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Abstract

Significant research efforts have been devoted in recent years to the problem
of designing a control system under the assumption that a mathematical
model for the plant is not available. In particular, several interesting results
have been obtained through the direct data-driven controller (DDDC) design
approach, that is the direct design of the controller from a set of input-output
experimental data characterizing the plant behaviour.

The DDDC design approach has a wide representation capability for designing
the controller for different dynamical systems and this framework of the
DDDC approach is also recently supported by a well worked out research
and some industrial applications. Despite the advances of the DDDC field,
designing of such a controller without the availability of a mathematical model
is still in its immature state, due to many open problems of DDDC design
theory. One of the most important problem in the DDDC approach is that, in
practice, the available experimental data is always imperfect, as it is affected by
measurement noise. Therefore, this thesis focuses on the development of a novel
non-iterative direct data-driven technique to deal with linear-time-invariant
(LTI) controller design, such that the controller is directly identified from a
collected experimental input/output data corrupted by bounded additive noise.
Based on the assumption of corrupting bounded noise, the design problem is
formulated then in the framework of set-membership (SM) identification theory.

In this work, we propose two original non-iterative direct data-driven techniques
to deal with a linear-time-invariant (LTI) controller design, such that the con-
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troller is directly identified from input/output data without plant identification
step:

1. Fixed structure controllers: in this approach, we formulate the prob-
lem of designing a fixed controller in order to match the behaviour of a
given reference model, in terms of an equivalent set-membership errors-
in-variables problem and we define the feasible controller parameter set.
Then, we design the controller parameters by applying recent results in
the field of set-membership errors-in-variables identification.

2. Nonparametric controllers: we present a novel non-iterative approach
to direct data-driven nonparametric controller design. In this approach,
the DDDC problem is formulated in the robust Reproducing kernel
Hilbert space (RKHS) framework. First, by assuming that the available
input-output data are corrupted by bounded noise, we formulate the
problem of designing a controller in order to match the behaviour of an
assigned reference model. Then, the controller is designed by means of a
non-parametric approach, inspired by recent results in the field of RKHS
approach.

Moreover, in this work, we present an original approach to design, in a
systematic way, the reference model M to be able to meet performance
specifications. In the proposed method, the desired performance specifications
of the closed-loop system are translated into a model reference design
paradigm in the framework of the DDDC approach. The design of a suitable
reference model M is carried out based on H∞ control design approach by
using a suitable fictitious plant. Then, stability conditions both for stable
minimum-phase plant and stable non-minimum phase plant are discussed and
analyzed to guarantee the internal stability of the designed closed-loop system.

Finally, the obtained design algorithm is applied to different electronic test
bench networks to show the effectiveness of the proposed approach.
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Chapter 1

Introduction

In general, controller design is the scientific discipline that employs methods
from mathematics and engineering in order to force dynamical systems to
behave in a desired fashion. One way to classify control design techniques is
to separate them into indirect techniques, in which the controller is designed
on the basis of the available mathematical model of the dynamical system to
be controlled, and direct techniques, which do not explicitly use the model
of the plant, but rely on experimental data in order to directly design the
controller. The process of building a mathematical model of a dynamic system
from experimental data is called system identification. To cope with the direct
technique, one possibility is to use what is called a direct data-driven control
(DDDC) approach. The philosophy of the DDDC design approach is to identify
the controller directly from input/output experimental data without plant
identification step.

The common need for accurate and efficient control of today’s industrial
applications is driving the system identification field to face the constant
challenge of providing better models of physical phenomena. However, systems
encountered in real-world applications are often complex and an accurate
model of the plant to be controlled usually is not available. Therefore, this
raises the need for DDDC approach, where DDDC approaches do not rely on
plant model identification since available input-output data experimentally
collected from the plant are directly used to design the controller. The control
specifications are usually given in this context in terms of a desired closed-loop
reference model; then, the controller parameters are computed by formulating
the problem in terms of model matching design.
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The DDDC design approach has a wide representation capability for designing
the controller for different dynamical systems and this framework is also
recently supported by a well worked out research and some industrial
applications. Despite the advances of the DDDC field, identification of such
a controller without the availability of a mathematical model of the plant
is still in its immature state, due to many open problems of DDDC design
theory. One of the most important problem in the DDDC approach is that, in
practice, the available experimental data is always imperfect, as it is affected by
measurement noise. Therefore, this thesis focuses on the development of a novel
non-iterative direct data-driven technique to deal with linear-time-invariant
(LTI) controller design, such that the controller is directly identified from
collected experimental input/output data corrupted by bounded additive noise.
Based on the assumption of corrupting bounded noise, the design problem is
formulated then in the framework of set-membership (SM) identification theory.

In set-membership identification, the assumption that the noise signal is
bounded is less restrictive than a traditional statistical assumption, as in
practice all signals are bounded and the bounds can often be roughly derived
from the specifications of the measurement equipment. Therefore, handling
bounded uncertainty models in DDDC design is more natural and often easier
than dealing with a probability density function that is used in general in
the field of DDDC framework by using the basic probabilistic identification
methods. This means in brief, no statistical information about the noise and/or
the disturbance is assumed to be a-priori available when SM theory is used.
Therefore, this research has been directed both towards understanding the
fundamental properties of the SM approach itself and its limitations as well as
towards developing computationally efficient and less resource demanding for
designing a controller using the set membership algorithm. However, further
research related to both the set membership identification algorithm and to
its use in DDDC design approach is required in order to achieve its wider use
in controller design and exploit all the benefits that it may offer. Thus, this
thesis is aimed at giving a contribution to these research efforts by treating
three topics related to set membership identification and its use in controller
design, as discussed briefly in the next section.
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1.1 Outline and contribution

This thesis is organized as follows. In Chapter 2 we introduce the concept of
set membership identification, discuss its main contribution with respect to
the more popular probabilistic identification approach. The main contributions
of the thesis are given in Chapters 3, Chapter 4 and Chapter 5.

In particular, in Chapter 2 we briefly overview the system identification
and set membership identification theory in general. Then Set-Membership
Errors-In-Variables (SM-EIV) identification problem will be discussed in
details for both LTI single-input-single-output(SISO) and LTI multi-input-
multi-output(MIMO) systems. The contribution and the main results of this
chapter is based on the work of Cerone et al. (see e.g., [36], [39], [34] and [35]).

In Chapter 3, we propose a novel non-iterative direct data-driven technique to
deal with linear-time-invariant (LTI) controller design, such that the controller
is directly identified from input/output data without plant identification step.
First, we formulate the problem of designing a controller in order to match the
behaviour of a given reference model, in terms of an equivalent set-membership
errors-in-variables problem and we define the feasible controller parameter set.
Then, we design the controller parameters by applying the results from Chapter
2 in the field of set-membership errors-in-variables identification. The main
distinctive features of the proposed approach with respect to those already
available in the literature are as follows: (i) the noise corrupting the data is
assumed to be bounded and no statistical information is assumed to be a-priori
available; (ii) in contrast to existing approaches where an iterative procedure is
exploited, the set-membership approach leads to a non-iterative algorithm to
design the controller; (iii) differently from existing approaches, the controller
transfer function does not need to depend linearly on the parameters to be
tuned; (iv) the proposed strategy is applicable to deal with both diagonal
and non-diagonal multivariable reference models. Finally, the effectiveness of
the presented technique is shown by means of both simulation examples and
experimental results.
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In Chapter 4, we present an original approach to design, in a systematic way,
the reference model M to be able to meet performance specifications. In
the proposed method, the desired performance specifications of the closed-loop
system are translated into a model reference design paradigm in the framework
of the DDDC approach. The design of a suitable reference model M is carried
out based on H∞ control design approach by using a suitable fictitious plant.
Then, stability conditions both for stable minimum-phase plant and stable
non-minimum phase (NMP) plant are discussed and analyzed to guarantee
internal stability of the designed closed-loop system. In particular, by assuming
that available input-output data are corrupted by bounded noise, we formulate
the problem of designing a controller in order to match the behaviour of
the designed reference model M in terms of an equivalent set-membership
errors-in-variables (SM-EIV) identification problem discussed in Chapter 3.
Then, a two-stage procedure, to detect the presence of NMP zeros in the plant,
is proposed for the design of the controller. The main distinctive features of
the proposed approach with respect to those already available in the literature
are as follows: (i) the reference model M is designed such that the closed-loop
system fulfills performance specifications; (ii) no a-priori information on the
NMP zeros location is needed; (iii) the proposed strategy guarantees stability
without the need of additional constraints on the problem formulation when
the plant is stable and possibly NMP system.

Finally, in Chapter 5, we present a novel non-iterative approach to direct
data-driven nonparametric controller design. The approach is inspired by
the method described in Chapter 3, where a novel set-membership based direct
data-driven controller design technique is presented. By exploiting the results
given in [30], where an original kernel-based set-membership nonparametric
approach for LTI identification is proposed, DDDC problem is then formulated
in the robust Reproducing kernel Hilbert space (RKHS) framework. First,
by assuming that the available input-output data are corrupted by bounded
noise, we formulate the problem of designing a controller in order to match the
behaviour of an assigned reference model. Then, the controller is designed by
means of a non-parametric approach, inspired by results in [30].
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Chapter 2

Set-membership identification

2.1 Introduction

The process of going from observed data to a mathematical model is
fundamental in physics, biology and in many fields of engineering. In the
control area this process has been termed as System Identification and the
objective is then to find a dynamical model to describe the behavior of
real-word processes from observed input/output signals. Therefore, estimation
theory is concerned with the problem of evaluation some unknown variables
depending on given data obtained usually from measurements on a real process.

System identification exploits experimental data measurements to construct
mathematical models of systems. Two main classes of problem are typical
considered: Black box modeling, when no information on the physical
application is prior available; Gray box modeling, when some physical insights
are available. Among black box models, there are familiar models such as
ARX, ARMAX, and ANN (Artificial Neural Networks). Such models are
established by means of a set of equations, e.g., difference equations (DEs),
partial differential equations (PDEs) or ordinary differential equations (ODEs).

The area of system identification has its roots in standard statistical techniques
such as Least Squares, gradient correction, and Maximum Likelihood. By
now, the area is well mature with established and well understood techniques
see e.g., [96], [80], [95] and [138]. In addition, there have been many modern
methods for system identification in recent years based on the neural networks,
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genetic algorithm, fuzzy logic, swarm intelligence optimization algorithms,
auxiliary model identification algorithm, multi-innovation identification
algorithm etc. (see e.g., [129, 169, 44, 86, 56, 55]). Although system
identification technology has been developed for several decades and has
achieved many research results, there are still many problems needing to
be further discussed and studied. One of the main problems is that the
available data are always known with some uncertainty and the identified
model can not be equivalent to the measured system completely. To deal
with this problem an alternative approach called set-membership identifi-
cation, which computes models that reproduce the observed data within
a certain given error bound, has been introduced and studied in the last decades.

Set membership (SM) or Unknown-But-Bounded UBB error description
has been pioneered in the late 1960-1970s [167, 14, 98]. In this approach,
uncertainty is described by means of an additive noise which is known only to
have given bounds. The motivation for this approach is that in many practical
cases the UBB error description is more realistic and less demanding than the
statistical description [101]. Recently, SM has gained renewed attention due to
its connection with robust control theory (see, e.g, [62, 99, 45, 87]).

This chapter is organized as follows. In Section 2.2 we give a general introduction
to set-membership identification. The concept and the main properties of SM
EIV identification are discussed in Section 2.3. In particular, the specifics of
SM identification for LTI SISO systems are addressed in Subsection 2.3.1 and
for MIMO systems in Subsection 2.3.2. The contribution and the main results
of Section 2.3 is based on the work of Cerone and co-workers (see e.g., [36],
[39], [34] and [35]).

2.2 On set-membership identification

Set-membership theory was born at the end of the Sixties and was applied
to problems of state estimation of dynamical systems [167, 14, 98]. In the
Eighties, this approach deserved interest due to the development of robust
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control theory; in fact, by giving hard bounds on the uncertainty, this theory
provides models that are useful in the robust control context [62, 99, 45, 87]).
Moreover, several successful practical applications of SM identification have
been reported (see e.g. [42, 38, 102, 104, 103]). The main research topics
related to SM identification include, but are not limited to the characterization
and description of the feasible parameter set and its efficient online refinement
and updating, computationally efficient algorithms for finding the optimal
or almost optimal estimate and experiment design in the context of SM
identification.

The aim of the estimation problem is to obtain a dynamic model of the system
from noisy input-output measurements. Depending on the hypothesis on the
noise, it is possible to distinguish between a statistical and a deterministic
approach. In the classical approach (statistical estimation), uncertainty is
described in terms of confidence intervals (soft bounds). On the contrary, in
the deterministic approach, a feasible set of all admissible solutions is found
(hard bounds). In this case, such a set contains all the feasible solutions
of the problem, thus providing an evaluation of the uncertainty associated
with the estimation problem. For this reason, this approach is usually
called set-membership. Moreover, while the statistical estimation deals with
the average case, the deterministic theory usually considers the worst-case,
that is the estimate that shows the best performance in a worst-case setting [24].

The main difference between the classical (statistical) estimation and the SM
(deterministic) one lies on the fact that in statistical estimation the noise is
represented as a stochastic process (usually a filtered white noise), while in
set-membership estimation the noise is supposed to be unknown but bounded,
i.e. the only knowledge about noise consists in its bounds evaluated in a given
norm, e.g.,

|η(t)| ≤ ∆η, ∀t, (2.1)

where the error term η is unknown, but bounded by some given positive number
∆η. This means that the signal η(t) is considered unknown, but bounded (UBB),
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which is the reason why the set membership identification approach is often
called UBB in the literature (see e.g., [101, 105]).

In the set-membership framework, all parameters vector θ, that are consistent
with the assumption on the model structure define as,

y(t) = g(φ(t), θ)+η(t) (2.2)

and the priori information on the error (η(t)) and the collected measurement,
belong to the so-called feasible parameter set (FPS) Dθ:

Dθ = {θ ∈ Rnθ : |y(t)−g(φ(t), θ)| ≤ ∆η, ∀t = 1, ...,N} (2.3)

where N denotes the number of measurements, y(t) is the measured output
and nθ is the number of element entries in the parameter vector that need to
be estimated from the data. The function g represents the dynamics of the
underlying system as it describes the dependence of the current plant output
on the past inputs and outputs through the regressor φ(t). Then, for each
parameter θj , with j = 1, ...,nθ, deterministic uncertainty bounds θj and θ̄j

are evaluated by looking for the minimum and maximum value of θ over the
FPS Dθ, i.e.

θj = min
θ∈Dθ

θj , θj = max
θ∈Dθ

θj (2.4)

Problem (2.4), is in general, a hard non-convex optimization problem, which
falls into the class of semi-algebraic optimization problems, widely studied
in recent years. More specifically, it has been shown that, at least in prin-
ciple, the global optimum of a constrained semi-algebraic program can be
approximated arbitrarily well by exploiting either the moment-based-approach
[90] or the sum-of-squares-based decomposition approach proposed in [47] and
[111]. Methodologies proposed in [90], [47], [111] allow the user to construct
a sequence of convex linear matrix inequality (LMI) problems, guaranteed to
converge to the global optimum of the original non-convex polynomial problem
as the order of relaxation goes to infinity (see the book [92] and the references
therein for details). However, direct application of such methods to large-scale
identification problems (i.e, a large number of parameters to be estimated
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and/or a large set of experimental input-output data) might lead to intractable
LMI problems due to the required memory storage and/or computational time.
To overcome this limitation, ad hoc approaches have been proposed in ([34],
[36], [35], [37]), aimed to reduce the computational complexity by exploiting
some structural features of the polynomial optimization problems arising from
the context of system identification. In particular, it is possible to show that
problem (2.4) enjoys the same sparsity structure of the problem considered
in ([34], [36], [35], [37]), thus computationally effective implementation can be
applied to solve DDDC problems with several hundreds of input-output data.

Furthermore, when the dynamic system to be identified is linear, the relation
between the measured plant inputs and outputs can be the following,

y(t) = g(φ(t), θ)+η(t) = φ(t)T θ +η(t) (2.5)

In this case, the description of the FPS Dθ in (2.3) becomes:

Dθ = {θ ∈ Rnθ : |y(t)−φ(t)T θ| ≤ ∆η, ∀t = 1, ...,N} (2.6)

Each inequality in (2.6) gives rise to an infinitely long strip (i.e. a hyper-slab) in
the space of the vector θ. The intersection of a finite number of hyper-slabs gives
a polytope. Therefore, the FPS set Dθ is also a polytope according to (2.6), and
more precisely it is an intersection of two polytopes. Although a polytope can
be exactly described, for example by means of its vertexes, an exact description
of the polytope could be critical from the memory requirement point of view
in particular if there is a lot of available measurements (i.e. if N is large).
In addition, updating the FPS recursively (i.e. with each new measurement)
in this form is not easy. Therefore, many of the research has been directed
in the last decades at developing algorithms for approximating the complex
polytopic FPS by geometrically less complex sets. In particular, approximation
of the FPS by a fixed complexity polytope (see e.g. [19, 114, 156]), an ellipsoid
(see e.g. [13, 54, 59]), a box (see e.g. [100, 106, 143, 25]), a parallelotope (see
e.g. [158, 48]) and a zonotope (see e.g. [18, 43]) has been considered in order
to make the use of the FPS for the controller design easier and to facilitate
computationally efficient recursive update of FPS according to [144].



2.3 Set-membership EIV identification 11

2.3 Set-membership EIV identification

The field of identification and process-parameter estimation has developed
rapidly during the past decades. Many contributions can be found in the
literature addressing the problem of linear system identification, both in time
and in frequency domain (see, e.g., [94, 118]). Estimation theory is concerned
with the problem of evaluating some unknown variables depending on given
data on the assumption that only the output signal is corrupted by noise, while
the input signal is supposed to be exactly known. However, in many practical
problems, input and output data sequences are experimentally collected and,
as a consequence, the assumption of noise-free input is not realistic in such
situations [115]. Representations, where both the input and the output signals
are corrupted by noise, are referred to as errors-in-variables (EIV) models.
Obviously, EIV identification is recognized to be a more difficult problem with
respect to linear system identification where only the output measurements are
affected by noise [12].

A number of approaches for parameter estimation of errors-in-variables methods
in system identification has been presented in the survey paper proposed
by Söderström [133]. According to the survey, the problem of parameter
estimation EIV models is dealt with in [49, 135, 137, 155] through instrumental
variable, in [63, 97, 136, 173, 174] through bias-compensation, while Frisch
scheme has been used in [11, 128, 134]. Moreover, total least-squares approach
used in [64, 88, 154], frequency domain approach in [116, 130, 131], and finally
maximum likelihood method was proposed in [58, 117, 166].

In the framework of set-membership identification, the problem of EIV has been
presented by Veres and Norton in [157] where it is shown that the exact feasible
parameter set (FPS) for dynamic EIV models is described by nonlinear bounds,
whose shape may become fairly complex when the number of data increases.
As a consequence, parameter bounds cannot be easily computed and the use
of either polytopic or ellipsoidal outer approximation is suggested. As far as
EIV for static models is considered, an exact mathematical description of the
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feasible parameter set is provided by Cerone in [28] where relevant topological
features, such as convexity and connectedness, are also discussed. Results from
[28] are then applied to EIV identification of linear dynamic systems in [29]
where an outer approximation of the true nonconvex feasible parameter set is
obtained as a union of a number of polytopes. Such an outer-bounding set is
then used to compute bounds on the parameters of the system to be identified
through the solution to a finite number of linear programming (LP) problems.
Actually, parameter bounds obtained in [29] are not tight and their degree of
conservativeness is, in general, not easy to quantify [115]. Therefore, a new
technique called LMI-based EIV relaxation has been introduced in [36], where
relaxation techniques based on linear matrix inequalities has been employed to
evaluate parameter bounds by means of convex optimization. The last approach
will be reviewed in the next two subsections for both SISO and MIMO LTI
systems for self-consistency of the thesis, in order to be used later for DDDC
approach which is the main core of this research.

2.3.1 SM EIV identification for SISO LTI systems

Set-membership error-in-variables identification for SISO LTI system described
in [115, 36, 32–34] is briefly reviewed in this section for completeness and
self-consistency of the report. Then, a simulated example is discussed in order
to show the effectiveness of the presented identification scheme.

Problem Formulation

Let us consider the linear single-input-single-output (SISO) system depicted in
Fig. 2.1 with noise-corrupted input and output measurements.

The noise-free input is denoted by x(t) and the undisturbed output by w(t).
We assume that the signals are corrupted by additive measurement noise ϵ(t)
and η(t). The available signals are in discrete time and of the form

u(t) = x(t)+ ϵ(t) (2.7)

y(t) = w(t)+η(t) (2.8)
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Figure 2.1 Errors-in-variables setup for linear dynamic systems.

According to the set-membership characterization, the noise samples ϵ(t) and
η(t) are assumed to range within given bounds ∆ϵ and ∆η respectively, that is

|ϵ(t)| ≤ ∆ϵ (2.9)
|η(t)| ≤ ∆η (2.10)

The plant G(q−1) is discrete time LTI system which transforms x(t) into the
noise-free output w(t) according to the difference equation

A(q−1)w(t) = B(q−1)x(t) (2.11)

where A(.) and B(.) are polynomials in the backward shift operator q−1 of the
form

A(q−1) = 1+a1q−1 +a2q−2 + ...+anaqna (2.12)
B(q−1) = b0 + b1q−1 + b2q−2 + ...+ bnb

qnb (2.13)

The general problem is to determine the plant G characteristics, such as the
system transfer function is given in the following form

G(q−1) = B(q−1)
A(q−1) (2.14)

The unknown parameter vector θ ∈ Rp to be identified is defined as

θ = [a1 ... ana b0 b1 ... bnb
]T (2.15)
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where na +nb +1 = p, while the Feasible Parameter Set (FPS) Dθ is defined as

Dθ ={θ ∈ Rp : A(q−1)(y(t)−η(t)) = B(q−1)(u(t)− ϵ(t)),
|ϵ(t)| ≤ ∆ϵ, |η(t)| ≤ ∆η; ∀t = 1, ...,N}

(2.16)

where N is the length of data sequences. Equation (2.16) provides an exact
description of the set of all possible values of the unknown parameter θ consistent
with measured data, error bounds and assumed model structure. In this section
we address the problem of evaluating the so-called Parameter Uncertainty
Intervals PUI, defined as:

PUIj = [θj θ̄j ], ∀j = 1, ...,np (2.17)

where,

θj = min
θ∈Dθ

θj , (2.18)

θj = max
θ∈Dθ

θj (2.19)

As discussed in section 2.2, problems (2.18) and (2.19), are in general, hard
non-convex optimization problems, which fall into the class of semi-algebraic
optimization problems. Therefore, standard nonlinear optimization tools (gradi-
ent method, Newton method, etc.) cannot be used since they can trap in local
minima which may result arbitrary far from the global one. Thus, the PUIjs
obtained using such tools are not guaranteed to contain the true unknown
parameter, which is a key requirement of any set-membership identification
method. One possible solution to overcome this problem is to relax (2.18) and
(2.19) to convex problems to obtain a lower and upper bounds of θj and θj

receptively. The relaxation technique presented in [29], which consists in the
application of the results for static EIV problems derived in [28], provides an
outer approximation of the FPS Dθ. While, in [34], and [36] an LMI relaxation
technique is used to compute the PUIs, and will be reviewed briefly in the
next subsection.
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Parameter bounds computation for SISO systems

The dynamic (LMI) EIV relaxation procedure described in [34], [36] is briefly
reviewed in this section for completeness and self-consistency of the chapter.

The main idea in [34] is to compute the approximate parameter uncertainty
interval PUIj through LMI relaxation techniques. Problems (2.18) and (2.19)
can be rewritten as constrained polynomial optimization problems as follows



θj = min
θ,ϵ,η

θj

s.t.

y(t) = −
naØ
i=1

(y(t− i)−η(t− i))ai +
nbØ

j=0
(u(t− j)− ϵ(t− j))bj +η(t)

|ϵ(t)| ≤ ∆ϵ, |η(t)| ≤ ∆η; ∀t = 1, ...,N

(2.20)



θj = max
θ,ϵ,η

θj

s.t.

y(t) =
naØ
i=1

(y(t− i)−η(t− i))ai +
nbØ

j=0
(u(t− j)− ϵ(t− j))bj +η(t)

|ϵ(t)| ≤ ∆ϵ, |η(t)| ≤ ∆η; ∀t = 1, ...,N

(2.21)

where, η = [η(1), ...,η(N)]T and ϵ = [ϵ(1), ..., ϵ(N)]T .

The computation of θj and θ̄j is then reduced to a minimization or maximiza-
tion problem over p + 2N optimization variables. The feasible set is called now
Semialgebraic set, defined by N bilinear polynomial equality constraints and
4N linear inequalities.

Since (2.20) and (2.21) are semialgebraic optimization problems, they can be
relaxed through direct implementation of the LMI-relaxation technique based
on the theory of moments and proposed by Lasserre in [90]. Such a procedure is
based on the idea of relaxing a polynomial optimization problem by a hierarchy
sequence of SemiDefinite Programming (SDP) problems with increasing
dimension, whose optima are guaranteed to converge monotonically to the
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global optimum of the original polynomial problem. Although the method
is guaranteed to converge as far as the length of the number of successive
SDP problems (relaxation order) goes to infinity, exact global optima can be
obtained in practice with a reasonably low relaxation order (see [36] for details).

Remark 2.3.1

• Due to the high computational burden and memory storage require-
ment, the use of such an LMI-relaxation technique to relax (2.20)
and (2.21) is limited, in practice, to identify problems with a small
number N of measurements (roughly not greater than 10), that is
certainly an unusual and unfavourable condition in the identifica-
tion framework. A possible way to overcome this restriction is to
relax (2.20) and (2.21) through the procedure presented in [91] in
the spirit of [160]. Such an approach exploits the sparsity in the
original polynomial problems to formulate a sparse version of the
Lasserre’s relaxation [90], in order to extend the applicability of
such a methodology to medium and large scale problems (see e.g.,
[36], [34]).

• An efficient implementation of LMI relaxation for polynomial opti-
mization problems with structured sparsity has been developed in
the Matlab package SparsePOP [159] which exploits the LMI solver
SeDuMi [142] or Mosek [110] to solve SDP problems in polynomial
time. It must be noted that, in general, such a relaxation method
does not guarantee convergence to the global optimum of the origi-
nal constrained polynomial problem. However, it is shown in [91]
that if the structure of the original polynomial problem satisfies
suitable assumptions on the sparsity structure, this LMI relaxation
method provides a solution that converges to the global optimum
of the original polynomial optimization problem, as the relaxation
order δ goes to infinity. In practice, a good solution can be found
with a relaxation order δ ≤ 3 with few hundred of the data sample
(N ≤ 1000).
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2.3.2 SM EIV identification for MIMO LTI systems

In this section, we briefly review the problem of set membership identification
of multiple-input-multiple-output (MIMO) linear models when both input and
output measurements are affected by bounded additive noise. This section is
based on the work of Cerone & co-workers in [39] and [40].

Most of the works available in the literature for SM-EIV approach deal with
single-input-single-output (SISO) linear models, while only a few papers
address the problem of identification of MIMO linear models in the presence
of bounded errors [40]. In particular, the identification of MIMO systems
affected by bounded equation error is addressed in the paper [163] by means
of an interval analysis-based approach. An output-error model structure is
considered, instead, in [119], under the assumption that a bound on the energy
of the output measurement error is known. Zaiser and co-workers focus on the
problem of computing parameter bounds for MIMO state-space model ([172])
and for MIMO ARX models ([171]), by assuming that both the input and the
output sequences are corrupted by additive noise (errors-in-variables) bounded
in the l∞ norm.

In [40], the authors assume that the order of the system is a-priori known,
and an algorithm for computing tight parameter uncertainty intervals (PUI)
is proposed, by taking explicitly into account the correlation between the
uncertainty variables affecting the regressor. Then, they address the problem
of computing the PUIs for MIMO linear models, with both input and output
measurements corrupted by bounded noise. Finally, they consider a general
description, in transfer function form, that allows the user to consider possible
a-priori knowledge on the structure of each entry of the matrix transfer function.
To this aim, we briefly review this method in the following subsections.

Problem Statement

Let us consider the multi-input multi-output (MIMO) linear-time-invariant
(LTI) system depicted in Figure 2.1, where x(t) is the nx dimensional input and
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w(t) is the nw dimensional output. The MIMO linear system to be identified
is modeled by a discrete time system that transforms x(t) into the noise-free
output w(t) according to the following input-output equation

w(t) = G(q−1)x(t), (2.22)

where, x(t) = [x1(t) x2(t) ... xnx(t)]T ∈ Rnx and w(t) =
[w1(t) w2(t) ... wnw(t)]T ∈ Rnw are the samples at time instant t of
the multi-variable input and output respectively G(q−1) is the system matrix
transfer function. The entry of G(q−1) relating the j-th input to the i-th
output, is described by

Gij(q−1) =
qmij

k=0 b
(ij)
k q−k

1+ qnij
h=1 a

(ij)
h q−h

(2.23)

where aij
h ∈ R, (h = 1, ...,nij) and bij

k ∈ R, (k = 0, ...,mij) are the unknown
parameters to be estimated. The i-th output of the system can be described as

wi(t) = zi1(t)+ zi2(t)+ ...+ zinx(t) (2.24)

where zij is the contribution of the j-th input to the i-th output, i.e (for more
details see [40])

zij(t) = Gij(q−1)xj(t) (2.25)

Let us call zij the ij-th partial output. On the basis of equation (2.25) we can
relate zij(t) and xj(t) through the following difference equation

nijØ
h=0

aij
h zij(t−h) =

mijØ
k=0

bij
k xj(t−k) (2.26)

We assume that the signals are corrupted by additive measurement noise ϵ(t)
and η(t). The available signals are in discrete time and of the form

u(t) = x(t)+ϵ(t) (2.27)

y(t) = w(t)+η(t) (2.28)
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where the scalar noise variables ϵj(t) and ηi(t), affecting the generic input xj(t)
and the generic output wi(t) respectively, are assumed to range within given
bounds ∆ϵ and ∆η, given by

|ϵj(t)| ≤ ∆ϵ, ∀t = 1, ...,N (2.29)
|ηi(t)| ≤ ∆η, ∀t = 1, ...,N (2.30)

The unknown parameter vector θ ∈ Rp to be identified is

θ = [θ11 ... θ1nx θnw1 ... θnwnx ]T (2.31)
where,
θij = [aij

0 ... aij
nij

bij
0 ... bij

mij
] (2.32)

and p = qnw
i=1

qnx
j=1(mij +nij +1). The feasible parameter set (FPS) Dθ is

Dθ =
î
θ ∈ Rp :

nijØ
h=0

a
(ij)
h zij(τij −h) =

mijØ
k=0

b
(ij)
k (uj(τij −k)− ϵj(τij −k)),

zi1(t)+ zi2(t) . . .+ zinx(t) = (yi(t)−ηi(t)), τij = nij +1, . . . ,N

i = 1, . . . ,nw, j = 1, . . . ,nx, | ϵj(t) |≤ ∆ϵ, | ηi(t) |≤ ∆η; t = 1, . . . ,N
ï

(2.33)

where N is the length of the data sequences.

Equation (2.33), as in the SISO case, provides an implicit exact description
of the set of all possible values of the unknown parameter θ consistent with
measured data, error bounds and assumed model structure. Therefore, the
problem of evaluating the parameter uncertainty intervals PUIr can be defined
as

PUIr =
5
θ(r), θ

(r)
6

for r = 1, . . . ,p (2.34)

where θ(r) is the r-th element of the array θ, while

θ(r) = min
θ∈Dθ

θ(r), (2.35)

θ
(r) = max

θ∈Dθ

θ(r). (2.36)
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Remark 2.3.2

The formulation proposed in this subsection is quite general since it
allows the user to take into account possible a-priori information on the
structure of the MIMO system to be identified, i.e., the order of the
numerator (mij) and denominator (nij) of each single transfer function
of the MIMO system Gij .

Parameter bounds computation for MIMO systems

The key idea in [40] and [39] is that the system parameters and the partial
(unmeasurable) output signals zij can be simultaneously estimated through the
solution of the following optimization problem



min
θ,z,η,ξ

J(θ)

s.t.
nijØ
h=0

a
(ij)
h zij(τij −h) =

=
mijØ
k=0

b
(ij)
k (uj(τij −k)− ϵj(τij −k)),

τij = nij +1, . . . ,N

zi1(t)+ zi2(t) . . .+ zinx(t) = (yi(t)−ηi(t)),
i = 1, . . . ,nw, j = 1, . . . ,nx

| ϵj(t) |≤ ∆ϵ, | ηi(t) |≤ ∆η; t = 1, . . . ,N

(2.37)

where also the samples of the unmeasurable partial output signals zij appears
as decision variables of problem (2.37) together with the system parameters θ

to be estimated. The functional J(θ) to be minimized is set to J(θ) = θ(r) for
the computation of θ(r) and to J(θ) = −θ(r) when the computation of θ

(r) is of
interest (for more details see e.g., [40]). Thus, the computation of the PUIr

requires the solution to the constrained optimization problem of equation (2.37)
by using the same method that has been discussed in the previous sections.



Chapter 3

Direct data driven control
(DDDC) design of LTI systems

3.1 Introduction

In many control applications, trying to write a mathematical model of
the plant is considered a hard task, requiring efforts and time to the
process and control engineers. This problem is overcome by applying
what is so-called direct data-driven control (DDDC) design. The DDDC
methods allow tuning a controller, belonging to a given class, without the
need of an identified model of the system since available input-output data
experimentally collected from the plant are directly used to design the controller.

The automatic control design is the scientific discipline that employs methods
from mathematics and engineering in order to force dynamical systems to
behave in a desired fashion. One way to classify control design techniques is to
separate them into indirect techniques, in which the controller is designed on
the basis of the available mathematical model of the dynamical system to be
controlled, and direct techniques, which do not explicitly use the model of the
plant, but rely on experimental data in order to directly design the controller.
In the direct approaches, system identification and controller design are very
strongly related and controller design can be seen as a system identification
procedure that is aimed at identifying the controller rather than the plant
model. To cope with the direct technique, one possibility is to use the DDDC
approach.
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Although the studies on DDDC are still at in the embryonic stage, they have
attracted plenty of attention within the control theory community and this
framework is also recently supported by a well worked out research and some
industrial applications. Despite the advances of the DDDC field, identification
of such a controller without the availability of a mathematical model is still
having open problems that need to be solved. One of the most important
problem in the DDDC approach is that, in practice, the available experimental
data is always imperfect, as it is affected by measurement noise. Therefore, this
chapter focuses on the development of a novel non-iterative direct data-driven
technique to deal with linear-time-invariant (LTI) controller design, such that
the controller is directly identified from a collected experimental input/output
data corrupted by bounded additive noise. Based on the assumption of
corrupting bounded noise, the design problem is formulated in the framework
of set-membership (SM) identification theory.

In this Chapter, we propose a novel non-iterative direct data-driven technique to
deal with linear-time-invariant (LTI) controller design, such that the controller
is directly identified from input/output data without plant identification step.
First, we formulate the problem of designing a controller in order to match the
behaviour of a given reference model, in terms of an equivalent set-membership
errors-in-variables problem and we define the feasible controller parameter set.
Then, we design the controller parameters by applying the results from Chapter
2 in the field of set-membership errors-in-variables identification. The main
distinctive features of the proposed approach with respect to those already
available in the literature are as follows: (i) the noise corrupting the data is
assumed to be bounded and no statistical information is assumed to be a-priori
available; (ii) in contrast to existing approaches where an iterative procedure is
exploited, the set-membership approach leads to a non-iterative algorithm to
design the controller; (iii) differently from existing approaches, the controller
transfer function does not need to depend linearly on the parameters to be
tuned; (iv) the proposed strategy is applicable to deal with both diagonal
and non-diagonal multivariable reference models. Finally, the effectiveness of
the presented technique is shown by means of both simulation examples and
experimental results. Concluding remarks end the chapter.
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This chapter is organized as follows. In Section 3.2 we review the existing
direct control design approaches. In section 3.3 we describe the control design
problem that we address in Section 3.2 and present the novel direct design
approach based on Set-Membership (SM) identification method in Section 3.4.
The effectiveness of the presented method is shown in Section 3.5 and 3.6
by means of both simulation examples and experimental results respectively.
Concluding remarks end the chapter.

3.2 Existing DDDC design approaches

In this section, a summary of existing direct data-driven design approaches
is discussed by focusing on the recently available control theories about
DDDC. The state of the art of the existing DDDC methods is presented with
appropriate classifications.

Significant research efforts have been devoted to the direct data-driven control
(DDDC) theory in recent years, where experimental data are directly used
to design the controller. The DDDC approach is of particular interest in
real-world applications where an accurate model of the plant to be controlled
is not available.

DDDC approaches do not rely on plant model identification since available
input-output data experimentally collected from the plant are directly used
to design the controller. The control specifications are usually given in this
context in terms of a desired closed-loop reference model; then, the controller
parameters are computed by formulating the problem in terms of model
matching design.

Wang and Hou ([73]) proposed a brief survey on the existing problems and
challenges inherent in Model-Based Control (MBC) theory, and some important
issues in the analysis and design of Data-Driven Control (DDC) methods were
reviewed and addressed. According to them, there are over 10 kinds of different
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DDC methods. Sorted according to the type of data usage, these methods
can be summarized as three classes (See Figure 3.1):

• DDC based on on-line data ([7, 8, 77, 122, 149, 139, 75, 162]).

• DDC based on off-line data ([2, 69, 70, 83, 84, 107, 125, 124]).

• DDC based on both off-line and on-line data (hybrid DDC) ([17, 6, 16,
46, 50, 127]).

On the other hand, if sorted by method of controller structure design, they
can be divided into two classes (See Figure 3.2):

• DDC methods with pre-specified fixed controller structures.

• DDC methods with unknown controller structures.

Several contributions have been proposed in the field of Off-line data based
DDC. Guardabassi in [66] proposed a virtual reference feedback tuning (VRFT)
method. It is a one-shot direct data-driven method where the data-based
procedure proposed to design the controller is based on the notion of the
virtual reference signal. Unlike the standard VRFT for SISO systems, the
authors in [60] make use of a variance weighting to achieve a consistent
controller estimate with a single set of input-output data. Extensions and
improvements of this method have been presented in some papers (see, e.g.,
[22, 23, 125, 168, 20]). An alternative data-based approach for controller design,
called Iterative feedback tuning (IFT), has been proposed by Hjalmarsson
1994 [72]. IFT is a data-driven control DDC scheme involving iterative
optimization of a fixed structure controller, whose parameters are tuned
according to an estimated gradient of a control performance criterion. In a
more recent paper [70], the standard IFT approach has been extended to the
case of multivariable linear time-invariant systems. Furthermore, the Iterative
Correlation-based Tuning method (ICbT), proposed [82], is a data-driven
control method in which the controller parameters are tuned iteratively to
decorrelate the closed-loop output error, between the designed and achieved
closed-loop system, from an external reference signal. Therefore, at each
iteration, in general, several experiments are needed for the gradient estimation.
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Data Driven Control

On-line
data based DDC

SPSA-based DDC
methods (SPSA)

[140, 139]

Model-free adaptive
control (MFAC)

[76, 74]

Unfalsified control
(UC) methodology

[122, 121]

Off-line
data based DDC

PID control method
[2, 3]

Iterative feedback
tuning (IFT)

[72, 71]

Iterative Correlation based
tuning (CbT)

[83, 81]

Non Iterative Correlation based
tuning (NCbT)

[84, 151]

Virtual reference model
tuning (VRFT)

[67, 125]

Subspace approach
[78, 85]

Approximate dynamic
programming (ADP)

[164, 165]

On-line/Off-line
data based DDC

Iterative learning
control (ILC)

[148, 46]

Lazy learning (LL)
[127, 6]

Figure 3.1 Hierarchy map for DDC sorted according to the type of data usage.
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Data Driven Control

DDDC methods with
fixed controller structures

PID

IFT

VRFT

UC

SPSA

CbT/NCbT

ADP

DDDC methods with
unknown controller structures

Model-free
DDC methods

direct adaptive
control

subspace predictive
control methods

Apparent
DDC methods

ILC

MFAC

Figure 3.2 Hierarchy map for DDC sorted according to the controller structure
design.

Direct design of the controller when the collected experimental data are
affected by noise is one of the main challenges in the context of DDDC methods.
In the context of the VRFT method, the problem has been addressed by
means of an extended instrumental variable (IV) approach by Formentin [60].
An alternative non-iterative approach called Non-iterative Correlation based
Tuning (NCbT) method has been proposed in the work of Karimi [84]. This
controller tuning approach leads to the formulation of a controller identification
problem where the input is affected by noise while the output is noiseless. Few
other solutions have been proposed to cope with the effect of measurement
noise (see, e.g., the comparison proposed in the paper [153]).
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In this chapter, we focus only on DDC based on off-line data, in particulate
on DDC methods with pre-specified fixed controller structures. To this aim, we
will review briefly the basic idea of VRFT and NCbT methods in the following
two-subsections for self-consistency of this thesis, and in order to be used later
for a comparison with the presented novel DDDC approach based on SM-EIV
identification method.

3.2.1 Virtual reference feedback tuning (VRFT)

VRFT was proposed by Guardabassi and Savaresi in 2000 [67]. It is a one-shot
direct data-driven method that can be used to select the controller parameter
for the LTI system. VRFT formulates the controller tuning problem as a
controller parameter identification problem via introducing virtual reference
signal.

Basic Idea: In [22] the authors supposes that a controller K(q−1, θ) is in
a closed-loop system whose transfer function is given by M(q−1); where M

denotes the reference model, i.e. the desired closed loop transfer function, and
q−1 is the standard backward shift operator. Then, if the closed-loop system is
fed by any reference signal r(t), its output equals M(q−1)r(t), as shown in
Figure 3.3. Hence, a necessary condition for the closed-loop system to have
the same transfer function as the reference model is that the output of the
two systems is the same for a given signal r(t), where r(t) is called a virtual
reference signal.

Figure 3.3 The construction of the virtual reference.
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Standard model reference design methods try to impose such a necessary
condition by first selecting a reference r(t) and then by choosing K(q−1, θ) such
that the condition is satisfied. However, for a general selection of r(t), the
above task is difficult to accomplish if a model of the plant is not available.

Remark 3.2.1

In VRFT method, the controller K(q−1, θ) is linearly parameterized in θ,
such as

K(q−1, θ) = β(q−1)T ρ, ρ ∈ Rn (3.1)

where β(q−1) is a vector of basis functions of q−1.

VRFT procedure: The above idea can be implemented by the following
3-step algorithm (where filtering of data through a user-chosen filter L(q−1) is
also considered); which represents the bulk of the VRFT method.

Given a set of measured I/O data {u(t); y(t)}t=1;...;N , do the following:
1. Calculate:

• a virtual reference r(t) such that y(t) = M(q−1)r(t), and

• the corresponding tracking error e(t)=r(t)−y(t) (we assume M(q−1)̸= 1,
otherwise e(t) = 0);

2. Filter the signals e(t) and u(t) with a suitable Filter L(q−1):

eL(t) = L(q−1)e(t), uL(t) = L(q−1)u(t) (3.2)

3. Select the controller parameter vector, say θ̂N , that minimizes the following
criterion:

JN
V R(θ) = 1

N

NØ
t=1

(uL(t)−K(q−1, θ)eL(t))2 (3.3)

Note that when K(q−1, θ) = βT (q−1)θ the previous equation can be:

JN
V R(θ) = 1

N

NØ
t=1

(uL(t)−ϕT
L(t)θ)2 (3.4)
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ϕL(t) = β(q−1)eL(t) (3.5)

and the parameter vector θ̂N is given by:

θ̂N =
 NØ

t=1
ϕL(t)ϕL(t)T

−1
NØ

t=1
ϕL(t)uL(t) (3.6)

In other words, the complete VRFT algorithm can be summarized as follow
(including noisy data):

1. Set L(q−1) = (1 − M(q−1))M(q−1)W (q−1)U(q−1)-1, where U(q−1) is
such that |U(ejw)|2 = Φu(w), and W (q−1) = 1.

2. Compute uL(t) as : uL(t) = L(q−1)u(t)

3. compute åϕL(t) as : åϕL(t) = β(q−1)L(q−1)(M(q−1)−1 −1)y(t)

4. Identify a high-order model Ĝ(q−1) from u(t)t=1,..,N to y(t)t=1,..,N

5. Compute ζ(t) as : ζ(t) = β(q−1)L(q−1)(M(q−1)−1 −1)Ĝ(q−1)u(t)

6. Compute the parameter vector of the controller as θ̂N

θ̂N =
 NØ

t=1
ζ(t) åϕL(t)T

−1
NØ

t=1
ζ(t)uL(t)
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Remark 3.2.2

When step number (4) is used, strictly speaking, we can no longer claim
that the method is fully direct since Ĝ(q−1) has to be estimated. However,
recently in [60], this problem has been solved by using what is called the
Extended-Instrumental Variable ζ(t), given by

ζ(t) =



u(t+ l)
.

.

.

u(t− l)


, (3.7)

where l is a sufficiently large integer, and define the decorrelation cost
function as

JN
d (ρ) = (r −Rρ)T Ŵ −1(r −Rρ) (3.8)

where,

R = 1
N

NØ
t=1

ζL(t)⊗φL(t), (3.9)

r = 1
N

NØ
t=1

ζL(t)⊗uL(t), (3.10)

φL(t) = [eT
L(t)⊗ I ... eT

L(t−n)⊗ I]T (3.11)

where, I is the identity matrix, and for SISO system I = 1, and Ŵ is a
suitable user-chosen filter.

3.2.2 Non-iterative Correlation based Tuning (NCbT)

Non-iterative Correlation based Tuning (NCbT) approach is proposed by Van
Heusden and Karimi et al. in [84, 151]. This controller tuning approach leads
to an identification problem where the input is affected by noise but not the
output as in standard identification problems.
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Consider the unknown LTI SISO plant G(q−1). The objective is to design a
linear, fixed controller K(θ,q−1) with parameters θ such that the closed-loop
approximates the reference model M(q−1). This can be achieved by minimizing
the following model- reference criterion:

J(θ) =
-----
-----M(q−1)r − K(θ,q−1)G(q−1)

1+K(θ,q−1)G(q−1)r

-----
-----
2

(3.12)

where r is the reference signal. Note that the objective is to design a fixed
controller and J(θ) = 0 cannot generally be achieved. The model reference
criterion is nonconvex with respect to the controller parameters θ. An approx-
imation that is convex for linearly parameterized controllers can be defined
using the reference model M(q−1) as shown below. The notation is shortened
by dropping q−1 for simplicity. M can be represented as follows:

M = K∗G

1+K∗G
(3.13)

where K∗ is the ideal controller, which is defined indirectly by G and M :

K∗ = M

G(1−M) (3.14)

The controller K∗ exists if M ̸= 1. The unknown ideal controller will only be
used for analysis:

J(θ) =
-----
----- K∗G−K(θ)G
(1+K∗G)(1+K(θ)G)r

-----
-----
2

(3.15)

Replacing (1 + K(θ)G) with (1 + K∗G), the following approximation can be
derived:

Ĵ(θ) =
-----
-----K∗G−K(θ)G

(1+K∗G)2 r

-----
-----
2

=
------(1−M)Mr −K(θ)(1−M)2Gr

------2 (3.16)

If the controller is linearly parameterized, then Ĵ(θ) is convex.
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Considering the case where there is measurement noise on the plant output,
namely y(k) = G(q−1)u(k) + v(k), where u(k) is the plant input, v(k) is the
measurement noise and G(q−1) is stable, the optimal solution can be found by
minimizing the norm of the following error:

ϵK(θ) = M(1−M)r −Kθ(1−M)2y (3.17)
= M(1−M)r −K(θ)(1−M)2Gr −K(θ)(1−M)2v (3.18)

The diagram of (3.18) is shown in Figure 3.4.a. This diagram can be redrawn as
in Figure 3.4.b in order to clearly show the nature of the identification problem.
In Figure 3.4.b, the unknown signals are y∗

c (k),v(k) and åyc. The known signals
are r(k), yc = (1−M)2y, and s(k). They are given by the following:

s(k) = (1−M)2GK∗r(k) = M(1−M)r(k) (3.19)

The problem of tuning the controller parameter has become a parameter
identification problem. Here the system to be identified is K∗ and the model
to be identified is K(θ). The main difference between the controller tuning
and the standard identification is that the input is affected by noise while the
output is noiseless. The correlation approach is applied to address the effects
of noise on input (see [150]).

In the schemes of Figure 3.4, G(q−1) is assumed to be stable. For unstable
G(q−1), an initial stabilizing controller is needed to perform the experiment
[150].

Figure 3.4 Noniterative data-driven model reference control.
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3.3 Problem statement

In this section, we describe the control design problem that we address in
Section 3.2, such that the direct-data driven control system will be designed
on the basis of a set-membership approach for both SISO and MIMO systems.

3.3.1 SISO systems

Let us consider the discrete-time linear-time invariant (LTI) single-input-single-
output (SISO) feedback control scheme depicted in Fig. 3.5, where q−1 denotes
the standard backward shift operator, G(q−1) is a stable and minimum-phase
(MP) plant transfer function, K(ρ,q−1) is the controller transfer function, ρ is
the vector of controller parameters, and M(q−1) is the transfer function of a
suitable given reference model describing the desired behavior of the controlled
plant.

Figure 3.5 Feedback control system to be designed compared with the reference
model M(q−1).

The objective of the contribution is to propose an algorithm to design the
transfer function of the LTI controller K(ρ,q−1) such that the closed-loop
transfer function Tw̃r(q−1) given by

Tw̃r(q−1) = K(ρ,q−1)G(q−1)
1+K(ρ,q−1)G(q−1) (3.20)

matches, as close as possible, in some sense, M(q−1). This is pursued under
the assumption that the plant transfer function G(q−1) is unknown, and only
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a set of input-output data collected by performing suitable experiments on the
plant is available.

Let us now introduce the following definitions.

Definition 3.3.1: Model matching error transfer function

The model matching error transfer function E(ρ,q−1) is defined as the
difference between the reference model and the achieved closed-loop
transfer function, i.e.

E(ρ,q−1) = M(q−1)− G(q−1)K(ρ,q−1)
1+G(q−1)K(ρ,q−1) (3.21)

Definition 3.3.2: Output matching error

The output matching error ϵ(ρ,t) is defined as the signal obtained by
multiplying both sides of equation (3.21) by a reference signal r(t), i.e.

ϵ(t,ρ) = M(q−1)r(t)− G(q−1)K(ρ,q−1)r(t)
1+G(q−1)K(ρ,q−1) (3.22)

To simplify notation, in the rest of the chapter we drop the backward shift
operator q−1 from equations and corresponding block diagrams.

Since the output matching error ϵ(t,ρ) in equation (3.22) still depends on the
unknown plant G, we derive an alternative way of designing the controller
K(ρ). For this purpose, we introduce the following result.

Result 3.3.1

The following three conditions are equivalent

(i) E(ρ) = 0 (3.23)
(ii) ϵ(t,ρ) = 0, ∀r(t) (3.24)

(iii) M(1−M)−1r(t) = K(ρ)w(t), ∀r(t) (3.25)
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Proof. Equivalence between (ii) and (iii) in Result 3.3.1 can be proved by
noting that from equation (3.22) ϵ(t,ρ) = 0 is equivalent to

M(1−M)−1r(t) = GK(ρ)r(t). (3.26)

therefore, condition (iii) is now obtained thanks to the fact that GKr(t) =
KGr(t) = Kw(t), where w(t) is the plant output sequence obtained by applying
the signal r(t) to the plant input (see the block diagram description of the
output matching error in Fig. 3.6). Equivalence between (i) and (ii) is based
on the trivial fact that the output of a system is identically zero for all the
possible inputs if and only if the system transfer function is identically zero.

Figure 3.6 A block diagram description of the output matching error ϵ(t,ρ).

Remark 3.3.1

Result 3.3.1 plays a crucial role here since it suggests a way for turning
the condition on the model matching error E = 0, which depends on
the unknown plant transfer function G, into a condition on the output
matching error ϵ(t) = 0 which, on the contrary, depends only on the
output sequence w(t) collected by applying the signal r(t) to the plant
(see equation (3.25)).
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Remark 3.3.2

Condition (ii) considered in Result 3.3.1 can be approximated in practice
by the condition ϵ(ρ,t) = 0 for a reference signal r(t) which is persistently
exciting in the sense that its spectrum is rich enough to properly excite
the dynamics of both M and G. For more details see [41].

Remark 3.3.3

It is worth noting that in a number of previous papers on the subject
(see, e.g., .[152], [170] and [60]) at this stage the following approximation
is introduced,

1−M ∼= [1+GK(ρ)]−1 . (3.27)

The meaning of such an approximation is that the actual sensitivity of
the controlled system to be obtained with the designed controller will
be equal to the ideal sensitivity (1 − M), a condition which, in turn,
implies perfect matching of the input-output reference model. Such an
assumption, which was also made in our preliminary conference paper
([41]), is no more required in this work. In fact, by exploiting the set-
membership technique presented in the next sections, the controller K(ρ)
in equation (3.25) can be directly designed from the I/O collected data
without assuming that the final controlled system transfer function will
perfectly match the desired reference model (a condition which cannot
be guaranteed in the general case).

3.3.2 MIMO systems

In this section, we consider the discrete-time linear-time invariant (LTI) feedback
control scheme shown in Fig. 3.5 as a multi-input/multi-output (MIMO) system
where, G, K(ρ) and M are matrix whose elements are discrete time transfer
functions of a stable and MP plant, a controller and a given reference model
respectively. The dimension of G, K(ρ) and M are n×m, m×n and n×m

respectively. In this work we assume that the plant to be controlled is a square
system in the sense that the input and the output vectors, u(t) and w(t)
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respectively, have the same dimension n. In this chapter Gij , Mij and kij

denotes the (i, j)-element of G, M and K matrices respectively.

Now we introduce a working assumption which is exploited in the derivation of
the following result.

Assumption 1. We assume to perform n separate experiments where the i-th
experiment is performed by applying a multiple reference signal r[j] defined as a
column vector of length n which has a scalar signal s(t) at j-th row and zero in
all the other rows. Similarly, the output w[i] collected by applying the reference
signal r[i], is a column vector whose elements are the n outputs of the MIMO
system, given by

w[i](t) = Gr[i](t), ∀i = 1, ...,n (3.28)

Thanks to this assumption, we introduce the following result.

Result 3.3.2

The following three conditions are equivalent

(i) E(ρ) = M −GK(ρ)(I +GK(ρ))−1 = 0 (3.29)
(ii) ϵ[i](ρ, t) = 0, ∀r[i](t), ∀i = 1, ...,n (3.30)

(iii) M(I −M )−1r[j](t) =
nØ

i=1
kij(ρ)w[i](t) (3.31)

where, In×n is a square identity matrix, and the zero output matching error
signal condition ϵ[i](ρ, t) = 0 for MIMO systems depends on the output sequence
w[i] collected by applying to the plant the reference signal r[i] ∀i, j = 1, ..,n.

Proof. Equivalence between (ii) and (iii) in Result 3.3.2 can be proved by
noting that the following two equations are equivalent,

(a) ϵ[i](ρ, t) = 0, ∀r[i](t), ∀i = 1, ...,n (3.32)
(b) M(I −M )−1r[i](t) = GK(ρ)r[i](t),

∀i = 1, ...,n. (3.33)
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By applying Lemma 1 reported in Appendix A to (3.33) we get

M (I −M)−1r[i](t) =
nØ

i=1
kijGr[i](t). (3.34)

Condition (iii) is finally obtained from (3.34) thanks to equation (3.28) in
Assumption 1. Equivalence between (i) and (ii) is based on the trivial fact
that the output of a system is identically zero for all the possible inputs if and
only if the system transfer function is identically zero.

Now we are in the position to state, in general terms, the problem to be solved
in this chapter.

Problem 1. [SM-DDDC problem]
The problem addressed in this chapter is to find the controller transfer function
K(q−1) such that equation (3.25) (or (3.31) for MIMO system) is satisfied,
where w(t) is the output plant signals obtained by applying to the plant input a
suitable (i.e., with frequency spectrum rich enough) signal r(t).

3.4 A set-membership approach to DDDC de-
sign

In this section, a set-membership based algorithm to DDDC design is proposed
for both SISO and MIMO systems.

3.4.1 SM-DDDC for SISO LTI systems

Here we assume that a set of N input-output plant data are collected ex-
perimentally by applying a suitable (persistently exciting) signal r(t) to the
plant. The output measurements y(t) are assumed to be corrupted by bounded
additive noise according to (see also Fig. 3.7)

y(t) = w(t)+η(t) (3.35)
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where
w(t) = Gr(t) (3.36)

is the noiseless output of the system, while the noise η(t) is assumed to range
within a given bound ∆η as follows

|η(t)| ≤ ∆η (3.37)

Figure 3.7 A block diagram description of the output matching error ϵ(t,ρ)
when the collected output data is corrupted by additive bounded noise η(t).

Substitution of equation (3.35) into (3.25), leads to the following equation

M(1−M)−1r(t) = K(ρ)[y(t)−η(t)] (3.38)

which depends on the uncertain variable η(t), due to the presence of the output
measurement noise.

Now, let us introduce the Feasible Controller Set defined as follows.
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Definition 3.4.1: Feasible Controller Set for SISO systems

The Feasible controller set for SISO systems is defined as the set of all
the controllers belonging to the following given class K(na,nb)



K(ρ) ∈ K(na,nb) = {K(ρ) : K(ρ) =

= b0 + b1q−1 + b2q−2 + ...+ bnb
q−nb

1+a1q−1 +a2q−2 + ...+anaq−na
,

ρ = [a1 ..... ana b0 ..... bnb]T ,ρ ∈ Rnρ}

where, nρ = na +nb +1

(3.39)

such that the equation
ϵ(t,ρ,η) = 0 (3.40)

is fulfilled for at least one noise sequence η(t) satisfying the bound
|η(t)| ≤ ∆η, ∀t = 1, . . . ,N .
The Feasible controller set can then be described as

DK = {K(ρ) ∈ K(na,nb) :
M(1−M)−1r(t)−K(ρ)[y(t)−η(t)] = 0
|η(t)| ≤ ∆η, ∀t = 1, ...,N}

(3.41)

It is worth noting that, the controller class K(na,nb) is general in the context of
linear control, since it includes all the linear time-invariant (LTI) controller of
order at most max(na,nb). It is worth noting that, the he controller orders na

and nb are a-priori given information.

The importance of the feasible controller set comes from the fact that DK is
the set of all the controllers of order less or equal than max(na,nb) that are
consistent with the assumption that the output matching error is identically
zero for at least one of the possible feasible noise sequences. In turn, this
implies that no controller in the considered class K(na,nb) is able to solve the
problem if and only if the feasible controller set DK is empty. If that is the case,
we need to enrich the model class by considering higher values for na and/or nb

(i.e., higher controller order). On the contrary, in the case the feasible set DK is
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not empty, we can state that certainly there exists at least one controller in the
class K(na,nb) which satisfactorily solves the considered model matching problem.

Since the controller class considered here is parametrized by ρ, we can conve-
niently replace the set DK with the Feasible controller parameter (FCP) set
defined as follows.

Definition 3.4.2: FCP Set for SISO systems

The feasible controller parameter set is the set of all the controller
parameters ρ such that K(ρ) ∈ DK.

Since equation (3.41) not only depends on ρ but also on the uncertain variable
η(t) we consider the following set.

Definition 3.4.3: Extended Feasible Controller Parameter Set
for SISO systems

The extended feasible controller parameter set Dρ is the set of all the
controller parameters ρ and noise sequences η(t), t = 1, ...,N , such that
K(ρ) ∈ DK.

Based on the definition of the extended feasible controller parameter (EFCP)
set we can formulate the following result.

Result 3.4.1: Structure of the EFCP Set for SISO systems

The extended feasible controller parameter set can be written in the
following form



Dρ = {(ρ,η) ∈ Rnρ+N : L(t)+
naØ
i=1

aiL(t− i) =

=
nbØ

j=0
bj(y(t− j)−η(t− j)), |ηt| ≤ ∆η,

∀t = max(na,nb)+1, ...,N}

(3.42)

where
L(t) = M(1−M)−1r(t) (3.43)
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Proof. From definition 3.4.3, Dρ is the set of parameter ρ ∈ Rn
ρ such that the

following condition holds

M(1−M)−1r(t) = K(ρ)[y(t)−η(t)] (3.44)

which, in turn, is equivalent to

L(t) = K(ρ)[y(t)−η(t)] (3.45)

where L(t) is defined as in (3.43). The statement of Result 3.4.1 finally follows
from the fact that

K(ρ) = b0 + b1q−1 + b2q−2 + ...+ bnb
q−nb

1+a1q−1 +a2q−2 + ...+anaq−na
(3.46)

3.4.2 SM-DDDC for MIMO LTI systems

In this Section, a set-membership algorithm to DDDC design is proposed to
deal with the case of MIMO LTI stable, MP plants.

According to Assumption 1, we assume that a set of N input-output plant data
are collected for n open-loop experiments by applying a suitable (i.e. persistently
exciting) reference signal r[i](t) to the plant G. The output measurements
y[i](t) are assumed to be corrupted by bounded additive noise according to

y[i](t) = w[i](t)+η[i](t), ∀i = 1, ..,n (3.47)

where the noise variables η[i](t) acting on the noiseless output w[i](t) are
assumed to range within given bound ∆η[i], that is

|η[i](t)| ≤ ∆η[i] (3.48)

Substitution of equation (3.47) into (3.31), leads to the following equation

M (I −M)−1r[j](t) =
nØ

i=1
kij [y[i](t)−η[i](t)] ∀j = 1, ...,n (3.49)
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where, due to the presence of the noise on the output measurements, the
controller design depends on the uncertain variables η[i](t) as in the SISO case.

Now, let us introduce the definition of Feasible Controller Set for MIMO
systems.

Definition 3.4.4: Feasible Controller Set for MIMO system

The Feasible controller set can then be described as

DK = {K(ρ) ∈ K(n[ij]
a ,n

[ij]
b ) :

M (I −M )−1r[j](t) =
nØ

i=1
kij(ρ)[y[i](t)−η[i](t)]

|η[i](t)| ≤ ∆η[i], ∀t = 1, ...,N,∀i, j = 1, ...,n}

(3.50)

Such that, the feasible controller set for MIMO system is the set of all the
controllers belonging to the following given class K(n[ij]

a ,n
[ij]
b )



K(ρ) ∈ K(n[ij]
a ,n

[ij]
b ) = {K(ρ) : K(ρ) is a square matrix;

where the generic entry of such a matrix is described as,

kij(ρij) =
b
[ij]
0 + b

[ij]
1 q−1 + b

[ij]
2 q−2 + ...+ b

[ij]
n

[ij]
b

q−n
[ij]
b

1+a
[ij]
1 q−1 +a

[ij]
2 q−2 + ...+a

[ij]
n

[ij]
a

q−n
[ij]
a

,

ρ = [ρ11 ... ρ1n... ρn1 ... ρnn]T ,

ρij = [a[ij]
1 ..... a

[ij]
na[ij] b

[ij]
0 ..... b

[ij]
nb[ij] ]T ,ρ ∈ Rnρ

∀i, j = 1, ...,n}, where, nρ =
nØ

i=1

nØ
j=1

n[ij]
a +n

[ij]
b +1

(3.51)

such that the equation
ϵ[i](ρ, t,η[i]) = 0 (3.52)

is fulfilled for a noise sequence η[i](t) satisfying the bound |η[i](t)| ≤ ∆η[i], ∀t =
1, . . . ,N, and ∀i, j = 1, ...,n.

Since the controller class considered here is parametrized by ρ, we can conve-
niently replace DK with the feasible controller parameter (FCP) set
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Definition 3.4.5: FCP Set for MIMO system

The feasible controller parameter set Dρ is the set of all the controller
parameter vectors ρ such that K(ρ) ∈ DK.

Since equation (3.41) not only depends on ρ but also on the uncertain variable
η[i](t) we consider the following set.

Definition 3.4.6: EFCP Set for MIMO systems

The extended feasible controller parameter (EFCP) set Dρ is the set of all
the controller parameter vectors ρ and noise sequences η[i](t), t = 1, ...,N

such that K(ρ) ∈ DK.

Based on the definition of the EFCP set we can formulate the following result.

Result 3.4.2: Structure of the EFCP Set for MIMO system

The extended feasible controller parameter set can be written in the
equivalent form, by introducing some additional variables Zijand Qih,
called partial outputs (see appendix 3.B and [39] for more details)



Dρ = {(ρ,Zij ,Qih,η[i]) ∈ Rnρ+2i∗N(j+1) :
L(t)[j] = M (I −M )−1r[j] = [l1(t), l2(t), ..., ln(t)]T

nØ
i=1

Zij(t) = lj(t), Zij(t)+
n

[ij]
aØ

f=1
a

[ij]
f Zij(t−f) =

=
n

[ij]
bØ

f=0
b
[ij]
f (y[i]

j (t−f)−η
[i]
j (t−f)),

nØ
i=1

Qih(t) = lh(t), Qih(t)+
n

[ij]
aØ

f=1
a

[ij]
f Qih(t−f) =

=
n

[ij]
bØ

f=0
b
[ij]
f (y[i]

h (t−f)−η
[i]
h (t−f)),

|η[i](t)| ≤ ∆η[i],∀t = max(n[ij]
a ,n

[ij]
b )+1, ...,N,

∀i, j,h = 1, ...,n,h ̸= j}

(3.53)
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Proof : See Appendix 3.B.

Remark 3.4.1

In many real-world applications the off-diagonal transfer functions of
the controller matrix K are tuned in such a way that the interactions
between the outputs are decoupled, and therefore G is assumed to be
diagonalizable by output feedback (see e.g., [108]). Thanks to Result 3.4.2,
this decoupling can be satisfied by choosing a diagonal reference model
M , and imposing the off-diagonal constraints represented in equations
(3.84) and (3.85). This decoupling is guaranteed since lh(t) will be equal
to zero by definition of L(t) in equation (3.53) (see Appendix 3.C). For
more details about controller decoupling in linear multivariable systems,
see e.g., [132], [108] and [161].

By comparing the structure of the feasible controller parameter set highlighted
in Result 3.4.2 with the results presented in [39], it turns out that the problem
of direct data-driven controller design considered in this chapter is equivalent to
the set-membership errors-in-variables identification problem considered, e.g.,
in [36] and [31] (see Chapter 2), in the case where the output noise is identically
zero, and only the input data are corrupted by noise. From equations (3.80) and
(3.81) we see that the problem of achieving a specific performance is to estimate
the diagonal transfer functions in matrix K(ρ) which maps uncertain inputs
signals to a noiseless output sequence lj(t),∀j = 1, ...,n. On the other side,
equations (3.84) and (3.85) deal with the problem of defining the interactions
between the outputs in order to estimate the off-diagonal transfer functions
in matrix K(ρ), which maps the uncertain input signals to a noiseless output
sequence lh(t), ∀h ̸= j,h,j = 1, ...,n.

3.4.3 Central estimate

Given the set Dρ of all the feasible controller parameters ρ, we pick a specific
single value in the set to design the controller K to be actually implemented
in the feedback control system of Fig. 3.5. According to the set-membership
identification theory, we select a single point in Dρ by looking for the value of
the parameter ρ that minimizes the distance in the ℓ∞ norm from the farthest
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point in the feasible controller parameter set, i.e.

ρc .= arg min
ρ∈Rnρ

max
(ρν ,η)∈Dρ

∥ρν −ρ∥∞. (3.54)

The estimate ρc computed by solving (3.54) is the so-called ℓp-Chebyshev center
of Dρ, also called central estimate in the set-membership literature. The central
estimate is the center of the minimum-volume-box outer-bounding Dρ and can
be computed by exploiting the convex relaxation approach proposed by [36]. In
particular, for each single component ρx of the parameter vector ρ the central
estimate ρc

x is given by

ρc
x =

ρc
x +ρc

x

2 (3.55)

where
ρ

x
= min

ρ,η∈Dρ

ρx, ρx = max
ρ,η∈Dρ

ρx (3.56)

Controller parameter bounds ρ
x

and ρx implicitly define the Controller param-
eter uncertainty intervals (CPUIs) given by

CPUIρx = [ρ
x
, ρx]. (3.57)

Problem (3.56), is in general, a hard non-convex optimization problem, which
falls into the class of semi-algebraic optimization problems, widely studied in
the recent years. For more details about a possible solution to this problem,
the reader is advised to see Section 2.2 and 2.3.

3.5 Simulation examples

In this section the effectiveness of the presented approach is shown by means
of simulation examples.

3.5.1 Example 1. DDDC design for SISO MP system

In this example, the proposed approach is employed to tune a SISO controller
to be compared with the standard NCbT introduced in [152] and the VRFT
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approach (see e.g., [60]). The plant considered in this example has the following
transfer function

G(q−1) = 0.09516q−1 +0.02q−2 +0.05q−3 −0.04q−4

1−0.9048q−1 +0.2q−2 −0.5q−3 +0.4q−4

while the assigned reference model is given by

M1(q−1) = 0.4q−1

1−0.6q−1

As to the SM-EIV approach, a random signal with unity amplitude is used as
input, r(t), to the system. The output of the plant is disturbed by a bounded
random noise, with uniform distribution in the range [−∆η,+∆η], such that
the signal-to-noise ratio of the open-loop experiment, given by

SNRw = 10log

qN
t=1 w2

tqN
t=1 η2

t

,

is about 20dB. Results are given for 100 experimental data. While, for VRFT
and NCbT, a PRBS signal of 255 samples with unity amplitude is used as input
to the system. Four periods of this signal are used to design the controller,
N = 1020. The periodic output is disturbed by a zero-mean white noise such
that the signal-to-noise ratio is about 20dB.

The general LTI controller structure in (3.39) for the SM-EIV approach is
considered here, where na = nb = n and the controller order n = 4 is selected
by trial starting from n = 1 and by increasing n until the feasible set is not
empty. The final selected controller structure is as follows

K(ρc, q−1) = b0 + b1q−1 + b2q−2 + b3q−3 + b4q−4

1+a1q−1 +a2q−2 +a3q−3 +a4q−4

The controller structure for NCbT and VRFT is chosen as follows,

K(ρ,q−1) = b0 + b1q−1 + b2q−2 + b3q−3 + b4q−4

1− q−1

Note that, the controller structure for VRFT and NCbT is chosen to be linearly
parameterized with a fixed known denominator according to [60] and [84].
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Central estimates for the parameters of the SM-EIV controller have been
computed exploiting the approach proposed in the chapter. For the NCbT and
the VRFT method, the length of the instrumental variable l is found to be 15 by
trial-and-error. Fig. 3.8 and 3.9 display the comparison between the reference
model and the obtained closed-loop system in terms of magnitude frequency
and step responses respectively for SM-EIV, VRFT and NCbT methods.
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Figure 3.8 Comparison of frequency responses: designed feedback control system
with SM-EIV (black solid-line), NCbT method (red-line), VRFT method (blue-
line) and reference model (black dashed-line).

From the comparison, we see that the controlled system obtained with the
proposed method performs better than the NCbT and VRFT methods both in
the frequency and in the time domain.

3.5.2 Example 2. DDDC design for non-symmetric M

In this example, we present a comparison between the SM-EIV approach
proposed in this chapter, the VRFT method proposed in [60] and the method
proposed in [61]. The plant transfer function used for generating the data is
given by
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Figure 3.9 Comparison of step responses: designed feedback control system with
SM-EIV (black solid-line), NCbT method(red-line), VRFT method(blue-line)
and reference model (black dashed-line).

G(q−1) =


0.09516q−1

(1−0.9048q−1)
0.03807q−1

(1−0.9048q−1)
−0.02974q−1

(1−0.9048q−1)
0.04758q−1

(1−0.9048q−1)


while the assigned non-symmetric (Mii ̸= Mjj) reference model M2 is considered
for the same plant, given by

M2(q−1) =


0.1148q−1 −0.0942q−2

1−1.79q−1 +0.8106q−2 0

0 0.4q−1

1−0.6q−1


The input signal for the SM-EIV method can be defined as r[1](t) = [s(t),0]T

and r[2](t) = [0, s(t)]T , where s(t) is a random signal uniformly distributed
in the range [−1,+1] with length N = 100. The input signal for the VRFT
method is u(t) = [A1(t),A2(t)], where Ai(t), i = 1,2 is a random signal with
length N = 5000. Finally, the input signals for the method proposed in [61] are
two random input sequences u1 and u2 with length N = 5000 such that, the
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sequence u1 is used to feed the first channel, then the same input is switched
to the second channel and u2 is used to separately feed the two channels,
analogously to what has been done for u1. Note that, for the SM-EIV we
need n experiments and for the VRFT we need one experiment while for the
method proposed in [61] we need n×n experiments, where in this example n = 2.

To establish a fair comparison with the method of [60] and [61] two different
tests have been carried out, one with bounded noise uniformly distributed in
the range [−∆η,+∆η] and another one with stochastic zero-mean white noise,
such that both systems are characterized by SNRw ∼= 25dB. Nonetheless, it
should be noticed that the quality of the step response of all the previous
methods is the same for both tests (stochastic and bounded noise) in terms of
overshoot, performance in channel decoupling, settling time and overall shape.

The controller order for the SM-EIV method is selected by trial starting from
n = 1 and by increasing n until the feasible set is not empty. Since the feasible
set is not empty for n = 1, we select the following structure for the controller

K(q−1) =


b
[11]
0 + b

[11]
1 q−1

1+a
[11]
1 q−1

b
[12]
0 + b

[12]
1 q−1

1+a
[12]
1 q−1

b
[21]
0 + b

[21]
1 q−1

1+a
[21]
1 q−1

b
[22]
0 + b

[22]
1 q−1

1+a
[22]
1 q−1


While, the controller structure for the VRFT and for the approach proposed in
[61] is chosen to be linearly parameterized with a fixed known denominator, as
follows

K(q−1) =


b
[11]
0 + b

[11]
1 q−1

1− q−1
b
[12]
0 + b

[12]
1 q−1

1− q−1

b
[21]
0 + b

[21]
1 q−1

1− q−1
b
[22]
0 + b

[22]
1 q−1

1− q−1


A closed-loop noiseless experiment with the controller given by the proposed
approach and the one returned by MIMO VRFT and the one proposed in [61]
is illustrated in Figure 3.10. As can be seen from Fig. 3.10, the proposed
approach (SM-EIV) provides a perfect decoupling, ensuring that the closed-loop
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system is diagonalized, thanks to the off-diagonal constraints represented in
equations (3.84) and (3.85). On the contrary, the VRFT method for MIMO
system and the method proposed by [61] doesn’t guarantee the decoupling
when the reference model is not symmetric.
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Figure 3.10 Step responses: designed feedback control system with the SM-EIV
approach (red-line), the VRFT method (blue-line), the method proposed in
[61] (black solid-line), reference model (green-line) and reference signals (black
dashed-line). Notice that, red-line and green-line are perfectly overlapped.

3.6 Experimental results

The algorithm presented in Section 3.4.2, has also been tested on the exper-
imental input output data collected on a test bench MIMO electronic filter
with 2 inputs and 2 outputs taken from [40]. Fig. 3.11 shows the experimental
setup used to collect the data.
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Figure 3.11 The experimental MIMO system used as test bench

The system structure is reported in the block-diagram depicted in Fig. 3.12,
for the details on the transfer function, see [40].
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Figure 3.12 Block-diagram description of the MIMO circuit considered in the
experimental test bench section.

We point out that, in this example, we do not assume any a-priori information
on the plant G.
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In order to achieve reasonable tracking and decoupling between y1(t) and y2(t),
we have chosen the following discrete-time reference model

M3(q−1) =


0.0008671q−1

1− q−1 0

0 0.0008671q−1

1− q−1



The system has been excited with two input signals, r[1](t) = [s(t),0]T and
r[2](t) = [0, s(t)]T , where s(t) is a random sequence of 200 samples, uniformly
distributed within the range [−1,+1]V. A National Instruments PXI equipped
with a NI–6221 DAQ board has been used to generate the input signal s(t) and
to collect the signals r[1](t), r[2](t), y[1](t) and y[2](t) at a sample rate of 4kHz.
The upper bound on the measurement errors is derived from the precision of the
measurement equipment which is given by ∆η = 0.003V. The software Sparse-
Pop and MOSEK have been used to solve the underlying optimization problems.

We have also designed a controller according to the VRFT method proposed by
[60]. For the VRFT approach, the input signal is u(t) = [A1(t),A2(t)]T , where
Ai(t), i = 1,2 is a random signal uniformly distributed in the range [−1,+1]V ,
with length N = 5000.

The controller order for the SM-EIV method is selected by trial starting from
n = 1 and by increasing n until the feasible set is not empty. Since the feasible
set is not empty for n = 1, we select the following structure for the controller

K(q−1) =


b
[11]
0 + b

[11]
1 q−1

1+a
[11]
1 q−1

b
[12]
0 + b

[12]
1 q−1

1+a
[12]
1 q−1

b
[21]
0 + b

[21]
1 q−1

1+a
[21]
1 q−1

b
[22]
0 + b

[22]
1 q−1

1+a
[22]
1 q−1
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While, the controller structure for the VRFT is chosen to be linearly parame-
terized with a fixed known denominator, as follows

K(q−1) =


b
[11]
0 + b

[11]
1 q−1

1− q−1
b
[12]
0 + b

[12]
1 q−1

1− q−1

b
[21]
0 + b

[21]
1 q−1

1− q−1
b
[22]
0 + b

[22]
1 q−1

1− q−1



The final controller parameters for both the SM-EIV (ρc
SM−EIV ) and the VRFT

(ρV RF T ) methods are reported in Table 3.1. As far as the parameters value of
a

[ij]
1 , ∀i, j = 1,2 are concerned in the SM-EIV technique, the computed central

estimated for these parameters are equal to −1.

Table 3.1 Controller parameters for the SM-EIV (ρc
SM−EIV ) and the VRFT

(ρV RF T ) method

Parameter ρc
SM−EIV ρV RF T

k11
b
[11]
0 +0.0075370 +0.006414

b
[11]
1 −0.0066700 −0.005581

k12
b
[12]
0 −0.0007793 +0.007304

b
[12]
1 +0.0007432 −0.007258

k21
b
[21]
0 −0.0065240 −0.0003617

b
[21]
1 +0.0056700 −0.0003326

k22
b
[22]
0 +0.0073020 +0.002341

b
[22]
1 −0.0064450 −0.001604

A comparison between the reference model and the obtained closed-loop system
for the SM-EIV method (by setting the value of the parameter to the central
estimate ρc

SM−EIV ) and the VRFT method in terms of the step response is
presented in Fig. 3.13, from which we see that the output of the controlled
response for the SM-EIV approach perfectly overlaps the reference model, while
the results for the VRFT technique show the effects of a coupling between the
outputs.
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Figure 3.13 Step responses: designed feedback control system with the SM-EIV
approach (red-line), the VRFT method (blue-line), reference model (green-line)
and reference signals (black dashed-line). Notice that, red-line and green-line
are perfectly overlapped.

3.7 Discussion and conclusion

In this chapter, we have proposed an original approach to the problem
of designing linear controllers directly from a set of input-output data,
experimentally collected on the plant to be controlled. Assuming that the
output measurements are corrupted by bounded noise, the controller design
problem is formulated as a peculiar input-error set-membership identification
problem, solved by adapting results on errors-in-variables identification
available from the literature and summarized in Chapter 2. In particular,
we formulate the problem of designing a controller in order to match the
behaviour of a given reference model, in terms of an equivalent set-membership
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errors-in-variables problem and we define the feasible controller parameter
set. Then, we design the controller parameters by applying the results from
Chapter 2 in the field of set-membership errors-in-variables identification.

The main advantages of the proposed method, with respect to previously
proposed non-iterative direct data-driven design algorithms, are that (i)
the noise corrupting the data is assumed to be bounded and no statistical
information is assumed to be a-priori available; (ii) in contrast to Iterative
feedback tuning (IFT) and Iterative Correlation-based Tuning (ICbT)
approaches where an iterative procedure is exploited, the set-membership
approach leads to a non-iterative algorithm to design the controller; (iii)
differently from the standard Virtual Reference Feedback Tuning (VRFT) and
Non-iterative Correlation based Tuning (NCbT) approaches, the controller
transfer function does not need to depend linearly on the parameters to be
tuned; (iv) the proposed strategy is applicable to deal with both diagonal and
non-diagonal multivariable reference models.

Finally, the effectiveness of the proposed approach is shown by means of different
simulation examples and through the application to a laboratory test bench.

Appendix 3.A Lemma 1

The following equivalence holds for the MIMO control system considered in
Section 3.4.2,

GK(ρ)r[j](t) =
nØ

i=1
kijGr[i](t), ∀j = 1, ...,n (3.58)

Proof of Lemma 1
We sketch here a proof of Lemma 1 for the case where n = 2. A general detailed
proof can be found in [170] and [61].
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Let us consider here the 2x2 MIMO plant and the controller respectively
described by the following matrix transfer functions

G =
G11 G12

G21 G22

 (3.59)

and

K(ρ) =
k11(ρ11) k12(ρ12)
k21(ρ21) k22(ρ22)

 (3.60)

By selecting the reference vector signal as follows (according to Assumption 1 ),

r[1](t) =
s(t)

0

 , r[2](t) =
 0
s(t)

 (3.61)

we obtain the following expression for the left hand side of equation (3.58) (case
j = 1):

GK(ρ)r[1](t) =
G11 G12

G21 G22

k11(ρ11) k12(ρ12)
k21(ρ21) k22(ρ22)

s(t)
0


=

G11k11s(t)+G12k21s(t)
G21k11s(t)+G22k21s(t)

 (3.62)

As far as the right-hand side of (3.58) is concerned, we get the following
equation for j = 1:

2Ø
i=1

ki1Gr[i](t) =

= k11

G11 G12

G21 G22

s(t)
0

 +k21

G11 G12

G21 G22

 0
s(t)


=

G11k11s(t)+G12k21s(t)
G21k11s(t)+G22k21s(t)


(3.63)

By comparing equations (3.62) and (3.63) the proof of Lemma 1 is obtained
for j = 1. As far as j = 2 is concerned, the following equation is obtained for
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the left-hand side of (3.58)

GK(ρ)r[2](t) =
G11 G12

G21 G22

k11(ρ11) k12(ρ12)
k21(ρ21) k22(ρ22)

 0
s(t)


=

G11k12s(t)+G12k22s(t)
G21k12s(t)+G22k22s(t)

 (3.64)

while the right-hand side is given by

2Ø
i=1

ki2Gr[i](t) =

= k12

G11 G12

G21 G22

s(t)
0

 +k22

G11 G12

G21 G22

 0
s(t)


=

G11k12s(t)+G12k22s(t)
G21k12s(t)+G22k22s(t)


(3.65)

By comparing equations (3.64) and (3.65) the proof of Lemma 1 is also obtained
for j = 2.

Appendix 3.B Proof of Result 3.4.2

Consider the discrete-time linear-time invariant (LTI) multi-input multi-output
(MIMO) feedback control scheme depicted in Fig. 3.5, where

G(q−1) =



G11(q−1) . . . G1n(q−1)
. . .

. . .

. . .

Gn1(q−1) . . . Gnn(q−1)


(3.66)
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M (q−1) =



M11(q−1) . . . M1n(q−1)
. . .

. . .

. . .

Mn1(q−1) . . . Mnn(q−1)


(3.67)

K(ρ, q−1) =



k11(ρ11, q−1) . . k1n(ρ11n, q−1)
. . .

. . .

. . .

kn1(ρn1, q−1) . . knn(ρnn, q−1)


(3.68)

From Fig. 3.5, we can derive the following equations

w(t) = G(q−1)u(t) (3.69)
u(t) = K(ρ, q−1)e(t) (3.70)
e(t) = r(t)−w(t) (3.71)

w(t) = M (q−1)r(t) (3.72)

by substituting (3.71) into (3.70)

u(t) = K(ρ, q−1)[r(t)−w(t)] (3.73)

and, by substituting (3.73) into (3.69) we obtain

w(t) = [I +G(q−1)K(ρ, q−1)]−1G(q−1)K(ρ, q−1)r(t) (3.74)

finally, by substituting (3.74) into (3.72)

M (q−1)[I −M (q−1)]−1r(t) = G(q−1)K(ρ, q−1)r(t) (3.75)

Under Assumption 1, the following result follows

L[j](t) = G(q−1)K(ρ, q−1)r[j](t) (3.76)
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where,

L[j](t) = M (q−1)[I −M(q−1)]−1r[j](t)
= [l1(t), ..., ln(t)]T ∀j = 1, ...,n (3.77)

Equation (3.76) can be written as

L[j](t) =



G11(q−1) . . . G1n(q−1)
. . .

. . .

. . .

Gn1(q−1) . . . Gnn(q−1)





k11(ρ11, q−1) . . . k1n(ρ11n, q−1)
. . .

. . .

. . .

kn1(ρn1, q−1) . . . knn(ρnn, q−1)


r[j]

L[j](t) =



qn
i G1i(q−1)ki1(ρi1, q−1) . . .

qn
i G1i(q−1)kin(ρin, q−1)

. . .

. . .

. . .qn
i Gni(q−1)ki1(ρi1, q−1) . . .

qn
i Gni(q−1)kin(ρin, q−1)


r[j]

(3.78)

Case 1. By considering only the j − th output for the j − th open-loop
experiment, ∀j = 1, ...,n, we have

lj(t) =
nØ

i=1
Gji(q−1)kij(ρij , q

−1)r[j](t) (3.79)

now, substitution of equations (3.58) and (3.47) into (3.79), leads to the
following equation

lj(t) =
nØ

i=1
kij(ρij , q

−1)[y[i]
j (t)−η

[i]
j (t)] (3.80)

where, y
[i]
j and η

[i]
j (t) are the output and the additive noise j for the i − th

open-loop experiment respectively. Now, by introducing the partial output
Z(t) (see [39] for more details) the following equivalent condition is derived

lj(t) =
nØ

i=1
Zij(t) (3.81)
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where,
Zij(t) = kij(ρij)[y[i]

j (t)−η
[i]
j (t)] (3.82)

Case 2. By considering now only the h− th output for the j − th open-loop
experiment, ∀h ̸= j,h,j = 1, ...,n, we have

lh(t) =
nØ

i=1
Ghi(q−1)kij(ρij , q

−1)r[j](t) (3.83)

now, substitution equations (3.58) and (3.47) into (3.83), leads to

lh(t) =
nØ

i=1
kij(ρij , q

−1)[y[j]
h (t)−η

[j]
h (t)] (3.84)

which is equivalent to:

lh(t) =
nØ

i=1
Qih(t) (3.85)

where,
Qih(t) = kij(ρij)[y[i]

h (t)−η
[i]
h (t)] (3.86)

Appendix 3.C Decoupling constraints

In order to guarantee decoupling controllers for MIMO systems, the reference
model should be diagonal; i.e., Mij = 0,∀i ̸= j. Therefore, equations (3.80) and
(3.84) can be recomputed for the new reference model respectively as follows

nØ
i=1

kij(ρij , q
−1)[y[i]

j (t)−η
[i]
j (t)] = Mjj(1−Mjj)−1s(t)

∀j = 1, ...n (3.87)
nØ

i=1
kij(ρij , q

−1)[y[i]
h (t)−η

[i]
h (t)] = 0

∀j ̸= h,j,h = 1, ...n (3.88)

where (3.87) and (3.88) are important constraints in the feasible controller
parameter set when decoupling controllers is concerned.



Chapter 4

Reference model design

4.1 Introduction

The model reference control design paradigm has been around since at least
the 1960s. This paradigm has caught more attention within the Adaptive
Control framework, probably because it lends itself naturally to the automatic
adjustment of the controller parameters, see e.g., [79], [89] and [109]. In the
model reference design framework, the designer is asked to create a transfer
function whose behaviour is the one expected from the closed-loop system.
This target transfer function is called in general the Reference Model [10].

The control design formulation in the Adaptive Control framework has been
also called, the Model Matching Control. Several contributions have been
proposed to solve the model matching control problem by means of tools such
as Riccati equations, Linear Matrix Inequalities (LMI’s), Bilinear Matrix
Inequalities (BMI’s), etc. [65]. Provided, of course, that the process model G

is known, which is not the case in this chapter.

The model matching control framework has also been applied to the direct
data-driven control (DDDC) theory, where experimental data are directly
used to design the controller with no resort to the plant identification. For
example, Guardabassi and Savaresi in 2000 [67] proposed a virtual reference
feedback tuning (VRFT) method. It is a one-shot direct data-driven method
where the data-based procedure proposed for designing an LTI controller is
based on the concept of a virtual reference signal. An alternative non-iterative
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approach called Non-iterative Correlation based Tuning (NCbT) method has
been proposed in the work of [84]. This controller tuning approach leads to the
formulation of a controller identification problem where the input is affected by
noise while the output is noiseless. Recently, a non-iterative approach has been
proposed in [41], [42], where a novel set-membership based direct data-driven
controller (SM-DDDC) design technique is presented and discussed in details
in Chapter 3.

In VRFT, NCbT and SM-DDDC, the user is looking for an algorithm
to find the controller K that provides a desired input-output relationship
to be matched with a given reference model (see Section 3.2.1, 3.2.2 and
3.4). The problem of deriving the reference model for LTI control problems
in the framework of direct data-driven control is discussed in papers [10]
and [51] for the single-input single-output (SISO) case and the multi-input
multi-output (MIMO) case respectively. Although those contributions discuss
some important guidelines on the design of an appropriate reference model,
they do not provide a systematic approach to select a reference model which
accounts for a set of given performance specifications. To the best of the
authors’ knowledge, there are no works in the literature that systematically
address such a problem in the framework of DDDC.

In this chapter, we present an original approach to design, in a systematic
way, the reference model M to be able to meet performance specifications.
Through the proposed method, the desired performance specifications of the
closed-loop system are translated into a model reference design paradigm in the
framework of the DDDC approach. The designing of a suitable reference model
M is done based on H∞ control design problem by using a suitable fictitious
plant. Then, stability conditions both for stable minimum-phase plant and
stable non-minimum phase plant are discussed and analyzed to guarantee the
stability of the designed closed-loop system. The main distinctive features of
the proposed approach with respect to those already available in the literature
are as follows: (i) the reference model M is designed such that the closed-loop
system is able to fulfil quantitative performance specifications; (ii) no a-priori
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information on the NMP zeros location is needed.

The chapter is organized as follows. Fundamental facts on model-reference
direct data-driven control design are discussed in sections 4.2. Section 4.3
is devoted to the formulation of the problem, while Section 4.4 presents an
H∞ method to design the reference model M for DDDC approach. Section
4.5 presents the proposed approach to deal with non-minimum phase (NMP)
systems. The effectiveness of the presented method is demonstrated in Section
4.6 and 4.7 by means of both simulation examples and experimental results
respectively. Concluding remarks end the chapter.

4.2 Basics on model reference DDDC design

In this section, we are briefly reviewing some fundamental facts on model-
reference direct data-driven control design approach.

Let us consider the discrete-time linear-time invariant (LTI) single-input
single-output (SISO) feedback control scheme depicted in Fig. 4.1, where
q−1 denotes the standard backward shift operator, G(q−1) is a stable plant
transfer function, K(ρ,q−1) is the controller transfer function, ρ is the vector of
controller parameters, and M(q−1) is the transfer function of a given suitable
reference model that describes the desired behavior of the controlled plant.

The objective of the model reference direct data-driven control approach is to
design the transfer function of an LTI controller K(ρ,q−1) such that the closed
loop transfer function Tw̃r(q−1) given by

Tw̃r(ρ,q−1) , K(ρ,q−1)G(q−1)
1+K(ρ,q−1)G(q−1) (4.1)

matches, as close as possible, the reference model M(q−1), under the
assumption that the plant transfer function G(q−1) is unknown, and only a
set of input-output data, collected by performing suitable experiments on the
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Figure 4.1 Feedback control system to be designed compared with the reference
model M(q−1).

plant, are available.

More precisely, the objective is to design a controller K(ρ,q−1), such that
the designed closed-loop resembles the reference model M(q−1). This can be
achieved, for example, by minimizing the p-norm of the difference between the
reference model and the achieved closed-loop system, such as,

J(ρ) =
------M(q−1)−Tw̃r(ρ,q−1)

------
p

(4.2)

where p = 1,2,∞.

The controller that exactly solves the model matching problem, in this context
is called the ideal controller and is defined as follows:

K∗ ,
M

G(1−M) . (4.3)

It is worth noting that, in general, the ideal controller K∗ is not guaranteed to
be physically realizable. Therefore, the objective of any data-driven control
approach is, roughly speaking, to estimate, from a set of noisy experimental
data, the physically realizable controller K which better approximate K∗,
without relying on the knowledge of the plant transfer function G.
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To simplify notation, in the rest of the chapter we drop the backward shift
operator q−1 from equations and corresponding block diagrams.

Remark 4.2.1

We highlight that one of the main ingredients of any model reference
based DDDC approach is the reference model M , which describes the
desired input-output behavior of the feedback system. To the best
of the author’s knowledge, there is no method in the literature that
systematically addresses the selection of a suitable reference model for
the DDDC approach, to account for a set of quantitative performance
specifications.

Remark 4.2.2

The problem of properly selecting the reference model M , discussed in
the next section, is a common issue of all the DDDC approaches that use
the model-matching reference model technique, e.g., VRFT, NCbT, and
SM-DDDC tuning approaches. However, in this work we will refer to a
specific approach, the SM-DDDC, in order to better present our results.

4.3 Problem formulation

In this section, we formulate the problem of designing the reference
model M in the context of H∞ optimal control to be used in DDDC
system design, such that this reference model is able to meet quantitative
performances specification on both reference tracking and disturbance rejection.

Let us consider the Single Input Single Output (SISO) feedback control system
depicted in Fig. 4.2. In such a structure, K and G are the plant and the
controller transfer functions respectively. The reference signal is r(t), y(t) is
the controlled output. Additive output (dp) and sensor (ds) disturbances are
also considered.
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The loop, sensitivity, and complementary sensitivity transfer functions are
defined, respectively, as

L , KG, (4.4)

S ,
1

1+L
, (4.5)

T ,
L

1+L
. (4.6)

Figure 4.2 General SISO feedback control system.

Common classes of quantitative performance requirements for the control
system in Fig. 4.2 accounts for (i) steady-state response to polynomial
reference inputs, (ii) steady-state response to polynomial disturbance dp,
(iii) steady-state response to measurement disturbances ds, (iv) transient
step response requirements on overshoot (ŝ), rise time (tr) and settling time (ts).

As is well known, in the context of H∞ control (see e.g, [15] and [113] for
details), such performance requirements can be translated into frequency
domain constraints on a weighted H∞ norm of the sensitivity (S) and
complementary sensitivity (T ) functions, such as,
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∥WT (jω)T (jω)∥∞ ≤ 1, (4.7)

∥WS(jω)S(jω)∥∞ ≤ 1. (4.8)

In the context of DDDC control, the plant transfer function G is not assumed
to be known, and a data based controller is directly designed in order to make
the input-output behavior of the controlled system to match a given reference
model M . Thus the following problem is formulated.

Problem 2. [Reference model design in DDDC method]
The problem addressed in this chapter is to design the reference model M (when
the plant transfer function G is unknown) such that the following conditions
are satisfied,

∥WT (jω)M(jω)∥∞ ≤ 1, (4.9)

∥WS(jω)(1−M)(jω)∥∞ ≤ 1. (4.10)

4.4 An H∞ method to design the reference
model for DDDC approaches

In this section, we propose an approach based on H∞ control techniques for
choosing the reference model M which solves Problem 2, stated in Section 4.3.

The main idea of this contribution is given in the following result.
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Result 4.4.1: Main Result

Assume that the LTI plant is stable and minimum phase. Consider the
reference model M̃ given by,

M̃ = T̃ = K̃G̃

1+ K̃G̃
(4.11)

where, K̃ is the controller obtained by solving the following H∞ feasibility
problem

K̃ = arg min
K̃∈K̃stab

||TW Z ||∞ (4.12)

and, with reference to the block diagram in Fig. 4.3, G̃ is called the
fictitious plant and its transfer function is set, without loss of generality,
to 1, i.e.

G̃ = 1, (4.13)

K̃stab is the class of all the controllers which provide internal stability
of the nominal feedback system; and TW Z is the closed loop transfer
function between the input W and the output Z, i.e.

TW Z =
 WT T̃

WSS̃

 (4.14)

where
S̃ = 1

1+ L̃
, T̃ = 1− S̃, L̃ = K̃G̃. (4.15)

Then, the model reference M̃ solves problem 2 if

||TW Z(K̃)||∞ ≤ 1 (4.16)

Proof. The proof follows straightforwardly from the fact that ||TW Z(K̃)||∞ ≤ 1
is a sufficient condition for both ||WT T̃ ||∞ ≤ 1 and ||WSS̃||∞ ≤ 1.
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Figure 4.3 Generalized plant for nominal performance.

Remark 4.4.1

It is worth remarking that problem (4.12) is a fictitious control prob-
lem where the design of K̃ is instrumental to the computation of the
complementary sensitivity function T̃ to be used as reference model M̃ .
Therefore, the fictitious controller K̃ does not solve the control problem
described by constraints (4.7) and (4.8) for the actual plant G. The con-
troller K that solves the actual control problem described by constraints
(4.7) and (4.8) is to be designed by applying a DDDC approach on the
basis of the computed reference model M̃ .

As it is well known, one of the main difficulties of DDDC approaches regards
the stability of the closed-loop plant. In model-based approaches, the
model of the plant can be used to analyze whether the controller is suitable,
before actual implementation. In a data-driven method, since no model is
available, stability is typically not guaranteed before the implementation
of the controller [152]. Therefore, in the following two sections, we present
proper stability conditions such that the reference model designed by equation
(4.11) is able to guarantees internal stability for stable and possibly NMP plants.
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Remark 4.4.2

In papers [10] and [51] it is pointed out that, apart from the location
of the NMP zeros, two additional pieces of information regarding the
plant transfer function plays a crucial role in the proper selection of the
reference model, namely: (i) an upper bound for the relative degree of
the plant and (ii) ballpark values for the plant’s dominant time constants.
If such a-priori knowledge on the plant is available, it can be accounted
for in the procedure proposed in this work, by proper selection of the
relative degree and pole location of the fictitious plant. In case such
a-priori information is not available, it can be retrieved by means of a
suitable data-driven procedure as discussed in [10] and [51].

4.5 DDDC approach for NMP systems

There is no guarantee that a controller determined by model-reference DDDC
approach actually stabilizes the plant. Instability can occur if the reference
model is designed inappropriately or if the measurements are strongly affected
by noise. Thus, in this section, we discussed stability conditions when the
plant is a stable and possibly NMP system.

Direct data-driven control approaches do not rely on plant model identification
since available input-output data experimentally collected from the plant
are directly used to design the controller. The control specifications are
usually given in terms of the desired closed-loop map, therefore the controller
parameters are computed by formulating the problem in terms of model
matching. However, if the unknown plant shows non-minimum phase (NMP)
zeros that are not included in the desired reference model, the internal stability
of the closed-loop system cannot be guaranteed because the designed controller
provides perfect cancellation of the NMP zeros, see e.g., [9] and [146].

When dealing with DDDC for NMP MIMO systems the definition of zeros, or
in this case transmission zeros, and their implications on the closed-loop have
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to be generalized to prevent perfect cancellation and to guarantee internal
stability. More precisely, in DDDC MIMO linear time-invariant (LTI) systems,
the closed-loop controllers are typically tuned to achieve specific performance
and to eliminate process interactions between the output. However, if the
system is stable and has NMP transmission zero, then the reference model
must have the same transmission zeros of the system to prevent any pole-zero
cancellation.

In recent years, several contributions have been proposed to deal with the
controller design when the system includes an NMP zero. In Patete et al. [112],
a self-tuning control of minimum and non-minimum phase auto-regressive
systems with constant but unknown parameters is considered. For direct
adaptive control, the solution of including the NMP zeros in the reference model
is well documented in the literature (see e.g., [5] and [147]), but this solution
requires knowing in advance the NMP zeros. While, for DDDC approach,
Lecchini and Gevers in [93] propose a solution for Iterative Feedback Tuning
(IFT) (see, e.g., [72]) to overcome the NMP zero problem by introducing what
they call a flexible reference model. This model has the same poles as the
desired reference model, while the parameters of its numerator polynomial are
free; therefore, an optimization problem of the numerator for both the reference
model and the controller is required. Inspired by the same idea, Campestrini
et al. in [21] use the flexible reference model in the context of virtual reference
feedback tuning (VRFT) approach (see, e.g., [66]). An extension of this method
for multi-input-multi-output (MIMO) plants has been recently discussed in [53].

An alternative solution in the context of VRFT, when a-priori information on
the location of the NMP zeros of the plant are available, was introduced in [126]
and [52] for SISO and MIMO system respectively. As far as the Correlation
based Tuning (CbT) approach proposed by Karimi [84] is concerned, the
solution was obtained by imposing a suitable convex stability constraint in
order to avoid unstable pole-zero cancellations, as discussed in [152]. The same
strategy was also applied to the VRFT procedure in [120] where an interesting
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comparison is also proposed between different approaches.

In this Section, we present an approach to deal with NMP zero when no
a-priori information about the plant and the presence of NMP zeros is available.
First, by assuming that the available input-output data are corrupted by
bounded noise, we formulate the problem of designing a controller in order to
match the behaviour of an assigned reference model in terms of an equivalent
set-membership errors-in-variables (SM-EIV) identification problem discussed
in Chapter 3. Then, a two-stage procedure, able to detect the presence of
NMP zeros in the plant, is proposed for the design of the controller.

4.5.1 DDDC design for SISO NMP plant

Pole-zero cancellation issues may arise when applying model matching design
techniques to NMP systems. This section studies a data-driven design
methodology to be used in the case of NMP SISO systems.

As stated in the introduction, when the plant has NMP zeros that are not
included in the reference model, the model matching controller may lead to
instability. In fact, in this case, the ideal controller K∗(ρ) certainly includes in
its denominator all the unstable zeros of G not included in the reference model
M . However, unstable poles may arise in the ideal model matching controller
K∗(ρ) also in the case of minimum phase plant as illustrated in the following
simple example.

Illustrative Example 4.1
In this illustrative example we want to highlight the fact that when a controller
is designed to perfectly match an assigned input-output stable, minimum-phase
reference model M , unstable poles may appear in the controller no matter if the
plant is a non-minimum phase or not. Let us consider the following unstable
controller,

K(s) = 4
s−3 . (4.17)
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As can be checked by means of elementary algebra, K(s) in (4.17) leads to
perfect matching of the reference model,

M1(s) = 4
s+9 (4.18)

when the plant transfer function is the following,

G1(s) = (s−3)
(s+5) (4.19)

giving rise to internal instability of the controlled system, due to perfect unstable
pole-zero cancellation.

At the same time, the same controller K(s) in (4.17) lead to perfect matching
of the reference model

M2(s) = 8
s+5 (4.20)

when the plant transfer function is the following,

G2(s) = 2. (4.21)

This simple example shows that the presence of an unstable pole in the controller
providing perfect algebraic matching of an assigned input-output model is not
necessarily associated with an unstable pole-zero cancellation. Therefore, in the
case the controller K(ρ) designed by means of a direct data-driven approach
shows an unstable pole, we must detect if the unstable pole in the controller is
due to the presence of an NMP zero in the plant or not.

Now we are in the position to state, in general terms, the problem to be solved
in this Section.

Problem 3. [Direct Data-driven design problem for NMP systems]
The problem addressed in this section is to find the fully parametrized LTI
controller transfer function K(ρ) which makes the output matching error signal
ϵ(t) as close as possible to zero, and avoiding perfect cancellation of the unknown
unstable zeros (if any).

To solve problem 3, we introduce the following notion of the prospective plant.
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Definition 4.5.1: Prospective plant G∗

Given a reference model with transfer function M and a controller with
transfer functions K, the prospective plant is defined as the plant with
transfer function given by,

G∗ = M

K(1−M) . (4.22)

Remark 4.5.1

Given a controller K, the prospective plant G∗ is such that the closed-loop
input-output transfer function of the controlled system depicted in Fig.
4.1 perfectly match the reference model M .

Based on the notion of prospective plant, we propose the following two-stage
design procedure which allows the user to detect if the designed controller could
lead to unstable pole-zero cancellation.

• Stage 1:(Controller design and detection of unstable pole-zeros
cancellation) In the first stage, the reference model M is designed
using H∞ control method discussed in Section 4.4. Then, a data-driven
controller K(ρ) is designed using a set of input-output experimental data
collected on the plant and according to the approach proposed in Chapter
3. If the transfer function of the designed controller is stable, then the
controller can be implemented since unstable cancellation will not take
place (the controller does not have any unstable poles). In the case the
designed controller is unstable, the prospective plant G∗ defined as,

G∗ = M

K(1−M) . (4.23)

is computed. If G∗ is a minimum phase system or has an NMP zero
which is not close to a controller pole, we know that the designed
controller, although unstable, leads to a controlled system perfectly
matching the reference model without giving rise to unstable pole-zero
cancellations [26]. Therefore, the designed controller can be imple-
mented. On the contrary, if the prospective plant G∗ shows NMP
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zeros close to the unstable poles of K(ρ), the designed controller has
to be rejected and a new controller has to be designed according to stage 2.

• Stage 2: All the unstable poles of the designed controller K(ρ) are added
to the numerator of the fictitious plant G̃ and new reference model M

is designed using equation (4.11). Then, the newly designed reference
model is used to design a new controller K(ρ) by using the originally
collected I/O experimental data.

Remark 4.5.2

It is worth noting that, in case the prospective plant G∗ shows the unstable
poles of the controller as zeros this suggest that the unstable poles which
appeared in the controller in order to match the selected reference model
M . Therefore, the selected reference model has to be modified. On the
contrary, if G∗ doesn’t show unstable zeros corresponding to the unstable
poles in the designed controller K this suggests that the presence of the
unstable poles in the controller was not forced by the selected reference
model M . Therefore, we don’t need to modify the selected reference
model.

4.5.2 DDDC design for MIMO NMP plant

This section studies a data-driven design methodology to be used in the case
of NMP MIMO systems.

As stated in the SISO case in Section 4.5.1, when the plant has NMP zeros that
are not included in the reference model, the model matching controller may
lead to instability. In fact, in this case, the ideal controller K∗(q−1) given by

K∗(q−1) =
1
G(q−1)

è
I −M(q−1)

é2−1
M (4.24)

will certainly include in its denominator all the transmission zeros of G that
are not included in the reference model M . However, unstable poles may arise
in the ideal model matching controller K∗(ρ) also in the case of minimum
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phase plant as shown in [42]. Moreover, the notion of NMP zero is much more
complex for MIMO systems than for the SISO case. In particular in order to
discuss internal stability of NMP MIMO systems we need to refer to the notion
of transmission zeros and their direction.

Definition 4.5.2: Transmission zeros ([132])

zi is a zero of G(s) if the rank of G(zi) is less than the normal rank of
G(s). The transmission zero polynomial is defined as z(s) = Πnz

i=1(s− zi)
where nz is the number of finite zeros of G(s).

Definition 4.5.3: Transmission Zero direction ([132])

Let G(s) have a zero at s = z. Then G(s) loses rank at s = z, and there
will exist non-zero vectors uz and yz such that G(z)uz = 0 . yz. Where,
uz is defined as the input zero direction, and yz is defined as the output
zero direction.

In principle, we may obtain uz and yz from an SVD of G(z) = UΣV H ; and we
have that uz is the last column in V corresponding to the zero singular value
of G(z) and yz is the last column of U , for more details see [132].

Definition 4.5.4: Internal stability of MIMO feedback system
([68])

With the reference to the block diagram depicted in Fig. 4.1, if G is
stable and has NMP transmission zero at zi with output direction yzi ,
then the feedback system with controller K will be internally stable if
the following interpolation constraint is satisfied:

yH
zi

Twr(zi) = 0 (4.25)

Remark 4.5.3

In words, Definition 4.5.4 says that M must have the same transmission
zeros of G in the same output direction. It is important to notice that
the constraint is a function of the transmission zeros and has no direct
relationship with the zeros of the elements of G.
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Remark 4.5.4

If the reference model M is diagonal (Mij = 0, ∀i ̸= j), the NMP
transmission zero will be present in each element of M . Thus, for
a diagonal structure of the reference model one does not need to be
concerned with the zero output direction, since the constraint in Definition
4.5.4 will be satisfied because Twr(zi) = 0. For more details see e.g, [52].

To detect and locate the transmission zeros and their output direction we
introduce the notion of a prospective plant for MIMO system.

Definition 4.5.5: Prospective plant G∗(ρ) for MIMO systems

Given a reference model with transfer function M and a controller with
transfer functions K(ρ), the prospective plant is defined as the plant with
a transfer function given by

G∗(ρ) = M [K(ρ)(I −M )]−1 (4.26)

Based on the notion of the prospective plant, we propose the following two-stage
design procedure which allows the user to detect if the designed controller could
lead to unstable pole-zero cancellation (see Fig. 4.4 and 4.5).

• Stage 1:(Controller design and detection of unstable transmission zero)
In the first stage, a data-driven controller K(ρ) is designed using a
set of input-output experimental data collected on the plant. If the
transfer function of the designed controller is stable, then the controller
can be implemented since unstable cancellation will not take place (the
controller does not have any unstable poles). In the case the designed
controller is unstable, the prospective plant G∗(ρ) is computed. If
G∗(ρ) is a minimum phase system (no transmission zeros), we know
that the designed controller, although unstable, leads to a controlled
system perfectly matching the reference model without giving rise to
unstable pole-zero cancellations. Therefore the designed controller can
be implemented. On the contrary, if the prospective plant G∗(ρ) shows
NMP transmission zeros close to the unstable poles of K(ρ), the designed
controller has to be rejected and a new controller has to be designed
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according to Stage 2.

• Stage 2:

– Diagonal reference model: all the NMP transmission zeros of
the perspective plant G∗(ρ) are added to the numerator of the
reference model M as NMP transmission zeros (without the need
of the zero output direction). Then, the modified reference model
is used to design a new controller K(ρ) by using the originally
collected I/O experimental data.

– Non-diagonal reference model: all the NMP transmission zeros
of the designed controller K(ρ) and their direction are added to
the numerator of the reference model M . However, in this case,
the NMP transmission zero of the reference model will have an
output direction equal to the process (see Definition 4.5.4), but its
input direction will be different of the process zero input direction.
Therefore, the effect of the NMP transmission zero should be moved
to a specific output by using e.g., block triangular structure (for
more details see [52]). Note that, the decision of how to move the
NMP zero to the right output is out of the scope of this report.
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Figure 4.4 Stage 1 design for MIMO NMP systems.
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Figure 4.5 Stage 2 design for MIMO NMP systems.
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4.6 Simulation examples

In this section, the effectiveness of the presented approach is shown by means
of simulation examples.

4.6.1 Example 1. DDDC design for SISO NMP system

In this example, the proposed approach is employed to tune an NMP SISO
controller to be compared with the standard NCbT introduced in [152] and
the VRFT approach (see e.g., [60]) when suitable convex stability constraint is
imposed (see e.g., [152]). The plant considered in this example is taken from
[120] and has the following transfer function,

G(s) = s−0.5
s2 +2s+1

while the assigned reference model has a transfer function

M(s) = 1
s2 +1.1s+1

The system is excited by a random input signal r(t) uniformly distributed in
the range [−1,+1]. The plant output signal w(t) is corrupted by a random
additive noise η(t), uniformly distributed in the range [−∆η,+∆η]. The chosen
error bound ∆η is such that the signal to noise ratio is 26dB.

Input-output samples are collected with a sampling time Ts = 0.1s and,
discrete-time models of G(s) and M(s) are obtained, for simulation purposes,
through ZOH discretization method, according to [120].

In this example the controller K(ρ) is obtained by computing the central
estimate ρc

j = (ρc
j
+ρc

j)/2 through the convex relaxation approach proposed in
[36] for a relaxation order δ = 2. The general LTI controller structure in (3.39)
is considered here where na = nb = n and the controller order n = 2 is selected
by trial and error starting from n = 1 and by increasing n until the feasible set



82 Reference model design

is not empty. The final selected controller structure is as follows,

K(q−1) = b0 + b1q−1 + b2q−2

1+a1q−1 +a2q−2

where, by taking the central estimate of the controller parameters, the following
controller transfer function is obtained

K(q−1) = 0.054807(1+0.9527q−1)(1−0.9189q−1)
(1−1.0515q−1)(1− q−1)

Since the obtained controller has an unstable pole, according to the two-stage
procedure presented in Section 3, we have to compute the prospective plant
G∗ in equation (4.23),

G∗(q−1) = 0.087901(1+0.964q−1)(1−1.0515q−1)(1−0.2495q−1)
(1+0.9527q−1)(1−0.9189q−1)(1−0.8912q−1)(1−0.2384q−1) .

Since G∗ has one NMP zero, we can conclude that the unknown plant G is an
NMP system and the NMP zero of G∗ (i.e. the unstable pole in K) is expected
to be a good estimate of the NMP zero of G. Therefore the unstable pole of
K(ρ) is added to the reference model M as an NMP zero. Finally, the problem
is solved by exploiting the modified reference model with a controller order
n = 3. The final obtained controller transfer function (corresponding to the
central estimate of the controller parameters) is the following

K(q−1) = −1.0638(1+0.9633q−1)(1−1.809q−1 +0.8186q−2)
(1− q−1)(1−0.6435q−1)(1−0.1474q−1)

As for VRFT and NCbT, a PRBS signal of 255 samples with unity amplitude
is used as input to the system. Four periods of this signal are used to design
the controller, N = 1020. The periodic output is disturbed by a zero-mean
white noise such that the signal-to-noise ratio is about 26dB. The length of
the instrumental variable l and the rectangular window l2 (used for computing
the H∞ norm estimate for the stability constraint, for more details see e.g.,
[152]) are found to be 10 and 120 respectively by trial-and-error.
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Fig. 4.6 displays the comparison between the reference model and the obtained
closed-loop system in terms of step responses respectively for SM-EIV, VRFT
and NCbT methods. From the comparison, we see that the controlled system
obtained with the proposed method performs better than the NCbT and VRFT
methods.
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Figure 4.6 Step responses: designed feedback control system with the SM-
EIV approach (black solid-line), the NCbT method (blue-line), the VRFT
method (red-line), reference model (green-line) and the modified reference
model obtained (black dashed-line).

4.6.2 Example 2. DDDC design for MIMO NMP sys-
tem

In this simulation example, the DDDC approach for NMP system in the
framework of SM-EIV is tested in simulation on the system proposed by [52].
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The plant transfer function used for generating the data is given by

G(q−1) =


1

(1−0.9q−1)(1−0.8q−1)
0.6q−1

(1−0.9q−1)
q−1

(1−0.9q−1)
0.2q−1

(1−0.9q−1)


while the assigned reference model is

M (q−1) =


0.08q−1

1−1.4q−1 +0.48q−2 0

0 0.08q−1

1−1.4q−1 +0.48q−2



The plant has a transmission zero: zi = 1.2 and its output direction:
yzi = [−0.316 0.948]T . It is worth noting that, no a priori information about
the plant is considered for this example for the SM-EIV method.

The system has been excited by two inputs defined as r[1](t) = [s(t),0]T and
r[2](t) = [0, s(t)]T , where s(t) is a random signal uniformly distributed in the
range [−1,+1] with length N = 80. The plant output sequences w(t)[1] and
w(t)[2] are corrupted by random additive noise η(t), uniformly distributed in
the range [−∆η,+∆η]. The chosen error bound ∆η is such that the signal to
noise ratio is given by

SNRw = 10log

qN
t=1 w2

tqN
t=1 η2

t

∼= 24dB

Input-output samples are collected with a sampling time Ts = 0.1s. The
parameters are estimated by solving problem (2.4) according to the method
presented in Chapter 2. The software SparsePop ([159]) with a relaxation
order δ = 2 has been used to convert the identification problem (2.4) into a
corresponding SDP relaxed problem, solved numerically by the solver MOSEK
([1]).

The general LTI controller structure in (3.39) is considered here where na =
nb = n and the controller order n = 3 is selected by trial and error starting from
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n = 1 and by increasing n until the feasible set is not empty. The final selected
controller structure is as follows,

K(q−1) =


b11
0 + b11

1 q−1 + b11
2 q−2 + b11

3 q−3

1+a1q−1 +a2q−2 +a11
3 q−3

b12
0 + b12

1 q−1 + b12
2 q−2 + b12

3 q−3

1+a1q−1 +a2q−2 +a3q−3

b21
0 + b21

1 q−1 + b21
2 q−2 + b21

3 q−3

1+a1q−1 +a2q−2 +a3q−3
b22
0 + b22

1 q−1 + b22
2 q−2 + b22

3 q−3

1+a1q−1 +a2q−2 +a3q−3


where by taking the central estimate of the controller parameters the following
controller transfer function is obtained

K(q−1) =


0.2353−0.6753q−1 +0.6374q−2 −0.1982q−3

1−2.129q−1 +1.045q−2 +0.08471q−3
−0.7059+2.026q−1 −1.912q−2 +0.5946q−3

1−2.129q−1 +1.045q−2 +0.08471q−3

−1.176+3.376q−1 −3.187q−2 +0.9911q−3

1−2.129q−1 +1.045q−2 +0.08471q−3
1.176−2.435q−1 +1.239q−2 +1.82e−09q−3

1−2.129q−1 +1.045q−2 +0.08471q−3



Since the obtained controller has unstable poles, according to the two-stage
procedure presented in Section 3, we have to compute the prospective plant
G∗ in equation (4.26)

G∗(q−1) =


q−1

1−1.71q−1 +0.73q−2
q−1

1−0.92q−1

1.02q−1

(1−0.92q−1)
0.23q−1

(1−9.1q−1)


Since G∗ has NMP transmission zero (zi = 1.205 ), we can conclude that the
unknown plant G is an NMP system and the NMP transmission zero of G∗

(i.e. the unstable pole in K) is expected to be a good estimate of the NMP
transformation zero of G. Therefore the unstable poles of K(ρ) are added to
the reference model M as an NMP transmission zero. Finally, the problem is
solved by exploiting the modified reference model with a controller order n = 2.
The final obtained controller transfer function (corresponding to the central
estimate of the controller parameters) is the following,
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K(q−1) =


0.2279−0.3855q−1 +0.1627q−2

1−0.9262q−1 −0.07376q−2
−0.695+1.172q−1 −0.4935q−2

1−0.9262q−1 −0.07376q−2

−1.157+1.951q−1 −0.8214q−2

1−0.9262q−1 −0.07376q−2
1.149−1.021q−1 +0.004273q−2

1−0.9262q−1 −0.07376q−2



A comparison between the obtained closed-loop system for the SM-EIV method
proposed in this chapter and the VRFT method proposed in [52], in terms of
the step response is presented in Fig. 4.7.
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Figure 4.7 Step responses: designed feedback control system with the SM-EIV
approach (black solid-line), the VRFT method (red-line), reference model
(blue-line) and reference signals (black dashed-line).

As can be seen from Fig. 4.7, the proposed approach (SM-EIV) provides a good
decoupling (when no a priori information on the NMP transmission zero is
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available), while the VRFT method (proposed in [52]) for MIMO NMP system
presents a high coupling, even by using the actual zero location in the reference
model.

4.6.3 Example 3. Reference model design (MP)

In this simulation example, a plant described by the following LTI stable
minimum phase transfer function is considered:

G(s) = 12.5
(1+ s/0.8)(1+ s/2.5) . (4.27)

Additive output and sensor disturbances are defined, respectively, as

dp(t) = ap sin(ωpt), |ap| ≤ 2 ·10−2, ωp ≤ 0.02 rad s−1

ds(t) = as sin(ωst), |as|10−1, ωs ≥ 40 rad s−1 (4.28)

The objective is to design a controller K, through the set-membership
direct-data driven control approach, such that the designed control system
meets the following requirements: (i) steady-state output error when the
reference is a unity ramp |e∞

r | ≤ 1.5 · 10−1, (ii) steady-state output error in the
presence of dp |e∞

dp
| ≤ 5 · 10−4, (iii) steady-state output error in the presence of

ds |e∞
ds

| ≤ 5 · 10−4, (iv) step response overshoot ŝ ≤ 10%, (v) rise time tr ≤ 3s,
(vi) settling time ts,5% ≤ 12s.

In the controller design procedure, the plant transfer function G is assumed
to be unknown, although input-output data can be collected by performing
suitable experiments on the plant.

In this example, input-output data are collected by simulating the transfer
function (4.27) with a sampling time Ts = 0.5s. The system is excited by a
random input signal r(t) uniformly distributed in the range [−1,+1]. The plant
output signal w(t) is corrupted by a random additive noise η(t), uniformly
distributed in the range [−∆η,+∆η]. The chosen error bound ∆η is such that
the signal to noise ratio is given by,
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SNRw = 10log

qN
t=1 w2

tqN
t=1 η2

t

∼= 28dB.

The time-domain performance specifications are converted into corresponding
frequency domain constraints (4.7) and (4.8) (see, e.g., [175]) by choosing, for
example:

WT (s) = 810.2s2 +3889s+4667
s2 +140s+4900 (4.29)

and
WS(s) = 0.7353s2 +0.2002s+0.02727

s2 +0.015s
(4.30)

First, according to Result 4.4.1, an H∞ problem with G̃ = 1 is solved and the
following reference model M is obtained:

M(s) = 4.59s+0.2527
s3 +5.481s2 +4.601s+0.2527

Then, based on a discretized version M(z) of the reference model M(s), a
data-driven controller K(ρ) is obtained by applying the SM-DDDC approach.
The obtained discrete-time data driven controller is described by the following
transfer function:

K(q−1) = 0.1963−0.3693q−1 +0.204q−2 −0.0297q−3

1−1.439q−1 −0.1211q−2 +0.5597q−3 .

Comparison between the continuous time reference model M(s), the dis-
cretized one M(z) and the output of the closed-loop system are presented
in Fig. 4.8. While, the steady state error output are shown in Fig. 4.9.
From Fig. 4.8 and Fig. 4.9, we see the obtained performance of the
designed control system: (i) ŝ = 5.52% ≤ 10%, (ii) tr = 1.85s ≤ 3s, (iii)
ts,5% = 8.87s ≤ 12s, (iv) |e∞

r | = 0.053 ≤ 0.15, (v) |e∞
dp

| = 1.775 · 10−4 ≤ 5 · 10−4,
(vi) |e∞

ds
| = 2.116 · 10−4 ≤ 5 · 10−4.

From the previous results we can conclude that, the closed loop control system
obtained with the reference model designed by means of the proposed H∞

method, fulfill both steady-state and transient-time response requirements.
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Figure 4.8 Comparison of step responses: designed feedback control system
(solid), the continuous time reference model (dashed-dotted) and the discrete
reference model (dashed).

4.6.4 Example 4. Reference model design (NMP)

In this example, the proposed approach is employed to tune a controller for a
SISO NMP plant. A comparison with the standard approach proposed in [41]
is also presented, in order to highlight the advantages of the reference model
selection proposed in this work.

We consider the feedback system shown in Fig. 4.2, where the plant is described
by

G(s) = (s+9.925)(s−1.818)
(s+12.04)(s+2.231) (4.31)

and the output and sensors disturbances are

dp(t) = ap sin(wpt), |ap| ≤ 2 · 10−2, wp ≤ 0.02 rad s−1

ds(t) = as sin(wst), |as| ≤ 10−1, ws ≥ 40 rad s−1 (4.32)

In this example we define the following time requirements: (i) steady-state
output error when the reference is a ramp |e∞

r | ≤ 0.5, (ii) steady-state output
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Figure 4.9 (Top) Output error when the reference is a ramp, (Middle) Steady-
state output error in the presence of the sinusoidal disturbance dp on the
output, (Bottom) Steady-state output error in the presence of the sinusoidal
disturbance ds on the sensor.
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error in the presence of dp |e∞
dp

| ≤ 6 · 10−4, (iii) steady-state output error in
the presence of ds |e∞

ds
| ≤ 8 · 10−3, (iv) step response overshoot ŝ ≤ 11%, (v)

rise time tr ≤ 2s, (vi) settling time ts,5% ≤ 8s.

It is worth noting that the plant (4.31) has a NMP zero at s = 1.818. However,
due to the considered control design technique, no a-priori information on the
plant is exploited.

Input-output samples are collected by simulating (4.31) with a sampling time
Ts = 0.1s. The system is excited by a random input signal r(t) uniformly
distributed in the range [−1,+1]. The plant output signal w(t) is corrupted by
a random additive noise η(t), uniformly distributed in the range [−∆η,+∆η].
The chosen error bound ∆η is such that the signal to noise ratio is given by

SNRw = 10log

qN
t=1 w2

tqN
t=1 η2

t

∼= 28dB.

The time-domain performance specifications are converted into corresponding
frequency domain constraints (4.7) and (4.8) by choosing, e.g.:

WT (s) = 1.51e05s2 +7.246e05s+8.696e05
s2 +2000s+1e06 (4.33)

and
WS(s) = 0.6899s2 +0.3715s+0.1

s2 +0.02001s
(4.34)

First, a reference model M(s) is obtained by applying Result 4.4.1 (i.e. by
solving a fictitious H∞ problem with the fictitious plant G̃(s) = 1). The
obtained reference model transfer function M(s) is the following,

M(s) = 0.06612(s+97.93)(s+0.2087)
(s+3.938)(s+1.317)(s+0.2606)

Then, based on a discretized version M(z) of the the computed reference model
M(s), a data-driven controller K(ρ) is obtained by applying the SM-DDDC
approach. The obtained discrete-time data driven controller is described by
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the following transfer function:

K(q−1) = 0.036784(1−0.7684q−1)(1+0.2625q−1)(1+0.1462q−1)
(1−1.209q−1)(1− q−1)(1−0.5849q−1) .

Since the obtained controller has an unstable pole we have to compute the
prospective plant G∗ according to equation (4.26).

G∗(z) = 0.87808q−1(1+0.5486q−1)(1−1.209q−1)
(1−0.7684q−1)(1+0.2625q−1)(1+0.1462q−1) .

Since G∗ has one NMP zero, the model reference M has to be modified in order
to account for the NMP nature of the plant. In this example, we will compare
two different approaches as far as the modification of the reference model is
concerned. The first approach is based on the standard modification proposed
in reference [42], while the second approach is based on the methodology
presented in this work and, more precisely, the two-stage procedure presented
in Section 4.5.1.

Approach (1) - In this approach, referred to as Standard Reference Model
Choice (SRMC), the reference model is chosen through standard techniques in
DDDC methods for NMP system, where the NMP zeros of the plant (which
are assumed to be known) are simply added to the original reference model M

as NMP zeros (see e.g., [41], [93] and [21]). In this way we get the following
modified reference model:

M1mod
(q−1) = 0.006612(1+6.554q−1)(1−1.209q−1)

(1−0.8766q−1)(1−0.6745q−1)

Approach (2) - In this case, referred to as H∞ Reference Model Choice
(H∞RMC), the modified reference model is obtained by solving the H∞ control
problem of Result 4.4.1 with the following fictitious plant

G̃(s) = (s−1.821)
s

(4.35)

which, according to the two-stage procedure presented in Section 4.4, includes
the NMP zero of the prospective plant G∗ and one pole at the origin. The
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obtained modified reference model is

M2mod
(s) = −12.098(s+96.17)(s−1.821)(s+0.1141)

(s+1.509)(s+0.1322)(s2 +9.376s+23.81) .

Then, the controllers are designed by means of the SM-DDDC approach for
both the reference models M1mod

and M2mod
(s).

A comparison between the obtained closed-loop system for the SM-DDDC
method using SRMC and H∞RMC is presented in Fig. 4.10, from which we
see that the step responses for the control system designed by means of the
two different approaches are almost the same. However, by extending the
comparison to all the assigned performance specifications, we get the results
reported in Fig. 4.11 and Table 4.1.
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Figure 4.10 Comparison of step responses: designed feedback control system
using SRMC approach (dashed) and the designed feedback control system using
H∞RMC approach (solid).
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Table 4.1 Comparison of performance specifications obtained using the two
approaches and the upper bound

Performance Specifications Upper-limit
Value SRMC H∞RMC

Steady-state output error
when the reference is a

ramp
0.5 0.7 0.495

Steady-state output error
in the presence of dp

6 . 10−4 2.84 . 10−4 2.22 . 10−4

Steady-state output error
in the presence of ds

8 . 10−3 0.0196 6.83 . 10−3

Step response overshoot 11% 11.5% 9.77%

Rise time 2 (s) 0.939 (s) 0.988 (s)

Settling time 8 (s) 6.36 (s) 7.33 (s)
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Figure 4.11 (Top) Output error when the reference is a ramp, (Middle) Steady-
state output error in the presence of the sinusoidal disturbance dp on the
output, (Bottom) Steady-state output error in the presence of the sinusoidal
disturbance ds on the sensor.
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4.7 Experimental results

The algorithm presented in Section 4.5.1 has also been tested on the experi-
mental input-output data collected on a benchmark NMP SISO electronic filter
proposed by [145].

Schematic diagram of the NMP SISO circuit is reported in Fig. 4.12, where
the nominal values of parameters are R1 = 150Ω, R2 = 330Ω, R3 = 820Ω,
C1 = 330µF and C2 = 200µF . The transfer function of this NMP circuit is
obtained as follows,

G(s) = Vo(s)
VI(s) = (C1R1s−1)

−(1+C1R1s)(1+C2R3s)

The system has an RHP zero at s = 1/(R1C1). We point out that, in this
example, we do not assume any a-priori information on the plant G.

Figure 4.12 Schematic diagram of the non-minimum phase SISO circuit, pro-
posed by [145].

The system has been excited with a random input signal r(t) of 300 samples,
uniformly distributed within the range [−1,+1]V. A National Instruments PXI
equipped with a NI–6221 DAQ board has been used to generate the input
signal r(t) and to collect the output signal y(t) at a sample rate of 2kHz.
The upper bound on the measurement errors is derived from the precision
of the measurement equipment which is given by ∆η = 0.005V. The software
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SparsePop and MOSEK have been used to solve the underlying optimization
problems. The central estimate of the controller parameters for the SM-EIV
method (ρc

SM−EIV ) has been obtained by exploiting the convex relaxation
approach proposed in [36] for a relaxation order δ = 2.

The reference model, which has been chosen with no assumptions on the
presence of an NMP zero, has the following transfer function

M(z) = 0.01392z −0.01272
(z2 −1.935z +0.9362)

Application of the SM-EIV approach discussed in Section 2, leads to the
computation of the following controller (corresponding to the central estimate
of the controller parameters)

K(z) = −0.53718(1−0.9742z−1)(1−0.9138z−1)(1−0.8848z−1)
(1−1.114z−1)(1− z−1)(1−0.9489z−1)

As for the previous example, the obtained controller shows an unstable pole;
therefore, a second stage is required in order to detect the presence of a possible
NMP zero, modify the reference model and design a new controller. The final
obtained central-estimate controller transfer function is the following

K(z) = 4.7121(1−0.9742z−1)(1−0.9138z−1)(1−0.8848z−1)
(1− z−1)(1−0.9445z−1)(1+0.1316z−1)

A comparison between the reference model and the obtained closed-loop system
for the SM-EIV method (by setting the value of the parameter to the central
estimate ρc

SM−EIV ) and the modified reference model M in terms of the step
response is presented in Fig. 4.13, from which we see that the output of the
controlled response for the SM-EIV approach overlaps the modified reference
model.
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Figure 4.13 Step responses: designed feedback control system with the SM-
EIV approach (solid), reference model (dashed) and the modified reference
model obtained (dashed-dotted). Notice that, dashed-dotted and solid lines
are overlapped.

4.8 Discussion and conclusion

In this chapter, the problem of designing a suitable reference model M for
non-iterative direct data-driven control techniques is investigated using the H∞

method. First, an H∞ controller K̃ is designed to meet different performance
requirements, by using what is called a fictitious plant G̃(s). Then, the
reference model M is taken as the fictitious complementary sensitivity function
T̃ obtained by using both K̃ and G̃. On the basis of the designed reference
model, a DDDC controller that satisfies the performance specifications is
designed using collected I/O data.

Stability conditions have been also discussed for stable and possibly NMP
system to guarantee the internal stability of the closed-loop system. In



4.8 Discussion and conclusion 99

particular, no a-priori information on the location of possible NMP transmission
zeros is needed and a two-stage design procedure able to avoid unstable
pole-zero cancellations is proposed. First, the controller is designed, on the
basis of the assigned reference model and a set of input-output data, by
exploiting the set-membership based approach proposed in Chapter 3. Then,
on the basis of the designed controller, the presence of possible unstable
pole-zero cancellations is detected and the reference model is modified in order
to avoid such cancellations. On the basis of the modified reference model, a
new controller that guarantees internal stability is designed. At each stage,
the problem of computing the controller parameters is formulated in terms
of set-membership errors-in-variables identification and solved by means of
suitable convex relaxations discussed in Chapter 2.

The main advantages of the proposed method, with respect to previously
proposed non-iterative direct data-driven design algorithms for NMP systems,
are that (i) the reference model M is designed such that the closed-loop system is
able to fulfil performance specifications; (ii) no a-priori information on the NMP
zeros location is needed; (iii) the proposed strategy guarantees internal stability
without the need of additional constraints on the problem formulation when
the plant is stable and possibly NMP system. These distinctive features make
the approach considered here significantly more flexible than the previously
available ones. The effectiveness of the proposed approach is shown by means
of simulation examples and through the application to a laboratory test bench.



Chapter 5

Nonparametric approach to
DDDC design

5.1 Introduction

Significant research efforts have been devoted to the direct data-driven control
(DDDC) theory in recent years, where experimental data are directly used
to design the controller. The DDDC approach is of particular interest in
real-world applications, where an accurate model of the plant to be controlled
is not available.

DDDC approaches do not rely on plant model identification since available
input-output data experimentally collected from the plant are directly used
to design the controller. The control specifications are usually given in this
context in terms of a desired closed-loop reference model; then, the controller
parameters are computed by formulating the problem in terms of model
matching design. DDDC approaches using a single set of input-output data,
also known as non-iterative data-driven control, have been already studied in
the linear time-invariant (LTI) framework. Well established approaches, like
Virtual Reference Feedback Tuning (VRFT) proposed by [66] and Non-iterative
Correlation-based Tuning (NCbT) proposed by [84], have been widely discussed
in the literature, see, e.g., [22, 23, 125, 168, 20, 153].

An alternative data-based approach for controller design, called Iterative
feedback tuning (IFT), has been proposed by [72]. IFT is a data-driven control
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DDC scheme involving iterative optimization of a fixed structure controller,
whose parameters are tuned according to an estimated gradient of a control
performance criterion. Furthermore, the Iterative Correlation-based Tuning
method (ICbT), proposed by [82], is a data-driven control method in which
the controller parameters are tuned iteratively to decorrelate the closed-loop
output error, between the designed and achieved closed-loop system, from
an external reference signal. Therefore, at each iteration, in general, several
experiments are needed to estimate the gradient.

In this chapter, we present a novel non-iterative approach to direct data-driven
nonparametric controller design. The approach is based on the method
proposed in Chapter 3, where a novel set-membership based direct data-driven
controller design technique is presented. By exploiting the results given in [30],
where an original kernel-based set-membership nonparametric approach for
LTI identification is proposed, DDDC problem is then formulated in the robust
Reproducing kernel Hilbert space (RKHS) framework. First, by assuming that
the available input-output data are corrupted by bounded noise, we formulate
the problem of designing a controller in order to match the behaviour of an
assigned reference model. Then, the controller is designed by means of a
non-parametric approach, inspired by the results in [30].

The main distinctive features of the proposed approach with respect to those
already available in the literature are as follows: (i) the noise corrupting the
data is assumed to be bounded and no statistical information is assumed to
be a-priori available; (ii) in contrast to IFT and ICbT approaches, where an
iterative procedure is exploited, the proposed approach leads to a non-iterative
algorithm to design the controller; (iii) to the best of the authors’ knowledge,
this is the first attempt to design a direct data-driven controller for LTI
systems where the controller structure/order is not imposed a-priori. As a
matter of fact, all the previously proposed approaches to direct data-driven
design look for the controller of a given structure/order that minimizes a
certain function of the model matching error. In the case the obtained
performance is not satisfactory, the controller structure/order is updated
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and the design is repeated. As a consequence, the search of a satisfactory
controller order/structure could lead to a number of time-consuming
iterations in case a high order controller is needed to adequately match
the behaviour of the considered reference model. On the contrary, in this
work the controller structure required to optimally solve the problem is
directly learned from the available experimental data by means of the robust
RKHS-based identification framework proposed in [30]. Although through
this approach, a high order controller could be obtained, the designer knows
that this is the solution which provides the best possible achievable performance.

The chapter is organized as follows. In Section 5.2 we give the problem
formulation, while in Section 5.3 we present the proposed approach. In Section
5.4 we provide a robust optimization based algorithm to compute the solution
to the formulated problem. In Section 5.5 we show the effectiveness of the
presented method by means of two simulation examples. Concluding remarks
end the chapter.

5.2 Problem formulation

In this section, the problem statement discussed in Chapter 3.3.1 will be briefly
reviewed for self consistency of this chapter.

Let us consider the discrete-time linear-time invariant (LTI) single-input
single-output (SISO) feedback control scheme depicted in Fig. 5.1, where
q−1 denotes the standard backward shift operator, G(q−1) is a stable plant
transfer function, K(ρ,q−1) is the controller transfer function, ρ is the vector
of controller parameters, and M(q−1) is the transfer function of a suitable
given reference model describing the desired behavior the controlled plant.

The objective of the contribution is to propose an algorithm to design an LTI
controller K(ρ,q−1) such that the closed loop transfer function Tw̃r(q−1) given
by

Tw̃r(q−1) = K(ρ,q−1)G(q−1)
1+K(ρ,q−1)G(q−1) (5.1)



5.2 Problem formulation 103

Figure 5.1 Feedback control system to be designed compared with the reference
model M(q−1).

matches, as close as possible, in some sense, M(q−1). We assume that the
plant transfer function G(q−1) is unknown, and only a set of input-output data,
collected through suitable experiments on the plant, is available.

Let us now introduce the following definitions.

Definition 5.2.1: Model matching error transfer function

The model matching error transfer function E(q−1) is defined as the
difference between the reference model and the achieved closed-loop
transfer function, i.e.

E(ρ,q−1) = M(q−1)− G(q−1)K(ρ,q−1)
1+G(q−1)K(ρ,q−1) (5.2)

Definition 5.2.2: Output matching error

The output matching error ϵ(ρ,t) is defined as the signal obtained by
multiplying both sides of equation (5.2) by a reference signal r(t), i.e.

ϵ(t,ρ) = M(q−1)r(t)− K(ρ,q−1)w(t)
1+G(q−1)K(ρ,q−1) (5.3)

where w(t) = G(q−1)r(t) is the output of the plant obtained by applying the
reference signal r(t) as input, while the signal ϵ(t,ρ) = E(q−1)r(t) is the output
matching error corresponding to the reference signal r(t) (see Fig. 5.2 for a
block diagram description of this error).
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Figure 5.2 A block diagram description of the output matching error ϵ(t,ρ)

To simplify notation, in the rest of the chapter we drop the backward shift
operator q−1 from equations and corresponding block diagrams.

Since the output matching error ϵ(t,ρ) in equation (5.3) still depends on the
unknown plant G, we derive an alternative way of designing the controller
K(ρ). For this purpose, we introduce the following result.

Result 5.2.1

The following three conditions are equivalent

(i) E(ρ) = 0 (5.4)
(ii) ϵ(ρ,t) = 0, ∀r(t) (5.5)

(iii) M(1−M)−1r(t) = K(ρ)w(t), ∀r(t) (5.6)

Remark 5.2.1

Result 5.2.1 plays a crucial role here since it suggests a way for turning
the condition on the model matching error E = 0, which depends on
the unknown plant transfer function G, into a condition on the output
matching error ϵ(t) = 0 which, on the contrary, depends only on the
output sequence w(t) collected by applying the signal r(t) to the plant
(see condition (iii)).
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Remark 5.2.2

Condition (ii) considered in Result 5.2.1 can be approximated in practice
by the condition ϵ(ρ,t) = 0 for a reference signal r(t) which is persistently
exciting in the sense that its spectrum is rich enough to properly excite
the dynamics of both M and G. For more details see Section 3.3.1.

Based on equation (5.6) in Result 5.2.1, we can finally formulate the problem
of designing the controller K(ρ) such that

M(1−M)−1r(t) = K(ρ)w(t) (5.7)

Equation (5.7) shows that the problem of direct data-driven controller design
considered in this chapter is equivalent to a standard identification problem,
where the input w(t) of the controller to be identified K(ρ) is affected by
bounded additive noise while the output signal given by M(1 − M)−1r(t) is
noiseless.

Remark 5.2.3

Selection of the controller class is one of the most critical aspects of direct
data-driven controller design. The typical approach is to arbitrarily select
the model class and then look for the best possible controller in such
a class, which may possibly lead to degraded performance. In order to
overcome such a limitation, in this chapter, we only assume that the
controller to be designed is a linear time-invariant discrete-time system
without any a-priori information either on the controller transfer function
structure or its order. Such a choice leads to the formulation of a suitable
nonparametric DDDC problem as discussed in the next sections.
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5.3 Direct data-driven nonparametric control
tuning

The LTI controller K shown in equation (5.7) can be alternatively described
by the following equation:

K(ρ)w(t) =
∞Ø

s=0
w(t− s)k(s) (5.8)

where k(s), s = 0, ...,∞, are samples of the impulse response of the controller
to be identified, while w(t) is the controller input signal.

Here we assume that a set of N input-output plant data are collected experi-
mentally by applying a suitable (persistently exciting) signal r(t) to the plant.
The output plant measurements y(t) are assumed to be corrupted by bounded
additive noise according to

y(t) = w(t)+η(t) (5.9)

where
w(t) = Gr(t) (5.10)

is the noiseless output of the system, while the error η(t) is a bounded signal
assumed to belong to the following ball

η ∈ B∆η = {η : ||η||22 ≤ ∆η}, (5.11)

where ∆η is a known real constants.

In this chapter, the controller to be identified is only known to be linear and
time-invariant (LTI). No structural information (e.g. model order) is assumed to
be a-priori available and the control structure to be identified is not constrained
to belong to a finite-dimensional model class (e.g. FIR, ARX, etc.). To this
aim, we review and summarize some basic definitions related to the notion of
Reproducing Kernel Hilbert Space (RKHS) (for more details see e.g., [123]).
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Definition 5.3.1: Hilbert Space

A Hilbert Space H is a vector space equipped with an inner (scalar)
product, such that the norm induced by the inner product turns H into
a complete metric space.

In the following we will consider only Hilbert Spaces which elements are
functions g : T ⊂ R → R and we will use the symbol ⟨·, ·⟩H to denote the inner
product and the symbol ||g||H to denote the norm induced by such an inner
product.

Definition 5.3.2: Reproducing Kernel Hilbert Space (RKHS)

A Hilbert Space H is a Reproducing Kernel Hilbert Space (RKHS) iff
the point evaluation operator is a continuous linear functional i.e.

∀ ∃ S(t) : |g(t)| ≤ S(t)||g(t)||H ∀g ∈ H (5.12)

Since all the RKHSs are Hilbert spaces, the Rietz representation theorem holds.
Theorem 1: Rietz Representation Theorem
Let H be a Hilbert space, and let H∗ denote its dual space (i.e. the space of
all continuous linear functionals F [·] : H → R). For each F ∈ H∗ there exists a
unique element f ∈ H such that

F [g] = ⟨f,g⟩H ∀g ∈ H. (5.13)

This theorem states that every continuous linear functional can be uniquely
written by using the inner product.

Based on the previous notation about the RKHS, the following nonparametric
LTI DDDC problem is considered,

k̂ = argmin
k∈H

; NØ
t=1

3
M(1−M)−1r(t)−

∞Ø
s=0

w(t− s)k(s)
42

+ λ̃J(k)
<

(5.14)
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where k = [k1, ......k∞], k̂ = [k̂1, ......k̂∞], H is a (generic) reproducing kernel
Hilbert space, J(k) is a regularization term and λ̃ is a real constant to suitably
tune the weight of the regularization term.

Equation (5.14) can be equivalently rewritten as follows,

k̂ = argmin
k∈H

; NØ
t=1

3
l(t)− l̂(t,k)

42
+ λ̃J(k)

<
(5.15)

where
l(t) = M(1−M)−1r(t), (5.16)

l̂(t,k) =
∞Ø

s=0
w(t− s)k(s), (5.17)

By means of equations (5.8) and (5.9), the estimation problem (5.15) can be
equivalently rewritten as

k̂ = argmin
k∈H

; NØ
t=1

3
l(t)−

∞Ø
s=0

(y(t− s)−η(t− s))k(s)
42

+ λ̃J(k)
<

(5.18)

Since η(t) are uncertain variables only known to belong to the ball in equation
(5.9), here we choose to compute the controller estimate by solving the following
robust estimation problem, where we look for the minimum of the worst-case
error between the true unknown output of the system and the output of the
estimated model:

k̂r =argmin
k∈H

max
η(t)∈B̃ρ

; NØ
t=1

3
l(t)−

∞Ø
s=0

(y(t− s)−η(t− s))k(s)
42

+ λ̃J(k)
<

.

(5.19)

The symbol k̂r is used to represent the robust version of the estimate in (5.18).
In the rest of the chapter, we use the shorthand notation max

η
for max

η(t)∈B̃∆η

.

Since we assume that the data are collected on the plant starting from time
t = 0, both w(t) and η(t) are identically zero for t < 0. Furthermore, for
the sake of simplicity and without loss of generality, we do not consider the
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regularization term in the presentation of the algorithm proposed for the
solution of the considered nonparametric identification problem. It is worth
noting that all the presented technical results, discussed in details for the
case without regularization term, can be straightforwardly extended to the
problem in the general form given by (5.19) for some of the most common
regularization strategies (see [30] for details).

Therefore, the problem to be solved simplifies as follows:

k̂r = argmin
k∈H

max
η(t)

NØ
t=1

3
l(t)−

∞Ø
s=0

(y(t− s)−η(t− s))k(s)
42

. (5.20)

5.4 A robust optimization approach

In this section, an original robust convex optimization approach is proposed
to solve problem (5.20). The first step to derive the proposed algorithm is the
following result, derived on the basis of the properties of the RKHS.

Result 5.4.1

The minimum of optimization problem (5.20) can be computed as follows:

min
α∈RN

max
η(t)

NØ
t=1

3
l(t)−

tØ
s=0

(y(t− s)−η(t− s))
NØ

i=0
αiF (s)i

42
(5.21)

where F (s)i = F (ti, s)) and F (ti) is the kernel function of the reproducing
kernel Hilbert space to which the controller impulse response is assumed
to belong (see [30] for details). Furthermore, has discussed in [30], the
minimizer of (5.21) has the following form for each t:

k(t) =
NØ

i=0
αiF (t)i (5.22)

Proof First we note that the argument inside the argmin operator depends
only on the point evaluation of function k. Therefore, by applying Corollary 5
of [30] we can prove that the minimizer to problem (5.20) is given by (5.22).
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Equation (5.21) is obtained by direct substitution of (5.22) into the functional
of problem (5.20).

Thanks to Result 5.4.1 and the fact that (yt−s − ηt−s) does not depend on i,
the robust optimization to be solved can be rewritten as follows:

α̂ = arg min
α∈RN

max
η(t)

J

= arg min
α∈RN

max
η(t)

NØ
t=1

3
l(t)−

tØ
s=0

NØ
i=0

αi(y(t− s)−η(t− s))F (s)i
42

.
(5.23)

Before stating the main results of the chapter, we rewrite the functional in (5.23)
in a suitable equivalent form. By properly grouping the terms for different t into
suitable matrices and arrays, the following equivalent description is obtained

J =
--------l −Eα

--------2
2

(5.24)

where

l =



l1

.

.

.

lN


(5.25)

and E ∈ RN×N has the following form

E =


w0F 0

0 . . . w0F N
0

w0F 0
1 +w1F 0

0 . . . w1F N
0 +w0F N

1
. . . . . . . . .qN

i=1 wN−iF
0
i . . .

qN
i=1 wN−iF

N
i

 , (5.26)

with w(t) = y(t)−η(t).
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Now by defining the following matrices

A0 =


F 0

0 . . . F N
0

F 0
1 . . . F N

1
. . . . . . . . .

F 0
N . . . F N

N

 , . . . ,AN =


0 . . . 0
. . . . . . . . .

0 . . . 0
F 0

0 . . . F N
0

 , (5.27)

matrix E can be rewritten as

E = w0A0 +w1A1 + · · ·+wN AN . (5.28)

By exploiting the definition of w(t), we get

E = y0A0 + · · ·+yN AN −η0A0 −·· ·−ηN AN , (5.29)

and by defining E0 = y0A0α +y1A1 + · · ·+yN AN we obtain

E = E0 −η0A0 −·· ·−ηN AN . (5.30)

Thanks to the introduction of a slack variable λ ∈ R, we can rewrite the
optimization problem to be solved in its final form:

α̂ = arg min
α∈RN ,λ∈R

λ

s.t.--------y − (E0 −η0A0 −·· ·−ηN AN )α
--------2

2
≤ λ

∀ η ∈ B∆η

(5.31)

Finally, we are in the position to state our main result.
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Result 5.4.2: Main Result

The solution to problem (5.31) is given by the solution to the following
convex semidefinite optimization problem (SDP):

α̂ = arg min
α∈RN ,λ∈R

λ

s. t.
τI 0 R(α)T

0 λ− τρ (y −E0α)T

R(α) (y −E0α) I

 ≥ 0,

(5.32)

where

R(α) =


... ... ...

A0α
... AN α

... ... ...

 . (5.33)

Sketch of proof of Result 5.4.2 By proper application of the so-called
Schur complement and some algebraic manipulations, constraint (5.31) can be
equivalently rewritten as follow


η0

...

ηN



T

C
R(α)T R(α)

D


η0

...

ηN

 +2



...

R(α)T (l −E0α)
...



T
η0

...

ηN

 (5.34)

+ ||l −E0α||2 ≤ λ, ∀ η ∈ B∆η

Thanks to the S-procedure, Eq. (5.34) is equivalent to
 −R(α)T R(α) −R(α)T (l −E0α)

−(l −E0α)T R(α) λ−||l −E0α||2

+ (5.35)
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− τ

 −I 0

0 ρ

 ≥ 0 (5.36)

for some τ > 0 . Then, by splitting the linear and the non linear terms we get τI 0

0 λ−ρ

 +

 R(α)T R(α) R(α)T (l −E0α)

(l −E0α)T R(α) −|l −E0α||2

 ≥ 0

and we can write the second term of 5.37 as

R(α)T (l −E0α)

(l −E0α)

I


R(α)T (l −E0α)

(l −E0α)



T

(5.37)

Then, by using the Schur complement, we get the result.

Remark 5.4.1

In the above calculations we have not considered regularization terms
in the objective function in order not to increase the complexity of
the notation. However, both Lasso and Ridge regularization can be
incorporated.

If the Lasso regularization term is added, the problem becomes

arg min
α∈RN

λ+ λ̃
Ø

i

|αi|

s. t.
τI 0 R(α)T

0 λ− τρ (y −E0α)T

R(α) (y −E0α) I

 ≥ 0,

(5.38)



114 Nonparametric approach to DDDC design

The regularization term can be taken into account by adding some linear
constraints to the optimization problem derived from the case without
regularization. The obtained optimization problem is still a standard SDP
problem and all the presented results and related discussion perfectly apply.

In the case a Ridge regularization term is added, then we have to perform some
more transformations. In this case, the problem is given by

arg min
α∈RN

λ+ λ̃||α||2, (5.39)

subject to (5.38).

In order to move the additional regularization term into the constraints, we
have just to introduce a new slack variable λ1, such that

||α||2H ≤ λ1. (5.40)

Thus, the objective function can be rewritten as λ+λ1 and, by observing that
||α||2H = αT V α, where V is the Gram matrix (i.e., V is symmetric positive
definite) we can transform the quadratic constraint into the following SDP
constraint:

 I V 1/2α

αT (V 1/2)T λ1

 ≥ 0. (5.41)

5.5 Simulation examples

In this section we show the effectiveness of the presented approach by means
of simulation examples.
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5.5.1 Example 1. Nonparametric DDDC design (A)

In this example, the plant has the following transfer function

G(q−1) = 32.24q−1 +21.41q−2

1−0.7647q−1 +0.3012q−2 ,

while the chosen reference model is given by

M1(q−1) = 0.04472q−1 +0.07442q−2 +0.0297q−3

1−1.72q−1 +1.14q−2 −0.2715q−3

The system is excited by a random input signal r(t) uniformly distributed in
the range [−1,+1]. The plant output signal w(t) is corrupted by a random
additive noise η(t), uniformly distributed in the range [−∆η,+∆η] and length
N = 100. The chosen error bound ∆η is such that the signal to noise ratio is
given by

SNRw = 10log
qN

t=1 w(t)2qN
t=1 η(t)2

∼= 28dB.

We compute the solution to problem (5.32) by using the optimization software
Sedumi (see [141]). The RKHS considered is the one described in [57] with
β = 0.1. As a regularization term we consider the Lasso one, i.e. J(k) = ||k||1
and we set λ̃ = 10.

A comparison between the reference model and the obtained closed-loop system
for the proposed method, in terms of the step response, is presented in Fig. 5.3,
which shows that, although no a-priori information on the controller parameters
is considered (e.g., model order), the controller appears to be effective in terms
of good matching of the desired closed-loop behaviour. Note that, in order to
improve the readability of the step responses comparison, the output of both
the controlled system and of the reference model are depicted in Fig. 5.3 by
assuming that a zero-order-hold (ZOH) filter is connected to the outputs of the
two systems.
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Figure 5.3 Comparison of step responses: Output of the controlled system
(black-line), reference model (red-line).

5.5.2 Example 2. Nonparametric DDDC design (B)

In this example, the proposed approach is employed to tune a SISO controller
to be compared with the standard NCbT approach (see e.g., [84]). The plant
considered in this example is a Piezoelectric Drive system proposed by Richard
& Astrom in 2010 [4], and has the following transfer function

G(s) = kw2
2w2

3w2
5(s2 +2ζ1w1s+w2

1)(s2 +2ζ4w4s+w2
4)

w2
1w2

4(s2 +2ζ2w2s+w2
2)(s2 +2ζ3w3s+w2

3)(s2 +2ζ5w5s+w2
5)

where, k = 5; w1 = 2420; w2 = 2550; w3 = 6450; w4 = 8250; w5 =
9300; ζ1 = 0.03; ζ2 = 0.03; ζ3 = 0.042; ζ4 = 0.025; ζ5 = 0.032.

The reference Model is given by:

M(q−1) = 0.01144q−1 +0.009164q−2

1−1.79q−1 +0.8106q−2 .

The system is excited by a random input signal r(t) uniformly distributed in
the range [−1,+1]. The plant output signal w(t) is corrupted by a random
additive noise η(t), uniformly distributed in the range [−∆η,+∆η]. 100
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input-output samples are collected with a sampling time Ts = 0.01s and,
discrete-time model of G(s) is obtained, for simulation purposes, through ZOH
discretization method. The chosen error bound ∆η is such that the signal to
noise ratio is 30dB.

We have also designed a controller by using the NCbT method proposed by
[84]. For the NCbT approach, the output data have been collected by applying
the signal u(t) to the plant input, where u(t) is given as a random signal with
amplitude within the range [−1,+1] with the length N = 5000. The output
is corrupted by a zero-mean white noise such that the signal-to-noise ratio is
about 30dB. The controller structure for the NCbT is chosen as follows,

K(q−1) =
qnb

j=0 bjq
−j

1− q−1

where nb is the controller order. In this example, three different controller
orders (nb = 3,6,9) have been considered. Note that, the controller structure
for the NCbT method is chosen to be linearly parameterized with a fixed
known denominator according to [60].

For the NCbT method, the length of the instrumental variable l is found to be
20 by trial-and-error. Fig. 5.4 displays the comparison between the reference
model and the obtained closed-loop system in terms of step responses for the
proposed approach (DDDC-RKHS) and NCbT methods.

The results obtained by the DDDC-RKHS method show that, although no
a-priori information on controller parameters is used, the designed controller
achieves a good performance to match the given reference model. It is worth
noting that, through the DDDC-RKHS approach no integral action has been
directly enforced in the parametrization of the controller. On the other hand,
by analyzing the results obtained by the NCbT controllers (Fig. 5.4), it can be
seen that the a-priori selection of the controller order nb affects the achieved
matching performance, showing that a-priori selection of the controller structure
is a critical step, avoided by the proposed DDDC-RKHS method.
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Figure 5.4 Step responses: designed feedback control system with the DDDC-
RKHS approach (blue-line), the NCbT method (black-lines), reference model
(red-line).

5.6 Discussion and conclusion

In this chapter, we present a novel non-iterative approach to direct data-driven
nonparametric controller design. The approach is inspired by the method
described in Chapter 3, where a novel set-membership based direct data-driven
controller design technique is presented. By exploiting the results given in [30],
where an original kernel-based set-membership nonparametric approach for
LTI identification is proposed, DDDC problem is then formulated in the robust
Reproducing kernel Hilbert space (RKHS) framework. First, by assuming that
the available input-output data are corrupted by bounded noise, we formulate
the problem of designing a controller in order to match the behaviour of an
assigned reference model. Then, the controller is designed by means of a
non-parametric approach, inspired by results in [30].

The main distinctive features of the proposed approach with respect to those
already available in the literature are as follows: (i) the noise corrupting the
data is assumed to be bounded and no statistical information is assumed to
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be a-priori available; (ii) in contrast to IFT and ICbT approaches, where an
iterative procedure is exploited, the proposed approach leads to a non-iterative
algorithm to design the controller; (iii) to the best of the authors’ knowledge,
this is the first attempt to design a direct data-driven controller for LTI
systems where the controller structure/order is not imposed a-priori.

Finally, we have shown the effectiveness of the presented technique by means
of simulation examples.
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