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ABSTRACT 21 

The shale gas extraction industry generates a large quantity of highly contaminated 22 

flowback and produced water (FPW), with great impacts on human health and the 23 

environment. In this study, gravity-driven membrane (GDM) filtration was evaluated 24 

over a 612-day period as a pre-treatment of FPW for its subsequent desalination. The 25 

various investigated GDM systems showed similar contaminant removal, and their 26 

steady-state fluxes (i.e., 0.65-0.82 L/(m2·h)) were not significantly correlated to 27 

membrane configurations or to the hydrostatic pressures. The flux decline was 28 

primarily due to a reversible resistance, which accounted for a large proportion (>89%) 29 

of the total hydraulic resistance. Compared to traditional ultrafiltration, the GDM 30 

pretreatment resulted in better desalination performance for the subsequent 31 

nanofiltration or reverse osmosis step, which were characterized by higher organic 32 

removal and generally higher permeate fluxes. More than 60 bacterial genera and 8 33 

eukaryotic genera were detected in the shale gas FPW, with the kingdoms Alveolata 34 

and Stramenopiles (within the eukaryote domains) reported for the first time. The 35 

biofouling layer of GDMs had a lower bacterial diversity but a higher eukaryotic 36 

diversity than the FPW feed water. The eukaryotic community, including Alveolata, 37 

Fungi, Stramenopiles and Metazoa, played a major role in the flux behavior. 38 

Key words: shale gas; flowback and produced water (FPW); gravity-driven membrane 39 

(GDM); desalination pretreatment; microbial community 40 
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1. Introduction 41 

Shale gas is one of the most rapidly expanding resources in the oil and gas 42 

exploration industry, but its extraction is associated with severe environmental 43 

problems, including significant freshwater consumption and the complex management 44 

of shale gas flowback wastewater. Large volumes of flowback and produced water 45 

(FPW) (~ 5,200-25,870 m3 per horizontal well) are typically generated during shale gas 46 

extraction [1]. Based on the prediction of shale gas drilling rates in the Haynesville 47 

shale (U.S.) and in the Sichuan Basin shale (China), the number of drilling wells will 48 

reach a maximum in the next several years [2]. Therefore, the amount of FPW will also 49 

reach a peak value and its management is an urgent issue to guarantee favorable 50 

economics of shale gas extraction, while protecting human health and environmental 51 

resources [3,4]. The situation is complicated by the numerous types of contaminants 52 

that have been detected in shale gas FPW and that pose great challenges for the reuse 53 

or discharge of these wastewaters [5,6]. 54 

Several desalination technologies, including reverse osmosis (RO), nanofiltration 55 

(NF), forward osmosis, and membrane distillation have been proposed to deal with 56 

shale gas FPW, for their reuse or surface water discharge [6-8]. Effective pretreatment 57 

is a critical factor influencing the sustainable operation of these desalination processes, 58 

and it can be accomplished using low-pressure membrane (i.e., ultrafiltration (UF) and 59 

microfiltration (MF)) [6,9]. Nevertheless, the appeal of UF pretreatment is limited by 60 

its relatively high energy consumption due to operational costs and strategies for 61 

membrane fouling mitigation; in contrast, the recently developed gravity-driven 62 



4 

membrane (GDM) filtration is typically more favorable than conventional UF [10]. 63 

GDM filtration has received increasing attention in decentralized water treatment due 64 

to its advantages, which include ultra-low hydrostatic pressure (e.g., with height of 0.4-65 

1.0 m) and no need for backwashing [11]; therefore, GDM may be attractive also for 66 

FPW.  67 

The application of GDM has recently extended from surface water [12] to other 68 

sources, including rainwater, wastewater, grey water, and seawater [10]. As opposed to 69 

surface water as feed solution [11], the permeate flux values in the GDM filtration of 70 

seawater depended not only on the feed water properties, but also on the operating 71 

temperature and the hydrostatic pressure [13,14]. With respect to membrane properties, 72 

UF membranes rather than MF membranes [14-16] have been usually adopted in GDM 73 

systems, with flat sheet membranes a more common configuration than hollow fiber 74 

membranes [14,15,17,18]. Together with feed organics and operation conditions, 75 

another critical factor affecting the flux stabilization and the general flux behavior 76 

during GDM filtration is the composition of the biofouling layer [11,12,19,20].  77 

Understanding the nature and the proportion of different microorganisms in the FPW 78 

is important to predict the performance of the system and to design suitable mitigation 79 

strategies. Despite of high salinities and concentrations of biocides [21] in usual shale 80 

gas FPW, more than one-third of the organic substances contained in the FPW are 81 

biodegradable, showing the potential of biological treatment in FPW treatment [22]. 82 

The presence of microorganisms in shale gas FPW causes concern for the safety and 83 

performance of the operation, and reports on the compositions of the microbial 84 
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community have recently increased [23-30]. Published research showed that 85 

microorganisms may play a great role in organic removals from shale gas FPW using 86 

biological treatment processes, such as biologically-active filtration [8] and sequencing 87 

batch reactor-membrane bioreactor process [31]. Based on these previous results, GDM 88 

is expected to perform well as desalination pretreatment. However, the compositions 89 

and changes of microbial community during GDM filtration of shale gas FPW, as well 90 

as the impacts of microorganisms on removals of contaminants, need to be investigated. 91 

The composition of shale gas FPW is associated to the complexity of its treatment, 92 

compared to more conventional municipal wastewater or other produced water [32], 93 

also because FPW water exhibits significant spatial and temporal change [6]. This study 94 

aims at evaluating the applicability and performance of GDM as a pretreatment for 95 

desalinating shale gas FPW from the Sichuan Basin. Specifically, the objectives of this 96 

work are: (a) to examine the influence of hydrostatic pressure and membrane 97 

configuration on steady-state flux and hydraulic resistance; (b) to assess the removal 98 

behavior of contaminants from shale gas FPW by GDM filtration; (c) to analyze the 99 

microbial community composition of the raw shale gas FPW and of the biofouling layer 100 

of GDM; (d) to determine the effects of GDM on the desalination performance of NF 101 

and RO processes; and (e) to investigate the changes in the performance of the 102 

membranes after long-term exposure to shale gas FPW.  103 

 104 
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2. Materials and methods 105 

2.1. Shale gas FPW and water quality analysis 106 

The shale gas wastewater was collected from a storage tank in Longhui Town, 107 

Weiyuan County in the Sichuan Basin, China on December 14, 2016. The storage tank 108 

with an effective volume of 10,000 m3 received untreated FPW from horizontal shale 109 

gas wells. The samples were collected from mid depth (about 1.5 m below the surface) 110 

of the storage tank. The primary water parameters of the raw FPW were summarized 111 

previously [33,34]. The permeates from GDM systems were collected every 2-3 weeks 112 

for water quality analysis. Total dissolved solid (TDS) and electrical conductivity (EC) 113 

were measured by an Ultrameter II 6PFC portable multifunctional meter (Myron L 114 

Company, Carlsbad, CA, USA). Temperature and pH were measured by using a 115 

mercury thermometer and a pH meter (PB-10, Sartorius Scientific Instruments Co., Ltd., 116 

Gottingen, Germany), respectively. Turbidity and alkalinity were determined by a 117 

turbidimeter (TL2310, Hach Company, Loveland, USA) and by acid-base indicator 118 

titration method, respectively. A UV-Vis spectrophotometer (Orion AquaMate 8000, 119 

Thermo Fisher Scientific Inc., MA, USA) was employed to measure UV absorbance at 120 

254 nm (UV254). The chemical oxygen demand (COD) and dissolved organic carbon 121 

(DOC) were monitored using the fast digestion-spectrophotometric method with a 5B-122 

1F(V8) fast digestion meter (Lianhua Environmental Protection Technology Co., Ltd., 123 

Lanzhou, China) and an automatic total organic carbon analyzer (TOC-L, Shimadzu, 124 

Japan), respectively. The 15-min silt density index (SDI15) of the GDM permeate and 125 

UF permeate were measured as described in detail in ASTM D4189-07 (2014) [35].  126 
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2.2. UF membranes and GDM setup 127 

Two types of commercially available polyvinylidene fluoride (PVDF) UF 128 

membranes with different configurations (i.e., hollow fiber and flat sheet) were 129 

employed. Outside-in hollow fiber membranes and flat sheet UF membranes were 130 

obtained from Litree Purifying Technology Co., Ltd. (Haikou, China) and Tianchuang 131 

Waterpure Equipment Co., Ltd (Hangzhou, China), respectively. The two UF 132 

membranes had the same nominal molecular weight cut-off of 100 kDa. Each hollow 133 

fiber membrane had a single fiber with an outer diameter of 1.8 mm and a length of 18 134 

cm, thus, the active filtration area of each hollow fiber membrane was roughly 10 cm2. 135 

The flat sheet UF membrane was round with a diameter of 23 mm, resulting in an 136 

effective filtration area of 4.15 cm2. The normalized pure water permeability 137 

coefficients (at 20 °C) of hollow fiber and flat sheet membranes were 3.5 and 22.4 L 138 

m−2h−1kPa−1 (350 and 2240 L m−2h−1bar−1). Detailed information about surface 139 

physicochemical characteristics of both membranes could be found in our previous 140 

study [36]. 141 

The GDM setup consisted of a raw water tank, a constant-level water tank, and 142 

several customized GDM filtration cells, as presented in Fig. S1 (Supporting 143 

Information). GDM systems comprising either hollow fiber membranes or flat sheet 144 

membranes were deployed for 612 days using the raw FPW as feed solution to evaluate 145 

the impact of membrane configuration, using the same pressure head of 0.8 m for the 146 

two configurations. Starting from the 100th day of investigation, GDM experiments 147 

were also run for 512 days using hollow fiber membranes under different hydrostatic 148 



8 

pressures of 40, 120, and 160 mbar (i.e., pressure head, H = 0.4, 1.2, and 1.6 m). As 149 

opposed to the most common configurations of GDM systems [10], in this work the 150 

permeate outlet of the module was connected to an overflow tank using a hose with full 151 

pipe flow and with submerged discharge. According to Bernoulli’s equation [37], the 152 

driving force of each GDM test was the water head difference between the water level 153 

in each tank and the permeate outlet of the system into the overflow tank (Fig. S2, 154 

Supporting Information), with the detailed calculation summarized in Section SI1 [38-155 

40]. The systems were operated continuously at water temperatures in the range 15-156 

30 °C (Fig. S3, Supporting Information).  157 

2.3. Membrane flux and hydraulic resistance 158 

The permeate flux (L m−2h−1, LMH) observed during GDM experiments was 159 

normalized to that measured at 20 °C to eliminate the influence of temperature, using 160 

Eq. (1): 161 

J20 = (JT·μT)/μ20                           (1) 162 

where J20 (LMH) and JT (LMH) represent the corrected permeate flux at 20 °C and the 163 

measured permeate flux at the prevailing temperature T (°C), respectively; μ20 (Pa·s) 164 

and μT (Pa·s) are the water viscosities at 20 °C and at the prevailing temperature T, 165 

respectively. μT (cP, 1 cP = 10−3 Pa·s) was calculated with an empirical relationship [41]: 166 

μT = 1.784 – (0.0575·T) + (0.0011·T2) – (10-5·T3)             (2) 167 

The total hydraulic resistance (Rtotal, m
−1) was calculated based on Darcy's law: 168 

Rtotal = TMP/(μT·JT)                            (3) 169 

where TMP is the transmembrane pressure (i.e., hydrostatic pressure head, or height) 170 
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(Pa). The intrinsic membrane resistance (Rmem) was measured using ultrapure water 171 

before the FPW was fed into the system. The reversibility of membrane fouling is 172 

expressed by the percentage of reversible resistance (Rrev) over the total hydraulic 173 

resistance (Rtotal). The reversible fouling resistance (i.e., biofouling layer resistance) can 174 

be obtained by subtracting the clean membrane resistance (Rmem) and the irreversible 175 

fouling resistance (Rirr) from the total hydraulic resistance (Rtotal). 176 

Rtotal = Rmem + Rrev + Rirr                         (4) 177 

At the end of operation, the biofouling layer was firstly detached from membrane 178 

surface by forward flushing with 100 mL of ultrapure water using a syringe. Then, the 179 

cleaned membrane was returned to the GDM system to determine the permeate flux by 180 

filtering again the raw FPW. It is assumed that the resistance after flushing was the sum 181 

of Rirr and Rmem [42]. 182 

2.4. Scanning electron microscopy (SEM) observation 183 

The membrane samples were used for contact angle measurements and for SEM 184 

observation after drying under ambient conditions. The membrane surface morphology 185 

was determined with a SU8200 SEM (Hitachi, Japan) after gold-coating by a magnetron 186 

ion sputter metal coater device (MSP-2S, IXRF Systems, Inc., Japan), while the cross-187 

section of membrane samples was observed with a SU3500 SEM (Hitachi, Japan) after 188 

coating with a sputter coater (Q150R ES, Quorum, UK). 189 

2.5. Microbial community analysis 190 

To explore the reason for flux decline and stabilization in the GDM systems, the 191 

biofouling layers of hollow fiber and flat sheet membranes were carefully removed at 192 
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the end of the experiment for analysis of the microbial community. Meanwhile, the 193 

microbial community of the raw shale gas FPW was also analyzed. Genomic DNA 194 

(gDNA) of the microbial community in biofouling layer samples and sludge of raw 195 

shale gas FPW was extracted, based on the reported method [43]. The purity and the 196 

concentration of each DNA sample were measured by a NanoDrop2000 UV-vis 197 

spectrophotometer (Thermo Scientific, Wilmington, USA) at wavelengths of 260 nm 198 

and 280 nm, respectively. A DYY-6C agarose gel electrophoresis (Beijing Liuyi 199 

Biotechnology Co., Ltd., China) was used to determine the integration of the DNA 200 

samples. After this step, the 16S rRNA and 18S rRNA genes were amplified by 201 

quantitative polymerase chain reaction (PCR) using a GeneAmp® 9700 PCR 202 

thermocycler (Applied Biosystems, Foster City, CA, USA) in a 20 μL volume reaction. 203 

The universal primer sets 338F (5'-ACTCCTACGGGAGGCAGCAG-3') and 806R (5'-204 

GGACTACHVGGGTWTCTAAT-3') [44] were used to amplify the hypervariable 205 

region V3-V4 of the bacterial 16S rRNA genes. The eukaryotic 18S rRNA genes were 206 

amplified using primer pairs SSU0817F (TTAGCATGGAATAATRRAATAGGA) and 207 

1196R (TCTGGACCTGGTGAGTTTCC). The detailed description of the composition 208 

of the PCR reaction mixture, the amplification conditions, as well as of the Illumina 209 

MiSeq sequencing and sequencing data processing are summarized in Section SI6 210 

(Supporting Information).  211 

Usearch software (version 7.1, http://drive5.com/uparse/) was used to group 212 

sequences with ≥ 97% (similarity) identity into operational taxonomic units (OTUs). 213 

The analyses of microbial community composition, the alpha diversity (e.g., Chao, 214 
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Shannon, Simpson, ACE, and Coverage) and the beta diversity (i.e., Bray-Curtis 215 

distance and Non-Metric Multidimensional Scaling (NMDS)) were performed using 216 

the free online Majorbio I-Sanger Cloud Platform (www.i-sanger.com). A Bray-Curtis 217 

distance matrix was plotted in a 2-dimensional NMDS ordination, where distance 218 

between samples represents their dissimilarity. Sequences were deposited in the NCBI 219 

Short Read Archive under Bioproject accession number PRJNA508877, with 220 

biosample numbers SAMN10532262–SAMN10532264 (for 16S rRNA genes) and 221 

SAMN10532265–SAMN10532267 (for 18S rRNA genes). 222 

2.6. Desalination setup using NF or RO 223 

Bench-scale tests using NF or RO membranes were carried out to verify the positive 224 

influence of GDM pretreatment on the subsequent desalination performance. NF and 225 

RO membranes were chosen because they were appropriate desalination strategies for 226 

the FPW in Sichuan Basin shale gas operation [33,34] due to its low TDS concentration. 227 

The permeate stream from the GDM systems was batch-fed to a NF or RO unit. As a 228 

comparison, the permeate stream from a traditional UF process was also used as feed 229 

water of the desalination processes. Similar to the hollow fiber UF membrane in GDM 230 

(Section 2.2), a hollow fiber membrane module (with effective area of 10 cm2) was 231 

employed for the traditional UF process. Both GDM filtration and traditional UF 232 

process were fed with the same raw shale gas FPW, but the traditional UF process was 233 

operated under constant flux mode (with a flux of 50 LMH), as described in a previous 234 

study [33]. The NF and RO composite membranes had an active layer of aromatic 235 

polyamide and were provided by Vontron Membrane Technology Co., Ltd. (Guiyang, 236 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA508877
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China). The effective filtration area of NF or RO membrane was 14.6 cm2. The NF/RO 237 

setup is also illustrated in Fig. S1 (Supporting Information), with membrane properties 238 

described in detail in previous studies [33,34]. The NF or RO test was performed using 239 

a dead-end stirred cell (HP 4750, Sterlitech Corp., Kent, USA) at a stirring speed of 200 240 

r/min. Each NF membrane was operated at an applied pressure of 2.0 MPa (20 bar), 241 

and it was terminated when a water recovery of 70% was obtained. The RO test was 242 

carried out at an applied pressure of 5.0 MPa (50 bar) with a final water recovery of 243 

50%. 244 

 245 

3. Results and discussion 246 

3.1. Behavior of the permeate flux 247 

Fig. 1 illustrates the trend of the permeate flux (normalized to 20 °C) and the fouling 248 

resistance of UF membranes in the GDM systems. As presented in Fig. 1a, the permeate 249 

flux using flat sheet membrane declined rapidly due to biofouling from 179 to 8.5 LMH 250 

during the first week. After this period, the flux decreased very slowly, reaching a near 251 

steady-state flux value of 0.65±0.08 LMH after roughly 300 days of operation. The flux 252 

of the hollow fiber UF membranes under the same pressure head of H = 0.8 m was 253 

initially lower than that observed with flat sheet membranes, consistent with a lower 254 

water permeance, but it was also characterized by a rapid decline during the first few 255 

weeks of operation, reaching values of 3.0 and 2.0 LMH after 5 and 8 weeks, 256 

respectively. The near steady-state value was 0.71±0.10 LMH, observed near the end 257 

of the experiment. Therefore, in this study the steady-state flux was not significantly 258 
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influenced by membrane configuration, orientation, or intrinsic water permeability 259 

coefficient (p > 0.05). Flux differences due to the membrane configuration were 260 

reported in previous studies [14-17]. 261 

 262 

 263 

Fig. 1. Permeate flux and filtration resistance behavior. Variation of (a)(b) normalized 264 

permeate flux and (c)(d) filtration resistance of GDMs during long-term operation: (a)(c) 265 

pressure head, H = 0.8 m, and (b)(d) different hydrostatic pressures for hollow fiber 266 
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membranes; (e) comparison of the steady-state flux of GDMs in this study and in 267 

published literature. Detailed information about the steady-state fluxes of GDM 268 

systems in published literature are summarized in Table S1 of the Supporting 269 

Information. 270 

 271 

The same flux decline and stabilization trend was observed for hollow fiber 272 

membranes under different pressure heads (Fig. 1b). The steady-state values (usually 273 

reached after roughly one year of operation) were 0.82±0.10, 0.75±0.09, and 0.69±0.09 274 

LMH for GDMs under pressure heads, H, of 0.4, 1.2 and 1.6 m, respectively. Therefore, 275 

the influence of hydrostatic pressure (i.e., height) on steady-state flux values was also 276 

not significant, consistent with trends previously reported for the GDM filtration of rain 277 

or river water [17,45]. However, the steady-state flux values presented here were lower 278 

than those reported by several previous investigations, as summarized in Fig. 1e. This 279 

difference is rationalized with the larger pollutant concentrations (e.g., salinity and 280 

organics) of the shale gas FPW investigated in this study and with an overall longer 281 

operation time (Fig. 1e and Table S1), suggesting that GDM systems should be run for 282 

long periods to observe a complete flux behavior.  283 

Published studies involving GDM filtration revealed that the predation of eukaryotic 284 

microorganisms resulted in the formation of a heterogeneous structure in the biofouling 285 

layer, responsible for the observed rapid decline and long-term stabilization of the 286 

permeate flux [12,46]. The fouling behavior can also be described in terms of hydraulic 287 

resistance. The sharp decrease in the permeate flux of the flat sheet membrane system 288 
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in the first days of operation led to higher hydraulic resistances compared to hollow 289 

fiber membranes in this initial period, but similar resistances were achieved at larger 290 

time values (Fig. 1c). As shown in Fig. 1d, the GDM at a pressure head of 0.4 m resulted 291 

in the lowest resistance among the systems operated with different pressure heads, with 292 

a value of 2.1×1013 m−1 at the end of the test. This value was comparable to that 293 

observed during GDM filtration of grey water after 120 days [42,47]. Because the 294 

observed steady-state fluxes were comparable for the different pressure heads (Fig. 1b), 295 

based on Eq. (3) higher hydraulic resistances were associated with increased hydrostatic 296 

pressures (Fig. 1d). 297 

 298 

3.2. Membrane fouling reversibility during GDM filtration 299 

Fig. 2 summarizes the results on fouling reversibility of GDMs in shale gas FPW 300 

treatment. Regarding membrane configuration (Fig. 2a), near complete recovery of the 301 

baseline resistances were observed via hydraulic cleaning for both hollow fiber and flat 302 

sheet membranes (96.1% and 98.9%). Moreover, regardless of the value of the pressure 303 

head, the dominant reason for flux decline was always the hydraulically reversible 304 

resistance, which accounted for a large proportion of the total hydraulic resistance 305 

(89.6-97.7%), with increased proportion as the hydrostatic pressures increased (Fig. 2b). 306 

These values are consistent with the GDM filtration of grey water, sewage or rain water, 307 

reported previously [18,42,47-49]. The results suggest the possibility to effectively 308 

recover the flux of GDMs by simple physical cleaning after long-term operation.  309 

The GDMs in the two configurations and employed under the same pressure head 310 
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(0.8 m) were analyzed using SEM after the filtration (612 days) and cleaning steps. 311 

While large amounts of deposited foulants was observed on the surface of the 312 

membranes following filtration (Fig. 2c), their efficient removal after physical flushing 313 

was confirmed by the micrographs. The thickness of the fouling layer on the flat-sheet 314 

membrane (~5.5 μm) was higher than that on the hollow fiber membrane (~4.1 μm), 315 

probably due to the different orientation (horizontal versus vertical). Note that these 316 

thicknesses were tested in this study after membrane drying, which may have led to 317 

shrinkage. This is possibly the reason why the thicknesses reported in this study were 318 

smaller than those observed previously after GDM filtration of surface water  319 

[11,12,19,20,38,46], grey water [42,47], rain water [49], or seawater [13-15], while they 320 

were similar with that obtained after drying the membranes used for the GDM filtration 321 

of sewage [48].  322 

The surface contact angle of water may also be used as a proxy to evaluate the fouling 323 

reversibility and these results are presented in Fig. S4 of the Supporting Information. 324 

The wettability of the hollow fiber membranes increased significantly after filtration 325 

(the contact angle decreased), likely due to the deposition of hydrophilic organic 326 

foulants [50]. Following cleaning, the contact angles increased slightly but did not reach 327 

the value measured with pristine samples, suggesting that while most of the cake layer 328 

was removed, some irreversibly deposited substances were still present on the 329 

membrane surface, which did not affect significantly the permeate flux. 330 

 331 
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 332 

Fig. 2. Fouling reversibility of the UF membranes. Filtration resistances (a)(b) in 333 

different GDM systems; surface and cross-sectional SEM micrographs (c) of the virgin, 334 

fouled, and cleaned membrane samples. The abbreviations, HF0.4, HF0.8, HF1.2 and 335 

HF1.6, refer to hollow fiber membranes operated under a pressure head of 0.4, 0.8, 1.2 336 

and 1.6 m, respectively. 337 
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3.3. Pollutant removal of GDM from shale gas FPW 339 

Fig. 3 illustrates the permeate quality and the removals of primary pollutants in GDM 340 

systems under different operational conditions. As expected, comparable 341 

concentrations of TDS or EC were observed for the feed water (raw FPW) and the 342 
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permeates for all the GDM systems (Figs. 3a-b), as these compounds are not effectively 343 

removed by UF membranes [33,34]. As shown in Fig. 3c, decreased DOC 344 

concentrations were observed in GDM permeates when compared to the raw FPW, with 345 

removals in the range 11.7-20.6%. The membrane configuration or hydrostatic pressure 346 

did not significantly (p > 0.05) influence the DOC removal efficiencies. Similar results 347 

were observed for other organic parameters, and the average removals were 11.1-14.2% 348 

and 12.2-19.0% for COD and UV254, respectively (Figs. 3d-e). The removal efficiencies 349 

were similar to those reported for the traditional UF filtration of shale gas FPW 350 

[8,33,34].  351 

The GDM systems removed instead most of the particulate matter, with residual 352 

turbidities lower than 0.05 NTU for the permeates of all the GDMs. The turbidity 353 

removals were nearly complete (> 99.9%), as presented in Fig. 3f. With respect to 354 

alkalinity, the values in the GDM permeate samples ranged from 249 to 431 mg/L, with 355 

removals of 43.3-52.5%. The average pH of the feed water was 7.7, and slightly 356 

increased pH values (8.0-8.1) were observe for the permeate streams of GDM systems 357 

(Fig. 3h). The results presented here are noteworthy in that they suggest the suitability 358 

of GDMs for field application, thus eliminating the need for cumbersome procedures 359 

associated with traditional UF processes, such as cross-flow operation, backwashing, 360 

and chemical cleaning [10].  361 

 362 
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 363 

Fig. 3. Water quality and removal efficiencies of main pollutants in GDM systems. 364 

Values of (a) TDS, (b) EC, (c) DOC, (d) COD, (e) UV254, (f) turbidity, (g) alkalinity 365 

and (h) pH. The box bars represent the concentrations in the raw feed and in the 366 

permeate waters, while the solid points represent the corresponding removals. The 367 

abbreviation FS refers to flat sheet membranes, while the other abbreviations are the 368 

same as in Fig. 2. 369 
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 370 

The membrane performance may be deteriorated after exposure to shale gas FPW for 371 

a long period [51]. The effects of exposure time (0, 32, 640 d) on membrane 372 

performance, including tensile strength, elongation, membrane permeability, and 373 

contact angle, are presented in Fig. S5 (Supporting Information). Tensile strength and 374 

ultimate elongation decreased for the UF membrane exposed for 32 days when 375 

compared to the pristine one, whereas the exposure duration (32 and 640 days) did not 376 

have a significant effect on these mechanical properties (Figs. S5a-b). There was no 377 

significant difference between the permeability and water contact angle of the pristine 378 

UF membrane and that of the membrane exposed for one month, but an obvious 379 

decrease in both parameters was observed for the membrane exposed for 640 days (Figs. 380 

S5c-d). These results are consistent with SEM observations, which revealed that no 381 

obvious foulants were deposited on the membrane surface after exposure for 32 days, 382 

while a 640-day exposure promoted large foulant coverage (Fig. S5e). In summary, 383 

while the membrane mechanical properties appeared to be more sensitive than other 384 

parameters to FPW exposure, their change did not lead to a deterioration of membrane 385 

filtration performance or water quality in long-term operation (Fig. 3). 386 

 387 

3.4. Bacterial and eukaryotic community composition 388 

The bacterial community in the raw FPW consisted of 90 OTUs (Table 1), while the 389 

observed OTUs numbers for eukaryotic community ranged between 9 and 32. 390 

Compared to the raw shale gas FPW, the observed richness (ACE, Chao) of bacterial 391 
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community generally decreased in the biofouling layer of GDMs, while that of 392 

eukaryotic community increased. For bacterial community, the decrease in Shannon 393 

and increase in Simpson indices suggest that there was a slight decrease in diversity in 394 

the biofouling layer of GDMs. In contrast, for the eukaryotic community, a higher 395 

diversity of the biofouling layer compared to the raw shale gas FPW was evidenced by 396 

the increase in Shannon index and decrease in Simpson index. The estimates of 397 

community coverage obtained in this study (99.9%) suggest that the presented 398 

sequences represented the vast majority of the microbial community. The rarefaction 399 

curves (Fig. S6, Supporting Information) indicate that most of the bacteria and 400 

eukaryotes reached saturation. 401 

 402 

Table 1 Abundance, coverage, richness, and diversity of bacterial 16S rRNA genes and 403 

eukaryotic 18S rRNA genes 404 

Sample No. of 

sequences 

OUT at 97% 

identity 

Coverag

e 

AC

E  

Cha

o  

Shanno

n 

Simpson 

16S rRNA        

FPW 55978 90 1.0000 90.0 90.0  2.86 0.15 

HF membrane 48065 82 0.9998 86.6 91.3  2.24 0.21 

FS membrane 36997 74 0.9998 80.7 78.7  2.09 0.26 

18S rRNA        

FPW 37140 9 0.9999 30.0 12 0.01 1.00 

HF membrane 34459 17 1.0000 17.7 17 0.37 0.87 

FS membrane 37192 32 1.0000 32.0 32 0.74 0.73 

 405 

3.4.1. Bacterial community of the biofouling layer in GDM and comparison with the 406 

raw FPW 407 

Fig. 4 presents taxonomic compositions of bacterial communities. Ten bacterial 408 
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phyla were detected in the raw shale gas FPW (Fig. 4a), accounting for half of that 409 

recovered from shale gas produced water in Sichuan Basin [29]. Proteobacteria 410 

(45.3%), Planctomycetes (38.8%) and Bacteroidetes (11.0%) constituted 95% of the 411 

bacteria in the raw shale gas FPW. Among these phyla, mesophiles and moderate 412 

halophiles [27], i.e., Bacteroidetes and Proteobacteria, were detected. Bacterial phyla, 413 

including Proteobacteria, Planctomycetes, Bacteroidetes, Acidobacteria, Firmicutes 414 

and Lentisphaerae [23,26,29,44,52], were also detected in other shale gas FPWs. The 415 

dominant classes in shale gas FPW in this study included Phycisphaerae (38.8%), 416 

Alphaproteobacteria (21.9%), Gammaproteobacteria (20.7%), and 417 

Bacteroidetes_Incertae_Sedis (9.8%) (Fig. 4b). The same classes were detected with 418 

high abundances in biofouling layers during GDM filtration of seawater [13,16], and 419 

comparable microbial diversity was also reported in samples from other shale gas FPWs 420 

[26,27,53-56]. At the genus level (Fig. 4c), more than 60 bacteria were recovered in the 421 

raw shale gas FPW. Among them, SM1A02 and Rehaibacterium represented each 422 

approximately half of the total genera. Most of the genera, such as SM1A02 and 423 

Rehaibacterium, Filomicrobium, Bryobacter, Roseovarius, Methylophaga and 424 

Alcanivorax in the shale gas FPW in this work, differed from those detected in Sichuan 425 

Basin shale gas produced water [29]. Nevertheless, the genera Marinobacterium and 426 

Pseudomonas have been also reported in previous studies [24,28,30]. As a matter of 427 

fact, there is a significant discrepancy between the relative abundance of bacteria (e.g., 428 

in terms of order or gene) in shale gas FPWs reported in the published literature [24,25]. 429 

This result is most likely due to the significant differences of geographic location, depth, 430 
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composition of fracturing fluid, well age, and general water quality in this study 431 

compared to the previous studies [57]. 432 

An obvious divergence from raw FPW was observed in terms of dominant bacterial 433 

phyla in the GDM biofouling layer (Fig. 4a). For both the hollow fiber and the flat sheet 434 

membranes, the relative abundances of Planctomycetes and Proteobacteria decreased; 435 

however, while Bacteroidetes increased to 25.9% for the hollow fiber membranes, they 436 

decreased to 8.8% in the biofouling layer on flat sheet membranes. At the genera level 437 

(Fig. 4c), the proportion of SM1A02 and Gammaproteobacteria increased in the 438 

biofouling layers compared to the raw FPW. Some differences of microbial community 439 

compositions between the two membrane configurations were observed. Order_III 440 

(Bacteroidetes) became a major microbe in the biofouling layer of hollow fiber 441 

membranes, while the relative abundance of both Rehaibacterium and OCS116_clade 442 

(Rhizobiales) decreased for flat sheet membranes. Overall, the NMDS plots of Bray-443 

Curtis distances (Fig. S7, Supporting Information) indicated lower dissimilarity of 444 

bacterial community between the raw FPW and the biofouling layer of gravity-driven 445 

hollow fiber membranes than that between FPW and the biofouling layer of flat sheet 446 

membranes. 447 

 448 
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 449 

Fig. 4. Bacterial community compositions. Comparison of the bacterial communities in 450 

the raw FPW and in the biofouling layers of hollow fiber and flat sheet GDMs classified 451 

at (a) the phylum level, (b) the class level and (c) the genus level. FPW, HF and FS are 452 

abbreviations for raw shale gas FPW, GDM filtration using hollow fiber membrane, 453 

and GDM filtration using flat sheet membrane, respectively.  454 

 455 

3.4.2. Eukaryotic community of the biofouling layer in GDM and comparison with the 456 

raw FPW 457 

As presented in Fig. 5, the vastly predominant eukaryotic phyla in the raw shale gas 458 

FPW were Ciliophora (99.46%) in the kingdom of Alveolata. At the genus level, 459 

Uronemella in the class of Intramacronucleata represented the near totality of 460 
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eukaryotes in the raw FPW. As listed in Table 1, both higher richness and diversity of 461 

eukaryotes were observed in the biofouling layer of GDMs compared to the raw shale 462 

gas FPW, especially for the flat sheet membranes. This result is evidenced by the 463 

increased number of classes or genera, from 8 in the raw shale gas FPW to 15 and 29 464 

in GDM biofouling layer using hollow fiber membranes and flat sheet membranes, 465 

respectively (Figs. 5c-d). The Bray-Curtis distances (Fig. S7, Supporting Information) 466 

revealed lower dissimilarity between the raw FPW and biofouling layer in hollow fiber 467 

GDMs (0.10) than that between raw FPW and biofouling layer in flat sheet GDMs 468 

(0.16), and these values were much lower than those observed for the bacterial 469 

community (0.27-0.37).  470 

More specifically, the relative abundance of fungi increased significantly in the 471 

biofouling layer for both membrane configurations. Additionally, other eukaryotic 472 

phyla, including Ochrophyta, unclassified Eukaryota, Cnidaria, Florideophycidae, 473 

Porifera, unclassified Alveolata (kingdom), and unclassified Cryptophyceae (kingdom), 474 

were found in the biofouling layer of gravity-driven flat sheet membranes (Fig. 5b). 475 

Most of these fungal communities were also previously reported in shale gas produced 476 

water from Sichuan Basin [29]. However, the kingdoms Alveolata and Stramenopiles 477 

were detected for the first time in shale gas FPW in this study. Metazoa were also 478 

detected on flat sheet membranes (Fig. 5). The high abundance of these latter organisms 479 

was previously reported in the GDM filtration of surface water and seawater [12,16,46]. 480 

The predation by eukaryotic microorganisms is a key factor influencing the biofouling 481 

layer structure of GDMs, resulting in a heterogeneous structure and thus a higher 482 
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steady-state flux than that observed without eukaryotic predation, as discussed in the 483 

literature [12,46]. 484 

 485 

Fig. 5. Eukaryotic community compositions. Comparison of the Eukaryotic 486 

communities in the raw FPW and in the biofouling layers of hollow fiber and flat sheet 487 

GDMs classified at (a) the kingdom level, (b) the phylum level, (c) the class level and 488 
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(d) the genus level. The abbreviations FPW, HF and FS are the same as in Fig. 4. 489 

 490 

3.5. Evaluation of GDM filtration performance for shale gas FPW treatment 491 

3.5.1. Effect of GDM on desalination performance of NF and RO membranes 492 

The SDI15 value of the permeate stream from traditional UF was 2.6±0.5, similar to 493 

that measured downstream of GDM filtrations. No significant difference was detected 494 

in the SDI15 of the permeates from GDMs operated at different pressure heads (p > 495 

0.05), while a slightly higher SDI15 value was observed downstream of flat sheet 496 

gravity-driven membranes compared to hollow fiber membranes. In all the cases, the 497 

SDI15 was lower than 3.0, thus appropriate for an effective RO/NF desalination. 498 

Moreover, the consistency of flux decline behavior (Fig. 1) with the flow rate of shale 499 

gas FPW [3,4,7], further confirmed the sweet spot of GDM for this wastewater 500 

treatment. 501 

To evaluate the potential of GDM filtration as a pretreatment for FPW desalination, 502 

the performance of NF/RO was evaluated using feed solutions from this system or from 503 

traditional UF (Fig. 6). Specifically, the mixture of the permeates obtained during the 504 

first year of operation of GDM using hollow fiber membranes under different pressure 505 

heads (H = 0.4, 0.8, 1.2 and 1.6 m) was fed to the NF/RO membranes; this mixed water 506 

was used because there was not a significant difference between the primary water 507 

parameters (e.g., TDS, EC, DOC, COD, turbidity, alkalinity and SDI15) among these 508 

permeates, as presented in Fig. 3 and Fig. 6a.  509 

During the filtration of FPW, the DOC concentrations of GDM permeate and UF 510 
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permeate streams were comparable in this study, but the compositions of the DOC may 511 

be different. The excitation-emission matrix (EEM) spectra showed that aromatic 512 

protein, tyrosine- and protein-like substances were the primary fluorescent substances 513 

in raw shale gas FPW [36,58,59]. Additionally, liquid chromatography–organic carbon 514 

detection analysis indicated that biopolymers, humic substances, building blocks, low 515 

molecular weight (LMW) neutrals or LMW acids composed most of the DOC [58-60]. 516 

The removal of several organic fractions (e.g., biopolymers and assimilable organic 517 

carbon) in the GDM process was significantly higher than that by the traditional UF 518 

membrane, whereas more humic acids were rejected by the traditional UF membrane 519 

[10]. The different organic compounds resulted in different removals by the subsequent 520 

NF or RO units. Similar correlations were obtained in the filtration of seawater [16]. 521 

The superiority of GDM over traditional UF as NF pretreatment in organic removals is 522 

possibly due to the lower concentration of biopolymers assimilable organic carbon in 523 

the permeate stream, as demonstrated by Wu et al. [16]. Moreover, the pH values of the 524 

GDM permeate (Fig. 3h) were slightly higher than that of the UF permeate (~8.0) [34], 525 

and a higher DOC removal during nanofiltration of hydraulic fracturing wastewater 526 

with the increase in pH has been reported [61]. Thus, the overall organic removal 527 

efficiency (i.e., UV254 and DOC) of the NF membrane was improved when the GDM 528 

permeate was used as the feed water (p < 0.05), as presented in Fig. 6b. Also, the 529 

removal of TDS and EC in NF was slightly larger when treating GDM compared to UF 530 

permeate. On the other hand, the higher proportion of bicarbonate in the GDM permeate 531 

led to a lower removal of alkalinity in the following NF unit. Although a high removal 532 
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of bicarbonate by NF membrane was reported [62], the removal efficiency of 533 

monovalent ion (HCO3
-) was less than that of divalent ion (CO3

2-). With respect to 534 

membrane fouling, the NF fluxes following GDM pretreatment were slightly larger 535 

than that after UF pretreatment, with an increase of 1-5%, as shown in Fig. 6c. 536 

In RO, higher removal rates of TDS, EC, DOC and alkalinity were observed when 537 

using GDM permeate as the feed compared to the traditional UF permeate (p < 0.05), 538 

while the removal of UV254 was comparable (p > 0.05). However, a higher RO flux was 539 

observed when treating the GDM permeate compared to the traditional UF-RO process 540 

(Fig. 6d). This increase (4-10%) is regarded as significant, also considering that the 541 

NF/RO unit was run in dead-end mode. The advantage of GDM to traditional UF as 542 

RO pretreatment was also reported in seawater desalination for a 10-day operation [16], 543 

and attributed to lower concentrations of assimilable organic carbon in the GDM 544 

permeate. The permeate flux of RO membranes could be further improved when the 545 

GDM permeate stream was treated using a granular activated carbon filter or NF 546 

membrane (data not shown), or when the operation mode was optimized (e.g., 547 

crossflow filtration). 548 

 549 
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 550 

Fig. 6. Effect of GDM and traditional UF pretreatment on the desalination performance 551 

of NF and RO membranes: (a) SDI15 of the GDM permeate, (b) pollutant removals by 552 

NF/RO membrane treating GDM and traditional UF permeates, (c) flux decline in NF, 553 

and (d) flux decline in RO.  554 

 555 

3.5.2. Application implications and outlook 556 

Membrane technologies have potential application for the treatment and reuse of 557 

shale gas FPW [6]. For GDM systems, the permeate flux commonly decreases in the 558 

first several days of operation, before flux stabilization is obtained (Fig. 1). This flux 559 

decline trend is similar to the flowback rate of shale gas FPW (from 1,000 to 2-8 m3/d) 560 

[3,7]. This implicates that the GDM filtration is suitable to also treat shale gas FPW in 561 

field applications. The flux stabilization of GDM systems was independent of 562 
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membrane configuration or hydrostatic pressure. Thus, the similarities in performance 563 

observed for hollow fiber and flat sheet membranes suggest that the former 564 

configuration may be advantageous due to its larger specific surface area, thus 565 

translating into a smaller overall plant footprint. While the absolute values of steady-566 

state flux are relatively low, they are justified by the nature of the driving force, a 567 

pressure head, which requires little external energy input to be maintained during 568 

filtration. 569 

The pollutant removals of GDM systems (Figs. 3 and 6) showed their suitability for 570 

field application, and GDM filtration outperformed the traditional UF as pretreatment 571 

for the subsequent NF unit (increase by 1-5%) and RO unit (with an increase of 4-10%) 572 

(Fig. 6). As opposed to the cumbersome procedures (e.g., periodic backwashing or 573 

chemical cleaning [11]) of traditional UF process, the GDM system is an energy-574 

efficient process due to the nature of the driving force, i.e., gravity. Thus, the energy 575 

demand of GDM system is in the order of 0.01 kWh/m3 [10,63], depending on feed 576 

water characteristics. This value is significantly lower than the overall energy demand 577 

of conventional UF system (~0.3 kWh/m3) [63,64]. On the other hand, the low flux is 578 

a potential limitation of GDM system, resulting in a larger footprint or a larger 579 

membrane area. For example, the steady-state flux of the GDM under a pressure head 580 

of 0.4 m (0.82 LMH) was less than 5% that of a conventional UF system (19 LMH, 581 

with a water recovery of 93%) observed during the filtration of shale gas FPW [33]. 582 

Thus, the membrane costs (investment and replacement) of GDM are higher than in 583 

traditional UF to produce the same volume of total permeate. Recently, Pronk et al. [10] 584 
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compared the total costs of GDM and traditional UF systems based on different scales. 585 

The stable flowback rate of shale gas FPW was 2-8 m3/d per well [10]. Overall, the 586 

capital expenditure and membrane replacement costs for GDM and traditional UF 587 

systems depend very much on the specific conditions and on the size of the plant; 588 

however, the GDM system always had lower operational costs than the traditional UF 589 

process (i.e., chemical costs, energy costs, operation & maintenance), demonstrating 590 

that GDM may be attractive for FPW treatment under several circumstances..  591 

Moreover, further studies to optimize the GDM system may address operational 592 

optimization, including length and parameters of filtration and washing cycles, with the 593 

goal to maintain high fluxes and to decrease membrane investment costs. Importantly, 594 

understanding the nature of the biofouling layer is critical for investigations aimed at 595 

minimizing fouling and optimizing filtration and cleaning cycles. 596 

 597 

4 Conclusion 598 

The performance of GDM filtration as pretreatment for the desalination of shale gas 599 

FPW was evaluated over a 612-day operation. The following conclusions can be drawn: 600 

(1) The flux stabilization of GDM systems was independent of membrane 601 

configuration or hydrostatic pressure, and the steady-state values were in the range 602 

0.65-0.82 L m−2h−1. The resistance associated to reversible fouling accounted for more 603 

than 89% of the total hydraulic resistance. While the absolute values of steady-state 604 

flux are relatively low, they are justified by the nature of the driving force, a pressure 605 

head, which requires little external energy input to be maintained during filtration.  606 
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(2) There was not a significant difference in the removal of TDS, organics, turbidity 607 

and alkalinity for the different GDM systems. The GDM filtration outperformed 608 

traditional UF as a desalination pretreatment, resulting in higher organic removal 609 

efficiencies and improved flux, especially for the RO system. While GDM filtration 610 

also relies on UF membranes for the aqueous separation, there are several advantages 611 

compared to traditional UF, including the absence of backwashing, cross-flow, and 612 

chemical cleaning. Overall, this translates into a substantial gain in terms of ease of 613 

operation and economic savings. 614 

(3) The raw shale gas FPW contained more than 60 bacterial genera, with SM1A02 615 

and Rehaibacterium representing approximately half of the total genera. Eukaryotic 616 

communities in the kingdoms of Alveolata and Stramenopiles were detected for the first 617 

time in shale gas FPW. 618 

(4) The bacterial community diversity decreased while the eukaryotic community 619 

diversity increased in the biofouling layer of GDMs, when compared to those of raw 620 

shale gas FPW. The predation by eukaryotic microorganisms including Alveolata, 621 

Fungi, Stramenopiles and Metazoa played an important role in flux stabilization during 622 

GDM filtration. Understanding the nature of the biofouling layer is critical for 623 

investigations aimed at minimizing fouling and optimizing filtration and cleaning 624 

cycles. 625 

(5) For a long-term exposure, the variations of membrane permeability and contact 626 

angle were less significant than those related to elongation and tensile strength of the 627 

membranes. On the whole, long-term exposure to highly contaminated streams seems 628 
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to have no significant detrimental effect on system performance. 629 
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