POLITECNICO DI TORINO

Repository ISTITUZIONALE

On Repunits

Original
On Repunits / Sparavigna, Amelia Carolina. - ELETTRONICO. - (2019). [10.5281/zenodo.2639620]

Availability:
This version is available at: 11583/2734816 since: 2019-06-07T09:16:28Z
Publisher:
Zenodo

Published
DOI:10.5281/zenodo. 2639620

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

On Repunits

Amelia Carolina Sparavigna

Politecnico di Torino

Abstract

Here we discuss the repunits. An operation of addition of these numbers is proposed. A recursive formula is given accordingly. Symmetric repunits are also defined.

Keywords Repunits

DOI: 10.5281/zenodo. 2639620
Written in Turin, on April 14, 2019

As explained in [1], the term "repunit" was coined by Beiler in a book of 1966 [2], for the numbers defined as:

$$
R_{n}=\frac{10^{n}-1}{10-1}
$$

The sequence of repunits starts with $1,11,111,1111,11111,111111, \ldots$ (sequence A 002275 in the OEIS, https://oeis.org/A002275). As we can easily see, these numbers are linked to q integers and Mersenne numbers [3-7]. A q-integer is defined as [3]:

$$
[n]=\frac{q^{n}-1}{q-1}
$$

so we have the Mersenne numbers for $\mathrm{q}=2$. The repunits are the q -integers for $\mathrm{q}=10$:

$$
[n]_{q=10}=\frac{10^{n}-1}{10-1}
$$

We can use the same approach for the repunits of that proposed in [4-6]. Let us consider the following operation (generalized sum):

$$
R_{m+n}=R_{m} \oplus R_{n}
$$

defined in the following manner:

$$
\text { (1) } R_{m} \oplus R_{n}=R_{m}+R_{n}+(10-1) R_{m} R_{n}
$$

This is the addition of the q-units as given in [4,5]. The neutral element for (1) is $R_{0}=0$, so that: $\quad R_{m} \oplus R_{0}=R_{m}+R_{0}+(10-1) R_{m} R_{0}=R_{m}$.

The recursive relation for the repunits, given according to (1) and starting from $R_{1}=1$, is:

$$
R_{m} \oplus R_{1}=R_{m}+R_{1}+(10-1) R_{m} R_{1}
$$

That is: 11, 111, 1111, 11111, 111111, 1111111, 11111111, and so on. In [8], we have discussed the symmetric q-integers, which are defined as [3]:

$$
[n]_{s}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

We can define the "symmetric" repunits as:

$$
R_{n, s}=\frac{10^{n}-10^{-n}}{10-10^{-1}}=2 \frac{\sinh (n \ln 10)}{10-10^{-1}}
$$

The sequence is: $1,10.1,101.01,1010.101,10101.0101,101010.10101$, etc. In this case, the addition is defined [8]:

$$
R_{m, s} \oplus R_{n, s}=R_{m, s} \cosh (n \ln 10)+R_{n, s} \cosh (m \ln 10)
$$

or

$$
R_{m, s} \oplus R_{n, s}=R_{m, s} \sqrt{1+k^{2}\left(R_{n, s}\right)^{2}}+R_{n, s} \sqrt{1+k^{2}\left(R_{m, s}\right)^{2}}
$$

where $k=\frac{1}{2}\left(10-\frac{1}{10}\right)$. Let us note that $R_{1, s}=\frac{10-10^{-1}}{10-10^{-1}}=1$.
The recursive formula for the symmetric repunits is:

$$
R_{n+1, s}=R_{n, s} \oplus R_{1, s}=R_{n, s} \sqrt{1+k^{2}}+\sqrt{1+k^{2}\left(R_{n, s}\right)^{2}}
$$

References

[1] Weisstein, Eric W. "Repunit." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Repunit.html
[2] Beiler, A. H. (1966). "11111...111." Ch. 11 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover.
[3] Kac, V., \& Cheung, P. (2001). Quantum calculus. Springer Science \& Business Media.
[4] Sparavigna, A. C. (2018). The q-integers and the Mersenne numbers. Zenodo. http://doi.org/10.5281/zenodo. 1251833
[5] Sparavigna, A. C. (2018). ON THE ADDITIVE GROUP OF q-INTEGERS. Zenodo . DOI:
10.5281/zenodo. 1245849
[6] Sparavigna, A. C. (2018). On a generalized sum of the Mersenne Numbers. Zenodo. http://doi.org/10.5281/zenodo. 1250048
[7] Weisstein, Eric W. "Mersenne Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/MersenneNumber.html
[8] Sparavigna, A. C. (2018). On the generalized sum of the symmetric q-integers. Zenodo. DOI: 10.5281/zenodo. 1248959

