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ABSTRACT The present work introduces an empirically ground agent-based modeling (ABM) framework
to assess the spatial and temporal diffusion of rooftop photovoltaic (PV) systems on existing buildings
of a city district. The overall ABM framework takes into account social, technical, environmental, and
economic aspects to evaluate the diffusion of PV technology in the urban context. A city district that
includes 18 720 households distributed over 1 290 building blocks and a surface area of 2.47 km2 is
used to test the proposed ABM framework. Results show how the underlying regulatory framework
(i.e., the rules of the internal electricity market) influences the pattern and intensity of adoption, thus realizing
different shares of the available potential. Policies that support the establishment of ‘prosumers’ within
Condominiums (i.e., energy community buildings), and not in single-family houses only, is key to yield high
diffusion rates. The installed capacity increases by 80% by switching from the one-to-one configuration to
the one-to-many paradigm, i.e., from 5.90 MW of rooftop PV installed on single-family households and/or
single PV owners to 10.64 MW in energy community buildings. Moreover, the possibility to spread the
auto-generated solar electricity over the load profile of the entire population of Condominium results in
self-consumption rates greater than 50% and self-sufficiency ratios above 20% for the majority of the
simulated buildings.

INDEX TERMS Agent-based modeling, complex adaptive systems, consumer behavior, distributed power
generation, energy technology diffusion, geospatial analysis, photovoltaic systems, public policy, sustainable
development, technology adoption, urban areas.

NOMENCLATURE
A. ACRONYMS
1to1 One-to-One configuration
1toM One-to-Many configuration
ABM Agent-Based Model
API Application Programming Interface
CAPEX CAPital EXpenditure
CEC Citizen Energy Communities
CH Clerks’ households
EA Early Adopters
EBM Equation-Based Model
EM Early Majority adopters
EU European Union

The associate editor coordinating the review of this manuscript and
approving it for publication was Lorenzo Ciani.

GIS Geographic Information System
HH Household
IA Innovator Adopters
JSc Jointly acting renewable Self-consumers
LA Late Majority adopters
LF Low-income households with Foreigners
LG Laggard adopters
LI Low-income Italian
LY Lonely old ladies and Young unemployed
OPEX OPerating EXpenses
PV Photovoltaics
RA Relative Agreement
RB Retired Blue-collars
RC Ruling Class
RED Renewable Energy Directive
RES Renewable Energy Sources
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REST Representational State Transfer
RSc Renewable Self-consumers
SP Silver Pensioners
TP Traditional Provincial
TPB Theory of Planned Behavior
TUS Time Use Survey
YB Young Blue-collars

B. CONSTANTS & PARAMETERS
µ Convergence speed of opinion dynamics
φ Number of interactions
bthsd Behavioral threshold
GINIk i Gini coefficient of the social group k to

which the agent i belongs
INCk i Income level of the social group k to

which the agent i belongs (e)
INCNAT National mean income of

households (e)
INNk i Innovation factor of the social group k to

which agent i belongs
Nmin
k i ,N

mean
k i , Minimum, mean and maximum number

Nmax
k i of family members of the social group k

to which the agent i belongs
rw Re-wiring of network
wbi,Wpbc′ Final Behavior weight factors
pbc Perceived Behavioral Control
Wsp,Winn Subjective Norms weight factors
WACC Weighted Average Cost of Capital
r Radius of neighborhood
Watt, k i ,Wsn, k i , Behavioral Intention weight factors of
Wpbc, k i the social group k to which the agent i

belongs

C. VARIABLES & SYMBOLS
T (min, mode, max) Triangular distribution (min, mode,

max)
att Attitude Toward Behavior
bi Behavioral Intention
b Final Behavior
if Income factor
INCi Income level of the agent i (e)
incad Average income of adopters
nad Average family size of adopters
npv Net Present Value (e)
opi Opinion
Wpf , k i ,Wif , k i Perceived Behavioral Control weight

factors of the social group k to which the
agent i belongs

pf Payback Period Factor
sn Subjective Norm
sp Social pressure
unc Uncertanty on opinion
wij Strength of the influence of agent j on

agent i

I Investment cost (e)
i , j i-th or j-th agent
k k-th social group
LN (µ, σ ) Log-normal distribution (mean, standard

deviation)
Ni Family size of agent i
pp Payback period (years)
R(y) Net cash flow at time y (e)
t Simulation time-step
Xi A random variable assigned to agent i
y Time referred to the year of investment

I. INTRODUCTION
Nowadays more than half of the overall world’s population
is living in urban areas. Projections state that by 2030, urban
areas will host around 68% of people globally and one-third
of the population will live in cities with at least half a million
inhabitants [1]. Urbanizations are largely energy-intensive as
reported by the United Nation habitat division. Cities con-
sume about 75% of the global primary energy supply and are
responsible for about 50-60% of the world’s total greenhouse
gases [2]. Moreover, the majority of the consumed energy is
still supplied by fossil fuels (coal, oil and gas).

To engage these issues, the European Union (EU) launched
in 2016 the Clean Energy Package [3] for all the Euro-
peans, which is revolutionizing the entire energy system. The
ambition of the European energy strategy is to decarbonize
the Energy Union energy mix in order to reduce the green-
house gases emissions (pursuing the Paris agreement) and to
increase its energy autarchy. The new EU Renewable Energy
Directive (RED II) set an ambitious target for 2030 of 32%
share of renewable energy in the energy mix and a −40%
of greenhouse gases emissions respect to the 1990 levels [4].
In this regard, the electrification of the final uses is the chosen
driver for the penetration of distributed renewable energy
sources (RES). A smart citizen-centric energy system is at the
center of the energy transition in Europe and worldwide [5],
with citizen-prosumer empowered to participate to the energy
market in the role of renewable self-consumers (RSc), jointly
acting renewable self-consumers (JSc) or citizen energy com-
munities (CEC) [6].

Among RES, solar energy is the most distributed and
accessible, even though is not entirely suitable for the residen-
tial segments a having low level of energy demand that result
in low self-consumption rates and/or high export rates to the
grid of the self-generated electricity. Therefore, the aggrega-
tion of the energy demand and production through JSc or CEC
might succeed in increasing the overall self-consumption
and self-sufficiency of prosumers, giving a new boost to the
photovoltaic penetration in the residential sector. On the one
side, digital and energy technology combined together will
provide a framework for a more intelligent and sustainable
final use of energy in buildings and cities. On the other
side, citizens will need to understand how to interact with
smart energy systems and local energy markets. Indeed, new
complex socio-techno-economic interactions will take place.
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Given this emerging panorama, a better understanding on the
dynamics of energy technology diffusion among potential
adopters is crucial, as well as the impact that regulation and
policy might have on diffusion patterns and penetration levels
at the single citizen/household level.

Technology diffusion has been studied in the past decades
relying both on theoretical as well as empirical approaches
[7]–[9]. In particular, understanding how to support the diffu-
sion of energy technologies in the cities of the future is key to
enhance a shift towards more sustainable communities. The
integration and interconnection of new energy technologies
in the urban fabric is an important aspect to be taken into
account, as well as consumer’s choices, socio-demographic
factors end environmental constraints. To push the diffusion
of rooftop photovoltaics (PV) systems in relatively densely
populated urban areas having mostly condominiums, it is
fundamental to know which are the factors affecting tech-
nology adoption more than just supporting schemes. In fact,
it is well-known from the literature that the adoption of
energy technology depends on not only technical-economical
aspects but also on socio-demographic factors, typology and
topology of the social structures, time-frame of the diffusion
and the high heterogeneity of the system [10]–[15]. There-
fore, it is necessary to model the real world as a Complex
Adaptive System [16], including all the relevant aspects of
the phenomenon under study. To accomplish those goals, city
energy planning requires new methodologies with a multi-
perspective and holistic approach to describe spatio-temporal
dynamics.

In recent years, Agent-Based Modeling (ABM) has been
widely used in the energy sector to study both pro-
sumer behavior and technology diffusion [17]–[20]. ABM
allows explaining the complexities of social behavior and
social interactions on the level of individuals thanks to
the increasingly easy access to fine-grained data. Some
examples include the study of Eppestein et al. [21] devel-
oped an agent-based model of plug-in hybrid electric vehi-
cles’ adoption incorporating extensive consumer survey data.
Dehghanpour et al. [22] studied the behavior of the
day-ahead retail electrical energy market with price-based
demand response through a multiagent framework. Guo and
Yin [23] analyzed the effect of mass media on promoting
solar energy diffusion in residential sector using the AB
approach. Nunna et al. [24] proposed an ABM tomodel smart
microgrids with market price sensitive consumers operating
demand-side management strategies.

To investigate the success of the new EU policies on
energy, we developed a tool that is intended to help decision-
makers in exploring decarbonization scenarios at the urban
scale. As a case study, we selected a district of the city
of Torino (Italy) because it is one of the Italian cities with
the higher number of citizens living in condominiums and
where the PV penetration is just 0.7%,1 which is below the

1Calculated using the 2018 data of the installed power from [25] and the
PV potential estimated by [26].

national average. If we consider that in the 2018 26% of the
Italian population lives in 4 cities with an average of 22 cit-
izens for each building, it is clear the importance of condo-
minium as the entity where citizen aggregation can spread
and drive the penetration of RES. In Italy, the actual installed
PV power in the residential sector is 3 GW (in 2018), i.e. 15%
of the whole installed RES power (19.6 GW), which sets the
value of PV penetration at the 1,5% of the potential of about
200 GW of rooftop available on houses and condominium as
recently calculated by [27].

The objective of this work is to assess how the regulatory
framework affects the adoption rate of rooftop PV in a city
district. We analyze the impact of switching from the self-
consumer paradigm (i.e., a one-to-one configuration in which
a single entity benefits from the electricity generated by the
installed PV) to a jointly acting renewable self-consumers
JSc that is a first embryo of a citizen energy community
CEC (i.e., a one-to-many configuration in which a plurality
of entities benefits from the generated electricity by a single
shared installation). To do this, we develop a novel GIS-ABM
integrated into a co-simulation platform that enables the
integration of third-party data sources and simulators in the
simulation process. The quantitative assessment is supported
both by the use of fine-grained spatio-temporal data with high
resolution and granularity up to the single building, as well
as social clustering to enhance the agents’ heterogeneity and
their spatial characterization. Finally, in the agent decision-
making process, we have implemented the Theory of Planned
Behavior (TPB) [28] and Relative Agreement (RA) [29].
The proposed co-simulation framework is both scalable and
replicable to any urban area for which the relevant city-level
data sets are available.

This manuscript first introduces the fundamental theo-
ries that constitute the background of the proposed ABM
modeling framework in Section II. Section III describes the
main differences between non-ABM and ABM approaches to
model energy technology diffusion. Within this same section,
a detailed comparison of our work with previously published
papers dealing with PV diffusion is provided in order to better
identify the gaps that we state to fill with the present work.
Section IV presents the overall structure of the developed
agent-based co-simulation platform, the data sources that we
used to feed the model and we describe the rules or equa-
tions of every single unit that makes the ABM framework.
In Section V, the above-mentioned case study, the overall
model setup, policy scenarios, and simulation results are pre-
sented. Section VI presents spatially and temporally rich sim-
ulation results on rooftop PV diffusion in the urban context
under two regulatory schemes. Finally, Section VII brings
the conclusions of the article and highlights the strengths and
weaknesses of the present framework.

II. THEORETICAL BACKGROUND
A growing area in ABM applications is the modeling of con-
sumer energy choices [11], [18], [30]. First, ABM facilitates
the modeling of agent heterogeneity, where the agents are
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the autonomous and proactive decision-making entities of
the model [31]. Second, it enables the modeling of agents’
interactions with multiple and diverse stakeholders as well as
the influencemediated by social networks. Lastly, the integra-
tion of ABM with Geographical Information Systems (GIS)
enables the possibility to spatially describe the system and
ground the results to a real context. Moreover, the intrinsic
feature of ABM of describing system heterogeneity is used
to model explicitly how individuals affect one another in
cognitive and psychological terms, like opinions, attitudes,
and norms [7]. The common way used in ABMs to address
human behavior and decision-making logic of agents is based
on multi-criteria utility function, i.e., a weighted sum of
utilities that act like a ‘‘desire level’’ toward the behavior.
Another way is to apply human behavioral theories, e.g.,
the Theory of Planned Behavior (TPB) [28]. It is widely used
in social sciences and also for modeling consumer’s behavior
in application with diffusionmodels [32]–[35]. Regarding the
communications and influence among agents, they interact
within the social networks, usually made by selecting some
families within the neighborhood or fixing the number of ran-
dom links. As more complex alternatives, but more realistic,
is to use the Small-World theory [36] to define the social
networks and generate opinions considering their dynamic
and evolution over time [37].

This section introduces the fundamental theories used in
the proposed agent-based modeling and simulation frame-
work: Theory of Planned Behavior, Relative Agreement and
Small-World Network theory.

FIGURE 1. Components of the Theory of Planned Behavior. Adapted
from [28].

A. THEORY OF PLANNED BEHAVIOR
The Theory of Planned Behavior (TPB) developed by
Ajzen [28], [38] provides a theoretical framework to under-
stand and predict human behavior as outlined in Fig. 1.
According to the theory, human behavior can be described
by three mainly attributes: Attitude Toward the Behavior
(att); Subjective Norm (sn) and Perceived Behavioral Control
(pbc). These attributes lead to the formation of a Behavioral
Intention (bi) that is an indicator of a person’s readiness to
take action, thus it is assumed to be the immediate antecedent
of the final Behavior (b). As a general rule, the higher is b and
stronger is the engagement of the person in taking action.

The Behavioral Intention (bi) is formulated as

bi = att ·Watt + sn ·Wsn + pbc ·Wpbc, (1)

whereWatt ,Wsn, andWpbc are the attribute’s weights defined
for each person.

The behavior’s attributes are deduced by the individual’s
beliefs and it is assumed that human behavior is guided by
three kinds of beliefs: i) behavioral beliefs, ii) normative
beliefs and iii) control beliefs. Human’s beliefs are affected
by many factors such as personal background (personality,
emotions, education, economic status), demographic factors
(age, gender), social network (role, social norm, social group)
and info-sphere (knowledge, media).
i) Behavioral beliefs are the personal conviction for the

outcome of the behavior. The more objective behavioral
beliefs are combined with subjective evaluations to generate a
favorable or unfavorable Attitude Toward the Behavior (att).
ii) Normative beliefs represent the general influence of

others (people or community) on individual behavior. As an
individual is influenced by those people or groups that are
important to them, e.g. family, friends, state or government.
It considers the people’s expectations, i.e. the normative
beliefs, and the agent’s motivations to comply wiht them,
which constitute the perceived social pressure or Subjective
Norm (sn).
iii) Control beliefs are the personal conviction for the pres-

ence of hindrances to the behavior, which can be actual or just
perceived. The strength of real obstacles or physical con-
straints are the control beliefs that are combined with
their perceived power generating the Perceived Behavioral
Control (pbc).
Theoretically, the final Behavior (b) is generated by the

Actual behavioral Control (i.e. the control at the time of
taking action) and Behavioral Intention (bi). Nevertheless,
since the Actual Behavioral Control is difficult to evaluate,
the pbc is normally used as its estimator. Therefore, pbc and
bi predict the Behavior (b), as follows:

b = bi ·Wbi + pbc ·Wpbc′ , (2)

whereWbi andWpbc′ are empirically derived coefficients.

B. RELATIVE AGREEMENT
The Relative Agreement (RA) algorithm was developed by
Deffuant and allows to model the agent’s opinion dynam-
ics [37], [39]. The RA imitate the evolution mechanism
of opinions, and uncertainties, in consequence of people
interaction.

The opinion of an agent is themiddle point opi of a segment
long 2 ∗ unc, representing the agent’s uncertainty, as shown
in Fig. 2. The interaction between the agents i and j, where
i influences j, determines the opinion overlap hij. Therefore,
the agent j is influenced only if the interacting agents share
a similar opinion. Then, the agreement between the agent j
and its influencer i is calculated by the difference between the
segment hij and the not overlapped section of the segment i.

Finally, the agents relative agreement is the range of opin-
ion i that an agent j is willing to take into account, calculated
as the agreement divided by the agent i uncertainty 2 ∗ unci.
Therefore, when the overlap hij is greater than unci, the agent j
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FIGURE 2. Schematic representation of the opinion intervals of agents i
and j . Adapted from [37].

opinion, and its uncertainty are increased or decreased by
the amount of the relative agreement through the constant
parameter µ that controls the speed of convergence in the
opinion dynamics. If hij is minor than unci there is no influ-
ence of i on j.

C. SMALL-WORLD NETWORK THEORY
The small-world network (SWN) theory is commonly used
to describe the social networks structures of the agents [36].
Empirically, the connections between agents aremainly local,
i.e. geographically neighbor. While the connection with the
other agents is non-local.

FIGURE 3. An example of increasing of randomness in the network.
Adapted from [36].

Therefore, SWN lies between two extreme connection
topology: wholly regular or completely random (see Fig. 3).
For example, a SWN is generated starting from a regular
network of n vertices, which is rewired, by means of random
connection, in order to introduce a degree of disorder β. Thus,
the randomness increases with the increase of β.
A network is defined as Small-World when the cluster-

ing (C) of the n agents is not small and, considering a broad
interval ofβ, the path length (L) grows logarithmicallywith n.
Where L represents the average of the number of connection
interposed between two agents, and the clustering C is a
measure of the number of connections in the agent’s neighbor.

III. LITERATURE REVIEW
This section provides a literature review of diffusion models
for energy technology with a focus on PV and rooftop PV dif-
fusion. The increasing deployment of new distributed genera-
tion technologies, such as residential PV systems, is changing

the functioning of the energy system and the planning of
energy infrastructures. In order to promote effective energy
policies and interventions, it is necessary to develop new
models for looking into transition pathways that take into
account social, technical and environmental aspects.

Zhang and Vorobeychik [17] and Moglia et al. [18]
revised diffusion modeling techniques by comparing tradi-
tional equation-based models (EBM) with agent-based ones
(ABM). They identified several limitations of the EBMs,
despite the efforts of some authors to highly refine this class
of models. One of the main issues of EBMs is their limited
ability to capture explicit social behavior, geospatial interac-
tions, and non-linear relationships among different individ-
uals. Moreover, EBMs are intrinsically not able to catch the
specific behavior of a single individual and thus who makes
decisions, why and where. Therefore, the authors argued that
EBM are able to predict the aggregate behavior of a popula-
tion, but they are not effective in the evaluation of complex
systems at the individual scale. On the other hand, ABMs
seems to be a promising architecture that allows for detail
and realistic description of a complex system, including the
behavior of agents, their social interactions and the physical
and techno-economic environments surrounding them [40].

A. NON-ABM APPROACHES
The modeling of innovation diffusion is a research topic
that has been widely studied in the literature. The theoreti-
cal foundations of the diffusion process of technology were
laid down by Rogers [10] under his framework of diffu-
sion of innovations. Starting from this theory, quantitative
approaches have been developed, such as EBM. An example
is the Bass model [41], [42], which defines the diffusion
process through a differential equation by using empirical
coefficients. With respect to PV modeling diffusion, the Bass
model and its extensions have been recently applied in county
and cross-country levels. Kurdgelashvili et al. [43] examined
the PV market diffusion for 46 counties in California. They
used regression analysis to find relationships between several
socio-economic factors with the diffusion parameters of a
Generalized Bass Model. As the same way using this type
of model, Duan et al. [44] proposed a framework, which
aims to capture cross-national diffusion interaction of PV
systems analyzing different types of learning relationships
and potential interactive dissemination relationships.

Other approaches have been undertaken using differ-
ent kind of EBMs. For instance, Selvakkumaran and
Ahlgren [45] exploit a System Dynamics model to study
the economic, social and political interactions among the
citizen and municipalities of Sk

◦
ane County, Sweden to pro-

mote the local energy transitions with a focus on adoption
of residential PV systems. Alternatively, Spatial Econometric
analysis is able to deal with spatial interdependency of areal
attributes and neighbor effects. Kosugi et al. [46] applied
the spatial econometric framework based on the census-block
level in Kyoto City to study the neighborhood effects on the
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residential PV diffusion. Meanwhile, Dharshing [47] used
spatial modeling techniques to determine the impact of
regional spillover effects between neighboring counties in
Germany and their effect on spatial clustering of PV systems.
Another EBM approach was proposed by Candas et al. [48],
which applied the framework of sociodynamics to the adop-
tion of small-scale PV in Germany and Italy.

Finally, considering methods slightly oriented towards
agent-based approach, Cellular Automation requires a grid
lattice to make decisions based on neighborhoods of some
sort, so even a square or hexagonal lattice. For instance,
Zhou et al. [49] and Zhao et al. [50] developed a data-driven
forecasting approach of PV diffusion in Pudong district of
Shanghai, China by using a Cellular Automationmodel based
on artificial neural network, where the study region was
divided into square cells.

B. ABM APPROACHES
Recently, ABMs have been applied to model the diffusion
of innovations. For an extensive review of this research
topic, we refer readers to Zhang and Vorobeychik [17] and
Huang et al. [19].

Zhao et al. [51] analyzed the effect that different supporting
schemes have on PV diffusion in selected residential areas
in the US. The authors developed a spatial-implicit ABM,
which is based on a hybrid two-level simulation model-
ing framework. The decision-making model is based on the
classical approach of the utility function as a desire level.
Rai and Robinson [52] developed an empirically grounded
GIS-ABM of residential PV diffusion to study the design
of PV rebate programs in Austin, Texas. They modeled the
human behavior starting from the concepts of the TPB frame-
work and applying opinion dynamics RA. Despite the GIS
approach, the model considers only single-family residential
households. Palmer et al. [53] evaluated the diffusion of PV
systems in the residential sector applied in Italy at a national
scale, using a threshold utility function as a decision-making
model. In addition, they have implemented a social cluster-
ing, although it was developed by a third-party company,
called Sinus Milieus. Zhang et al. [54] presented a data-
driven ABM to forecast individual and aggregate residential
rooftop PV adoption in San Diego County through a logistic
regression approach using machine learning techniques to
calibrate the model. Alyousef et al. [55] studied the adoption
of PV and battery systems in Germany evaluating the policies
able to improve the adoption of these systems. The decision
is based on a logistic regression model. Mittal and Krejci [56]
developed an ABM to study the interactions between utility
companies and consumers on the adoption of rooftop PV. The
consumer agent decision is based on attitude and financial
assessments, while the objective of the utility company agent
is to maximize its revenue. Pearce and Slade [57] evalu-
ated the impact of Feed-in Tariffs on residential PV diffu-
sion in Great Britain. They modeled only single households
characterized by socio-demographic and statistical data at
the national level. The decision-making model is based on

a utility function as desire level where social interactions are
modeled with simple fixed links. Zhang et al. [58] imple-
mented ABM with real options analysis and social networks
to assess the diffusion of PV systems. The model was applied
to the residential PV diffusion in Singapore. Wang et al. [59]
developed a diffusion model assuming social networks based
on the scale-free networks. The model was integrated with
anecdotal information and the case study was led for villages
in Beijing. Lee and Hong [60] developed a GIS-ABM based
on a logistic regression approach with a variable selection
process for simulating rooftop PV adoption in a neighbor-
hood of Seoul, South Korea. Brugger and Henry [61] stud-
ied how the network segregation can affect the peer effects
regarding the solar incentive programs. They modeled the
agent behavior through a logistic function. As the same way,
Opiyo [62] studied the impacts of neighborhood influence on
the diffusion of solar home systems in rural western Kenya.
They used surveys data to gather information and then used
to inform the ABM. The agent behavior is based on checks
of economic affordability and social influence level.

C. COMPARATIVE DISCUSSION AND OUR CONTRIBUTION
In general, non-ABM approaches describe the behavior of
the individuals as an aggregate trend, rather than individual
decisions [17]. Indeed, they are able to well fit the data of
cumulative installed PV capacity in regions or states. How-
ever, they frequently assume a fully connected and homo-
geneous network, neglecting the spatial interactions among
individuals and distribution of PV systems.

Spatial econometrics techniques are able to spatially fore-
cast the uptake of PV systems. Despite this possibility,
the high complexity of the diffusion phenomenon and its
dynamics asks for model that can capture the heterogeneity of
individuals and the dynamic interactions among them, with
a more highly granular level. Indeed, in order to develop
effective energy policies and infrastructural interventions at
an urban scale, it is necessary to address the PV diffusion at
the individual level.

ABM overcomes the weaknesses of traditional models
by representing the complexities, nonlinear interactions, and
spatial constraints of the system allowing to model a realis-
tic behavior of each agent considering their socio-economic
attributes, social interactions, and their technical constraints.
Moreover, ABM holds the opportunity to use accurate and
punctual data with the capability to implement GIS applica-
tions and cross-external simulators data.

In light of all the above, in this work, we present a novel
GIS-ABM framework to assess the spatio-temporal diffusion
of building-integrated PV systems in the residential sector
at the individual level. The listed authors in the previous
subsection, which developed ABM to PV diffusion problems,
are summarized in Table 1 and compared with the innovations
introduced by the present work.

W.r.t. the modeling purpose, previous works [51]–[55],
[57], [59] studied the effectiveness of energy policies either
already implemented or new proposals. Meanwhile, other
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TABLE 1. Previous applications of ABMs to PV diffusion problems.
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works [56], [58], [60]–[62] concentrate on evaluating the
effects of social networks and technology diffusion. With
respect to such works, we studied a completely new energy
policy related to the development of JSc by integrating the
effects of the social network in the analysis. To the best of
our knowledge, this is the first work that develops an ABM
for analyzing JSc.

Looking at the spatial resolution the works [53], [55], [57]
uses a high resolution at a national or regional level. Agents
are modeled as single households with no integration of
GIS data. The works of [51], [54], [56], [59] uses an Urban
resolution with agents modeled as single households with
no integration of GIS data. Authors in [58], [61], [62] have
developed a virtual space environment in which agents are
modeled as virtual households obviously with no integration
of GIS data. The only works that integrate GIS data and
perform an analysis at the building level are [52], [60]. In [60]
agents are modeled as single buildings and in [52] agents
are modeled as households. W.r.t [50], [53], [54], [54]–[59],
[61], [62] we integrate fine-grained GIS data and perform an
analysis in a real district with a resolution up to the household
level. Moreover, w.r.t [52], [60] we modeled both the single
household and the condominium adoption behavior.

A fundamental feature in ABM of socio-technical system
is the ability to describe the heterogeneity of the agents
and their interactions. Previous works were limited to use
aggregated statistical data to infer the socio-economic char-
acteristics of each agent. Only in [53] social groups are
used, but they are based on a registered trademark product.
W.r.t. all previous work, we used an open data social clus-
tering to enhance the agents’ heterogeneity and their spatial
characterization.

Regarding the social influence and structure previous
works have implemented only the peer effects exploiting
the SWN [52], [53], or neighborhood selection [51], [54],
[58], [60], [62], or random links [55], [57], or the Scale Free
Network [59] or the network segregation [61]. W.r.t reviewed
works we integrated two different typologies of social influ-
ence the peer effects and the word of mouth that exploits
the RA for modeling the opinion dynamics. The interaction
among agents is achieved exploiting the SWN that describes
the social network of each agent.

Concerning the agent behavioral model, authors of
[51], [53], [57], [59] uses a multi-criteria utility function
approach. Meanwhile, authors of [54], [55], [60], [61] uses
a regression analysis technique. W.r.t. to the reviewed liter-
ature approaches, we use cognitive models based on human
and social behavior theories TPB and RA, which are more
suitable for simulation of the individual’s behavior. TPB and
RA are as well used by [52], but we implemented them
maintaining their integral and original formulation.

Finally, with regard to the solutions presented in Table 1,
our framework is integrated into a co-simulation plat-
form [63]. Co-simulation provides the possibility to bun-
dle into a single run-time modeling framework third-party
data sources and external simulators. In our case, the

co-simulation is achieved among our ABM, a stochastic sim-
ulator of household electricity consumption and a solar radia-
tion simulator to assess the sub-hourly electricity production
of rooftop PV systems. The use of a co-simulation framework
enables the possibility of integrating different simulators and
having different time scales: 15 minutes for simulating PV
generation and household load profile and a quarter for updat-
ing PV adoption.

The overall contribution of our work can be summarized in
the followings:
• modeling the effect of the adoption of an energy policy
that encourages the uptake of JSc;

• modeling of single-family households and groups, i.e.
the condominiums;

• realistic modeling of households by exploiting highly
granular spatio-temporal data up to the single building
by using of GIS;

• modeling the social influence by integrating the peer
effects and the word of mouth theories;

• integrating the social clustering for increasing the het-
erogeneity characterization of households;

• behavioral model based on trusted social behavior theo-
ries and opinion dynamics;

• integration of the ABM framework in a co-simulation
platform.

IV. SIMULATION PLATFORM
In this section, we present our agent-based modeling and co-
simulation platform to study the diffusion of energy technol-
ogy at the urban scale.

The design and development of the co-simulation platform
followed a microservices approach, which consists of devel-
oping software as a suite of small services, each running in
its own process and communicating with lightweight mecha-
nisms [64]. This approach increases modularity, flexibility,
scalability and maintainability because services are small,
highly decoupled and focus on doing a small task [65].

Fig. 4 show the three layers of the co-simulation platform.
By integrating heterogeneous data sources in theData Source
Layer it is possible to describe the urban environment with:
i) different granularity in the spatio-temporal domain; ii) its
related social structure and in the techno-economical domain.
Thus, the system is empirically ground to a real environment.
The core of the platform is the Model & Simulation Layer
that integrates all the modules and algorithms to simulate,
in the spatio-temporal domain, the objects, the subjects and
the interactions in the diffusion of energy technologies in
cities. Finally, the results of the simulations are elaborated
and shown in the Application Layer.

A. DATA SOURCE LAYER
Our model is spatially described by geo-referenced data com-
ing from different functional layers. Hence, the proposed sim-
ulation platform exploits several heterogeneous data sources
to represent and describe the urban citizen community. The
identified functional layers are the Environmental layer,
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FIGURE 4. Scheme of the proposed agent-based modeling and co-simulation platform. The modules exploit data from the Data
Source Layer. The data come from different functional layers that are labeled with diverse colors.

Socio-cultural layer and the Techno-economic layer. All the
input data are retrieved by the platform automatically from
third-party services. Furthermore, the user can set model
parameters to define a specificABMscenario to be simulated.
The proposed solution intends to be flexible and reusable in
any geographic area by updating the dataset of the area of
interest in a plug and play fashion thanks to the micro ser-
vices approach. Each data layer is described in the following
subsections.

1) ENVIRONMENTAL LAYER
a: GEOGRAPHICAL INFORMATION SYSTEM (GIS)
This module integrates all the useful data needed to spatially
characterize the city. In particular, it integrates: i) census
map that is a vector image that represents the census section
areas, ii) Digital Elevation Models that is a raster image that
represents terrain elevation considering also the presence of
manufactures and iii) a Cadastral map that is a vector image
which represents the square footage of buildings and reports
the building attributes (e.g. footprint area, type of building,
category of use, date of construction, building height, number
of floors).

b: METEOROLOGICAL DATA
Weather data are integrated from third-party data sources
such as (Openweathermaps or Weatherundegound) that offer
API for collecting geo-referenced weather data coming from
personal weather stations. Such data is used by the simulation
and modeling layer to simulate both the energy production
and consumption in the city.

2) SOCIO-CULTURAL LAYER
a: CENSUS DATA
Census data provide statistics on populations and households
at a spatial level over the entire nation. Data are obtained
from national statistical request services, providing useful
information for the spatial characterization of the households,
e.g., the number of residential households, foreigners, job
status (workers, unemployed), number of family members,
degree (illiterate, primary school, secondary school, univer-
sity degree, post-degree).

b: SOCIAL STRUCTURE
Each household has its own socio-economic and demo-
graphic characteristics that have a significant influence on
the decision-making process. Thus, the heterogeneity of the
households is taken into account by implementing a social
clustering. The clustering process divides the households into
fairly homogeneous groups. Each group is representative of
households displaying similarities in their socio-economic
and demographic behavior and consumption patterns
(e.g. each group has shared values and attitudes toward work,
family type, leisure, money, and consumption)

c: TIME USE SURVEY
Time use Survey (TUS) are performed by National Insti-
tutes of statistics of many countries. TUS is conducted
every 4-5 years to analyze how people spend their time
in both week-days and weekend and in different sea-
sons. TUS consists of a set of time diaries, covering
24 hours, in which respondents (household members) report
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the activities (e.g., sleeping, cooking and working), with
10 minutes intervals, that they have performed during the day
in which they answered to the survey. TUS is an important
instrument to analyze behaviors and activities of both adults
and children in weekdays and weekends [66], [67]. Thus,
TUS becomes a very powerful instrument to feed an ABM
because it provides statistical information such as: i) activities
and needs, ii) ratio between work-time and free-time, iii) use
of communication media and iv) use of spaces and services.

3) TECHNO-ECONOMIC LAYER
a: TECHNOLOGIES
This module provides information about the technology
under study. It contains information on both energy per-
formance and costs (e.g., the capital expenditure CAPEX
and the operating expenses OPEX). Trends over time of
the energy efficiency and other key performance indicators
(such as average lifetime, average degradation ratio, etc.) are
also included.

b: MARKETS
Electricity prices, levies and other relevant information on
tariffs are sourced from the National Electricity Market
Administrator.

c: ENERGY POLICIES
This module includes all the information regarding the
national energy policy framework and related supporting
schemes for technology adoption. Different types of policies
can be inserted into the model, e.g., incentives in the form
of capital grants, tax reliefs or other supporting schemes
(e.g., Net-Billing, Feed-in Tariff, Feed-in-Premium) andmass
media advertising actions.

B. MODEL & SIMULATION LAYER
TheModel & Simulation Layer is the core of the proposed co-
simulation platform in Fig. 4. It contains the simulation and
modeling modules that are exploited by the platform: agents,
environment and scheduler. The scheduler is described in
detail in Section IV-B11.

The agent is the active element of the system and it
is represented as a simulation block that contains its own
modeling and simulation modules. Each agent represents
a single household, which is characterized accordingly to
the statistical distributions of socio-demographic and social
clustering data. Each agent takes actions and makes deci-
sions while interacting with the other agents. Each agent (not
adopter) decides at each time step whether to adopt or not an
energy technology, according to its own state and decision-
making rules. The internal state of an agent represents the
specific collection of parameters and variables that define
an agent and it changes whenever the agent makes actions.
Actions are taken based on a well-defined set of rules, which
are algorithms describing how the states are translated into
actions or new states [16], [68]. The set of rules are repre-
sented within the agent’s box in Fig. 4.

The environment simulation block contains the agents and
the resources of the system, i.e., all the external information
they require to make actions, such as energy technologies,
market prices and energy policies. Moreover, the environ-
ment provides that spatial information needed to describe the
virtual ABM’s space. The agents live either in single-family
residential houses or, as it is most often the case in urban
communities such as European cities, in apartment buildings
(i.e., Condominiums).

1) OPINION DYNAMICS
Each agent has its own opinions (opi) that have a given
uncertainty (unc), with respect to a specific behavior. The
opinion is defined as a real number in the range between
−1 (extremely negative opinion) and +1 (extremely positive
opinion). The value of uncertainty is also a real number in
the range [0; 2]. Moreover, there are agents in the system that
could be already adopters (at the time themodel is initialized).
Thus, we included a number of ‘extremists’, accordingly to
Deffuant [37], having an opinion level equal (or higher) to
0.8, and uncertainty fixed to 0.1.

The opinions and the uncertainties around those opinions
evolve in time to represent the word of mouth effect. This
is achieved thanks to agent interaction within their social
network (see Section IV-B2). The Relative Agreement (RA)
algorithm is used to describe the opinion dynamics (a detailed
formulation is presented in Section II-B). Pairs of agents
i and j interact over time. At each time-step t , each agent
interacts with a certain number of other random agents within
its social network. The number of interactions φ is set as
a model parameter, as well as the convergence speed of
opinion dynamics µ.

2) SOCIAL NETWORK
Individual agent’s attitudes and social norms evolve because
of the interactions and social influence within the social net-
work. The social network topology has been developed based
on the Small-World Network theory (a detailed formulation
is provided in Section II-C). In our model, the neighbors and
social group similarity are used to create social networks.
The process of generating the agent social network begins
by selecting the agent’s neighbors within a certain radius
from its house. The choice of the radius is not trivial since
there are factors to be accounted such as the local/building
population density, the type of environmental area and the
type of agent. However, in our case because of the scarcity
of information, the radius was defined by setting a constant
value r around each household and used as a parameter of
the model. The agent’s local connections are formed selecting
randomly from the neighbors’ list those agents that have a
similar social group or equivalent level of income. Thus,
agents with similar wealth conditions havemore connection’s
probability. To generate the long-distance connections, some
of the local connections are substituted with random agents
taken from the whole system. This is expressed by the rw
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parameter that represents the percentage of long-distance
connection re-wiring.

3) SOCIAL PRESSURE
The social pressure sp (or peer effects) represents the general
influence that an agent i receives within its social network.
As an example, if a neighbor adopts an energy technology it
is more likely that an agent is influenced to do it too, and vice-
versa. Influence is evaluated considering only those agents
within the social network who have strong opinions, either
positive or negative. The agents with strong opinions are
those who have an absolute value of opi greater than 0.6 and
related uncertainty unc less than 0.5. The social pressure
exerted on the agent i by the influencer j is obtained as
follows:

wij =

unci
uncj
− 0.2

20− 0.2
, (3)

spij = atti · (1− wij · (atti − attj)), (4)

where the weight wij represents the strength of the influence.
At the increasing of the weight wij, the pressure coming
from negative opinions is greater than the positive ones. This
assumption models social behaviors under which people are
more influenced by negative opinions rather than the positive
one. The total social pressure sp exerted by the all N influ-
ential agents within the social network was considered as the
mean value

spi =

∑N
j=0 spij
N

. (5)

4) HOUSEHOLD’S CHARACTERIZATION
Different attributes are used to describe the heterogeneity of
households: i) social clustering, ii) income, iii) family size
and iv) level of innovativeness.
i) Social clustering permits to split the households into

fairly homogeneous social groups, based on statistical data.
Exploiting the identified social groups and the census data,
contained in the Socio-cultural layer, we randomly assign
a social group k per each household i, accordingly to the
household’s statistical distributions.
ii) The household’s income is estimated using the avail-

able statistical data on each social group k . The income
distribution within a social group is described by a normal-
ized income level INCk , with respect to the national mean
income of households (INCNAT ), and by the Gini coefficient
(GINIk ) that accounts the internal variance [69]. Therefore,
the income [e] of agent i, belonging to a social group k ,
is obtained by the following equations:

Xi ∼ LN (µ = 0, σ = GINIk i ), (6)

INCi = Xi · INCNAT · INCk i , (7)

where X is a random variable obtained from the income stan-
dard lognormal distribution LN , and σ is the Gini coefficient.
iii) The family size is estimated for each household. It is

generated from a triangular distribution T using the data

retrieved from each social group, i.e., the average number of
family members Nmean

k and the min and max values, as fol-
lows:

Xi ∼ T (min = Nmin
k i ,mode = Nmean

k i ,max = Nmax
k i ), (8)

Ni = Xi. (9)

iv) The level of innovativeness represents the propensity
toward technological innovation of an individual. In fact,
there are socio-demographic aspects that influence the adop-
tion of innovative technology such as personality, human
habits and lifestyle [70], [71]. In our model, this attribute is
static and each household inherits it from its social group.
Moreover, we took into account the well-known framework
of Diffusion of Innovations theory by Rogers [10] that divides
the adopter customer in innovators, early adopters, early
majority, late majority and laggards. Thus, to each social
group k a level of innovativeness is associated on the basis of
their income, rational-economic thinking, knowledge, educa-
tion level, attitude to influence, social norms and their adopter
category (the values was reported in Appendix B).

5) HOUSEHOLD LOAD PROFILE
The Household load profile model presented by
Bottaccioli et al. [72] has been integrated in the co-simulation
platform. The model uses Time of Use surveys to create
a Non-homogeneous semi-Markov model for simulating
the household electricity load profile. The model permits
to create households by specifying the composition of
the family. Then, the set of appliances in the households
are distributed according to statistics obtained from [73].
The simulator uses the created Semi-Markov model to gen-
erate household behavior in terms of type and duration of
activity and associates to each activity to specific usage of
electric appliances (e.g., washingmachine, dish-washer, etc.).
Thanks to the various type of integrated user typologies,
we have created household by taking into account the social
group. A reference load profile has been thus obtained for
each social group.

6) FEASIBILITY & INVESTMENT EVALUATION
The feasibility of investment depends on two control vari-
ables: (1) the socio-economic feasibility and (2) the technical
feasibility. The first one verifies if the agent owns the house.
In fact, in our model, we assumed that tenants do not invest
their money in a rooftop PV system in someone else propriety.
For this reason, tenants never adopt and are excluded from the
decision-making process. The number of tenants is given by
the statistical data for each social group. The second variable
concerns the technical possibility of installing the technology,
i.e. the availability of rooftop area.

The perception of affordability on an investment, or lack
thereof, is often cited in the literature is one of the most
important barrier to the adoption, together with social influ-
ence [7], [30], [51], [53]. The economic component within the
proposed ABM framework is given by the payback period.
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The payback period depends by the following factors: i) tech-
nology under study; ii) size of the system, iii) utilization of the
system; iv) the production curve of the system; v) electricity
prices and vi) the regulatory framework. In general, the pay-
back period pp is defined as the year in which the net present
value npv break-evens

npv =
N∑
y=0

R(y)
(1+WACC)y

, npv = 0 −→ y = pp, (10)

where R(y) is the net cash flow, i.e. cash inflow minus
cash outflow, at time y and WACC is the Weighted Average
Cost of Capital. The net cash flow is initialized equal to
the investment I (with minus sign). The composition of the
net cash flow is reported in detail in Appendix A because
it depends on the case study and the analyzed scenario.
Moreover, the economic evaluation algorithm considers the
time-varying energy and technology prices.

FIGURE 5. Scheme of the mathematical decision-making model based
on TPB.

7) BEHAVIORAL MODEL
The agent’s behavioral model has been developed starting
from the TPB framework described in Section II-A. The
mathematical model is illustrated in Fig. 5, which shows
the Behavior b as a weighted linear function of the three
behavioral attributes. Each of them is derived from weighted
linear functions of the associated beliefs. Each component of
the behavioral model has a value between 0 and 1, thus the
sum of the weights of each linear function is 1. For example,
the weight wbi is set as a user-defined parameter of the model
and its complementaryWpbc′ is calculated accordingly.
The Behavior b is the weighted sum of the Behavioral

Intention bi and the Perceived Behavioral Control pbc,
as shown in (2). The decision to invest takes place when b
is greater than a certain threshold value bthsd , which is set as
a user-defined model parameter.

The Behavior Intention bi is calculated using (1). The
weights are estimated from the statistics that character-
ize each social group. In our model, we considered those
beliefs which are more important for energy technology
adoption, as illustrated in Fig. 5 and explained in the fol-
lowing paragraphs. The beliefs, or adoption factors, were

chosen according to the wide review of the literature concern-
ing the factors, barriers, and constraints toward technology
adoption [11], [12].
i) The Attitude Toward Behavior att is obtained by

the general opinions of the households explained in
Section IV-B1. Therefore, the att is a simple normalization
of the general opinion (opi).
ii) The Subjective Norm sn is the combination of two influ-

ential beliefs: the social pressure sp and the innovation factor
INN . The first one, explained in Section IV-B3, represents
the mean mostly local influence that the agent receives, thus
it depends on the local state of the agent. The second one
represents the individual propensity to adopt, thus it depends
on the internal state of the agent. it is obtained normaliz-
ing the innovativeness’ level of each agent (explained in
Section IV-B4). Therefore, sn is

sni = spi ·Wsp + INNk i ·Winn, (11)

where the both weights were chosen equal to 0.5, assuming
that the social pressure and the innovation factor have the
same importance in the evaluation of the Subjective Norm.
iii) The Perceived Behavioral Control pbc is the combina-

tion of two influential beliefs: the payback period factor pf
and the household income factor if . The first one takes into
account the payback period and the constraints on technology
adoption. The second one considers the capability of the agent
to money investment based on income level. Thus, pbc is

pbci = pfi ·Wpf , k i + ifi ·Wif , k i , (12)

whereWpf , k andWif , k are weight factors. The pf is obtained
normalizing the payback period calculated by Feasibility &
Investment evaluation module, considering the lifetime of the
plant. Moreover, if there is no feasibility to install pf is set
equal to 0.

The income factor if indicates the capability of a house-
hold to purchase a PV system and is calculated, accordingly
to [51], as follows:

ifi =
1

1+ e−

(
INCi
Ni
−
incad
nad

)
5000

. (13)

The logistic function compares the level of income per
capita of a household (INCi/Ni) with the average income
value of the adopters (incad/nad ). The factor 5000 is used
to scale down the income in the exponential relation,
similarly to [51].

The weight Wif , k defines the relative importance that a
household gives to the income rather than the payback period
when deciding whether to invest money on a PV system.
In fact, depending on the characteristics of the agent, it might
be more inclined to spend a relatively significant amount of
money, taking more risk, or it might be more inclined to
look at the security of investment, looking for short payback
period. From social groups’ statistics, it is known the distri-
bution of the household’s expenditure. Therefore, we used the
expenditure as an indicator of the high spending capacity of

VOLUME 7, 2019 93415



D. S. Schiera et al.: Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings

FIGURE 6. UML Activity Diagram of our ABM framework. The diagram shows the activity sequences of the entire model
algorithm. The orange box represents a loop for each agent, meanwhile the blue boxes show the different agent steps.

a social group and so to define their willingness to spend
money. The value of expenditure is assumed to equal to
Wif , k . Nevertheless, this attitude represented by the Wif , k is
important only in the evaluation of the pbc, which represents
the more rational component of the behavioral model. In fact,
an agent may also adopt in spite of low spending capacity
and high risk as for the case of innovators (with high level of
innovativeness).

8) MARKET & TECHNOLOGY RESOURCES
This module controls the resources as market and technolo-
gies and communicates with the environment module in order
to share the data among agents. Both are treated as passive
elements of the system that evolve and act whenever it is
requested by the household, e.g., when the feasibility and
economic evaluation is requested. For example, the price of
energy technology is generally a time-dependent variable.
Therefore, at each time-step, the CAPEX can decrease fol-
lowing a user-defined constant reduction ratio.

9) ENERGY POLICY FRAMEWORK
The implementation of energy policies is strictly connected to
the national regulatory framework. The supporting schemes
and the regulatory framework have a strong impact on the
economic evaluation of the single household and thus on the
dynamic of adoption. Our platform has been designed to be

flexible toward the possibility of plugging different policy
measures and simulate different policy scenarios.

10) ROOFTOP SOLAR RADIATION
Thanks to the flexibility of the simulator presented in [74] we
integrated the Rooftop solar radiation module. This specific
module allows to estimate the PV potential and to simulate the
solar radiation profiles in real-sky condition with high spatio-
temporal resolution (e.g. 50 cm2 and 15−minutes). The mod-
ule uses: i) GIS data of the environmental layer to draw
rooftop information in terms of slope, orientation, possible
encumbrance and shadows; ii) weather data from the nearest
weather station to calculate the incident solar radiation in
real-sky condition. A detailed description of this module and
evaluation of its capability in simulating solar radiation in
different seasons (e.g. Winter and Summer) and in different
day type (sunny, cloudy and rainy) is presented in [74].

11) SCHEDULER
The time evolution of the model is managed by a scheduler,
as shown in Fig. 4. The scheduler ensures that all the actions
and activities of the system are executed in a well-defined
order for each simulation time step. The scheduling process is
shown in Fig. 6 using the UnifiedModeling Language (UML)
Activity Diagram [75].

The initialization of the model regards the acquisition of
the input data sets, the user-defined parameters of the model
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and the creation of the entities that constitute the ABM
as the agents, the environment and the scheduler. In this
phase, each agent is created with its initial state belonging
to a specific geographical space, and it is inserted into the
scheduler. In this process, all the information taken from the
input data sets is elaborated to define the diverse attributes of
the agent. The same procedure applies for the initialization of
the environment.

After the initialization, the model creates the social net-
work structure SWN for each agent. The social network is
assumed as a static attribute of an agent. The creation of the
social network consists of 3 main sub-steps: (1) the neighbors
within a certain radius r are selected and they represent the
local interactions; (2) the local agents community is filtered
by a criterion of social group similarity; (3) a certain number
of local agents (defined by rw) are randomly replaced by non-
local ones, which are chosen from the whole community.

The steps of the simulation are managed by the scheduler.
At each simulation time step t , the scheduler activates each
agent, updates the agent final decision and the environment.
The chosen scheduler’s type is theRandom Staged Activation.
This type of scheduler allows the simulation to be divided
into four stages: 1) agent’s physical actions, 2) agent’s cogni-
tive actions, 3) agent’s decision-making and 4) environment
update. All agents execute one stage before moving on to
the next. Moreover, the scheduler activates each agent once
per stage, in random order, with the order reshuffled every
stage.
1) The first stage consists of physical actions taken by

the agent. If the agent has already adopted, it takes no
actions. Otherwise, it starts to interact with φ other agents
randomly selected in its social network (the so-called word of
mouth effect). The agent is thus influenced by these inter-
actions in its opinions and uncertainties about technology
adoption with the speed convergence µ, according to the
rules of the RA algorithm. Subsequently, the agent gets the
knowledge about the cost of the technology and it makes an
investment evaluation, taking the information from the envi-
ronment and Feasibility & Investment evaluation module.
2) The second stage consists of cognitive actions of the

agent, where it generates its new opinion based on its state
and on the information taken in the previous stage. The
cognitive actions correspond to the elaboration of TPB’s
components: att , sn and pbc. Finally, the agent develops an
intention to the behavior bi and, considering the weight of
the Behavioral Intention wbi with respect to the actual power
control (i.e. pbc), it elaborates the final Behavior b.
3) After executing the first two stages for all the agents,

the final choices are updated. If the installation of the technol-
ogy is feasible, and the b value is higher than the correspond-
ing threshold level bthsd , the agent takes the decision to adopt.
Its opinion will be set equal to a random value higher than
0.8 with an uncertainty set equal to 0.01. This assumption is
done in order to simulate the happiness for the investment
and making the agent behaving like an extremist (e.g. great
opinion and very low uncertainty) [37].

4)The final stage consists of updating the states of the envi-
ronment, i.e., the update of the technology price, the update
of the mean household income of the adopters and the mean
family size of the adopters.

Note that the fourth stage also includes the update of the
final decision-making process, which is actually part of the
cognitive actions. However, the agent’s decision-making is
held as a separate process, as it is shown in Fig. 6. This dis-
tinction helps to remark the assumption that all agents make
choices simultaneously in a simulation time step. Moreover,
the update of the final choice strongly depends on the scenario
under study, for example, when the choice of adoption is
taken considering the collective choice among residents of a
Condominium.

C. APPLICATION LAYER
The Application Layer is the highest layer of the pro-
posed platform (Fig. 4). This layer is the platform Graphical
User Interface that returns and shows the simulation results.
In particular, it provides: i) a dashboard, which contains
inspections tools, such as graphs and tables; ii) thematic maps
that show the spatio-temporal distributions of PV diffusion,
self-sufficiency and self-consumption.

FIGURE 7. Data flow scheme of the co-simulation platform.

D. CO-SIMULATION DATA FLOW
Here we describe the data flow of our co-simulation platform
represented in Fig. 7. The platform takes advantage of third-
party data sources and two external simulators, the Rooftop
solar radiation [74] and the Household load profile [72].
The Household load profile profile simulator has been
integrated into the ABM framework directly and takes
the data from the internal platform database. Meanwhile,
the Rooftop solar radiation simulator is integrated exploit-
ing the Representational State Transfer (REST) API that
exposes GeoJSON data. Furthermore, the Rooftop solar radi-
ation requests from third-party data-sources weather condi-
tion exploiting REST API. Finally, thanks to the use of the
Open Geospatial Consortium web services, it is able to col-
lect the required maps directly from third-party data-source
by exploiting both Web Feature Service and Web Coverage
Service. Moreover, the ABM framework collects though both
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REST API and Open Geospatial Consortium standards data
from GIS databases (e.g. census section maps and building
footprint) and from Census databases respectively.

V. CASE STUDY
The proposed platform has been used to analyze the diffusion
of roof-top PV systems of two scenarios under different reg-
ulatory schemes in a real-world case study. The first scenario
called one-to-one configuration (1to1) simulates the PV dif-
fusion under the actual Italian regulatory framework. On the
other side, second called one-to-many configuration (1toM),
implements the new EU energy policy on energy citizen
communities and joint self-consumption citizen, presented in
the Clean Energy package [3]. Both scenarios are applied to
have as a case study a district of the city of Torino called San
Salvario.

A. DATA SOURCES
GIS data are collected from third-party public available
sources. In particular, cadastral and census section2 maps
are retrieved from the Geoportal of Turin’s Municipality.
Meanwhile, the digital surface map is collected from the
Geoportal of the Piedmont Region. Weather data needed for
the solar radiation module are collected from third-party data
source [76].

The data of the Socio-cultural layer (Fig. 4) are collected
from the National Bureau of Statistics (Istituto Nazionale di
Statistica - Istat [77]). Census sections (or census blocks)
data are taken from the last Italian census of population and
buildings [78]. Time Use Survey data are referred to the last
Italian survey performed between the years 2012-2013 [79].
Social Structure data are obtained from the annual report
on social grouping [80]. The report identifies the following
nine groups: 1) Ruling class (RC); 2) Silver Pensioners (SP);
3) Clerks’ households (CH); 4) Young blue-collars (YB);
5) Retired blue-collars’ households (RB); 6) Lonely old
ladies and young unemployed (LY); 7) Traditional provincial
households (TP); 8) Low-income Italian households (LI);
9) Low-income households with foreigners (LF). The social
groups are generated by Istat classifying the population by
income, professional position, education level, citizenship of
the household members and the number of household mem-
bers. The model generates the households agents accordingly
to the statistical data of the census blocks and classifies them
in social groups by their attributes similarly to Istat.

The households within each social groups have similar
characteristics, therefore the weights of the behavioral model
are set at the same value for each social group. Moreover,
the level of innovativeness for each social group is expressed
as a number in a range from 1 (very low interest) to 5 (very
high interest). More details were given in Appendix B.
The data of PV technology and costs have been taken

from the Italian Energy Services Utility (Gestore Servizi

2The census section is the minimum unit of detection of the municipality,
which consists of a single polygonal area. The sum of all the census sections
reconstructs the entire national territory.

Energetici [81]) and from the International Energy
Agency [82].We assumed the standardmodule crystalline sil-
icon that constitutes more than 85% of market share, assum-
ing an average roof-top PV system efficiency of 14.45%
(considering also the balance of system). In Italy, in 2016 the
turnkey price of small size grid-connected roof-top PV sys-
tems was from 1340 to 1730 e. Considering that the PV cost
decreased at a rate of 15.5% from 2002 to 2016 and that
today’s PV technology is a mature one approaching the grid
parity, we assumed for our simulation a constant yearly price
reduction of 8%. Electricity prices have been taken from the
Eurostat database [83] and the Italian Stock Exchange [84].
Such data provides the actual and future trend of national
electricity prices.

B. POLICY SCENARIOS
The scenarios are defined starting from the actual Italian
regulatory framework concerning decentralized electricity
production [85]. In the actual policy framework, the energy
authority (regulator) imposes the correspondence between the
electrical production unit and the electrical consumption user.
Furthermore, there is just a single point of delivery to the pub-
lic grid. This is equivalent to the one-to-one configuration.

Nowadays, the only active supporting scheme for PV in
Italy consists of 50% tax relief on the investment cost, spread
out over ten years. After the end of the last feed-in premium
scheme in 2013 [86], the remuneration on the self-generated
and the net exported PV electricity consist of a Net-Billing
scheme. Otherwise, the net energy exported to the grid can
be sold at market price conditions [81], [85], [87].

Starting from this context, we simulated two different pol-
icy scenarios, described in detail in the following paragraphs
and illustrated in Fig. 8.

1) ONE-TO-ONE CONFIGURATION (1TO1)
This scenario is a business-as-usual scenario, in which only
the single household can install a rooftop PV system and
self-consume the generated electricity. The size of the sys-
tem is chosen as the optimum value of the payback period
(as described in detail in Appendix A) with the constraints
of the yearly electricity consumption of the household and
the available area. For those who live in a Condominium,
we assume that the overall rooftop area is equally dis-
tributed among the residents. In addition, if the area cannot
accommodate at least 1 kWp, the adoption is not feasible.
Finally, every single household decides individually whether
to adopt or not.

2) ONE-TO-MANY CONFIGURATION (1TOM)
This scenario simulates the possibility to share the electricity
produced by a single PV unit with many citizens. This policy
scenario changes the agent’s behavior in Condominium but
not in the single-family house. Here, we model the creation
of a condominium energy community where is possible to
install a shared rooftop PV system that covers all the available
roof-top area of the building. The choice to install a shared PV
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FIGURE 8. A simplified illustration of the scenarios under study with a short description of each of them. It represents the
application of the scenarios in the buildings, like a Condominium, but also applied in single-family homes, which are however
few in the urban context.

system is based on a collective decision process in which the
adoption occurs if themajority of the residents wants to adopt.
For thosewho do not want to adopt or cannot, i.e. tenants, they
will not participate in the investment and they will not receive
the related benefits. Moreover, we assumed that the financial
revenues of the investment are equally distributed among
the residents. The on-site generated electricity is primarily
self-consumed by the households while any surplus/deficit is
exchanged with the grid.

This configuration is actually not feasible in Italy because
of the one-to-one constraint. In fact, the aim of this scenario
is to explore the PV diffusion in a hypothetical future in
which it will be possible to set one-to-many configuration
(e.g. the Citizen Energy Community, as proposed by RED II)
and benefit from a Net-Billing scheme at the Condominium
scale overcoming all the constraints imposed by the current
regulatory framework.

C. DISTRICT DESCRIPTION
The San Salvario district includes nearly 18, 720 households
distributed over nearly 1, 290 buildings and a total district
land area of 2.47 km2. The area has been chosen for the high
presence of condominiums. The high presence of multiple-
property buildings gives us the possibility to highlight the
different impact of the regulatory schemes on the diffusion
of PV systems.

Fig. 9 show the distribution of the social groups within
the district. From the plot, it is possible to see that about a
third of the households belong to the CH group and about
the half belong to the RB, YB and SP groups. The remain-
ing part is mostly composed by RC and LY, with a very

FIGURE 9. Households distribution in the city district with respect to the
social groups.

small part by (less than one percent) TP, LI and LF groups.
This particular social groups distribution has a strong impact
concerning the electricity load profiles. In fact, as shown
in Fig. 10, the CH andYBgroups exhibit a typical single night
peak demand. As a consequence, we expect that the majority
of the households cannot exploit well the PV production
caused by the meaningful mismatch in time between load and
PV production profiles.

D. MODEL SETTINGS
Table 2 reports the fundamental parameters and their related
values used to initialize both scenario simulations. In order
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FIGURE 10. Yearly mean of the daily load profiles regarding the social
groups. They are listed from low profiles to high profiles based on peaks
power.

TABLE 2. Model’s parameters.

to choose realistic values, a parametric analysis is performed
over a simplified population and city environment as reported
in Appendix C.

Besides the parameters reported in Table 2 there is the need
to set citizens opinions and uncertainties over opinion. The
citizen opinions are initialized accordingly with [29], [52].
The main assumption is that in a low market penetration peo-
ple do not have strong opinions, either positive or negative,
but are mostly neutral toward technology adoption. Mean-
while, uncertainties over the opinions are chosen assuming
that there is high uncertainty over neutral opinions, according
to the following expression: unc = −2(opi2 − 1).

VI. RESULTS
In this section, we present the results of the case study in
which we investigate the rooftop PV diffusion in a city district
under two different policy scenarios. The selected urban dis-
trict (San Salvario) is one the most densely populated area of
the city of Torino (Italy). The results of the simulation are dif-
fusion curves, the spread of PV adoption in the social groups
over time and thematic maps showing, on a spatio-temporal
scale, the evolution of kW installed, self-consumption and
self-sufficiency ratios for each census block.

A. DIFFUSION CURVES
The diffusion curves of rooftop PV in city buildings are
shown in Fig. 11, for both scenarios. The graphs show the
cumulative installed power that has been normalized with
regard to the maximum potential capacity, which is 16.2 MW
for the considered district.

FIGURE 11. Residential PV systems diffusion curves in the city district
concerning the scenarios 1to1 (blue) and 1toM (green). These are
obtained from the statistical elaboration of 100 runs for each scenario.
Each curve is represented with the mean value (solid line) and the
confidence interval of 95.45%.

The PV penetration in the city district at the end of our
simulation windows (20 years) is 35% for the one-to-one
(1to1) scenario and 65% for the one-to-many (1toM) sce-
nario. The installed capacity increases by a factor of about
1.80, i.e., from 5.90 MW in the 1to1 scenario to 10.64 MW
in the 1toM scenario. Both curves do not reach the saturation
level, even though in the 1to1 scenario is visible the knee pre-
ceding the plateau. Therefore, the value achieved at the end
of the simulation window represents the maximum attainable
PV power capacity under the 1to1 policy scenario. On the
other side, the PV penetration in the 1toM scenario is much
higher than the 1to1 scenario and it might further increase
on a longer period, even though is not possible to determine
exactly what would be its saturation value.

To explain why the installed PV power capacity in the
1to1 scenario is just 35% of the full potential we should ana-
lyze the reasons that hinder the households (HHs) to adopt.
There are feasibility issues and socio-economical causes. The
feasibility issues considered in our model are the ability of
HHs to own the PV system, which is denied to tenants, and
the availability of rooftop surface on the building. Instead,
the socio-economical causes are related to HHs behavior and
their adoption curve.

The feasibility issue account for the 68% of the HHs in
the 1to1 scenario and for a 18.4% in the 1toM scenario. The
increase of the feasibility for of 49.6% HHs in the 1toM
scenario is due to rooftop availability in the shared configu-
ration. The remaining 14.5% are the tenants that cannot own
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FIGURE 12. The graphs show for both scenarios: cumulative adoption
curve normalized to the potential HH adopters; yearly new HH adopters
aggregated by social groups. The dashed lines split the time into the
typical ranges of the adoption categories by Rogers [10].

a PV system and they are excluded from the decision in the
condominium.

The HH’s behavior exhibit in both scenarios can be ana-
lyzed by looking at the adoption curves shown in Fig. 12a
and Fig. 12b for the 1to1 and 1toM scenarios, respectively.
The graphs present both the cumulative (solid line) and the
differential curves (bars). The bars show the number of new
HH adopters per each year, aggregated by their social groups,
during the whole simulation period. Whereas, the solid lines
show the cumulative number of adopters normalized to the
number of HHs that have the feasibility to install the PV
systems.

By using the cumulative plot, it is possible to classify the
adopters using Roger’s rages as: Innovators (IA), the ones up
to the 2.5% of the potential; Early Adopters (EA), between
2.5% and 16%; Early Majority (EM), between 16% and 50%;
LateMajority (LA) between 50% and 84% and Laggards (LG)
above 84% of the potential. In Fig. 12a and Fig. 12b these
ranges are indicated by vertical dotted lines.

The adoption curve of the 1toM scenario is delayed respect
to the 1to1 one. In the 1to1 scenario, the EA period starts at
the 5th year and by the 17th year half of the potential HHs
already adopted; whereas in the 1toM scenario, the EA period
starts later (11th year), then the number of adopter reaches
quickly the 50% by the 20th year.

Analyzing further the adoption curves, it is possible to
understand how adoption spreads among social groups and
who are the HHs promoting or delaying the technology pene-
tration. By looking at Fig. 12a of 1to1 scenario, the Innovator
range is populated mainly by householders belonging to RC
(Ruling Class) and CH (Clerks’ HHs). The Early Adopters
are represented by LI (Low-Income Italian), LY (Lonely old
ladies and Young unemployed) social groups since; more-
over, in this range starts the adoption by some HHs of the
YB (Young Blue-collars) social group. However, the majority
of the YB behave as Early Majority adopters, as well as
RB (Retired Blue-collars), TP (Traditional Provincial) and
LF (Low-income HHs with Foreigners) households. Finally,
the HHs that show a more conservative behavior, i.e. Late
Majority adopters, belong to CH and SP (Silver Pensioners)
social groups. A peculiar behavior is exhibited by the CH as
their adoption rate is almost constant along the whole time
frame showing a behavior not classifiable in a specific range.

On the other side in the 1toM scenario (see Fig. 12b) it
is not possible to associate a specific social group with an
adopter range because all the social groups show similar
adoption behavior. This phenomenon is explained recalling
that the choice of whether adopt is collective in nature, i.e.
the adoption in a condominium requires the agreement of
the majority of the HHs. Moreover, the adoption mechanism
is responsible for the time shift between the two adoption
curves. In fact, in the 1toM scenario, the collective decision
delays the adoption curve. Many of the HHs belonging to LI,
LY, TP and YB social groups have advantageous economic
conditions and are individually favorable to adopt earlier than
the 11th year but are hindered by the RB and CH groups.
In fact, they have a low attitude to adopt but represent the
HHs majority (59%).

B. THEMATIC MAPS
The analysis of the thematic maps is fundamental to under-
stand the spatial diffusion over the district at census’ section
level. Such maps can be used to highlight the presence of
probable bottleneck or strengths in the diffusion. Moreover,
it is possible to analyze the spatio-temporal diffusion through
animated maps over time. The thematic maps of San Sal-
vario’s district for the scenarios 1to1 and 1toM are reported
in Fig. 13.

The PV penetration is expressed in terms of percentage of
kW installed over the census block potential, at the 20th year
of the simulation. The time evolution of the thematic maps,
showing how the PV adoption spreads over the districts,
is available as supplementary material. In the 1to1 scenario
the PV share distribution is flat (see Fig. 13), if we exclude
30% of the census blocks whose share is lower than 10%,
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FIGURE 13. Thematic maps of the scenarios 1to1 and 1toM, regarding the final step (20th year) of the
simulation. The spatial distributions were calculated for each census’s section: (a) the % of kW installed respect
to the maximum potential; (b) the average of Self-Consumption ratio; (c) the average of Self-sufficiency ratio.
The parameters are subdivided into classes in the domain range and colored based on the magnitude value of
each class (from green to red). Note that it was considered the whole PV potential for each census block and the
total potential electrical demand of all agents that could feasibly adopt a PV system (therefore, the buildings
with zero PV area were excluded).
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FIGURE 14. Comparison of the scenarios in an example Condominium of 20 residents, assuming same load and PV generation profiles in two typical
days (Fig. 14a summer and Fig. 14b winter): in scenario 1to1, each household installs a rooftop PV system of 1 kWp for a total of 20 kWp in the whole
Condominium; in scenario 1toM, the residents install a single shared rooftop PV system of 20 kWp. The comparison shows the clear advantage of the
1toM configuration, in which the local generation is efficiently exploited because is primarily shared among residents, thus increasing the
self-consumption. Conversely, in 1to1 configuration the local generation is never shared; therefore, at the level of Condominium, power import and
export comes at the same time and the self-consumption is low. Furthermore, the resulting load profiles also exhibit the typical Duck Curve that shows
the timing imbalance between peak demand and renewable energy production.

and quite homogeneously distributed over the whole district.
Besides, just 2% of the blocks reach a penetration above 80%.
On the other side, in the 1toM scenario, the majority of
the census blocks reach the 100% of installed PV, with a
jeopardize spatial distribution of the remaining census blocks
that have lower PV share. Moreover, in this case, there is
an 18% of blocks with a PV share lower than 10%. Other
useful indicators are the rates of self-consumption and self-
sufficiency. In the 1toM scenario, the generated electricity in
most of the blocks is self-consumed for more than 50%, with
self-sufficiency above 20%. On the contrary, the majority of
the blocks in the 1to1 scenario have self-consumption and
self-sufficiency levels below 10%.

The great potentiality of the thematic map is the capability
of localizing easily the census block with evident issues

hindering the PV technology diffusion and subsequently ana-
lyze them in detail understand what is the problem. In fact,
we can analyze how the electricity generated by PV systems
are used at the blocks level or within the condominium. As an
example, we can analyze the daily net power import and
export profiles of a sample Condominium of both scenarios,
illustrated in Fig. 14 in a typical day of summer and in awinter
one. It can be noticed that for the 1to1 scenario, at a given
time, there is the presence of power imported and exported
simultaneously, rather than the 1toM scenario where often the
electricity is weather imported or exported. This difference
is due to those households that export to the grid part of
their excess of generated electricity without sharing it with
their neighbors, which at that time are importing it from the
grid. For these reasons, in 1to1 the rooftop solar area of the
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building is not exploited efficiently and is not cost-effectively.
On the other hand, in 1toM the PV production is firstly
shared among the residents and then, eventually, is sold to the
grid. Normally, in 1toM there is no simultaneous presence of
power import and export, except for those cases in which part
of the HHs do not participate to the energy community and
import the electricity from the grid. Nevertheless, the amount
of imported electricity is significantly lower than the 1to1 sce-
nario because of the high Self-Consumption, especially in
the summer season when the effects are more pronounced.
Moreover, notwithstanding the almost halved PV production
during the winter season (see Fig. 14b) with respect to the
summer one, the 1toM scenario gives the opportunity to
improve the self-consumption anyway.

VII. CONCLUSION
In this work, the diffusion of residential rooftop PV systems
in a city district was studied by means of a co-simulation
platform. The goal of the co-simulation is to quantitatively
assess the impact of regulatory schemes on the adoption of
roof-top PV. In particular, we have studied a ‘one-to-one’
business as usual regulatory scheme and a ‘one-to-many’
configuration that enables the citizen energy communities.
To do so we integrated into the platform geo-referenced data
(i.e., technical, environmental, economic and social quan-
titative parameters or indicators) of city buildings and
households. An agent-based model simulates the human
decision-making process. The model takes into account the
complexity and heterogeneity of the real-world in terms of
the geographical distribution of buildings, social structure and
peer interaction. The households are thus the agents who act,
interact among them, and finally decide whether to adopt
rooftop PV or not.

A real city district is used to simulate two different energy
policy scenarios depicting the transition from the single user -
single PV plant case (one-to-one configuration) to paradigms
in which a shared PV system is used by a community of
users (one-to-many configuration). The PV diffusion curves
under the two different scenarios, as the cumulative percent-
age of kW installed over time with respect to the maximum
potentiality of the system, show the huge impact that the
underlying regulatory framework has on the exploitation of
the available PV potential in the district. In addition, thematic
maps of the percentage of kW installed, self-consumption
ratio and self-sufficiency ratio have been constructed over the
census section maps. As suggested by the European Renew-
able Energy Directive (RED II), national policies and regula-
tions should be oriented toward the establishment of Citizen
Energy Communities (CEC). Energy community buildings
with shared rooftop go into this direction. Indeed, the pos-
sibility to spread the auto-generated solar electricity over the
load profile of the entire residents of Condominium results in
self-consumption rates greater than 50% and self-sufficiency
ratios above 20% for most of the simulated buildings.

The use-case of this work is a city district that includes
18,720 households distributed over 1,290 building blocks

and a surface area of 2.47 square kilometers was used to
test the proposed ABM framework. Results show how the
establishment of ‘prosumers’ within Condominiums
(i.e., energy community buildings) is key to yield high dif-
fusion rates. The installed capacity increases by 80% by
switching from the one-to-one configuration to the one-
to-many paradigm, i.e., from 5.90 MW of rooftop PV
installed on single-family households and/or single PV own-
ers to 10.64 MW in energy community buildings. Moreover,
the possibility to spread the auto-generated solar electricity
over the load profile of the entire population of a Condo-
minium results in self-consumption rates greater than 50%
and self-sufficiency ratios above 20% for the majority of the
simulated buildings.

The ABM methodology is a powerful tool to simulate the
decision-making process of consumers with respect to the
adoption of new energy technology in a complex system
and explore what could happen when varying environmen-
tal parameters. Moreover, the ABM framework takes into
account the role of the social influence and social interactions
among agents in combination with economic and technical
constraints or drivers.

The main limitation of the present work is most likely
in the calibration of the ABM model, i.e., the fine-tuning
of those empirical and user-defined parameters that govern
the shape and rate of diffusion of energy technology. In the
present work, we have extensively relied on the existing
literature on ABM applied to energy technology diffusion to
derive sensible values. Future work should aim to use past
diffusion trends of a given technology, available for a given
time window and geographical area, in order to calibrate
the ABM model parameters. Concerning the specific case of
rooftop PV, past rates of rooftop PV adoption on city build-
ings are either unavailable as open data, or unusable since
they incorporate a variety of supporting schemes changed
multiple times [88].

The developed ABM co-simulation platform allowed a
fine-grained understanding of the emergent patterns and
spatio-temporal evolution of rooftop PV diffusion in a
city district under different regulatory schemes. We tested
the platform in a specific context (city district), however,
the approach can be extended and generalized to differ-
ent geographical areas. In the Appendix, we describe in
detail the methodology for preparing the required data inputs
for assessing a specific territory. In addition, the presented
co-simulation platform, thanks to its modularity and flexibil-
ity, could simulate the adoption of other building-integrated
energy technologies (such as energy storage systems and
micro-cogeneration power units) by integrating or substitut-
ing in a plug-an-play fashion the module(s) of the technol-
ogy under investigation. The main limitation of the present
work most certainly lies in the initialization of some user-
defined parameters. Especially, by means of a survey data
on the willingness by households to adopt green technology
(e.g., photovoltaics), the initial agents’ opinion could be
better initialized. In general, the more empirical data is fed
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to the ABM to describe the social layer, the more realistic
are the obtained simulations. Thanks to high-performance
computing, data science techniques, and the increasing avail-
ability of granular city-data coming from Information and
Communication Technologies and Internet of Things solu-
tions for the smart city more robust and powerful ABM
simulation could be produced in the future. The application
of ABM to the energy sector could support city-planners,
local and national policy-makers, utilities and citizens in the
decision-making process towards communities that make a
smart, efficient and rational management and use of energy.

APPENDIX A
INVESTMENT EVALUATION
The investment evaluation is made by calculating the payback
period (pp). The investment strongly depends on the scenario
under study due to the different subsidies that are in place.

For the sake of simplicity, a general framework of pp is
provided. We consider the baseline scenario with the current
energy policies in Italy. An agent, that would adopt, chooses
the size of the rooftop PV system (the power, P, expressed
as kW peak [kWp]) so that the yearly production of the
PV system EPV [kWh/y] is equal to the yearly electricity
consumption of the household Eload [kWh/y]. The economic
assessment is made on a yearly base and it is supposed that
Eload does not change during the years. Thus, the yearly
load profile is considered as a time-invariant (static) value.
Meanwhile, the yearly productivity EPV decreases over time
due to degradation of the solar cells.

The power of PV system P is calculated from the definition
of the productivity EPV

EPV = APV · ηSTC · Gt · PR = P · YR · PR, (14)

where: APV , total solar panel area [m]2; ηSTC , efficiency of
PV modules at Standard Test Condition; Gt , yearly global
in-plane irradiation [kWh/(m2y)]; PR, Performance Ratio,
also known as balance of plant, that includes the different
losses of the whole PV system; YR, Reference Yield or peak
solar hours, calculated as Gt/GSTC [h/y] where GSTC is the
reference solar irradiation at STC equal to 1 kW/m2

The total investment I (tI ) is calculated as (15). The year of
investment tI is referred to the time t of the model. In t = 0
(model initialization) it is assumed an initial turnkey cost c0
[e/kWp] of rooftop PV system and a yearly cost reduction
trend τc.

I (tI ) = P · c0 · (1− τc)tI (15)

As already said, the productivity of the plant decreases in
time due to a constant degradation ratio τPV of the PV cells.
Thus, considering a time y = t − tI , so referred to the year
tI of installation, the initial productivity at y = 0 is equal to
EPV0 . The productivity EPV (y) is obtained from the (16).

EPV (y) = EPV0 · (1− τPV )
y (16)

A part of the yearly electricity produced by PV mod-
ules is self-consumed Eselfcons(y) [kWh/y], and it can be

calculated as

Eselfcons(y) = EPV (y) · sc, (17)

where sc is the ratio of self-consumption of a household.
Self-consumption is evaluated thanks to the knowledge of
both load and production profiles during a whole year with
a resolution of 15 minutes [74]. It is defined as the ratio of
self-consumed energy with respect to the energy produced
by PV over the year. The part of the energy that is not self-
consumed Eexport (y) is fed into the grid and sold, and it is
obtained by (18).

Eexport (y) = EPV (y)− Eselfcons(y) (18)

As a consequence, the yearly energy Eimport (y) that must be
taken from the grid to feed the remained household demand
is calculated by (19).

Eimport (y) = Eload − Eselfcons(y) (19)

The evaluation of the payback period is made by calcu-
lating the net present value npv(y), as already explained in
Section IV-B6. The formulation is reported here for clear
understanding.

npv(y) = −I +
N∑
y=1

R(y)
(1+WACC)y

, (20)

npv(y) = 0 −→ y = pp,

where the I [e] is the total investment made at time tI ,WACC
is the Weighted Average Cost of Capital, N is the final year
of the npv calculation (maximum PV lifetime) and R(y) [e]
is the net cash flow at time y. R(y) is generally composed by

R(y) = R+(y)+ R−(y). (21)

R+(y) represents the positive cash flow [e], and it is gener-
ally composed by the yearly savings S achieved thanks to the
electricity produced and not bought from the grid; the revenue
represented by currently fiscal detraction Rtaxr ; the revenue
from the particular tariff mechanism adopted Ri. Currently,
the agent can receive a tax reduction on the PV investment,
which is spread over 10 years. In addition, the agent has the
possibility to choose between two different tariff mechanisms
as currently proposed by GSE [81], [85], [89], which are:
• Sale to energy service utility (Ritiro Dedicato - RID),
that is a simplified mechanism available to producers for
the marketing of electricity produced and fed into the
network. It consists in selling to the GSE the electricity
injected into the grid by the PV system, at the request
of the producer and as an alternative to the free market,
according to principles of procedural simplicity and be
applying economic market conditions;

• Net-Billing scheme (Scambio Sul Posto - SSP), that is a
particular form of on-site self-consumption that makes
it possible to offset the electricity produced and fed
into the network at a certain moment with that taken
and consumed at a different time from that in which
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production takes place. Therefore, the electrical system
is used as a tool for the virtual storage of electricity
produced but not contextually self-consumed.

The choice of a tariff depends on what permits to obtain
the best return on the investment, thus the smallest payback
period.

The mathematical definitions for the positive cash flow are
reported in the following equations:

R+(y) = S(y)+ Rtaxr (y)+ Ri(y),with i = RID, SSP, (22)

S(y) = Eselfcons(y) · eprice, (23)

Rtaxr (y) =
(
y ≤ 10 −→

I (tI ) · taxr
10

)
∧ (y > 10 −→ 0), (24)

RRID(y) = Eexport (y) · esell, (25)

RSSP(y) = min (OE ,CEi)+ CUsf (26)

· min (Eexport ,Eimport )

+ (Eexport (y) > Eimport (y) −→ CEi − OE )

∧(Eexport (y) ≤ Eimport (y) −→ 0),

OE (y) = Eimport (y) · PUN , (27)

CEi(y) = Eexport (y) ·MGP, (28)

where: Eselfcons - yearly electricity self-consumed by the
agent [kWh/y]; eprice - electricity price that normally the
agent face up to in the electricity bill [e/kWh]; taxr - tax
relief, which is spread over 10 years; Eexport - electricity fed
into the grid and sold [kWh/y]; esell - price of electricity fed
into the grid [e/kWh]; Eimport - electricity purchased from
the grid [kWh/y]; PUN - Italian index of electricity market
price (Prezzo Unico Nazionale); MGP - zonal price that is
formed on the market of the day before (Prezzo del Mercato
del Giorno Prima); CUsf - yearly contribution calculated by
the GSE to valorize the tariffs not related to the energy-matter
like tariff of transmission, distribution, dispatching and some
‘general charges’ that are typically applied in the electric bill
(Corrispettivo Unitario di Scambio Forfettario).
R−(t) represents the negative cash flow [e] and it is gen-

erally composed of the yearly operation and maintenance
costs needed to make the system work. The mathematical
definitions is

R−(y) = I (y+ tI ) · OeM , (29)

where OeM is the yearly percentage Operational and Main-
tenance cost with respect to the investment cost I .

APPENDIX B
CHARACTERIZATION OF HOUSEHOLDS HETEROGENEITY
Consumers investments in new technology are related not
only on economic aspects but also to specifics attitudes
toward a technology’s attributes and social aspects [10].
Moreover, the beliefs of people are dependent on back-
ground factors of individual, social and demographic nature.
Considering the households, each of them has its own socio-
economic and demographic characteristics which have a deci-
sive influence on the decision-making process. To take into

account the heterogeneity of households, the ABM frame-
work exploits census and social clustering data.

TABLE 3. List of census variables used in the ABM framework [77].

A. CENSUS VARIABLES
The last census data of Italy (2011) is available from the portal
of [77] and it contains the census variables. After having
examined of whole variables we selected twenty to generate
the households in the model. The selected census variables
are listed in Table 3 by reporting the field code and a brief
description per each variable.

B. SOCIAL GROUPING
A social structure of the households has been implemented
in the model. Different social groups have been incorporated
in the model by referring to the new social clustering of
Italy proposed by Istat and published in the Annual Report
2017 [80]. Each group is representative of households dis-
playing similarities in their socio-economic, demographic
behavior and consumption patterns. Thus, each group has
shared values and attitudes toward work, family type, leisure,
money, and consumption. The Istat report has the scope of
looking at the social structure through the characteristics of
groups who make up Italy’s society. Each social group has
a plurality of dimensions and is described from many points
of view. Starting from the 25 million households residing in
Italy, nine different groups are defined following a classifi-
cation method of a hierarchical type [80]. The social groups
identified by Istat are the following, classified by the highest
income equivalent to the lowest:

1) Ruling class (RC);
2) Silver Pensioners (SP);
3) Clerks’ households (CH);
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TABLE 4. Statistics, characteristics and own assumptions made for each social group.

4) Young blue-collars (YB);
5) Retired blue-collars’ households (RB);
6) Lonely old ladies and young unemployed (LY);
7) Traditional provincial households (TP);
8) Low-income Italian households (LI);
9) Low-income households with foreigners (LF).
The key variable of the classification method is the equiv-

alent income, a measure that takes into account the different
household size and composition by age. The first variable
considered as the most important variable to define social
identity is the occupational status of the reference person
(the member of the household that is the breadwinner). Cit-
izenship of the household members occurs only once to dis-
criminate groups. The number of family members is another
strongly discriminant variable. Although, its correlation to the
income is less significant than other variables such as profes-
sional status, education, age and gender. The last discriminant
is the education level of the household reference person, that
is strictly correlated with income so particular related to the
high-income level social groups [80]. In the Annual Report
2017 of Istat [90], a brief and salient description of the social
groups is reported.

Thanks to the correlation of features and statistical data
provided by each social group and with those of the cen-
sus sections (georeferenced) it was possible to generate the
households in the environment of the ABM. Each agent is
assigned to a social group and some other attributes are
derived by related data, e.g. the income value per each house-
hold, the number of components, the level of innovation,
the weights for the attributes of Theory of Planned Behavior.
In Table 4 we reported an overview of each group related
to all statistics and characteristics used and also the own

TABLE 5. Level of Innovativeness was assumed for each social group
based on what is already done in literature with other social clustering
models and taking into account the Diffusion of Innovations by
Rogers [10].

assumptions made for the purpose of the developed ABM
framework.

C. INNOVATIVENESS
The level of innovativeness represents the propensity of
a household towards the future and in the innovation’s
technology, in particular referring to the developing new
energy technology, as the rooftop PV. It is defined in the
model as a static attribute, and the household acknowl-
edges it from the social group of belonging. The Istat social
groups’ data do not offer this type of information per each
group. Therefore, the innovativeness is assumed by tak-
ing into account other similar social clustering used in the
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literature [51], [53] and following the framework of Diffusion
of Innovation theory proposed by Rogers [10]. The assump-
tions were shown in Table 5.

D. WEALTH SIMILARITY IN SOCIAL NETWORK
In our model, the agents’ selection to form the social network
is based on wealth similarity. The locals are obtained by
selecting, from the neighbors’ list, the agents within social
groups that have wealth similar condition, thus considering
the social groups that have a similar equivalent level of
income. More is similar to the wealth condition, and more
is the probability of remaining as locals, as shown in Table 6.

TABLE 6. Interaction probability table among social groups [%].

FIGURE 15. Map of the ‘dummy city’ sc35. It is constituted by 35 × 35
agents in a square lattice with one meter between them. In red the
already PV adopters are shown. Moreover, the map shows an example of
an agent’s Small-World Network.

APPENDIX C
PARAMETRIC ANALYSIS ON SC35
The parametric analysis has been done to test the function-
ality of the model and to analyze the resulting diffusion
curves. Such analysis is needed to explain the behavior of
each parameter in the diffusion process. The analysis has been
conducted on a ‘dummy city’ called sc35. The sc35 aims to
have an agents’ data-set as homogeneous as possible to learn
the behavior of the model and its functionality. It consists of
a square lattice of points 35 × 35 spaced a meter, as shown
in Fig. 15. Each point represents an agent, and it is defined by

attributes randomly chosen from the empirical distributions
applied in the real application.

The hypothesis of adoption is based on choosing a sized PV
system that covers the yearly household electricity consump-
tion and on the investment evaluation described in the main
text. Finally, all the experiments are simulated for 80 steps
equivalent to 20 years. The time domain is not calibrated,
thus the reference time is arbitrarily chosen as a quarter of a
year. We did several experiments to probe the suitable range
of the values of parameters. The simulations and the chosen
values are listed in Table 7. Test T13 (blue) was considered
the baseline. The other tests were made changing just one
parameter (red) respect to baseline.

TABLE 7. List of the test performed in sc35 with the chosen parameters.
The T13 (blue) is the baseline with reasonable values of the parameters.

The general result of the parametric sweep shows that
the obtained diffusion curves follow the classical S-shape
curve, as shown in Fig. 16. Therefore, it can be distinguished
three different phases of diffusion over time: phase-1) slowly
initial increment due to the adoption of the people defined as
innovators; phase-2) the curve starts to rapidly increase due
to the adoption of the people defined as imitators, reaching
the time of the peak of adoption that corresponds to the point
of curve inflection; phase-3) the growth of the curve slowing-
down going to reach the saturation level. As a general result,
it can be seen that each experimental test starts from the same
point in phase-1, because of the same initialization of the
model for all the experiments. Furthermore, in phase-3 each
experimental test will reach the saturation level in the long
run, which is equal for all the experiments because the model
inputs were not changed.

A. TPB PARAMETERS SENSITIVITY: bthsd AND wbi
The parameters bthsd and wbi are related to the mathematical
model of TPB [28]. As shown in the plot on Fig. 16a, bthsd
substantially impacts in the diffusion curve that undergoes to
a shift of phase-2 along the time-axis. This because the lower
is the value of the threshold’s behavior over which an agent
adopts, and more is the number of agents that will adopt at a
given step. Therefore, the knee point of the curve in phase-1 is
more defined and occurs earlier. Note that at the initial step,
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FIGURE 16. Parametric analysis on ‘dummy city’ sc35.

there is a rung in the curve that is more accentuated in the case
of lower values of the threshold. This behavior occurs to step
0 of the model in which assumes an initial number of adopters
in the system that are not affected by the calculation of TPB.
Thus, they are not in relation to the threshold value. Finally,
because of curve shifting, the saturation points of phase-3 of
diffusion are reached at different times. On the other hand,
looking at the plot in Fig. 16b, wbi has less incidence in
changing the diffusion curve than the previous parameter but
it seems that it affects the phase-2 of diffusion and the knees
of the curve. For values of wbi less than 0.5, more importance
is given to the Perceived Behavioral Control pbc with respect
to the Behavioral Intention bi. If wbi does not exceed 0.5,
the curve seems that maintains the position of the knee’s
phase-3, changing the slope of phase-2 and anticipating the
occurs of knee’s phase-2. On the other hand, if wbi exceeds
0.5, the curve seems that maintains the position of the knee’s
phase-1, postponing the occurs of knee’s phase-3. Therefore,
the behavior of the curve depends on the relative values of
these two components. Note that the experiments with higher
wbi have a more standard deviation. It could be caused by
the higher variation of the opinions and social influences
over time represented by bi than the more concrete economic
factors represented by pbc.

B. RA PARAMETERS SENSITIVITY: µ AND φ

The parametersµ and φ modify the opinion dynamics, which
is modeled by RA algorithm [37]. As shown in the plot

in Fig. 16c, µ changes the slope of the inflection point of
the diffusion curve in phase-2, keeping almost unchanged
the phase-1. It can be explained thinking that the parameter
describes the convergence speed of opinions. Thus, the higher
is the value and the higher is the speed of opinions’ clustering.
Concerning positive opinions, highµmakes high the Attitude
Towards the Behavior att over time. The same behavior
happens with the parameter φ, as shown in Fig. 16d, which
describes the number of interactions an agent makes. The
difference is in the standard deviation that in the experiments
on φ is higher due to more variability on opinion dynamics.
Finally, because of the changing of the slope in phase-2,
the saturation points of phase-3 of diffusion are reached at
different times.

C. SWN PARAMETERS SENSITIVITY: R AND RW
The parameters r [m] and rw modify the creation of the
agents’ social networks, based on Small-World Network [36].
As shown in both plots in 16e and 16f, these parameters
do not modify the emergent behavior pattern of the system,
but actually, it is not always so. In fact, this happens due to
the high spatial homogeneity of the sc35’s data set. In the
dummy city, even if with higher radius and rewiring val-
ues, the emergent diffusion curves do not change so much
between them. On the contrary, these parameters can strongly
affect the diffusion curve in the real urban context, due to
the high spatial heterogeneity and clustering of the agents.
Moreover, as the diffusion curve describes an emergent
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behavior of the entire population, modifying these parame-
ters, the differences could be evident by observation of the
spatial domain, inwhich the local states of the agents aremore
relevant.
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