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1 Introduction

In recent years a remarkably simple solution to the equation of motion of open bosonic

string field theory has been found [1], which can relate any pair of time independent open

string backgrounds sharing the same closed string bulk.1 The solution is defined by a choice

of tachyon vacuum Ψtv and a pair of string fields (Σ,Σ), which change the worldsheet

boundary conditions from the starting background BCFT0 defining the reference open

string field theory, to the target background BCFT∗ we wish to describe. The solution

takes the form

Ψ = Ψtv − ΣΨtvΣ, (1.1)

and the equations of motion are satisfied provided

QΨtvΣ = QΨtvΣ = 0, (1.2)

Σ Σ = 1. (1.3)

The objects (Σ,Σ) can be expressed in terms of string fields (σ, σ) representing insertions

of weight zero primary boundary condition changing operators in correlation functions on

the cylinder [1]. They multiply as

σσ = 1, (1.4)

σσ =
g∗
g0
, (1.5)

where g is the disk partition function of the corresponding BCFT

gx ≡ 〈1〉BCFTx
disk . (1.6)

The first relation σσ = 1 is the one which is needed to realize (1.3), but the second creates

potential problems with associativity and renders the triple products σσσ undefined if, as

is typically the case, g0 6= g∗, i.e. if the initial and final D-branes systems have a different

mass. However, this ambiguity does not appear in essential computations with the solution.

1The solution of [1] is a subtle but important refinement of the solution found some time ago by Kiermaier,

Okawa, and Soler [2]. Various applications have been studied in [3–6].
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After [1] it was immediately clear that the solution could be generalized to superstring

field theory, at least in its formal structure. However, there is an unexpected setback: this

time, ambiguous products of boundary condition changing operators appear explicitly in

the equations of motion. For simplicity we discuss the solution to the Chern-Simons-like

equations of motion of cubic superstring field theory at picture zero [7, 8], but analogous

considerations apply in the Wess-Zumino-Witten-like formulation [9]. The solution of the

superstring contains a term
1√

1 +K
σσBγ2 1√

1 +K
, (1.7)

where the unwanted product σσ = g∗
g0

explicitly appears. We propose the following resolu-

tion to this problem. In [1] the state Ψtv was assumed to be the “simple” tachyon vacuum

of [10]:

Ψtv =
1√

1 +K

(
c+Q(Bc)

) 1√
1 +K

. (1.8)

The factors 1√
1+K

are too similar to the identity string field, and for the superstring do not

provide sufficient separation between the boundary condition changing operators to avoid

ambiguous products. On the other hand, if the state Ψtv had been Schnabl’s solution [11],

Ψtv =
√

ΩcB
KΩ

1− Ω
c
√

Ω +
√

ΩQ(Bc)
√

Ω, (1.9)

the factors
√

Ω would ensure that σ and σ are always separated by a surface of nonzero

width, and ambiguous products cannot appear.

The above remedy is quite simple. But the technically interesting and nontrivial

question is “how much” σ and σ need to be separated to avoid ambiguities. Apparently,

the simple tachyon vacuum does not provide enough separation, while at the other extreme

Schnabl’s tachyon vacuum probably gives more than necessary. Addressing this question

requires formulating a sufficient criterion for the absence of short-distance ambiguities in

expressions involving products of boundary condition changing operators and elements of

the wedge algebra. This understanding is likely to be useful not only in the present work but

for evaluating other computations related to the solution of [1] and possible generalizations.

This paper is organized as follows. In section 2 we describe the superstring gener-

alization of the solution of [1], this time allowing for the possibility that Ψtv could be a

generic tachyon vacuum of the Okawa form [12]. We give two formally equivalent expres-

sions for the solution, differing by whether or not BRST variations of boundary condition

changing operators are explicitly evaluated. In section 3 we consider short-distance singu-

larities in the solution, in particular those which concern collisions of two or three bound-

ary condition changing operators, leading respectively to OPE divergences or associativity

anomalies. In this analysis the dual L− level expansion [13] is helpful for making precise

statements. The headline conclusions are as follows: first, if the solution is expressed in

the form where BRST variations of the boundary condition changing operators are not ex-

plicitly evaluated, OPE divergences can appear in individual terms which, however, cancel.

Second, if Ψtv provides even a little more separation between boundary condition chang-

ing operators than the simple tachyon vacuum, there are no ambiguous products in the

– 2 –
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superstring equations of motion. In section 4 we observe that solutions for different choices

of Ψtv can be related by automorphisms reflecting reparameterization symmetries of the

spectrum of K. We end with concluding remarks.

2 Solution

We consider the solution to the Chern-Simons-like equations of motion for the superstring.

The bosonic string solution can be obtained by setting γ ghosts to zero. The solution lives

in a subalgebra of states given by multiplying the string fields

K, B, c, γ2, σ, σ, Qσ, Qσ, (2.1)

which represent operator insertions on the identity string field. Our conventions for

K,B, c, γ2 follow [14], to which we refer the reader for definitions and algebraic relations

(see also section 4). The fields σ and σ are defined as in [1], but with the additional

specification (for the superstring) that they represent insertions of matter superconformal

primaries of dimension 0. This implies that their BRST variations are given by

Qσ = c∂σ + γδσ, (2.2)

Qσ = c∂σ + γδσ, (2.3)

where

δσ = G−1/2 · σ (2.4)

represents the worldsheet supersymmetry variation. For the superstring, Qσ andQσ cannot

be expressed using K,B, c, γ2, σ, σ and are independent generators of the subalgebra.

We consider a class of tachyon vacuum solutions of the Okawa form [12, 15]2

Ψtv =
√
F

(
c
B

H
c+Bγ2

)√
F , (2.5)

where F = F (K) is a suitably well-behaved element of the wedge algebra (a real function

of K) satisfying the conditions [14, 17, 18]

F (0) = 1, F ′(0) < 0, F (∞) = 0, F (K) < 1. (2.6)

We introduce H = H(K) which is related to F through

H =
1− F
K

. (2.7)

The simple tachyon vacuum of [10] is defined by equating

H ≡ F → F =
1

1 +K
(simple tachyon vacuum). (2.8)

This choice of tachyon vacuum was assumed in [1]. Presently we are concerned with more

general choices of F .

2The most general tachyon vacuum solution in the KBc subalgebra is discussed in [16].

– 3 –
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In the following we will not need to be specific about the choice of F (K), but neverthe-

less it may be helpful to describe a representative class of tachyon vacuum solutions which

are sufficient for our analysis. Consider a one-parameter family of F (K)s of the form

F (K) =

(
1− 1

ν
K

)ν
=

(−ν)−ν

Γ(−ν)

∫ ∞
0

dt t−ν−1eνtΩt. (2.9)

The parameter ν < 0 represents the leading level of F (K) and its tachyon vacuum solution

in the dual L− level expansion [13]. Note that as ν becomes increasingly negative, the

contribution from states close to the identity string field in the integrand becomes further

suppressed. The case ν = −1 corresponds to the simple tachyon vacuum, and ν = −∞
corresponds to Schnabl’s solution. One can show that

H(K) =

∫ ∞
0

dt
Γ(−ν,−νt)

Γ(−ν)
Ωt , (2.10)

F (K)

H(K)
=

∫ ∞
0

dt

[
eνt
(
ν +

d

dt

)
d

dt
E−ν

(
(−νt)−ν

)]
Ωt , (ν < −1) , (2.11)

where Γ(s, x) is the (upper) incomplete gamma function and Eα(x) is the Mittag-Leffler

function. Therefore the solution can be written explicitly as a multi-dimensional integral

over wedge states with insertions. The singularities of H and F/H in the negative half

of the complex plane imply that the inverse Laplace transforms fall off exponentially for

large t:

Γ(−ν,−νt)
Γ(−ν)

∼ eνt, eνt
(
ν +

d

dt

)
d

dt
E−ν

(
(−νt)−ν

)
∼ eν(1−cos 2π

ν
)t . (2.12)

Therefore, unlike for Schnabl’s solution, for finite ν < 0 we do not need to place a cutoff

on the upper limit of integration over wedge states and subtract a phantom term.

Once we have Ψtv we can build the solution

Ψ = Ψtv − ΣΨtvΣ, (2.13)

where Σ and Σ are given by

Σ = QΨtv(
√
HσB

√
H), (2.14)

Σ = QΨtv(
√
HBσ

√
H). (2.15)

One may confirm that

QΨtvΣ = QΨtvΣ = 0, ΣΣ = 1, (2.16)

so that (2.13) formally satisfies the equations of motion. For later analysis it will be useful

to substitute the definitions and expand the solution explicitly. We give the solution in

two forms. In the first form, we leave Qσ and Qσ as they are, instead of substituting (2.2)

and (2.3). We then have

Σ =
√
Hσ

1√
H

+
√
HQσB

√
H +

√
H

[√
F

H
c

√
F

H
, σ

]
B
√
H, (2.17)

Σ =
1√
H
σ
√
H −

√
HBQσ

√
H +

√
HB

[
σ,

√
F

H
c

√
F

H

]
√
H, (2.18)
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and

Ψ =
√
F

(
c
B

H
c+Bγ2

)√
F−
√
Hσ

√
F

H

(
c
B

H
c+Bγ2

)√
F

H
σ
√
H+
√
HQσBFQσ

√
H

−

(
√
HQσB

√
F

H
c

√
F

H
σ
√
H+conj.

)

−

(
√
H

[√
F

H
c

√
F

H
,σ

]
B

√
F

H
c

√
F

H
σ
√
H+conj.

)

−

(
√
HQσBF

[
σ,

√
F

H
c

√
F

H

]
√
H+conj.

)

−
√
H

[√
F

H
c

√
F

H
,σ

]
BF

[
σ,

√
F

H
c

√
F

H

]
√
H, (2.19)

where “conj” denotes the reality conjugate of the previous term (see (4.11)). In the second

form of the solution, we expand the BRST variations using (2.2) and (2.3):

Σ =
√
HBcσ

1√
H

+
√
HcB

1

H
σ
√
H −

√
H

[[
c,

√
F

H

]√
F

H
, σ

]
B
√
H +

√
HγδσB

√
H,

(2.20)

Σ =
1√
H
σcB
√
H +

√
Hσ

1

H
Bc
√
H −

√
HB

[
σ,

√
F

H

[√
F

H
, c

]]
√
H −

√
HBγδσ

√
H.

(2.21)

The solution becomes:

Ψ =
√
F
(
c
B

H
c+Bγ2

)√
F −

√
Hc

1

H
σBFσ

1

H
c
√
H −

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H

+
√
HγδσBFγδσ

√
H −

(√
HγδσBFσ

1

H
c
√
H + conj.

)
−
√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H

+

(√
Hc

B

H
σ

√
F

H

[√
F

H
, c

]
σ
√
H + conj.

)
−
(√

HγδσB

√
F

H

[
c,

√
F

H

]
σ
√
H + conj.

)
+

(√
Hc

B

H
σF

[
σ,

√
F

H

[√
F

H
, c

]]√
H + conj.

)
+

(√
HγδσBF

[
σ,

√
F

H

[√
F

H
, c

]]√
H + conj.

)
+

(√
Hσ

[√
F

H
, c

]
B

√
F

H

[
σ,

√
F

H

[√
F

H
, c

]]√
H + conj.

)
−
√
H

[[
c,

√
F

H

]√
F

H
, σ

]
BF

[
σ,

√
F

H

[√
F

H
, c

]]√
H. (2.22)
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This form of the solution generalizes the expression given in [1]. If we set the γ ghosts to

zero and set H = F , only the first two terms survive, giving

Ψ =
1√

1 +K
cB(1 +K)c

1√
1 +K

− 1√
1 +K

c(1 +K)σ
B

1 +K
σ(1 +K)c

1√
1 +K

, (2.23)

in agreement with [1]. On the other hand, we can do the same thing for the solution as

expressed in (2.19). This gives

Ψ =
1√

1 +K
c(1 +K)Bc

1√
1 +K

− 1√
1 +K

σc(1 +K)Bcσ
1√

1 +K

+
1√

1 +K
Qσ

B

1 +K
Qσ

1√
1 +K

− 1√
1 +K

(QσBcσ − σcBQσ)
1√

1 +K
. (2.24)

This expression for the solution, which does not appear in [1], has a potentially problematic

collision between σ and σ in every term besides the first. We discuss this more in the

next section.

3 Taming anomalies

We wish to determine sufficient conditions on the choice of tachyon vacuum, or equivalently

F (K), such that the solution suffers no difficulties from collisions of boundary condition

changing operators. There can be problems if F (K) is too similar to the identity string

field, so that there is not “enough surface” to prevent σ from colliding with σ. The degree

of similarity to the identity string field can be quantified by the rate of decay of F (K) as

K →∞ [13]. For definiteness we assume that it decays as a power:

F (K) ∼ Kν , K →∞, (3.1)

where ν is a real number less than zero. The class of F (K)s described in (2.9) show

precisely this asymptotic behavior for large K. We have

H ∼ 1

K
,

√
F

H
∼ K

ν+1
2 , K →∞. (3.2)

The more quickly F (K) vanishes as K → ∞, the less “identity-like” the tachyon vac-

uum becomes, and the more regular the solution should appear from the point of view of

collisions of boundary condition changing operators. Since the bounds we derive in the

bosonic and supersymmetric cases are different, we use νboson to indicate the rate of decay

of F (K) for the bosonic string solution and νsuper for the superstring solution. The simple

tachyon vacuum corresponds to ν = −1, which for the superstring already poses difficulties.

Therefore νsuper should be bounded from above by −1:

νsuper < −1. (3.3)

The question is whether this bound is sufficient, or should be further strengthened.

– 6 –
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Associativity anomalies are related to collisions of three boundary condition changing

operators, but there can already be problems from the collision of two. For σ and σ

themselves the OPE is regular,

σ(s)σ(0) = regular, (3.4)

but this still allows singularities in OPEs with ∂σ and ∂σ:

σ(s)∂σ(0) ∼ less singular than simple pole,

∂σ(s)∂σ(0) ∼ less singular than double pole. (3.5)

Such singularities can appear when a relevant field is found in the OPE between σ and

σ [1]. For the superstring we additionally assume

σ(s)δσ(0) = regular. (3.6)

Together with (3.5) this implies

δσ(s)δσ(0) ∼ less singular than simple pole,

∂σ(s)δσ(0) ∼ less singular than simple pole. (3.7)

We make the following claim:

Claim 1. Let O1 represent σ, ∂σ or δσ and O2 represent σ, ∂σ or δσ. Then the state

O1G(K)O2 (3.8)

suffers from no OPE divergence provided that its leading level in the dual L− level expan-

sion [13] is less than or equal to 0 if the state is GSO even, and less than or equal to 1/2

if the state is GSO odd.

This is a technical way of saying that if we expand G(K) as an integral over wedge states

O1G(K)O2 =

∫ ∞
0

dt g(t)O1ΩtO2, (3.9)

any singularity which appears in the integrand towards t = 0 must be integrable. Consider

the solution expressed in terms of Qσ and Qσ as written in (2.19). The solution contains

the terms

√
HQσBFQσ

√
H,

√
HQσB

√
F

H
c

√
F

H
σ
√
H. (3.10)

Computing the BRST variations and ignoring ghosts, which in this case are unimportant,

the matter sector component of these states contains the respective factors:

∂σF∂σ ∼ ∂σKν∂σ, (3.11)

∂σ
F

H
σ ∼ ∂σKν+1σ, K →∞. (3.12)

– 7 –
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By claim 1, these states do not suffer OPE divergence if

ν ≤ −2 (no OPE divergences in (2.19)). (3.13)

The remaining terms do not alter this bound. Therefore, F (K) must fall off as K−2 or

faster to be certain that OPE divergences are absent from (2.19), in either bosonic or

supersymmetric cases. However, the original solution of [1] is finite, even though this

bound is violated. In this case (2.19) should be seen as a singular representation of an

otherwise regular solution; its OPE divergences formally cancel. This is made manifest in

the second form of the solution (2.22), which is much safer from OPE divergence:

νboson ≤ 0 or νsuper ≤ −1 (no OPE divergences in (2.22)). (3.14)

Therefore when −2 < νboson ≤ 0 or −2 < νsuper ≤ −1 the solution as written in (2.22) will

be free of OPE divergence, but divergences may still be present in (2.19).

Now let’s turn to issues which concern three boundary condition changing operators.

These do not affect the solution Ψ by itself as a state, since it only contains two boundary

condition changing operators. However, they concern the validity of the equations of motion

QΨ + Ψ2 = 0, (3.15)

since Ψ2 contains four boundary condition changing operators. We make the follow-

ing claim:

Claim 2. Let O1,O2 and O3 represent three primary operators, and consider the state

O1G1(K)O2G2(K)O3. (3.16)

Simultanous collision of all three operators do not render this state undefined provided

that its leading level in the dual L− level expansion is less than h, where h is the lowest

dimension of a primary operator which has nonvanishing contraction with the state.3

To understand this claim, we contract with a test state

ΩOΩ∞, (3.17)

where O is a primary operator. Since the singularity which interests us concerns short

distance behavior when O1,O2,O3 collide, the precise form of the test state is not crucial.

We choose (3.17) since the sliver state allows us to bypass a conformal transformation from

the cylinder to the upper half plane which complicates the computation without changing

the result. Therefore we consider the overlap

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]
=

∫ ∞
0

dt1dt2 g1(t1)g2(t2)
〈
O1(t1 + t2)O2(t2)O3(0)O(−1)

〉
UHP

, (3.18)

3There is a straightforward generalization concerning products of n primary operators with wedge states.

The case n = 2 almost implies claim 1. However, claim 1 is slightly stronger, since the OPEs of the boundary

condition changing operators are more regular that would be implied by conformal invariance alone.

– 8 –
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where g1 and g2 are the inverse Laplace transforms of G1 and G2. We change the integration

variables,

L = t1 + t2, θ =
t2

t1 + t2
, (3.19)

and apply a conformal transformation to the 4-point function so that O1 is inserted at 1,

O3 is inserted at 0, and O is inserted at infinity. This gives

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]
=

∫ ∞
0

dL

∫ 1

0
dθLg1(L(1−θ))g2(Lθ)

(
1

L

1

L+1

)h1( 1

L

L+1

(Lθ+1)2

)h2(L+1

L

)h3( L

L+1

)h
×
〈
O1(1)O2

(
L+1

Lθ+1
θ

)
O3(0)I◦O(0)

〉
UHP

, (3.20)

where I(z) = −1/z is the BPZ conformal map. We are interested in the behavior of the

integrand towards L = 0, which is when O1,O2 and O3 collide. For small L we have

g1(L(1− θ)) ∼ L−ν1−1(1− θ)−ν1−1, g2(Lθ) ∼ L−ν2−1θ−ν2−1 (small L), (3.21)

where ν1, ν2 are the leading levels of the dual L− expansion of G1 and G2. For small L,

the integrand of (3.20) is then approximately

L−ν1−ν2−h1−h2−h3+h−1(1− θ)−ν1−1θ−ν2−1
〈
O1(1)O2(θ)O3(0)I ◦ O(0)

〉
UHP

. (3.22)

The integration over θ will be finite assuming that the OPE between O2 and O1, and

between O2 and O3, is sufficiently regular; whether this is the case is equivalent to the

question of whether the states O1G1(K)O2 and O2G2(K)O3 are separately finite, which is

not our present concern. Our interest is the convergence of the integration over L towards

L = 0. This will be unproblematic if

ν1 + ν2 + h1 + h2 + h3 < h. (3.23)

This is precisely a bound on the leading level of the state O1G1(K)O2G2(K)O3 in the dual

L− expansion.

As a cross check on this argument, consider the state

σσσ. (3.24)

For matter sector operators, generally the lowest dimension of a probe state will be h = 0.

Since the leading (and only) level of σσσ is zero, claim 2 would imply that the state may

be ill-defined. We know that the state is ambiguous in general due to the associativity

anomaly. However, the argument given below claim 2 does not seem to apply, since (3.21)

assumes that the operators are separated by elements of the wedge algebra whose leading

L− level is negative. This can be dealt with by writing σσσ in the form

σσσ =− ∂σ 1

1 +K
σ

1

1 +K
∂σ + (1 +K)σ

1

1 +K
σ

1

1 +K
∂σ

− ∂σ 1

1 +K
σ

1

1 +K
σ(1 +K) + (1 +K)σ

1

1 +K
σ

1

1 +K
σ(1 +K). (3.25)
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Now the argument below claim 2 applies to all terms; only the first term can be problematic,

since the three boundary condition changing operators form a state whose leading level is

zero. Indeed, one finds a divergence from integrating 1/L towards L = 0. However, the

state σσσ is not necessarily divergent, only ambiguous. In fact one can check that the

integration over θ actually vanishes towards L = 0; therefore the first term effectively

contains 0×∞, where the ambiguity of σσσ is hidden.

Now let’s understand the implications of this for the solution. We want to be cer-

tain that

Ψ2 (3.26)

is a well-defined state. For the superstring, the cross terms in Ψ2 which provide the

strongest bound on νsuper arise from the following contributions to the solution as given

in (2.22):

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H,

√
HγδσBFγδσ

√
H. (3.27)

For example, consider the cross terms in Ψ2 where the above contributions are multiplied by

√
Hc

1

H
σBFσ

1

H
c
√
H. (3.28)

This gives respectively the states

√
Hσ

√
F

H
Bγ2

√
F

H
σσFσ

1

H
c
√
H,

√
HγδσBFγδσσFσ

1

H
c
√
H. (3.29)

Stripping off the ghosts, these states contain the factors

σ
F

H
σσ ∼ σKν+1σσ,

δσFδσσ ∼ δσKνδσσ, (K →∞). (3.30)

By claim 2, the threefold collision of boundary condition changing operators will be un-

problematic if

νsuper < −1
(no triple b.c.c. operator

anomalies in (2.22))
. (3.31)

Cross terms which do not involve (3.27) place a strictly weaker upper bound on νsuper.

Therefore, for the superstring νsuper < −1 is sufficient to ensure that (2.22) is safe from

anomalies due to collisions of boundary condition changing operators. The stronger bound

νsuper ≤ −2 is sufficient to further guarantee that the formally equivalent expression (2.19)

is also safe. Note that the contributions to the solution which give the strongest bound

on ν are only present for the superstring. For the bosonic string, anomalous collisions are

absent provided that

νboson < 0 (no triple b.c.c. operator anomalies in (2.22)) (3.32)

which safely includes the simple tachyon vacuum.
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Let us mention a technical point concerning terms in (2.22) involving commutators of

c with
√
F/H. Consider for example the contribution

√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H. (3.33)

Expanding out the commutator and looking at individual terms, we find that σ and σ are

separated according to

σ
F

H2
σ ∼ σKν+2σ, (K →∞). (3.34)

To avoid anomalous collisions from such terms, it would appear we need ν < −2. On the

other hand, since these contributions appear from expanding out a commutator, there may

be cancellation of ambiguities. This can be seen more precisely as follows. Let
√
f/h(t)

represent the inverse Laplace transform of
√
F/H, and write[

c,

√
F

H

]
=

∫ ∞
0

dt
√
f/h(t)[c,Ωt]

=

∫ ∞
0

dt

∫ 1

0
dθ
(
t
√
f/h(t)

)
Ωt(1−θ)∂cΩtθ. (3.35)

Note the extra factor of t which appears in the integrand. This means, from the point

of view of separation of the matter sector boundary condition changing operators, the

commutator with c can be seen as equivalent to[
c,

√
F

H

]
→ − d

dK

√
F

H
. (3.36)

In particular, in (3.33) the boundary condition changing operators are separated as

σ

(
d

dK

√
F

H

)2
1

H
σ ∼ σKνσ , (K →∞), (3.37)

which is significantly more mild than (3.34). In this way, terms involving commutators of

c with
√
F/H do not require a stronger bound than νsuper < −1 or νboson < 0.

Let us make an important caveat to the above discussion. In [1] the bosonic string

solution was written in two forms:

Ψ =
1√

1+K
cB(1+K)c

1√
1+K

− 1√
1+K

c(1+K)σ
B

1+K
σ(1+K)c

1√
1+K

(3.38)

=
1√

1+K
cB(1−σσ)(1+K)c

1√
1+K

− 1√
1+K

c∂σ
B

1+K
σ(1+K)c

1√
1+K

. (3.39)

The second form of the solution was useful for computing coefficients in the Fock basis.

However, in the second form the computation of Ψ2 will be ambiguous due to associativity

anomalies. The origin of the problem is that the first form of the solution, where Ψ2 is

well-defined, has been reexpressed as a sum of terms whose star products are individually

ambiguous. The fact that this is possible does not reflect poorly on the solution; it is
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always possible to render a well-defined expression ambiguous by adding and subtracting

singular terms. But this raises the possibility that there may be a different way to write

the solution for the superstring where ambiguities in Ψ2 disappear, even if νsuper ≥ −1.

Specifically, the bounds we have derived on the asymptotic behavior of F (K) are sufficient

conditions to avoid OPE divergences and associativity anomalies. But they may not be

necessary. We leave this question to future work.

4 Automorphisms

For some purposes it is useful to regard the string field K as having a spectrum consisting

of non-negative real numbers. This follows from the observation that the string field

1

K − κ
(4.1)

is divergent if κ ≥ 0.4 Consider the connected component5 of the diffeomorphism group

on the spectrum

Diff0(R≥0). (4.2)

This automatically defines a group of automorphisms of the algebra of wedge states, de-

fined through

φ ◦G(K) = G(φ(K)), φ ∈ Diff0(R≥0). (4.3)

More surprisingly, it is possible to generalize this into an automorphism group of the KBc

subalgebra [20]. Applications of this symmetry have been discussed in [13, 19–25]. Here

we show that the automorphisms can be further extended to act on boundary condition

changing operators. Applying such automorphisms to the solution (1.1) turns out to be

equivalent to changing the choice of tachyon vacuum. Therefore the solutions discussed in

this work can be related through diffeomorphism of the spectrum of K.

The solution lives in a subalgebra given by multiplying generators

K, B, c, γ2, σ, σ, Qσ, Qσ. (4.4)

4Actually, this state fails to have a well-defined expression as a superposition of wedge states if Re(κ) ≥ 0.

From this point of view, the spectrum of K could be identified with the positive half of the complex

plane. However, this may seem unnatural since K is a real string field and ought to have a real spectrum.

Furthermore, it is not completely clear that the state is actually divergent for complex κ with positive real

part. A finite expression for the state in the Virasoro basis can be given following [14]. The prescription

is to write the wedge state Ωα in the Virasoro basis, and for each appearance of 1
(α+1)h

in the expansion

coefficients we replace
1

(1 + α)h
→ 1

(h− 1)!

∫ ∞
0

dK Kh−1e−K
1

K − κ .

The integral is finite as long as κ is not zero or positive, which supports the idea that the spectrum should

be non-negative reals. However, more work is needed to verify that this prescription gives an adequate

definition of the state. For the purposes of the present discussion we leave these subtleties to the side, and

proceed under the assumption that the spectrum of K is real and non-negative.
5There has been interesting discussion of diffeomorphisms of the spectrum of K which are not homotopic

to the identity, generated by the transformation K → 1/K [19]. The resulting automorphisms are singular,

and we will not consider them.
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This is a graded differential associative ∗-algebra. An automorphism of such an algebra

should satisfy

gh(φ ◦A) = gh(A), (4.5)

φ ◦ (QA) = Q(φ ◦A), (4.6)

φ ◦ (AB) = (φ ◦A)(φ ◦B), (4.7)

φ ◦ (A‡) = (φ ◦A)‡, (4.8)

where “gh” denotes ghost number and ‡ denotes reality conjugation of the string field. An

important part of realizing the automorphism group is understanding what relations the

generators of the algebra should satisfy. This is not completely trivial, since the relevant col-

lection of identities is actually a proper subset of those satisfied by K,B, c, γ2, σ, σ,Qσ,Qσ

as defined in the conventional way by operator insertions on the identity string field, as

assumed in section 2. We postulate the following algebraic relations,

Bc+ cB = 1, B2 = c2 = 0, [K,B] = 0;

[B, γ2] = [c, γ2] = 0;

[B, σ] = [B, σ] = 0, [c, σ] = [c, σ] = 0;

σσ = 1;

[B,Qσ] = [K,σ], [B,Qσ] = [K,σ]; (4.9)

the following differential relations,

QB = K, QK = 0, Qc = cKc− γ2

Qγ2 = cKγ2 − γ2Kc; (4.10)

and the following properties under conjugation:

K‡ = K, B‡ = B, c‡ = c;

(γ2)‡ = γ2;

σ‡ = σ, σ‡ = σ;

(Qσ)‡ = −Qσ, (Qσ)‡ = −Qσ. (4.11)

The conventional understanding of the generators as operator insertions on the identity

string field results in an infinite number of additional (and less important) relations, referred

to as “auxiliary identities” in [13]. A notable example of such a relation is

[σ, γ2] = 0 . (4.12)

This identity is absent from (4.9), and henceforth we assume that it does not hold.
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Given φ ∈ Diff0(R≥0) we have a corresponding automorphism of the above subalgebra

defined by

K̂ = φ ◦K = φ(K), (4.13)

B̂ = φ ◦B = B
φ(K)

K
, (4.14)

ĉ = φ ◦ c = cB
K

φ(K)
c, (4.15)

γ̂2 = φ ◦ γ2 = cB
K

φ(K)
γ2 + γ2 K

φ(K)
Bc, (4.16)

σ̂ = φ ◦ σ = cB

√
K

φ(K)
σ

√
φ(K)

K
+

√
φ(K)

K
σ

√
K

φ(K)
Bc, (4.17)

σ̂ = φ ◦ σ = cB

√
K

φ(K)
σ

√
φ(K)

K
+

√
φ(K)

K
σ

√
K

φ(K)
Bc. (4.18)

One can check that the transformed generators (denoted with hat) satisfy all rela-

tions (4.9)–(4.11). However, they do not satisfy auxiliary identities, such as (4.12). The

automorphism is characterized by two states in the wedge algebra

φ(K)

K
,

K

φ(K)
. (4.19)

These states look potentially singular at K = 0. To ensure that they are well-defined, we

work with the connected component of the diffeomorphism group, and further assume that

the diffeomorphisms are (at least) once differentiable at K = 0. This implies

φ(0) = 0, φ′(0) > 0, (4.20)

which is sufficient to ensure that the automorphism is regular at K = 0. One particularly

simple type of diffeomorphism is a scale transformation of the spectrum of K

φ(K) = αK, α > 0. (4.21)

This leads to

φ ◦K = αK, φ ◦B = αB, φ ◦ c =
1

α
c, φ ◦ γ2 =

1

α
γ2, φ ◦ σ = σ, φ ◦ σ = σ. (4.22)

In this case the automorphism is equivalent to the well-known midpoint-preserving repa-

rameterization generated by L−.

Now we can understand how the automorphisms act on the solution (1.1). If the

solution is characterized by some F (K), one can show that the tachyon vacuum (2.5) and

the boundary condition changing fields (2.18) transform as

φ ◦Ψtv[F ] = Ψtv[φ ◦ F ],

φ ◦ Σ[F ] = Σ[φ ◦ F ],

φ ◦ Σ[F ] = Σ[φ ◦ F ], (4.23)
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where the dependence on F is explicitly shown in the brackets. This immediately implies

that the solution itself transforms as

φ ◦Ψ[F ] = Ψ[φ ◦ F ]. (4.24)

Therefore the automorphism simply changes the choice of F characterizing the solution, or

equivalently, the choice of tachyon vacuum. Note that (4.20) implies that the automorphism

preserves the conditions (2.6) on the choice of F . Particularly relevant for present purposes

is understanding how diffeomorphisms affect the collision of boundary condition changing

operators inside the solution. If we wish to transform from F whose leading level is ν < 0

in the dual L− expansion, to F ′ whose leading level is ν ′ < 0, the leading level of φ(K)

should be
ν ′

ν
> 0. (4.25)

The level is positive, so φ(K) necessarily diverges as K → ∞; this is consistent with the

assumption that φ is in the connected component of the diffeomorphism group of R≥0.

Note that if we want to produce a more regular solution, so that ν ′ is more negative than

ν, the diffeomorphism necessarily grows more than linearly for large K. In a sense, to

produce a more regular solution we need to push the spectrum of K out to infinity. This

means that the more regular the desired solution, the more singular the state φ(K) must

be from the perspective of the identity string field [13]. An extreme example of this is the

diffeomorphism relating the simple tachyon vacuum to Schnabl’s solution:

φ(K) = Ω−1 − 1. (4.26)

The inverse wedge state Ω−1 is so singular that it does not even have a well-defined Fock

space expansion. To avoid this kind of problem one can impose conditions on the asymp-

totic behavior of elements in Diff0(R≥0) towards K =∞, at the cost of limiting the range

of solutions that can be related by automorphism, though we will not do so here. If a

choice of F can be related to 1
1+K through diffeomorphism, the above analysis implies that

it is formally possible to express the solution in the same form as the solution based on the

simple tachyon vacuum:

Ψ[F ] =
1√

1 + K̂

(
ĉ+Q(B̂ĉ)

) 1√
1 + K̂

− 1√
1 + K̂

σ̂
(
ĉ+Q(B̂ĉ)

)
σ̂

1√
1 + K̂

+
1√

1 + K̂
Qσ̂

B̂

1 + K̂
Qσ̂

1√
1 + K̂

− 1√
1 + K̂

Qσ̂B̂ĉσ̂
1√

1 + K̂

+
1√

1 + K̂
σ̂ĉB̂Qσ̂

1√
1 + K̂

, (4.27)

with the appropriately transformed generators. One must be careful however, since this

expression inherits many of the problems with boundary condition changing operator col-

lisions which appear for the simple tachyon vacuum. For example, the term

1√
1 + K̂

σ̂ĉσ̂
1√

1 + K̂
=
√
FcB

√
KF

1− F
σσ

√
KF

1− F
c
√
F , (4.28)
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contains the undesirable product σσ. We know that the solution is well-defined from the

point of view of boundary condition changing operator collisions if the leading level of F

is −2 or lower. Therefore such singular terms must formally cancel.

It is not always possible to relate two F s by diffeomorphism of the spectrum of K. It

will only be possible if they share the same number of extrema and values at the extrema.

This implies that tachyon vacuum and boundary condition changing operator solutions can

be partitioned into equivalence classes under diffeomorphism symmetry. Since any change

of F subject to (2.6) amounts to a gauge transformation, diffeomorphism of the spectrum

of K gives a finer notion of equivalence than is provided by gauge symmetry. Whether this

finer notion of equivalence has some deeper meaning is not clear.

5 Conclusion

Having taken care of boundary condition changing operator collisions, we now have an

infinite class of well-defined solutions of cubic superstring field theory which can describe

any time-independent background. However, cubic superstring field theory is a somewhat

handicapped framework; what we really want is the analogue of this solution in the context

of the nonpolynomial Wess-Zumino-Witten-like superstring field theory. The difficulty here

is that there is only one known analytic solution for the tachyon vacuum [26], and it seems

difficult to modify it so as to provide additional separation between σ and σ. This is

most likely a technical problem. The tachyon vacuum of [26] is an expression for the

group element eΦ of the Wess-Zumino-Witten-like action, and the leading level of Φ in

the dual L− level expansion is −1/2. To regulate boundary condition changing operator

collisions we need the leading level to be strictly less than −1/2, and such solutions always

seem to require infinite sums over correlation functions containing increasing numbers of

superghost insertions for each component field of the Fock space expansion. It is not known

how to understand the convergence of these sums. However, it is not difficult to find formal

algebraic expressions for such solutions, and provided convergence issues can be brought

under control, we would have the desired generalization of [1] to the Wess-Zumino-Witten-

like theory. Whether this is the most useful way to proceed is not clear to us, but as a

general matter it would be desirable to have analytic control of a wider class of tachyon

vacuum solutions in the nonpolynomial framework.

One fascinating complication of the Wess-Zumino-Witten-like formulation is that

tachyon vacuum solutions are not guaranteed to be universal, and for stable D-brane sys-

tems may not even exist. The straightforward generalization of [1] therefore only seems

to apply to D-branes with vanishing topological charge. By contrast, in cubic superstring

field theory all open string backgrounds have a universal solution for the tachyon vacuum,

even if tachyons are absent from the spectrum [15]. Therefore a complete generalization

of [1] to the nonpolynomial framework requires coming to terms with how D-brane charges

are realized in the string field algebra, which opens the way to a whole class of new and

interesting questions. We hope that the present work is a useful step in this direction.
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