.e., the amount of payments (the payment rate was not stressed as it has already
been showed that with 100 payments per second the network was non-operative,
and the fraction of payments to the same recipient was not stressed because this
case has already been studied in Section 4.2.3). To stress the payment amount,
σa was set to 4 (not to 5, the highest possible level of payment amounts in the
variation interval, because it has already been showed in Section 4.2.1 that with
this value the network was not operative). The results of this additional simulation
show that when stressing together the probability of uncooperative nodes and the
payment amounts, the network resulted non-operative: the probability of success,
in fact, was 38.27%. The probability of failure for uncooperative nodes was 9.14%
(similar to the case in which the only stressed value was Pc̄b

). However, the main
reason of the failures is the absence of viable routes (with a probability of 46.1%),
due to the increased amounts of payments.

Further simulations were performed to study which payment amounts are tol-
erated by the network when the probability of uncooperativeness is 10%. In those
simulations, σa was varied, while Pc̄b

was fixed to 10%. Table 4.9 shows the results
of these simulations.

Table 4.9: Simulation results varying payment amounts with 10% of uncoopera-
tiveness.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr
Pfb

Pfc̄

10 4 0.0% 10.0% 38.27% 46.10% 6.47% 9.13%
10 3 0.0% 10.0% 47.71% 33.78% 7.66% 10.82%
10 2 0.0% 10.0% 53.64% 26.56% 7.85% 11.91%
10 1 0.0% 10.0% 55.21% 24.31% 8.51% 11.92%

Comparing these results to the results of the simulations with zero uncoopera-
tiveness in Table 4.4, it can be noticed that in both cases, the lower the payment
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amounts, the higher the probability of payment success. Moreover, when the prob-
ability of uncooperativeness was set to 10%, the network was operative with σa

equal to 2, while with zero uncooperativeness, the network was operative also with
higher payment amounts (σa equal to 4). The reason is that with Pc̄b

equal to 10%,
around 9-11% of payments failed because of uncooperative nodes and the network
reached probability of success higher than 50% only with σa lower than or equal to
2.

Finally, additional simulations were performed to study the level of uncooper-
ativeness is tolerated by the network when σa is fixed to 4. Table 4.10 shows the
results of the simulations varying the uncooperativeness.

Table 4.10: Simulation results varying uncooperativeness with σa equal to 4.

Input Parameters Output Measures
rπ σa Fsr Pc̄b

Ps Pfr
Pfb

Pfc̄

10 4 0.0% 10.0% 38.27% 46.10% 6.47% 9.13%
10 4 0.0% 1.0% 49.84% 41.17% 7.95% 0.99%
10 4 0.0% 0.1% 50.79% 41.15% 7.98% 0.06%

It can be noticed that only with the lowest value of uncooperativeness in the
interval (Pc̄b

equal to 0.1%) the network resulted operative (probability of success
is 50.79%). The reason is that, with a decrease of probability of uncooperativeness,
there was a corresponding decrease of payment failures for uncooperative nodes
(from 9.13% to 0.06%). However, the most considerable cause of failures was the
absence of a viable route, because the payments of largest amounts did not find
viable channels to be forwarded.

4.3 Answer to RQ1 and Main Findings
The Research Question 1 of this work is: “Which are the non-operative cases of

the LN mainnet?”. Basing on the simulation results presented in Section 4.2, the
LN mainnet resulted non-operative in the following cases:

1. when the majority of the simulated payments was between 1 and 104 satoshis
and the remaining payments (around 15%) were between 105 and 107 satoshis
(namely, when σa was set to 5);

2. when the payment rate was set to 100 payments per second;

3. when the probability of uncooperative nodes was set to 10% and σa was set
to 4.
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In the following the above-mentioned cases are discussed, thus highlighting the
main finding of the simulations in this Chapter.

Payment amounts When setting σa to 5, thus producing payments of the high-
est amounts in the defined interval, the LN mainnet resulted non-operative, since
the probability of success was 46.13% (a payment is more likely to fail than to
succeed). The main cause of the failures is the absence of viable payment routes,
as the capacities of channels are not enough to forward payments of such amounts.
While a naive solution would be to open channels with appropriate capacity, more
elaborate approaches are beginning to appear, e.g., Atomic Multi-Path Payments
[31], a technique that proposes to solve the payment amounts issue by splitting
large payments into small ones which can be routed through channels with low
capacity, and then recomposed by the receiver.

Payment rate When setting the average payment rate to 100 payments per
second, the probability of success was 43.88%, so the LN mainnet resulted again
non-operative. The main cause of such a high failure rate is channel unbalancing:
channel balances were depleted by an increased rate of payments to be forwarded.
Also in this case a naive solution would be to open channels with higher capacity,
while a systemic alternative is represented by approaches akin to REVIVE [20],
which allows channels to be re-balanced without the need of closing and re-opening
them via on-chain transactions.

Uncooperative nodes and payment amount The last non-operative case re-
sulted by the combination of a probability of uncooperative nodes set to 10% and
σa set to 4. In this case, the probability of payment success was 46.1%. Payments
most likely failed for absence of viable routes because of the high payment amounts.
Moreover, with probability 9.14%, payments failed for uncooperative behavior of
nodes. Such results leads to the following considerations. First, the probability
of uncooperative nodes, as long as limited to the realistic value of 10%, does not
constitute a serious problem for the network. Second, it has been proved once
again that increasing payment amounts is the most critical issue for the LN config-
uration taken into account: a few recently proposed countermeasures were briefly
mentioned above.
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Chapter 5

Simulations on Synthetic
Networks

This Chapters presents a set of simulations conducted on synthetic networks,
i.e., HTLC networks generated by the network generator included in the CLoTH
simulator (see Figure 3.2). The goal of these simulations was to study the impact of
each individual input parameter on HTLC network performance. Therefore, this set
of simulations took into account also the parameters defining the HTLC network,
which were fixed in the simulations of the LN mainnet discussed in Chapter 4.

This Chapter is organized as follows. Section 5.1 discusses the design of the
simulations on synthetic networks. Section 5.2 presents the simulation results.
Finally, Section 5.3 discusses the main findings and answers Research Question 2.

5.1 Simulations Design
This Section discusses the independent variables and the strategy of the simu-

lations conducted on synthetic networks.

5.1.1 Independent Variables
The independent variables of this set of simulations were all the simulator input

parameters. Table 5.1 shows the variation intervals for each independent variable
(a horizontal row separates network and payment parameters).
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Table 5.1: Variation intervals of the independent variables.

Variable Interval Unity of Measure
Nn [100,000 200,000 500,000 700,000 1,000,000] -
Nch [3 5 8 11] -
σt [0 1 10 inf] -
Pc̄b

[0 0.01 0.1 1.0 10.0] %
Pc̄a [0.01] %
Cch [100 1,000 10,000 100,000 1,000,000] satoshi
G [0.0 0.1 0.2 0.4 0.6] -
rπ [10 100 1,000] payments per second
Nπ [10,000 100,000 1,000,000] -
σa [1 2 3 4 5] -
Fsr [0 10 20 40 50] %

The rationales of the variation interval (which were chosen after the analyzing
some exploratory simulations) are explained in the following:

• Number of nodes Nn. A network with fewer than 100 thousands nodes is too
small, since the LN is supposed to scale Bitcoin. With regard to the upper
limit, as showed in Section 3.4, a simulation with 1 million nodes lasts more
than four days. In future work the simulator performance will be improved
and large networks will be analyzed.

• Average number of channels per node Nch. The exploratory simulations
showed that with fewer than three channels per node all payments fail, since
the network is not properly connected. With 11 channels per payments, in-
stead, no payments failed for absence of route, so performance would not
improve with more than 11 channels.

• Topology tuner σt. Figure 5.1 shows the resulting topologies for each of the
values of the variation interval. In this Figure, node size is directly propor-
tional to the number of open channels of the node. It can be noticed that
with σt= 0, there is just one single large node, which constitutes a centralized
hub with many open channels. When σt= inf , instead, there are no hubs
as all nodes have the same size. Finally, with the middle values of σt, there
are some scattered hubs. Therefore, the two limits were chosen to produce
the two opposite cases: totally decentralized topology and topology with one
single centralize hub.

• Channel capacity Cch. A channel capacity lower than 100 satoshis would
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mean that the channel is unable to transfer anything but so-called dust pay-
ments. The upper limit was chosen in order to support the maximum pay-
ment amount and corresponds to one order of magnitude greater than such
maximum.

• Gini index G. The Gini index is by definition a value between 0 and 1.
The upper limit was chosen not too high to avoid that most of the network
economic capacity is concentrated in very few channels.

The rationales of the remaining independent variables (namely, Fsr, Nπ, rπ, G,
Pc̄a , Pc̄b

, σa) are the same of the simulations on the LN mainnet (see Section 4.1).
Table 5.2 shows the orders of magnitude of the payments generated for each

value of the tuner. Notice that these orders of magnitude are decreased by one
with respect to the simulations on the LN mainnet (cf. Table 4.2), because it has
already been showed that higher orders of magnitude produce significant failures
(see simulations results in Section 4.2.1).

Table 5.2: Ratio of payments with a certain order of magnitude for each value of
σa.

Order of Magnitude (Satoshi)
σa

1 2 3 4 5
10−1 67.83% 35.26% 26.33% 20.38% 18.00%
100 27.61% 29.57% 23.76% 19.85% 17.43%
101 4.3% 18.80% 18.40% 17.14% 15.53%
102 2.6% 8.81% 13.79% 13.88% 14.14%
103 0.0% 3.32% 8.80% 11.48% 11.49%
104 0.0% 0.98% 5.08% 8.19% 9.69%
105 0.0% 0.20% 2.58% 5.55% 8.19%
106 0.0% 0.06% 1.26% 3.53% 5.51%

5.1.2 Simulation Strategy
As already stated, the goal of simulations on synthetic networks was to study

the impact of each simulator input parameter on HTLC network performance. The
strategy chosen consisted in studying the effect on performance of one independent
variable at a time. For each independent variable, more simulations were performed,
one for each of its values in the variation interval. When studying a variable, the
variables not under observation were set to a default value, i.e., a reasonable value
in the interval for which that variable does not interfere with the results of the
simulation. For example, to study the effect of σt, four simulations were run, one
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(a) σt= 0 (b) σt= 1

(c) σt= 10 (d) σt= inf

Figure 5.1: Resulting network topologies for different values of σt.

for each value of σt defined in the variation interval (see Table 4.1): in each one
of the four simulations, the other independent variables are set to their respective
default values.

In the following, the rationales of the chosen default values are explained (which
Table 5.3 shows).

• Number of nodes Nn. A value higher than 100,000 was not chosen because of
the limited maximum execution time of the simulator. However, a set of sim-
ulations varying the number of nodes in the variation interval was performed,
in order to show the results for different values of such variable.

• Number of channels per node Nch. The value suggested by the LN developers
[40] was used.
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• Network topology tuner σt. The chosen value produces no hubs in the topol-
ogy, since the LN, as Bitcoin, is supposed to work in a decentralized topology.

• Uncooperative nodes probability Pc̄b
and Pc̄a . The chosen values represent a

realistic probability that a node goes down for a fault.

• Channel capacity Cch. The chosen value is higher than the maximum payment
amount used in the simulations.

• Gini index G. The chosen value produces a uniform distribution of bitcoins
in the channels. In this way, performance is not influenced by a non-uniform
distribution of bitcoins, where some channels have an high capacity and the
others have a low one.

• Average payment rate rπ. It is the middle of the variation interval.

• Number of payments Nπ. It depends on the average payment rate, to ensure
that the simulation does not last more than the maximum duration allowed
(15 minutes).

• Payment amount tuner σa. It is set to the lowest level possible in its interval,
to avoid the performance being influenced by high amount payments, when
the effect of payment amount is not under observation.

• Fraction of same-recipient payments Fsr. It is set to zero to avoid that such
payments affect performance in simulations in which their effect is not under
observation.

Table 5.3: Default values of independent variables.

Variable Default Value
Nn 100,000
Nch 5
σt inf
Pc̄b

0%
Pc̄a 0.01%
Cch 100,000
G 0.0
rπ 100
Nπ 100,000
σa 1
Fsr 0%
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Differently from the simulations in Chapter 4, the branch-and-bound-like method-
ology was not adopted for finding non-operative cases of synthetic networks. In fact,
with eleven input parameters, the branch-and-bound-like strategy would have re-
quired a very high number of simulations. This direction will be pursued in future
work, once the simulator performance is improved.

5.2 Simulation Results
This Section presents the results of the simulations on synthetic networks. Since

the simulations were performed varying one individual independent variable at a
time, the results are presented separately for each independent variable under obser-
vation. In the following, only the most relevant results are showed, and confidence
intervals are discussed only when they are large (indicating a relevant uncertainty
in the results). The results including all simulations are available in Appendix
B.2, while the results including also variances and confidence intervals are available
online1.

5.2.1 Channels per Node
In a decentralized network with 100 thousands nodes, three channels per node

are not sufficient to have a robustly connected network. As Table 5.4 shows, with
three channels, the probability of payment success was 59.61%; payments failed for
absence of route (with probability 23.34%) and because the few existing channels
became unbalanced (with probability 16.77%).

With five channels per node, instead, the performance was good: probability of
success, in fact, was 99.34%. With 11 channels per node, the optimal condition was
reached, as the probabilities of payment failure for no route and for unbalancing
were zero (only a few payments failed or were delayed for uncooperative nodes).

Table 5.4: Simulation results varying the number of channels per node.

Nch Ps Pfr
Pfb

3 59.61% 23.34% 16.77%
5 99.34% 0.31% 0.13%
8 99.82% 0.01% 0.0%
11 99.86% 0.0% 0.0%

1https://researchdata.nexacenter.org/payment-network-simulator/synthetics-results.zip
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5.2.2 Uncooperative Nodes
As Table 5.5 shows, when the probability of uncooperative behavior of nodes was

10%, the probability of payment failure for uncooperative nodes was 11.84%. When
Pc̄b

is lower, the network performance is not significantly affected by uncooperative
behavior, as the probability of payment success was around 99%.

Table 5.5: Simulation results varying the uncooperative nodes probability.

Pc̄b
Ps Pfc̄

0.0% 99.36% 0.0%
0.01% 99.34% 0.0%
0.1% 99.27% 0.1%
1% 98.32% 1.04%
10% 87.47% 11.84%

5.2.3 Network Topology
The average time to complete payments decreases as the network topology be-

comes more centralized. As proved by the results in Table 5.6, with one single hub
(σt set to 0), average payment time was 333.16 ms, while it grew to 1391.92 ms in
a totally decentralized network with zero hubs (σt set to infinite). This is caused
by a corresponding decrease of the average length of routes traversed by payments:
with one single hub, almost each node was connected to each other node through
the hub, so a route was on average long 2.90 hops, while it reached 10.34 hops with
zero hubs.

Table 5.6: Simulation results varying the network topology.

σt Ps T (ms) Lr (hops)
0 99.88% 333.16 2.90
1 99.85% 536.83 4.13
10 99.83% 695.73 5.56
inf 99.34% 1391.92 10.34

However, also in a totally decentralized topology the synthetic HTLC payment
network was characterised by good performance: the probability of payment suc-
cess, in fact, was 99.34% and the average time to successfully complete payments
was equal to 1391.91 ms, i.e., nearly instantaneous. However, in these simulations
payment time was characterized by a small level of uncertainty, as Table 5.7 shows.
The Table presents mean (µ), variance (σ2), minimum and maximum values of
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the confidence interval (Cmin and Cmax) of payment time, for different topologies.
When the topology was totally decentralized, the average payment time actually
ranged between 1343.93 and 1439.92 milliseconds.

Table 5.7: Mean, variance and confidence interval of payment time varying the
network topology

σt
T (ms)

µ σ2 Cmin Cmax

0 333.16 14.75 332.99 333.33
1 536.83 354.79 532.74 540.93
10 695.73 32.76 695.35 696.11
inf 1391.92 4155.77 1343.93 1439.92

5.2.4 Same-Recipient Payments
As Table 5.8 shows, when directing 50% of total payments (i.e., fifty thousands

payments) to the same recipient, with a rate of 100 payments per second, the
probability of failures for unbalancing reached 16.06%. The reason is that channels
connecting to the destination node became unbalanced, as they were traversed
always in the same direction. Such unbalancing did not constitute a problem if
fewer payments are sent to the same recipient: already with Fsr set to 40%, the
probability of payment failure for unbalancing decreased to 0.1%.

Table 5.8: Simulation results varying the fraction of same-recipient payments.

Fsr Pfb

0% 0.13%
10% 0.13%
20% 0.12%
40% 0.10%
50% 16.06%

5.2.5 Payment Amounts
Table 5.9 presents the simulation results obtained varying the payment amounts

(see Table 5.2 for the mapping between σa and the resulting payment amounts).
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Table 5.9: Simulation results varying payment amounts.

σa Ps Pfr
Pfb

T (ms)
1 99.34% 0.31% 0.13% 1391.92
2 99.13% 0.48% 0.19% 1427.54
3 96.80% 2.30% 0.65% 1611.93
4 93.69% 4.67% 1.33% 1816.37
5 91.43% 6.40% 1.85% 1949.87

Although the performance was good in all cases, the payment amounts have
a significant impact on the results. In fact, when increasing the amounts, the
probability of payment success decreased by about 8%. The main reason of failures
was the absence of a viable route (with a probability of 6.4%). The cause is that
payments of increased amount did not find channels with enough capacity to be
forwarded.

Another factor that caused payment failures at the increase of payment amounts
is channel unbalancing. With σa equal to 5, the probability of failures for unbal-
anced channel was 1.85%. This occurs because large payments depleted channel
balances.

Finally, it is worth noticing that also the average payment time of successful
payments increased at the increase of payment amounts. In fact, since channels
became unbalanced, the payments bumping into an unbalanced channel were re-
attempted and for this reason took more time to succeed. However, also in these
simulations uncertainty characterized the results on payment time, as Table 5.10
shows. In fact, confidence intervals were larger and larger at the increase of σa. The
reason is that payments with the lowest amounts took less time to complete than
payments with largest amounts, which had to to be re-attempted multiple times.

Table 5.10: Mean, variance and confidence interval of payment time varying pay-
ment amounts

σa
T (ms)

µ σ2 Cmin Cmax

1 1391.92 4155.77 1343.93 1439.92
2 1427.54 3708.31 1384.72 1470.35
3 1611.93 2122.15 1587.42 1636.44
4 1816.37 2917.32 1782.68 1850.06
5 1949.87 8370.85 1853.20 2046.54
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5.2.6 Number of Payments
Table 5.11 shows the results of the simulations obtained varying the total num-

ber of payments executed during a simulation run (which lasts around 15 minutes).
It can be noticed that performance was good for each value of number of pay-

ments: the probability of payment success, in fact, is greater than 99.3% in each
case. The probability of payments failing for no balance in the channel was low.
The reason is that channel capacities are great enough to transfer payments of the
default amount without experiencing unbalancing (see Table 5.3 for the default
values of amounts and capacities).

Table 5.11: Simulation results varying the number of payments.

Nπ Ps Pfb

10,000 99.33% 0.19%
100,000 99.34% 0.13%

1,000,000 99.41% 0.07%

5.2.7 Number of Nodes
Table 5.12 shows the simulation results obtained varying the number of nodes,

in a totally decentralized network without hubs.
Also in this case, the network showed a good performance, as the probability of

payment success was over 99%. However, it can be noticed that the probability of
failure for unbalancing slightly increased at the increase of the number of nodes. In
fact, the larger the number of nodes, the lower the number of routes that connect
each pair of peers in the network. As a consequence, if a payment did not find
sufficient balance in a route, it may happen that an alternative route to the payment
receiver was not found.

Also the average route length increased with the increase of the number nodes
in the network. This is a consequence of the fact that, having more peers (randomly
connected among them), the network is larger.

Table 5.12: Simulation results varying the number of nodes.

Nn Ps Pfb
Lr (hops)

100,000 99.34% 0.13% 10.34
200,000 99.35% 0.11% 11.05
500,000 99.16% 0.22% 11.96
700,000 99.10% 0.26% 12.29

1,000,000 99.06% 0.33% 12.63
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5.2.8 Channel Capacity
Table 5.13 presents the results of the simulations varying the per-channel capac-

ity. It is important to highlight that in these simulations payment amounts were
fixed to the lowest level possible (i.e., σa= 1).

The payment network performance was good in all the cases, being the prob-
ability of payment success always around 99%. The simulation with the worst
performance (Ps= 98.37%) is the one with the lowest value of per-channel capacity.
In that case, the majority of payment failures was caused by channel unbalancing,
and the rest by the absence of routes with sufficient channel capacities. In addi-
tion, the average payment time reached around 2 seconds per payment: in fact,
with the lowest value of channel capacities, channels were subject to unbalancing,
and payments had to be re-attempted multiple times before succeeding.

Table 5.13: Simulation results varying channel capacity.

Cch (satoshi) Ps Pfr Pfb
T (ms)

100 98.37 0.51 0.81 2134.47
1,000 99.36 0.32 0.13 1404.00
10,000 99.35 0.31 0.13 1392.36
100,000 99.34 0.31 0.13 1391.92

1,000,000 99.34 0.31 0.13 1391.80

5.2.9 Gini Index
Table 5.14 shows the simulation results produced varying the Gini index. The

variation of the index did not cause changes in the probability of payment success.
The reason is that the average channel capacity (100,000 satoshis) was high enough
for the payment amounts simulated, and even a non-uniform distribution of the
capacity did not produce significantly low-capacity channels.

Table 5.14: Simulation results varying the Gini index.

G Ps

0.0 99.34
0.1 99.34
0.2 99.34
0.4 99.34
0.6 99.34
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5.3 Answer to RQ2 and Main Findings
The Research Question 2 of this work is: “Which is the impact of the simulator

input parameters on payment networks performance?”. Basing on the simulation
results discussed in this Chapter, the following answer is provided, for each simu-
lator input parameter:

• Channels per node Nch. The lower the number of channels per node, the
higher the probabilities of failures for no route and for unbalancing. However,
with 5 channels per node or more, the probability of payment success was
greater than 99%.

• Uncooperative nodes probability Pc̄b
. Uncooperative nodes cause payment

failures, but the impact is not particularly significant: in fact, only in the
worst case simulated, when the probability for a node to be uncooperative
was 10%, the payment success rate went below 99%.

• Network topology σt. A centralized topology reduces the average payment
time and the average route length with respect to a totally decentralized
topology. The probability of payment success, instead, resulted greater than
99% in both a centralized and a decentralized network.

• Same-recipient payments Fsr. The percentage of same-recipient payments
influences the probability of failures for channel unbalancing. Such impact
is significant only when the percentage is 50%, which causes around 16% of
failure for unbalancing.

• Payment amounts σa. An increase of payment amounts cause increases of
failures for absence of route and for unbalancing, and an increase of the av-
erage payment time. In the worst case, with σa set to 5, the probability of
payment success is around 91%.

• Number of payments Nπ. An increasing number of payments does not cause
any significant effect on the network performance.

• Number of nodes Nn. The number of nodes has a slight influence on the
probability of failures for unbalancing and on the average route length, which
both increase at the increase of nodes.

• Channel capacity Cch. The average channel capacity has a contained impact
on the failures for no route and for unbalancing, and also on the payment
mean time, which slightly increase when channel capacities decrease.

• Gini index G. The Gini index, which defines the distribution of capacity in
the channels, has no significant effect on the network performance.
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Finally, the main findings of the simulations on synthetic networks can be sum-
marized as follows.

Synthetic networks performance In general, synthetic networks perform well:
the probability of payment success, in fact, was close to 99% in almost all cases.
Therefore, it has been proved that the values of the network parameters used in this
set of simulations (e.g., the average channel capacity and the number of channels
per node) are good candidates as ideal reference values that network participants
should actively try to maintain in a distributed effort to keep the network in good
health.

Channels per node In a decentralized network with 100 thousands nodes, where
each node has only three active channels, a payment succeeded with probability
59.61%, i.e., much less than the 99% that can be reached with five active channels
per node. Therefore, at least five channels per node are needed to have a robustly
connected network.

Uncooperative nodes If a node is uncooperative once every 10 times, the prob-
ability for a payment to fail due to such uncooperative behavior was 11.83%. Hence,
the probability of uncooperative nodes (unless unrealistically high) does not con-
stitute a serious issue in the synthetic networks analyzed.

Network topology The average payment time in a totally decentralized topol-
ogy was approximately 1.4 seconds, i.e., nearly instantaneous. As to be expected,
the presence of well-connected hubs acting as payment gateways further reduced
the average payment time.

Payment amounts The higher the payment amounts, the higher the probability
of failure for absence of route and for channel unbalancing. With the highest level
of amounts (see Table 5.2 at σa= 5) the probability of payment success went down
to 91.43%.

Same-recipient payments Thousands of payments directed toward the same
recipient in a short time window determined the unbalancing of channels involved,
especially those closer to the payee. Merchants who expect to receive a significant
payment throughput should open many payment channels (more than the default
five), to prevent payment losses.
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Chapter 6

Network and Protocol
Modifications on the Lightning
Network Mainnet

This Chapter presents simulations conducted on the LN Mainnet whose goal is
to study the network performance when certain network and protocol modifications
are applied.

The protocol modifications analyzed are rebalancing approaches. They are im-
plemented to tackle the channel unbalancing, which turned out to be an issue from
the simulations results of Chapter 4.

The network modifications analyzed are of two separate types: removal of hubs
from the network; definition of classes of nodes (payees-only, payers-only, hybrids)
in order to simulate the typical scenario of few service-providers nodes that receive
payments for their services from the remaining nodes of the network.

All the simulation results presented in this Chapter are plotted with error bars:
the errors are computed using 95% confidence intervals of the mean values. Only the
most relevant results are discussed. The complete results are showed in Appendix
B.3.

This Chapter is organized as follows. Section 6.1 presents the LN mainnet
taken as reference for the simulations of this Chapter: the main features of this
network are showed and exploratory simulations conducted on this network are
discussed. Section 6.2 presents the simulations conducted when hubs are removed
from the LN mainnet. Section 6.3 discusses the rebalancing approaches and the
results produced when simulating these approaches on the LN mainnet. Section 6.4
presents the simulations on the LN mainnet with the classes of nodes that define
the service-providers scenario. Finally, Section 6.5 answers to Research Question 3
and discusses the main findings.
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6.1 The LN Mainnet
In all the simulations discussed in this Chapter, a snapshot1 of the LN mainnet

was analyzed. This Section presents the main features of the LN mainnet at this
snapshot (Section 6.1.1), exploratory simulations conducted on an optimal config-
uration for the LN mainnet (Section 6.1.2) and exploratory simulations conducted
on the LN mainnet (Section 6.1.3).

Figure 6.1: The LN mainnet on February 12th 2019.

6.1.1 Features of the Network
Figure 6.1 is a graphical view of the LN mainnet, where size of nodes is directly

proportional to their number of open channels. The LN presents the following
features:

• Number of nodes with at least one open channel: 3148;

1Downloaded on February 12nd 2019 at 16:36 CET from https://rompert.com/recksplorer/
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• Number of channels: 24683;

• Mean and standard deviation of channel capacity: 0.0267 BTC (mean), 0.04361
BTC (standard deviation).

With respect to the older snapshot on which the simulations described in Chap-
ter 4 were conducted (see Section 4.2), the LN mainnet has grown and the following
can be noticed: an increase of 157% of the number of nodes, an increase of 377%
of the number of channels and an increase of 600% of the mean channel capacity.

Table 6.1 shows the channel policies in the mainnet. For each policy, the table
shows also default value set when opening a channel with the lnd client.

Table 6.1: Channel policies in the LN mainnet.

Policy Mean STD Default value
Minimum HTLC (msat) 1034.79 40300.17 1000
Base fee (msat) 959.58 2504.26 1000
Proportional fee (msat) 671.66 22173.42 1
Timelock (blocks) 134.75 68.29 144

6.1.2 Optimal Configuration
In this Section a set of exploratory simulations are presented, whose aim was to

study the LN mainnet behavior in an optimal configuration for the network.
The optimal configuration is defined in the following way:

• The capacity of each LN mainnet channel is increased to 3 BTC.

• All channels are perfectly balanced (50% of the channel capacity for each
channel party).

• Only payments that are several orders of magnitude lower than the channel
capacities are simulated on such modified LN mainnet - specifically, payments
uniformly distributed between 1 and 105 satoshi.

• All nodes are always cooperative.

The behavior of the LN mainnet in the above-defined optimal configuration was
studied at different payment rates: Figure 6.2 shows the results of the simulations
in the optimal configuration. In particular, the Figure shows the probability of
payment success resulting from different payment rates. In addition, the optimal
configuration was compared with the original LN mainnet (with the original channel
capacities not increased to 3 BTC); the same payments of the optimal case were
simulated on the original mainnet.
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Figure 6.2: Probability of payment success in the optimal configuration and in the
original LN mainnet.

With regard to the optimal configuration, as expected, the probability of pay-
ment success was high: around 99.8% for each payment rate. As the complete
results in Appendix B.3 show (Table B.11), payments failed only for the absence of
a route. From an analysis of the raw-per-payment data produced by the simulator,
it was possible to notice that such payments failed in finding a route either because
there is no connection in the graph between the payment sender and the payment
receiver, or because they do not respect the minimum HTLC policy.

Instead, with regard to the simulations on the original mainnet, payment success
probability was around 10% lower than the optimal configuration. The reason of
failures are the absence of a route (around 8-9%) and channel unbalancing (1-2%).
The cause of such performance decline is that channel capacities of the original
LN mainnet are lower with respect to the capacities in the optimal configuration:
payments do not find a route with sufficient channel capacities, and low-capacity
channels are subject to unbalancing.

6.1.3 Simulation Results
This Section presents exploratory simulations conducted on the LN mainnet

with the goal of defining the variation intervals of the independent variables.
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Independent Variables The only independent variable considered for the sim-
ulations of this Chapter was the payment amounts tuner σa. The other simulator
input parameters were not considered as independent variables for the following
reasons:

• The network parameters are defined by the LN mainnet.

• The parameters concerning the probability of uncooperative nodes were fixed
to zero, since the uncooperative behavior of nodes was not under observation
in the simulations of this Chapter.

• The percentage of same-recipient payment was fixed to zero, since the network
behavior in the scenario of payments directed to only few nodes was studied
by simulations in Section 6.4.

• As Figure 6.2 shows, the payment success probability of the LN mainnet did
not significantly vary for different payment rates. Therefore, a fixed payment
rate was used. The value chosen is 100 payments per second, because it con-
stitutes the middle order of magnitude between 10 payments per second - the
Bitcoin transaction rate which the Lightning Network is supposed to over-
come - and 1000 payments per second - the payment rate of well-established
payment systems that the Lightning Network aspires to reach in the future.

Payment amounts variation interval The orders of magnitude of payment
amounts were chosen between 100 and 105 satoshis: the minimum was chosen be-
cause the default minimum HTLC policy is 1 satoshi, therefore payments lower
than 1 satoshi would almost certainly fail; the maximum was chosen to avoid to
produce payments higher than the average channel capacity of the LN mainnet.

The amount tuner σa sets the distribution of payment amounts in the above-
defined orders of magnitude. To define the limits of the variation interval of σa, the
following procedure was adopted: the lower limit of σa was set to 1, because this
value produces almost all payments of the lowest amount possible (1 satoshi); the
upper limit was chosen via simulations on the LN mainnet. In these simulations,
σa was increased until the probability of payment success went below 90%. This
is to avoid to use values of σa for which it is already known that they cause low
performance. Table 6.2 shows the distribution of payment amounts for each value
of the variation interval of σa defined as above.

Simulation results Figure 6.3 shows the results of the above-discussed simula-
tions on the LN mainnet varying σa. The probability of payment success was below
90% for σa= 8.0, so this value was chosen as upper limit of the variation interval.
When σa= 1, the probability of payment success was 99.81% and the only reason
of payment failures was for absence of route. While increasing σa, the failures for
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Table 6.2: Ratio of payments with a certain order of magnitude for each value of
σa.

Order of Magnitude (Satoshi) σa

1 2 3 4 5 6 7 8

100 97.44% 65.58% 42.93% 31.42% 26.64% 22.74% 21.12% 20.13%
101 2.55% 25.41% 26.97% 24.92% 21.86% 21.16% 19.98% 19.61%
102 0.01% 7.05% 16.15% 18.32% 18.50% 17.81% 17.58% 17.61%
103 0.0% 1.63% 8.61% 12.29% 15.19% 15.58% 16.08% 15.54%
104 0.0% 0.28% 3.82% 8.01% 10.16% 12.90% 13.50% 14.21%
105 0.0% 0.05% 1.52% 5.04% 7.65% 9.81% 11.74% 12.90%
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Figure 6.3: Payment success probability for each σa in the LN mainnet.

no route increased and some failures were also due to unbalancing and to payment
timeout expiration. In general, the most occurring reason for failures was the ab-
sence of route (around 8%), while channel unbalancing was the cause of around 2%
for the highest values of σa analyzed.

As already discussed in other simulations, the reason of this behavior is that
payments with increasing amounts did not find a route with sufficient channel
capacities, and also caused channel unbalancing.

Other interesting results coming from the simulations on the LN mainnet are the
average payment time and the average payment route length, showed in Appendix
B.3 (Table B.12). With regard to the first, it increased with the increase of payment
amounts (because channels unbalance and payment needs to be re-attempted), but
it is never higher than 525 milliseconds. The average payment route length is always
around 3.3 hops.
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6.2 Hubs
This Section discusses a set of simulations which analyzed the LN mainnet

performance when hubs of the network were removed. The goal was to understand
how hubs influence the LN mainnet.

Identification of hub In network science, a hub is a node characterized by a
high degree [2], i.e. a high number of connections. In this work, the first six nodes
of the LN mainnet ordered by number of channels are considered as hubs.
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Figure 6.4: Number of channels per node of the first 50 most connected LN nodes.

Figure 6.4 is the bar plot of the number of channels per node in decreasing order
for the first 50 most connected nodes. The reason of choosing the first 6 nodes as
hubs is justified by the fact that there is the highest step between the sixth and the
seventh node: the seventh node has 159 less channels than the sixth. The chosen
hubs have in total 4695 channels, that constitute around 20% of the total number
of channels in the LN mainnet.

Simulation strategy The simulation strategy adopted for studying the influ-
ence of hubs in the network consisted in disconnecting one-by-one the hubs and in
running a simulation on the resulting network without those hubs. From the LN
mainnet, the first hub (the one having the highest number of channels) was removed
with all its channels and a simulation was performed on the network without that
hub. Then, from the network without the first hub, the second hub was removed
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and a simulation was run on the resulting network (namely, the LN mainnet lacking
of the first and second hub). The same process was repeated until all hubs were
removed.

The only independent variable of these simulations was the number of discon-
nected hubs, as the objective of the simulation was to analyze their impact on
performance. The payment amount parameter σa was fixed to 4, as it represents
the middle of its variation interval defined in Section 6.1.3 .
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Figure 6.5: Payment success probability when removing hubs in the LN mainnet.

6.2.1 Simulation Results
Figure 6.5 shows the probability of payment success when varying the number

of hubs removed from the LN mainnet. As already mentioned, in each simulation
σa was fixed to 4 (see Table 6.2 for the corresponding distribution of payment
amounts).

The payment success rate is not significantly affected by the presence of hubs:
when all the hubs and their channels were connected, such rate was 95.2%, while
when all hubs were disconnected, it was 94.98%, that means a decrease of around
0.2%. Such decrease was entirely caused by payments that did not find a route.

The most visible effect resulting from hubs removal was a slight increase of the
average route length, as Figure 6.6 shows: from 3.34 to 3.62 number of hops.
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Figure 6.6: Average payment route length when removing hubs in the LN mainnet.

6.3 Rebalancing Approaches
In this Section, two different rebalancing approaches are described, whose objec-

tive is to rebalance channels, thus avoiding that payments fail because of unbalanced
channels. After implementing the rebalancing approaches in the simulator, some
simulations were performed to understand whether the approaches are effective,
namely, whether they succeed in reducing the probability of failures for unbalanc-
ing. Two different rebalancing approaches has been designed in this work: active
and passive rebalancing.

Active rebalancing The active rebalancing consists in executing a payment with
the purpose of rebalancing channels. If a node has a channel with low balance and
also another channel with high balance, it executes a rebalancing payment, which
transfers funds from its high-balance channel to its low-balance channel.

Consider the situation in Figure 6.7 . In the channel with Carola, Alice has a
low balance (10% of the total channel capacity), while in the channel with Berto she
has a high balance (90% of the total channel capacity). Therefore, she performs
a rebalancing payment that moves 0.4 BTC from the channel with Berto to the
channel with Carola. In this way, the channel with Carola will result balanced, as
she and Carola will own both 50% of the total channel capacity.

The active rebalancing implemented in the simulator is triggered when a channel
balance goes below 20% of the total channel capacity. The amount transferred with
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Alice Berto Carola Alice

BA = 0.9 BTC
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Alice-Berto 
Channel
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Carola-Alice 
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Figure 6.7: Rebalancing payment in the active rebalancing approach.

the rebalancing payment is the amount necessary to increase the channel balance
up to the 50% of the channel capacity.

The active rebalancing approach fails in the following cases:

• When the node with a low-balance channel does not have any candidate
channel for rebalancing. The candidate channel must satisfy two conditions:
(i) the node’s balance in that channel must be greater than half of the total
channel capacity; (ii) the node’s balance in that channel must be sufficient to
transfer the rebalancing payment amount.

• When the rebalancing payment fails for no route (in the example of Figure
6.7, when there is no route between Berto and Carola).

• When the rebalancing payment fails because there is not enough balance in
the channels of the found route (in the example of Figure 6.7, when one or
more channels in the route between Berto and Carola have a balance lower
than 0.4 BTC).
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For the sake of simplicity, it is assumed that rebalancing payments are executed
instantly and no fees are charged to them.

Passive rebalancing The passive rebalancing consists in adjusting the fee policy
of a channel according to the channel balance, in a way that fee amount is inversely
proportional to channel balance. The rationale of this approach is to encourage
payments to traverse channels with high balances. In fact, the Dijkstra’s algo-
rithm used for finding a route for a payment tends to prefer routes with lower fees:
therefore, if fee is kept inversely proportional to balance, payments should tend to
traverse channels with high balances and to avoid channels with low balances. A
linear function is used to map channel balance to channel fee policy.

Simulation strategy To study the effectiveness of the rebalancing approaches
discussed, some simulations were performed using a version of the simulator that
implements the approach under observation. For each rebalancing approach, mul-
tiple simulations were conducted varying σa. The LN mainnet described in Section
6.1 was given in input to the simulator in these simulations.

6.3.1 Simulation Results
Active rebalancing Figure 6.8 shows the probability of payment failures for
unbalancing when active rebalancing is implemented, compared with the case in
which no rebalancing approach is implemented.

As it can be noticed, the difference of the two cases is slight: the probability of
payment failures were almost the same in both cases.

The low effectiveness of the active rebalancing is caused by the fact that most of
the attempts of rebalancing did fail. Table 6.3 shows, for each value of the payment
amount tuner σa, the total number of active rebalancing attempts, the percentage
of succeeded and the percentages of failed for each of the three causes explained
above (absence of a candidate channel for unbalancing, failure of the rebalancing
payment for no route, failure of the rebalancing payment for no balance). The Table
shows that for any σa, just a few rebalancing attempts succeeded: at maximum
around 16%. The majority of attempts failed because there was not enough balance
to transfer the rebalancing payments. A substantial part also failed because a
candidate channel from which executing the rebalancing payment was not found.
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Figure 6.8: Probability of payment failures for unbalancing with/without active
rebalancing in the LN mainnet.

Table 6.3: Rebalancing attempts.

σa Attempts Succeeded (%) No channel (%) No route (%) No balance (%)

1 1726 4.06 20.74 2.84 72.36
2 3644 9.03 27.72 2.00 61.25
3 22067 11.48 21.52 2.56 64.44
4 36032 12.89 25.85 2.81 58.44
5 44819 16.32 23.11 2.08 58.49
6 52079 16.05 24.71 2.16 57.07
7 52557 15.52 27.16 2.47 54.85
8 57013 15.87 27.51 2.64 53.99

From that follows that the active rebalancing approach implemented is not
effective for two reasons: mainly because channels with not sufficient balance in
the network cause failures of the rebalancing payments; secondarily, because a
candidate channel for executing the rebalancing payment is not found.

Passive rebalancing Figure 6.9 shows the probabilities of failures for unbal-
ancing with and without the passive rebalancing approach. Passive rebalancing
is more effective than active rebalancing: the probability of failures for unbalanc-
ing was lower than the case without rebalancing for any value of σa.In particular,
failures for unbalancing decreased of about one fourth in each case when passive
rebalancing is implemented.
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Figure 6.9: Probability of payment failures for unbalancing with/without passive
rebalancing in the LN mainnet.

Passive rebalancing causes also a slight increase of failures for no route, as results
in Appendix B.3 show (Table B.15). The reason for such increase is that certain
payments had to pay higher fees than in the case without passive rebalancing:
these payments failed when there were not sufficient capacities in the channels for
transferring the payment amounts plus the increased fees. However, the decrease
of failures for no balance was greater with respect to the increase of failures for no
route, hence passive rebalancing remains effective.

6.4 Service-Providers Scenario
In this Section the LN mainnet was studied in the service-providers scenario.

The service-providers scenario is a typical case of use of the Lightning Network, in
which a few nodes in the network (service providers) are payees only, as they are
paid for their services. The majority of network nodes, instead, are payers only, as
they send payments to the service providers.

The goal of the simulations in the service-providers scenario was to understand
whether the LN mainnet can support this typical case of use in which most of the
payments are directed only to a few service-providers nodes.
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Classes of nodes To configure the scenario, three classes of nodes were set in
the LN mainnet:

• Payees: they represent the service providers, namely, nodes that only receive
payments. They are nodes directly connected to one of the six hubs of the
LN mainnet (according to the identification of hub made in Section 6.2).
The reason of this choice is that it is convenient for a service provider to be
connected to a hub, as also many other nodes are connected to the hub and
therefore their payments can easily reach the provider. The service providers
are expected to be a minority, so the payees are 10% of the nodes directly
connected to a hub. In addition, each payee was chosen in a way that, in the
channel with the hub, the hub’s balance is higher than the payee’s balance,
to avoid that payments flowing through the hub directed to the payee fail for
not sufficient balance. Payees are 188 nodes in total.

• Payers: they are the nodes than only send payments. For the same reason of
having an efficient connection to the service providers, also payers are directly
connected to a hub. Therefore, they constitute the remaining nodes connected
to a hub which are not payers: in total, they are 1781.

• Hybrid nodes: they are nodes that both send and receive payments. They are
the remaining nodes of the LN mainnet which do not belong to the categories
of payees and payers: they are 1179 nodes in total.

In the simulations on the LN mainnet where the above-defined classes of nodes
were set, 80% of the simulated payments flowed from payers to payees, while the
rest was exchanged among hybrid nodes, in order to preserve a certain level of
traffic in the network not directed to the service providers.

Simulation strategy To study the performance of the LN mainnet in the service-
providers scenario, multiple simulations were run varying σa in the defined interval.
The LN mainnet with the above-defined classes of node was given in input to the
simulator in each simulation.

6.4.1 Simulation Results
Figure 6.10 shows the probabilities of payment success of the simulations in the

service-providers scenario, comparing it to the normal scenario (where no classes of
nodes were set in the LN mainnet).

It can be noticed that, as payment amounts increased, the success rate in the
service-provider scenario decreased, up to around 66%. The main reason of payment
failures is channel unbalancing, which in the worst case (in correspondence to the
highest σa) reached a probability of around 26% (see results in Appendix B.3, Table
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Figure 6.10: Payment success probability in the service-providers scenario in the
LN mainnet.

B.16). Such high probability of failures is due to the fact that, since payments
were mostly directed to a few nodes, channels connecting to the nodes became
unbalanced.

For this same reason, it can be noticed an increase of average payment attempts
necessary before a payment succeeded, as Figure 6.11 shows. In fact, since payments
bumped into unbalanced channels, they had to be re-attempted more and more
times. In addition, it can be noticed that error bars increased at the increase of
σa. The cause is that payments of lowest amounts required less attempts to be
completed with respect to payments with highest amounts.

6.5 Answer to RQ3 and Main Findings
Research Question 3 of this work is: “How do network and protocol modifica-

tions affect performance of the LN mainnet?”. According to the simulation results
discussed in this Chapter, the following answer to RQ3 is provided:

• Protocol modifications. Two different rebalancing approaches were analyzed
to tackle channel unbalancing: active rebalancing, which consists in execut-
ing payments that rebalance channels; passive rebalancing, which consists
in adjusting fees to direct payments toward balanced channels. The active
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Figure 6.11: Average payment attempts in the service-providers scenario in the LN
mainnet.

rebalancing had an irrelevant impact on rebalancing, as most of the rebalanc-
ing payments failed, mainly because there were not sufficient balance in the
channels of the routes traversed by the rebalancing payments. The passive
rebalancing, instead, was effective, as it reduced the failures for unbalanced
channels of about one fourth with respect to the case in which no rebalancing
approach is implemented.

• Network modifications. The network modifications applied to the LN mainnet
were: removal of hubs from the network; definition of classes of nodes (payee,
payers and hybrid) to represent the service-providers scenario. For what
concerns hubs, disconnecting them from the network did not have a significant
impact on the performance, as the probability of payment success decreased
by 0.2% when all hubs were removed. With regard to the service-providers
scenario, a noticeable part of payments failed for unbalancing (around 26%
when the highest level of payment amounts were simulated), as channels
directing to the payees became unbalanced.

In the following, the main findings of the simulations described in this Chapter
are discussed.

Rebalancing The passive rebalacing strategy which adapts fees to channel bal-
ance may be a promising solution to address channel unbalancing. In the future

84



6.5 – Answer to RQ3 and Main Findings

work, some improvements of the approach can be explored. For example, a non-
linear function can be used for fee-balance mapping, which is characterized by a
steeper slope and sets decreasing fees as a channel balance increases.

The version of active rebalancing implemented does not significantly reduce un-
balancing. Since most of the rebalancing payments failed for not sufficient balance
in the channels of their route, a possible solution could be to re-attempt the re-
balancing payments multiple times, until a suitable route with enough balances is
found.

Hubs The LN mainnet results resilient to disconnection of hubs: even when the
first six nodes with the highest number of channels (that together constitute the 20%
of the total channels) were removed from the network, the probability of payment
success did not significantly decrease.

However, in this investigation the hubs considered were only the ones having
an high number of channels. In future work, eigenvector centrality and other cen-
trality measures will be used to identify the most central network nodes. To study
their influence on the network performance, simulations will be run removing the
identified central nodes.

Service-providers scenario In the service-providers scenario, channel unbal-
ancing causes a significant amount of payment failures. In the future work, the
passive rebalancing approach discussed in this Chapter can be implemented in the
service-providers scenario, to understand whether it succeeds in reducing the fail-
ures. In general, to address this issue, service-provider nodes, which are supposed
to receive many payments, are encouraged to open as many channels as possible.
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Chapter 7

Conclusions and Future Work

Payment channel networks are the most explored solution to the largely dis-
cussed issue of blockchain scalability. They are networks of payment channels which
enable off-blockchain payments. The Lightning Network is the mainstream and
most developed payment channel network, built on top of the Bitcoin blockchain.
It leverages the HTLC contract to execute off-chain payments. The Lightning Net-
work is in its early stage of development and presents critical features that are
worth being thoroughly studied, such as the limit imposed by channel capacities to
payment amounts, channel unbalancing and uncooperative behavior of nodes.

In this work CLoTH was introduced, a simulator for HTLC payment networks.
The CLoTH simulator is a discrete-event simulator which simulates payments on
HTLC payment networks and produces performance measures such as probability
of payment failure and mean payment complete time. CLoTH is a precise and
complete mapping of LN code functions that implement an HTLC payment net-
work: this constitutes the originality of the simulator and guarantees the validity
of simulation results. The CLoTH simulator allows systematic analyses of HTLC
payment networks.

This work aimed to analyze capabilities and limitations of payment channel net-
works using CLoTH. Three groups of simulations were discussed: simulations on a
snapshot of the LN mainnet dating back to June 2018, in order to find possible non-
operative cases, i.e., cases in which a payment is more likely to fail than to succeed;
simulations on synthetic networks generated by the simulator, to study the effect
of the simulator input parameters on payment network performance; simulations
on a snapshot of the LN mainnet dating back to February 2019, whose goal was to
analyze the impact of network and protocol modifications on performance.

The first group of simulations has shown that the non-operative cases of the
LN mainnet are manly caused by insufficient channel capacities and by channel
unbalancing. In fact, when the majority of the simulated payments was between 1
and 104 satoshis and the remaining ones (around 15%) were between 105 and 107

satoshis, around 46% of payments failed because a route with sufficient channel
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capacities was not found and around 7% failed because of channel unbalancing. In
addition, when the payment rate was set to 100 payments per second, around 25%
of payments failed because of insufficient capacities and around 31% failed because
of channel unbalancing.

The investigation of synthetic networks has proved that the analyzed networks
are characterized by a good performance: the probability of payment success re-
sulted close to 99% in almost all the simulated configurations. Other important
findings of these simulations are that in a totally decentralized network without
hubs, each node should have a least five open channels to guarantee a well con-
nected network, and that uncooperativeness of nodes does not represent a serious
issue in the synthetic networks simulated.

Simulations on protocol modifications have found that the passive rebalancing
approach based on fee adjustment reduces by one fourth the probability of fail-
ures for unbalancing. Simulations on network modifications revealed that the LN
mainnet was resilient to the removal of six hubs, as the probability of payment
success decreased only by 0.2% when all the hubs are removed. Moreover, they
have shown that, in a typical case of use of the LN in which most of the payments
were directed to a few service providers node, up to 26% of payments failed because
channel directing to the service providers become unbalanced.

This work, therefore, systematically individuated some of the strong points and
limitations of the Lightning Network at its current stage of development. With
regard to the strong points, the Lightning Network is resilient to the removal of
network hubs and tolerates a contained level of node uncooperativeness. On the
other hand, the main limitations of the Lightning Network concern the limited
channel capacities and channel unbalancing. Channel capacities strictly limit the
amounts of payments that can be exchanged in the network. Also in the most recent
snapshot of the network analyzed (dating back to February 2019), when around 60%
of simulated payments were between 1 and 103 satoshis and the remaining ones
between 104 and 105 satoshis, probability of payment success resulted below 90%,
and the main reason of payment failures was the impossibility of finding a route
with sufficient channel capacities to transfer the payments. Channel unbalancing
causes payment delays - as payments need to be re-attempted when they bump
into an unbalanced channel - and payment failures, especially noticeable in the
service-provider scenario. The passive rebalancing approach proposed in this work
represents a viable solution to address the issue of unbalancing.

The most important contribution of this work is CLoTH, a valuable tool that
supports the development of payment channel networks by systematically analyzing
their issues, the viable solutions and their evolution. In fact, the investigations
presented in this thesis are only the first of a long series that can be conducted
using the CLoTH simulator.

In this work, the simulator was effectively used for analyzing protocol modifi-
cations concerning rebalancing. In future work, further protocol modifications will
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be studied. For instance, to reduce payment failures caused by insufficient chan-
nel capacities, the approaches that split a large payment into small ones will be
implemented in CLoTH and examined.

CLoTH is also able to simulate attack scenarios in the Lightning Network. In
future work, attacks executed by uncooperative nodes will be studied, specifically
by nodes that uncooperatively behave after establishing an HTLC. Such nodes, in
fact, may cause large delays of payments and lock of funds in the network.

Finally, some improvements will be done to the simulator itself. Currently,
CLoTH does not simulate the blockchain underlying the payment channel network.
In future work, the blockchain will be introduced in the simulator, to study its
interactions with the payment network (e.g., the opening and closure of payment
channels). Moreover, an analysis of the simulator execution made possible to iden-
tify in the repeated local and sequential application of the Dijkstra’s algorithm the
performance bottleneck of the simulator. In future work, this limitation will be ad-
dressed by making the simulator completely multi-thread and by distributing the
computation on a cluster of machines. Simulator performance improvement will
permit to conduct additional simulations, specifically on large synthetic networks,
to experimentally study and steer the evolution of payment channel networks.
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Appendix A

Reference Code Functions

This Chapter describes the details of the lnd code taken as reference to de-
velop CLoTH. In lnd, there are two main code structures which manage payments:
Switch and Link. Switch is the messaging bus of HTLC messages: it is in charge of
forwarding HTLCs or redirecting HTLCs initiated by the local node to the proper
functions. Link is the service which drives a channel commitment update procedure
according to the HTLCs that concern the channel. In the following, the functions
included in the call graph in Figure 3.1 are described.

• SendPayment. As shown by the numbers in the arrows, which represent the
order of function calls, this function first tries to find possible routes to trans-
fer the payment to the receiver and then tries to send the payment through
one of the routes found. If the payment fails, it re-attempts the payment
through another viable route.

• RequestRoute. It attempts to find candidate routes which can route the
payment to the receiver.

• findPath. It runs the Dijkstra’s algorithm, using timelock and fee as distance
metric. In fact, each channel endpoint has a policy which defines the timelock
and the fee that will be applied to any HTLC forwarded by that endpoint.
The higher the timelock and the fees in the endpoint policy, the higher the
distance.

• newRoute. It attempts to transform a path into a route. A route is a path
which connects sender and receiver and which can also transfer the payment.
A path is considered capable of transferring a payment if all channels in the
path have a capacity greater than or equal to the payment amount, consid-
ering also fees. Fee is the amount of funds a channel endpoint withholds as a
reward for forwarding a payment through that channel.
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• handleLocalDispatch. Function of the Switch that processes HTLCs rela-
tive to payments initiated by the local node. This function returns an error
if there are no channels to the next hop with enough balance to forward the
payment.

• handleLocalResponse. Function of the Switch the processes the result of a
payment initiated by the local node. It receives an HTLCFail or HTLCFulfill
message and it propagates them back to SendPayment.

• handlePacketForward. Function of the Switch that processes HTLCs of
payments initiated by other nodes and to be forwarded by the local node.
It produces an HTLCFail if no channel to the next route hop has enough
balance to forward the payment, or if the local node policy is not respected.
The HTLCFail message is then sent back to the payment sender.

• handleDownStreamPkt. Function of the Link which processes HTLCs coming
from the Switch. It produces an HTLCFail if the channel does not have
enough balance to forward the payment.

• handleUpStremMsg. Function of the Link, the first called by a node upon the
reception of an HTLC message by another node.

• SendMessage. Function to send an HTLC message from a node to another
over the network.

• processRemoteAdds. It processes an HTLCAdd and checks for possible errors.
When called by the payment receiver, the function decides whether to accept
or not the payment.

• processRemoteSettleFails. It processes an HTLCFail or HTLCFulfill and
checks for possible errors.
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Appendix B

Complete Simulation Results

B.1 Simulations on the Lightning Network Main-
net

Table B.1 shows the complete results of the first group of simulations on the LN
mainnet, discussed in Chapter 4. In each entry of the table, all the independent
variables and the output performance measures of the simulations are shown. Only
the mean values of the performance measures are presented. The results containing
also variances and confidence intervals are available online1.

Table B.1: Complete simulation results on the LN mainnet (snapshot of June 2018).

rπ

(pay/s)
σa Fsr Pc̄b

Ps Pfr Pfb
Pfc̄ Pk̄ T

(ms)
Lr

(hops)
Natt

10 5 0% 0.00% 46.13% 46.11% 7.72% 0.00% 0.03% 388.29 3.17 1.28
10 4 0% 0.00% 50.77% 41.18% 8.00% 0.00% 0.05% 386.36 3.18 1.30
10 3 0% 0.00% 56.87% 33.81% 9.30% 0.00% 0.02% 383.32 3.19 1.31
10 2 0% 0.00% 63.35% 26.63% 9.96% 0.00% 0.06% 373.91 3.16 1.32
10 1 0% 0.00% 65.43% 24.40% 10.11% 0.00% 0.06% 367.83 3.15 1.30
100 1 0% 0.00% 43.88% 25.17% 30.92% 0.00% 0.03% 483.11 3.08 2.30
10 1 50% 0.00% 69.54% 18.81% 11.61% 0.00% 0.04% 467.34 3.36 1.37
10 1 50% 10.00% 57.10% 18.80% 9.21% 14.84% 0.04% 931.53 3.38 1.57
10 1 0% 10.00% 55.21% 24.31% 8.51% 11.92% 0.05% 903.01 3.15 1.51
10 4 0% 10.00% 38.27% 46.10% 6.47% 9.14% 0.02% 902.54 3.16 1.43
10 3 0% 10.00% 47.71% 33.78% 7.66% 10.82% 0.03% 923.16 3.18 1.51
10 2 0% 10.00% 53.64% 26.56% 7.85% 11.91% 0.05% 862.70 3.16 1.51
10 1 0% 10.00% 55.22% 24.30% 8.50% 11.93% 0.05% 902.83 3.15 1.51
10 4 0% 1.00% 49.84% 41.17% 7.95% 0.99% 0.05% 443.00 3.18 1.32
10 4 0% 0.10% 50.79% 41.15% 7.98% 0.06% 0.02% 391.34 3.18 1.29

1https://researchdata.nexacenter.org/payment-network-simulator/LN-mainnet-results.zip
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B.2 Simulations on Synthetic Networks
Tables B.2 to B.10 show the complete results of the simulations on synthetic net-

works discussed in Chapter 5. Each Table shows the output performance measures
obtained when varying a specific independent variable. Only the means of the out-
put measures are presented. The results containing also variances and confidence
intervals are available online2.

Table B.2: Complete simulation results varying number of channels per node.

Nch Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

3 59.61% 23.34% 16.77% 0.08% 0.20% 2052.47 16.80 1.44
5 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
8 99.82% 0.01% 0.00% 0.01% 0.16% 1112.63 8.33 1.51
11 99.86% 0.00% 0.00% 0.01% 0.14% 992.46 7.56 1.47

Table B.3: Complete simulation results varying uncooperative nodes probability.

Pc̄b
Ps Pfr Pfb

Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

0.00% 99.36% 0.31% 0.13% 0.00% 0.19% 1388.51 10.34 1.55
0.01% 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
0.10% 99.27% 0.31% 0.13% 0.10% 0.19% 1432.59 10.34 1.57
1.00% 98.32% 0.32% 0.12% 1.04% 0.20% 1841.17 10.38 1.72
10.00% 87.47% 0.32% 0.08% 11.84% 0.28% 9795.14 10.82 4.55

Table B.4: Complete simulation results varying network topology.

σt Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

0 99.88% 0.00% 0.06% 0.01% 0.05% 333.16 2.90 1.16
1 99.85% 0.00% 0.07% 0.01% 0.08% 536.83 4.13 1.35
10 99.83% 0.00% 0.07% 0.01% 0.09% 695.73 5.56 1.36
inf 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55

2https://researchdata.nexacenter.org/payment-network-simulator/synthetics-results.zip
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Table B.5: Complete simulation results varying percentage of same-recipient pay-
ments.

Fsr Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

0% 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
10% 99.37% 0.30% 0.13% 0.01% 0.20% 1392.85 10.31 1.56
20% 99.39% 0.29% 0.12% 0.01% 0.20% 1450.04 10.44 1.62
40% 99.43% 0.25% 0.10% 0.01% 0.20% 1473.14 10.37 1.67
50% 83.45% 0.26% 16.06% 0.04% 0.19% 1458.47 10.65 1.88

Table B.6: Complete simulation results varying payment amounts.

σa Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

1 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
2 99.13% 0.48% 0.19% 0.01% 0.19% 1427.54 10.36 1.63
3 96.80% 2.30% 0.65% 0.03% 0.23% 1611.93 10.40 2.25
4 93.69% 4.67% 1.33% 0.04% 0.26% 1816.37 10.42 2.98
5 91.43% 6.40% 1.85% 0.05% 0.27% 1949.87 10.45 3.47

Table B.7: Complete simulation results varying number of payments.

Nπ Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

10,000 99.33% 0.21% 0.19% 0.02% 0.25% 1529.99 10.48 1.76
100,000 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
1,000,000 99.41% 0.31% 0.07% 0.01% 0.19% 1273.09 10.22 1.35

Table B.8: Complete simulation results varying number of nodes.

Nn Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

100,000 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
200,000 99.35% 0.30% 0.11% 0.01% 0.24% 1559.50 11.05 1.68
500,000 99.16% 0.37% 0.22% 0.01% 0.24% 1777.99 11.96 1.85
700,000 99.10% 0.36% 0.26% 0.01% 0.26% 1858.46 12.29 1.90
1,000,000 99.06% 0.33% 0.33% 0.01% 0.28% 1948.26 12.63 1.96

Table B.9: Complete simulation results varying channel capacity.

Cch

(satoshi)
Ps Pfr Pfb

Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

100 98.37% 0.51% 0.81% 0.03% 0.27% 2134.47 10.17 3.98
1,000 99.36% 0.32% 0.13% 0.01% 0.18% 1404.00 10.33 1.58
10,000 99.35% 0.31% 0.13% 0.01% 0.20% 1392.36 10.34 1.56
100,000 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
1,000,000 99.34% 0.31% 0.13% 0.00% 0.21% 1391.80 10.34 1.55
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Table B.10: Complete simulation results varying Gini index.

G Ps Pfr Pfb
Pfc̄ Pk̄ T (ms) Lr

(hops)
Natt

0.00 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
0.10 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
0.20 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
0.40 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55
0.60 99.34% 0.31% 0.13% 0.00% 0.21% 1391.92 10.34 1.55

B.3 Network and Protocol Modifications on the
Lightning Network Mainnet

Tables B.11 to B.16 show the complete results of the simulations on network
and protocol modifications discussed Chapter 6. Each Table shows the independent
variable and the output performance measures (Pk̄ and Pfc̄ are omitted since they
are always zero). Only the mean values of the performance measures are presented.
The results containing also variances and confidence intervals are available online3.

Table B.12: Complete simulation results on the LN mainnet (snapshot of February
2019).

σa Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

1 99.81% 0.19% 0.00% 0.00% 365.35 3.36 1.00
2 99.72% 0.26% 0.03% 0.00% 368.21 3.34 1.01
3 98.09% 1.48% 0.42% 0.01% 377.79 3.35 1.05
4 95.20% 3.63% 1.16% 0.01% 389.82 3.34 1.12
5 92.90% 5.36% 1.72% 0.03% 399.67 3.33 1.18
6 91.35% 6.57% 2.06% 0.02% 407.18 3.34 1.21
7 90.07% 7.46% 2.43% 0.03% 415.68 3.34 1.25
8 89.26% 8.23% 2.48% 0.03% 418.40 3.34 1.27
9 88.85% 8.45% 2.67% 0.03% 422.05 3.34 1.28
10 88.31% 8.94% 2.73% 0.03% 425.98 3.33 1.30

Table B.13: Complete simulation results varying number of hubs removed Nn̄.

Nn̄ Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

0 95.20% 3.63% 1.16% 0.01% 389.82 3.34 1.12
1 95.29% 3.53% 1.17% 0.01% 399.07 3.44 1.10
2 95.19% 3.64% 1.16% 0.01% 405.77 3.47 1.11
3 94.98% 3.82% 1.18% 0.02% 403.79 3.52 1.11
4 95.02% 3.79% 1.17% 0.02% 422.68 3.58 1.15
5 94.79% 3.93% 1.26% 0.03% 431.99 3.61 1.15
6 94.98% 3.83% 1.17% 0.02% 431.26 3.62 1.15

3https://researchdata.nexacenter.org/payment-network-simulator/network-protocol-
modification-results.zip
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Table B.11: Complete simulation results in the optimal configuration.

(a) Optimal configuration.

rπ (pay/s) Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

10 99.80% 0.20% 0.00% 0.00% 361.98 3.30 1.00
20 99.85% 0.15% 0.00% 0.00% 362.02 3.30 1.00
30 99.85% 0.15% 0.00% 0.00% 361.51 3.30 1.00
40 99.84% 0.16% 0.00% 0.00% 361.24 3.30 1.00
50 99.85% 0.15% 0.00% 0.00% 361.72 3.30 1.00
60 99.85% 0.15% 0.00% 0.00% 361.96 3.30 1.00
70 99.84% 0.16% 0.00% 0.00% 361.75 3.30 1.00
80 99.84% 0.16% 0.00% 0.00% 361.94 3.30 1.00
90 99.84% 0.16% 0.00% 0.00% 362.29 3.30 1.00
100 99.84% 0.16% 0.00% 0.00% 362.40 3.30 1.00

(b) Original LN mainnet.

rπ (pay/s) Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

10 88.89% 9.07% 1.97% 0.07% 403.23 3.33 1.17
20 88.77% 9.09% 2.07% 0.07% 407.25 3.33 1.20
30 88.72% 8.98% 2.24% 0.06% 408.09 3.33 1.21
40 88.65% 8.98% 2.33% 0.05% 411.61 3.33 1.23
50 88.53% 9.00% 2.43% 0.04% 412.96 3.33 1.24
60 88.46% 8.98% 2.52% 0.04% 417.99 3.33 1.26
70 88.45% 8.94% 2.58% 0.04% 418.73 3.33 1.27
80 88.31% 8.99% 2.66% 0.04% 420.71 3.33 1.28
90 88.26% 9.02% 2.69% 0.03% 422.83 3.33 1.29
100 88.31% 8.94% 2.73% 0.03% 425.98 3.33 1.30

Table B.14: Complete simulation results with active rebalancing.

σa Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

1 99.81% 0.19% 0.00% 0.00% 365.36 3.36 1.00
2 99.72% 0.26% 0.03% 0.00% 366.84 3.35 1.00
3 98.09% 1.48% 0.42% 0.01% 374.89 3.35 1.04
4 95.21% 3.63% 1.15% 0.01% 384.31 3.34 1.09
5 92.88% 5.36% 1.74% 0.02% 394.81 3.34 1.14
6 91.34% 6.57% 2.07% 0.03% 402.97 3.35 1.18
7 90.08% 7.46% 2.42% 0.03% 408.09 3.35 1.20
8 89.26% 8.23% 2.48% 0.03% 412.69 3.35 1.22

Table B.15: Complete simulation results with passive rebalancing.

σa Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

1 99.81% 0.19% 0.00% 0.00% 311.83 2.85 1.00
2 99.72% 0.26% 0.02% 0.00% 313.15 2.86 1.00
3 98.13% 1.52% 0.35% 0.00% 320.75 2.92 1.01
4 95.31% 3.83% 0.86% 0.00% 330.26 2.98 1.02
5 93.04% 5.64% 1.32% 0.00% 330.81 3.00 1.02
6 91.65% 6.80% 1.55% 0.00% 336.62 3.02 1.03
7 90.40% 7.81% 1.79% 0.00% 337.94 3.03 1.03
8 89.63% 8.52% 1.84% 0.00% 338.94 3.03 1.04
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Table B.16: Complete simulation results in the service-providers scenario.

σa Ps Pfr Pfb
Pt̄ T (ms) Lr (hops) Natt

1 99.89% 0.11% 0.00% 0.00% 340.62 3.13 1.00
2 98.78% 0.14% 1.09% 0.00% 350.62 3.13 1.04
3 88.49% 1.13% 10.36% 0.01% 455.52 3.22 1.46
4 78.96% 2.87% 18.07% 0.10% 593.20 3.24 2.02
5 73.56% 4.43% 21.71% 0.30% 687.33 3.26 2.44
6 69.74% 5.60% 24.12% 0.55% 746.51 3.28 2.69
7 66.90% 6.23% 26.17% 0.70% 829.97 3.30 3.03
8 66.30% 6.86% 26.10% 0.74% 867.99 3.30 3.20
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