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ARTICLE

Extracellular nicotinate phosphoribosyltransferase
binds Toll like receptor 4 and mediates
inflammation
Antonella Managò1,12, Valentina Audrito1,12, Francesca Mazzola2, Leonardo Sorci 3, Federica Gaudino1,

Katiuscia Gizzi4, Nicoletta Vitale5, Danny Incarnato6, Gabriele Minazzato7, Alice Ianniello8, Antonio Varriale9,

Sabato D’Auria9, Giulio Mengozzi8, Gianfranco Politano 10, Salvatore Oliviero 4,11, Nadia Raffaelli7,13 &

Silvia Deaglio 1,13

Damage-associated molecular patterns (DAMPs) are molecules that can be actively or

passively released by injured tissues and that activate the immune system. Here we show

that nicotinate phosphoribosyltransferase (NAPRT), detected by antibody-mediated assays

and mass spectrometry, is an extracellular ligand for Toll-like receptor 4 (TLR4) and a critical

mediator of inflammation, acting as a DAMP. Exposure of human and mouse macrophages to

NAPRT activates the inflammasome and NF-κB for secretion of inflammatory cytokines.

Furthermore, NAPRT enhances monocyte differentiation into macrophages by inducing

macrophage colony-stimulating factor. These NAPRT-induced effects are independent of

NAD-biosynthetic activity, but rely on NAPRT binding to TLR4. In line with our finding that

NAPRT mediates endotoxin tolerance in vitro and in vivo, sera from patients with sepsis

contain the highest levels of NAPRT, compared to patients with other chronic inflammatory

conditions. Together, these data identify NAPRT as a endogenous ligand for TLR4 and a

mediator of inflammation.
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Pathogen-induced inflammation is triggered by the binding
of molecules of bacterial origin to pattern recognition
receptors, including Toll-like receptors (TLR)1,2. Intrinsic

factors produced by the host can modulate this complex network
of extracellular signals, thereby contributing to inflammation3.
Many of these factors have a well-characterized intracellular
function and were serendipitously identified in the extracellular
space, where they bind and activate pattern recognition recep-
tors4,5. Among them are chromatin-associated protein high-
mobility group box 1 (HMGB-1), a nuclear DNA binding protein
that can be present in the extracellular space through dedicated
secretion mechanisms6,7 and tryptophanyl tRNA synthetase, an
intracellular enzyme with a catalytic role in protein synthesis that
is rapidly secreted upon pathogen infection and contributes to
bacterial clearing8,9. The enzyme nicotinamide phosphoribosyl-
transferase (NAMPT), which catalyzes the first and rate-limiting
step in the biosynthesis of NAD from nicotinamide10,11, is also an
important extracellular mediator (eNAMPT). Originally identi-
fied as pre-B cell colony enhancing factor (PBEF)12,13, eNAMPT
was later recognized as an essential factor in granulocyte-colony-
stimulating factor-(G-CSF)-induced myeloid differentiation14.
More recently, elevated eNAMPT levels were described in
patients characterized by conditions of acute (respiratory distress
syndrome) or chronic (type 2 diabetes, obesity, and cancer)
inflammation11,15–17. eNAMPT effects are mostly linked to the
activation of inflammatory programs in macrophages, with recent
data suggesting that eNAMPT binds TLR4, adding the enzyme to
the number of “danger” signals activating this receptor16.

NAMPT is structurally and functionally related to the enzyme
nicotinate phosphoribosyltransferase (NAPRT), which is rate-
limiting in the NAD salvage pathway that starts from nicotinic
acid18,19. The NAD biosynthetic pathways controlled by NAMPT
and NAPRT are closely intertwined and can compensate for each
other, as demonstrated by the lack of toxicity of NAMPT inhi-
bitors in cells that express NAPRT20–22. NAPRT is localized
primarily in the mitochondria and in the cytosol23, and is
believed to boost NAD levels under conditions of cellular
stress24,25.

Starting from the structural and functional similarity between
human NAMPT and NAPRT26, here we investigate whether
NAPRT exists in an extracellular form (eNAPRT), thus sharing
with NAMPT functional properties that change according to the
environment. Our results indicate that NAPRT binds to TLR4,
activating the inflammasome and driving transcription of
inflammatory cytokines. In addition, eNAPRT regulates mono-
cyte differentiation into macrophages. Sera from patients with
sepsis and septic shock contain high levels of NAPRT, underling
its potential use as a marker for this critical condition.

Results
NAPRT is present in extracellular fluids. By setting up a
luminex assay, we dosed NAPRT in a trial cohort of 25 plasma
from normal blood donors (HD), with median concentrations
similar to those recorded for eNAMPT (Fig. 1a)27–29. Antibody
binding to recombinant NAPRT (rNAPRT) and lack of cross-
reaction between rNAPRT and recombinant NAMPT (rNAMPT)
confirmed the specificity of the assay (Supplementary Fig. 1a, b
and Supplementary Table 1). eNAPRT levels were then deter-
mined in a validation cohort of 96 HD, including children (age
range 2–74 years), indicating median eNAPRT levels of 1.3 ± 0.08
ng/ml (Fig. 1b), with no differences according to gender or age
(Supplementary Fig. 1c, d).

To confirm that the protein detected by luminex is NAPRT,
two plasma samples containing high levels of the enzyme were
immunoprecipitated using an anti-NAPRT monoclonal antibody

covalently bound to immunomagnetic beads, revealing a band
with a molecular weight of ≈58 kDa, compatible with the NAPRT
monomer (Fig. 1c). Next, we used mass spectrometry to identify
NAPRT proteotypic peptides in the samples. To this aim, we first
created a local spectral library of human NAPRT by trypsin
digestion of the recombinant protein and then used a trial serum
where rNAPRT was exogenously added at the concentration of
50 ng/ml. Once this approach identified NAPRT peptides, we
used a pool of sera containing high levels of eNAPRT, detecting
three proteotypic NAPRT peptides (Fig. 1d).

Next, by using a fluorometric assay30 to measure eNAPRT
activity in plasma of 8 HDs, we confirmed that, in the presence of
substrates and cofactors, the endogenous enzyme synthesizes
nicotinate mononucleotide (NaMN, Fig. 1e). In line with previous
data, eNAPRT activity was markedly higher than eNAMPT
activity30.

We then dosed eNAPRT in sera from patients with conditions
of acute or chronic inflammation. Plasma was collected from
patients with sepsis or septic shock due to bacterial infections
(n= 100) who were admitted to the emergency room between
October 2016 and April 2017, and were followed-up until
January 2018. Sera from 312 patients with a diagnosis of cancer,
including solid tumors (lung, prostate and bladder cancer,
metastatic melanoma and mesothelioma) and hematological
malignancies [chronic lymphocytic leukemia (CLL), myeloma
and diffuse large cell lymphoma (DLCL)] were also analyzed by
luminex assay. Results indicate that median eNAPRT levels rise
from 1.4 ± 0.07 ng/ml in HD to 2.4 ± 0.15 ng/ml in cancer
patients to 27.1 ± 4.9 ng/ml in septic individuals (p < 0.0001 for
both the comparisons, Fig. 1f), underlying high levels of this
enzyme in the latter condition. In contrast, median eNAMPT
levels increased from 1.4 ± 0.2 ng/ml of HD to 4.6 ± 0.5 ng/ml in
cancer (n= 230, p < 0.0001) to 5.05 ± 4.6 ng/ml in septic patients
(n= 100; p < 0.0001, Fig. 1g). Of note, the luminex assay did not
recognize bacterial NAPRT (PncB), excluding contamination of
PncB in samples derived from septic patients (Supplementary
Fig. 1e).

Extracellular NAPRT drives inflammatory responses. After
observing elevated NAPRT levels in septic patients, we investi-
gated the effects induced by recombinant NAPRT (rNAPRT) in
macrophages, which are the mastermind of inflammation. By
using RNA sequencing (RNA-seq), we found that rNAPRT
exposure for 6 h modulated a total of 1026 genes while recom-
binant NAMPT (rNAMPT), used for comparison, modulated 626
genes. The majority of genes modulated by rNAMPT (555/626,
88.7%) were also modulated by rNAPRT, while the rNAPRT gene
signature was more complex, with only 54.1% of modulated genes
shared with rNAMPT (555/1026; Fig. 2a and Supplementary data
1–3). Analysis of the genetic pathways indicated that inflamma-
tion, signaling, and immune response were the most commonly
enriched biological functions/pathways upon rNAPRT/rNAMPT
exposure (Fig. 2b). Heat map in Fig. 2c showed the most upre-
gulated genes upon rNAPRT/rNAMPT treatment belonging to
the NF-κB pathway.

In agreement with RNA-seq data, treatment of both human
(Fig. 2d and Supplementary Fig. 2a) and mouse (Fig. 2e)
macrophages with rNAPRT activated the NF-κB pathway, as
determined by western blot analysis showing phosphorylation of
the IKKα/β protein, of the p65 subunit and of ERK1/2. rNAPRT
effects were dose-dependent, decreasing steadily from 1 µg/ml to
31 ng/ml (Supplementary Fig. 2b). Consistently, confocal micro-
scopy highlighted accumulation of p65 in the nucleus starting
30 min after rNAPRT treatment, peaking at 1 h (Fig. 2f) and
decreasing after 6 h (Supplementary Fig. 2c). rNAMPT and LPS
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were included as positive controls and both robustly activated
NF-κB signaling (Supplementary Fig. 2d). The finding
of IRAK1 degradation in response to rNAPRT (Fig. 2g),
suggested that this pathway is MyD88-dependent, as also
confirmed by significant reduction of NF-κB activation in
response to rNAPRT in MyD88-silenced macrophages (Fig. 2h
and Supplementary Fig. 2e, f). Induction of the NF-κB-regulated
genetic program was confirmed after observing transcription and
secretion of pro-inflammatory cytokines, including IL1B, IL8,

TNFA, CCL3, and inflammatory mediators such as CASP1 and
P2RXR (Fig. 2i and Supplementary Fig. 3a, b). Stabilization of the
inflammasome after 6 h of treatment with rNAPRT was
documented by increased expression of NLRP3 and Caspase-1
(Fig. 2j and Supplementary Fig. 3c). All data were confirmed in at
least five different preparations of macrophages from normal
donors.

LPS contamination of our rNAPRT preparations was ruled out
on the basis of the following data. First, all proteins were
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Fig. 1 eNAPRT is present in normal human plasma, increasing in septic patients. a eNAMPT and eNAPRT concentrations (ng/ml) as measured in plasma
from HD. b eNAPRT concentrations (ng/ml) measured by luminex in a validation cohort of plasma from HD (n= 96). c The presence of eNAPRT was
confirmed by western blot performed on immunoprecipitated (IP) fractions of recombinant rNAPRT-GST-tag (MyBioSource MBS969577) and IP from
NAPRT-enriched plasma of two donors (#1–2). rNAPRT-His-tag (home-made recombinant full-length protein) was loaded as control. The protein amount
refers to eNAPRT levels measured by luminex. The primary anti-NAPRT antibody used for immunoprecipitation, loaded in the last right lane and recognized
by secondary antibody, was an internal control to confirm that samples were not contaminated by primary antibody. d Table reporting the three proteotypic
NAPRT peptides at the expected retention times (RT), identified by the observed transitions with an error within 15 ppm using a targeted proteomic
approach on a pool of sera containing high levels of NAPRT. e Graph showing eNAMPT and eNAPRT enzymatic activities (pmol product/h/ml) in the
plasma of HD samples, as determined by a fluorometric assay. f, g Scatter dot plots showing eNAPRT and eNAMPT levels measured by luminex or
quantitative ELISA performed on plasma/sera samples from HD (circles, n= 121 for NAPRT and n= 38 for NAMPT), tumor patients (squares, n= 312 for
NAPRT and n= 230 for NAMPT) or septic patients (triangles, n= 100 for both). Mann–Whitney test. The line in the dot plot defines the median and the
error bars define the interquartile range. Source data are provided as a Source Data file
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produced in ClearColi, a genetically modified E. coli strain that
does not trigger endotoxin responses. Second, boiling of rNAPRT
for 10 min or protein digestion with trypsin abrogated NF-κB
activation, while leaving unaltered LPS-mediated signals. Third,
pre-incubation with polymyxin B, an antibiotic that blocks the
activity of LPS through binding to lipid A, abrogated signal
mediated by LPS (Fig. 2k).

Overall, these data demonstrate that eNAPRT triggers an
inflammatory response in macrophages.

eNAPRT forces monocyte differentiation into macrophages.
rNAPRT and rNAMPT modulated genes encoding for cytokines
and chemokines involved in myeloid-macrophage differentiation,
including the colony-stimulating factors (CSF1,2,3). These cyto-
kines, in particular CSF1/M-CSF, induce differentiation of
hematopoietic stem cells and circulating monocytes into macro-
phages, controlling their polarization, phagocytosis, and chemo-
taxis31,32. We confirmed significantly increased M-CSF
transcription and secretion upon treatment of normal human
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monocytes with both rNAPRT and rNAMPT (Fig. 3a). Con-
sistently, treatment of PBMC preparations from HDs with
rNAPRT resulted in marked increased numbers of adherent cells,
with morphologic features of macrophages, as shown by Giemsa
staining of residual cells after 10–12 days of culture (Fig. 3b, c).
rNAMPT was used as positive control in myeloid-component
priming (Fig. 3a–c)14,27,33. As expected, LPS did not induce long-
term macrophage differentiation, consistent with previous data
indicating that it opposes M-CSF functions (Fig. 3a–c)34,35. In
line with the induction of differentiation following rNAPRT and
rNAMPT treatments, macrophages also upregulated lineage-
specific markers, including CD11b and CD68 (Fig. 3d). Notably,
eNAPRT could be detected in macrophage culture supernatants,
suggesting that macrophages are a source of eNAPRT in vivo
(Fig. 3e–g).

Overall, these data demonstrate that eNAPRT induces
inflammatory responses in macrophages and enhances their
differentiation from circulating monocytes.

eNAPRT binds to TLR4. To investigate the mechanisms of
action of eNAPRT, we first used the NAPRT mutant G379A,
which is devoid of catalytic activity36. Through gel filtration
chromatography, we showed that the mutant co-eluted with the
wild-type protein, indicating correct protein folding (Supple-
mentary Fig. 4a). Treatment of macrophages with this mutant
triggered p65 phosphorylation and nuclear translocation (Fig. 4a,
b and Supplementary Fig. 4b, c). Under these conditions, no
differences between the G379A mutant and the wild-type form
could be observed, indicating that the enzymatic activity is dis-
pensable for signaling and suggesting that the maintenance of a
proper folding might be essential for such a function.

Based on the evidence that (i) eNAMPT binds TLR416 and (ii)
NAMPT and NAPRT share a high degree of structural
similarity26, we hypothesized that the signaling function of
eNAPRT could be also mediated by TLR4. To confirm this, we
analyzed the interaction between rNAPRT and the recombinant
extracellular domain of TLR4 (rTLR4) through surface plasmon
resonance (SPR) under the conditions previously established for
the rNAMPT-rTLR4 interaction16. By using a surface coated with
an anti-NAPRT antibody, we showed that a pre-mixed solution of
rNAPRT and rTLR4 resulted in increased binding when
compared to rNAPRT alone, indicating that a direct molecular
interaction is occurring between the proteins (Fig. 4c and
Supplementary Fig. 4d).

To validate these results in a cellular setting, we transiently
silenced TLR4 expression in normal human macrophages
(Supplementary Fig. 5a, b). Treatment of TLR4-silenced macro-
phages with rNAPRT resulted in significant decrease of NF-κB
activation, as shown by western blot and staining for nuclear p65

(Fig. 4d, e and Supplementary Fig. 5c). Consistently, rNAPRT-
driven IL1B and IL8 transcription was severely impaired in TLR4-
silenced macrophages, confirming a signaling block (Fig. 4f). As
expected, activation following rNAMPT and LPS treatment
drastically decreased in TLR4-silenced macrophages (Fig. 4d,
e and Supplementary Fig. 5c). To provide a formal validation of
TLR4-dependent eNAPRT signaling, we obtained macrophages
from TLR4−/− mice and treated them with rNAPRT, rNAMPT,
and LPS, observing complete loss of NF-κB activation and
significant impairment in transcription of pro-inflammatory
cytokines, including CCL2 and IL1B (Fig. 4g, h and Supplemen-
tary Fig. 5d).

Structural determinants of eNAPRT involved in TLR4 binding.
Given the ability of human NAPRT and NAMPT to prime innate
immune responses, we asked whether the bacterial orthologs
might be endowed with the same capability. Bacterial rNAPRT
(PncB) from Streptococcus pyogenes or bacterial rNAMPT
(NadV) from Acinetobacter bayly invariably failed to activate NF-
κB signaling in all the macrophage preparations tested (Fig. 5a–c),
indicating that the signaling function of human NAMPT and
NAPRT is not an evolutionarily conserved trait. Exploiting this
finding, we sought to map potential molecular determinants with
signaling function by comparing the three-dimensional structures
of human and bacterial NAPRT, which are dimers. A structural
superposition of the human NAPRT dimer (PDB ID: 4YUB) and
the ortholog from E. faecalis (PDB ID: 4MZY), chosen as a proxy
for the S. pyogenes protein used in this study, is shown in Fig. 5d.
The proteins share 31% of sequence identity (Supplementary Fig.
6), with a very similar overall architecture reflected in a head-to-
tail arrangement of the monomers26. Nonetheless, a few inter-
esting differences are evident. The human enzyme has a unique
insertion of 46 amino acids which is structurally organized in a
loop-helix-loop and is exposed to the solvent (Fig. 5d and Sup-
plementary Fig. 6). This region accounts for the length difference
between the two proteins, being human NAPRT of 538 amino
acids and the bacterial ortholog of 496 amino acids, respectively.
Furthermore, a comparison of the surface properties of the two
proteins revealed the presence in human NAPRT of an arginine-
rich stretch (65RFLRAFRLR) forming a large mouth-like posi-
tively charged area on the top of the dimer (Fig. 5e), which is
absent in the bacterial ortholog. None of such arginine residues
are involved in the dimer stabilization, and most of the lateral
chains are exposed to the solvent (Supplementary Fig. 7a).
Notably, the corresponding region in the NAMPT dimer is also
positively charged, with arginine replaced by lysine (Supple-
mentary Fig. 7a). For a preliminary validation of the in silico
predictions, we generated a NAPRT mutant characterized by
replacement of arginines at positions 65, 68, 71, and 73 with

Fig. 2 eNAPRT induces an inflammatory gene signature in macrophages. a Venn diagram showing RNA-seq analysis results in human macrophages treated
with rNAPRT or rNAMPT (1 µg/ml, 6 h) and compared to untreated (UN) condition (n= 3). b Histograms represent the most significantly enriched gene
categories (gene ontology GO, biological processes). The number of genes belonging to each GO is indicated near the y-axis. c Heatmaps of the most up-
regulated genes by rNAPRT and rNAMPT vs untreated condition, belonging to the “NF-κB pathway” cluster. d Western blot analysis of p-IKKα/β, p-p65,
pERK1/2 in HD macrophages upon treatment (30min) with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml). eWestern blot analysis of p-p65 in
macrophages derived from C57BL/6 wt mice treated as in d. f Confocal microscopy analysis of p65 staining in human macrophages treated with rNAPRT
(1 µg/ml, 0.5 or 1 h) [original magnification was ×63, scale bar: 25 µm, samples from four different HD, at least three different field/slides were counted].
g Western blot analysis of IRAK1 in HD macrophages (n= 6) upon treatment (30min) with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), or LPS (2 µg/ml).
h Western blot analysis of p-p65 in scramble (sc) or MyD88 siRNA-silenced macrophages upon treatment as in d. i Box plots showing protein
concentration of IL-1β, IL8, TNFα, and CCL3 evaluated by ELISA in supernatants derived from macrophages (at least n= 6) treated (15 h) with rNAPRT
(1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml). Wilcoxon test. j Western blot analysis of NLRP3 and Caspase-1 in HD macrophages upon treatment (6
h) with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml, n= 7 for all conditions). k Western blot analysis of p-p65 in HD macrophages (n= 5)
upon treatment (30min) with rNAPRT (1 µg/ml) or LPS (2 µg/ml) in different conditions (PM: polymyxin B). Paired t-test. In the box plots the line in the
box defines the median and the error bars define the minimum and maximum of all data. Source data are provided as a Source Data file
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alanines (Supplementary Fig. 7b). This mutant failed to activate
NF-κB and to induce cytokines production (Fig. 5f–g), indicating
that the arginine-rich region is involved in the binding to TLR4.
The correct folding of the mutated protein was assessed through
gel filtration chromatography (Supplementary Fig. 7b).

eNAPRT is a novel risk factor in patients with sepsis. We then
observed that cellular stress is accompanied by marked increase
in NAPRT in the culture media (Fig. 6a). Specifically, treatment
of human macrophages with TNF-α and cycloheximide to trigger

apoptosis, or with ionomycin and carbonyl cyanide 3-
chlorophenylhydrazone (CCCP) to trigger necrosis, induced
rapid and significant release of NAPRT, as previously described
also for HMGB-16 and others DAMPs37.

Lastly, to investigate the relationship between NAPRT and LPS,
normal Balb/c mice were treated with rNAPRT alone or in
combination with LPS. rNAPRT was administered to Balb/C
mice at 1 mg/kg (low dose) or 25 mg/kg (high dose), in keeping
with doses previously used with other DAMPs9,38. No signs of
toxicity or lethality were observed with low doses, while mice
treated with high doses rNAPRT developed signs of endotoxemia,
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including piloerection, lethargy, diarrhea and conjunctivitis,
within 2 h since treatment. However, none of these animals
died, at variance with what observed when administering high
doses of LPS (25 mg/kg): in these conditions all mice died
between 20 and 36 h (Fig. 6b). We then combined low doses of
rNAPRT with a lethal dose of LPS, and observed significantly
reduced signs of endotoxemia. Importantly, all animals survived
with this treatment schedule (6/6, p= 0.0007 Log-rank test,
Fig. 6b), suggesting that low doses of NAPRT mediate endotoxin
tolerance. No survival advantage was observed when combining
rNAPRT (25 mg/kg) with a lethal dose of LPS (Fig. 6b).
Accordingly, in vitro pre-treatment with low dose rNAPRT
significantly decreased the amount of TNFA transcription upon
high dose LPS exposure (Fig. 6c and Supplementary Fig. 8a),
suggesting that rNAPRT mediates endotoxin tolerance39. With
this information, we re-examined our cohort of septic patients
and noticed that patients who died because of septic shock had
significantly higher levels of eNAPRT in the plasma (Fig. 6d),
while those with low concentrations survived. This finding
suggests that “physiological” levels of eNAPRT may be essential
to prevent mortality in response to bacterial infections. At
variance, no differences in eNAMPT levels were observed
(Supplementary Fig. 8b). Next, by exhaustively constructing a
set of confusion matrices, we determined the best cut-off value for
eNAPRT at 15 ng/ml (p= 0.001 Fisher’s exact test). Using this
cut-off, we observed that in the eNAPRT ≥ 15 subset 31/71 (44%)
patients died because of septic shock, compared to 3/29 (10%)
patients in the eNAPRT < 15 ng/ml counterpart (p < 0.0001
Fisher’s exact test; Fig. 6e). Furthermore, patients with eNAPRT
levels ≥15 ng/ml were characterized by worse renal function
(median creatinine levels 1.8 ± 0.14 vs 1.1 ± 0.29, p= 0.01), higher
lactate dehydrogenase (median LDH levels 488 ± 48 vs 392 ± 53,
p= 0.04) and C-reactive protein (median CRP levels 209 ± 14 vs
130 ± 18, p= 0.006), in line with a compromised clinical picture
(Fig. 6f). Risk analysis showed that septic patients with eNAPRT
levels ≥ 15 ng/ml had a 4.46-fold increased risk of mortality,
compared to patients with eNAPRT levels < 15 ng/ml ([CI 95%:
1.46; 13.70], p= 0.001 χ2 test, Supplementary Fig. 8c).
Kaplan–Meier curves confirmed that the overall survival of
patients with eNAPRT levels ≥15 ng/ml was markedly shorter
than the counterpart (p= 0.005, Log-rank test, Fig. 6g).

Lastly, we tried to better stratify mortality risk by determining
which factors associate to eNARPT, increasing its predictive
value. Biochemical parameters commonly measured during
routine screening for infectious patients were considered,
including CRP, procalcitonin (PCT), white blood cells count
(WBC), platelets (Plts), International Normalized Ratio (INR)
derived from prothrombin time (PT) and eNAMPT. The
most noticeable combined effect was between eNAPRT and

CRP (p= 0.001, Anova test, Supplementary Fig. 8d), also
confirmed by a linear regression in 92 plasma samples of septic
patients (r= 0.31, p= 0.002, Fig. 6h). An independent validation
cohort of 71 septic patients confirmed high levels of eNAPRT in
this inflammatory condition, as well as a statistically significant
association between high levels of eNAPRT and mortality,
confirming that eNAPRT is a new risk factor in sepsis
(Supplementary Fig. 8e–g).

Discussion
Damage-associated molecular patterns (DAMPs) are molecules
that can be actively or passively released by injured tissues and
that activate the immune system37. Here we show that the
intracellular NAD biosynthetic enzyme NAPRT is physiologically
present at low levels in human sera and that its levels rise sharply
in patients with sepsis or septic shock. In keeping with the
hypothesis that eNAPRT may act as a new DAMP, we show that
it is a potent mediator of inflammatory responses. When added to
cultures of human and murine macrophages, rNAPRT rapidly
and robustly activates NF-κB and induces a genetic signature of
inflammation, with ~1000 modulated genes. Following NAPRT
treatment, we documented active synthesis and secretion of pro-
inflammatory cytokines, such as IL-1β, IL8, and TNF-α, as well as
assembly of the inflammasome.

Because NAPRT is an enzyme involved in the generation of
NAD starting from nicotinic acid, which can be present in human
plasma, we first asked whether these effects are dependent on the
enzymatic activity. To do so, we generated a single amino-acid
mutant, which retains the 3D structure of NAPRT, but lacks the
enzymatic activity. This mutant is still able to fully activate
macrophages, indicating that the enzymatic activity is irrelevant
in the pro-inflammatory functions of eNAPRT and pointing to
the existence of an eNAPRT receptor. In its quest, we focused on
pattern recognition receptors, starting from TLR4, which is one of
the main ligands for many DAMPs37. Surface plasmon resonance
confirmed a direct physical interaction between the extracellular
domain of TLR4 and rNAPRT in vitro. In addition, human
macrophages, where TLR4 expression had been silenced, were
unable to activate NF-κB via rNAPRT, as well as to upregulate
expression of NF-κB controlled cytokines, such as IL-1β and IL8.
These results indicate that eNAPRT requires TLR4 to signal.
Accordingly, macrophages from TLR4−/− mice failed to respond
to rNAPRT, both in terms of NF-κB activation and cytokine
production.

NAPRT is an evolutionarily conserved protein40 with the
human and the bacterial enzyme sharing a very similar fold, with
only minor structural differences26. On the basis of our finding
that bacterial NAPRT is unable to activate NF-κB, we carried out
an in silico study to point out structural determinants possibly

Fig. 3 eNAPRT enhances differentiation of myeloid cells into macrophages via M-CSF secretion. a Box plots showing mRNA expression levels of CSF1 (left
panel) in macrophages (n= 5) treated with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml, left panels) for 15 h (paired t-test) and M-CSF
protein concentration in corresponding culture supernatants measured by ELISA (n= 8, right panel, Wilcoxon test). b Box plot representing the cell
count of residual adherent cells obtained from HD PBMC preparations (n= 8) treated once at the beginning of culture with rNAPRT, rNAMPT, or LPS (all
at 10 ng/ml). After 10–12 days of culture, cells were stained with Giemsa. Representative images (×10, scale bar: 200 µm, and a zoomed area in the square)
are shown in c. Images were acquired using a CANON EOS 600D camera fitted to an AXIO Lab A1 ZEISS microscope. Cell count was calculated with
ImageJ software (freely downloadable at http://rsbweb.nih.gov/ij/, paired t-test). d Confocal microscopy analysis of the expression of CD11b and CD68 in
residual adherent cells obtained in the same conditions as in c (original magnification ×63, scale bar: 10 µm). Cells were counter-stained with Alexa568-
phalloidin and DAPI. On the side, box plots indicating the relative mean fluorescence intensity of three different experiments. Mann–Whitney test.
e eNAPRT protein concentration measured in macrophage supernatants by NAPRT luminex assay (n= 11) (f) and western blot performed on concentrated
(×10) culture supernatants derived from two different HD macrophage preparation (SN MO). rNAPRT was loaded in the gel as control. g Confocal
microscopy analysis of NAPRT protein expression in macrophages (original magnification ×63, the image represents a zoomed area). Cells were counter-
stained with Alexa568-phalloidin and DAPI. Results are reported as box plots and dot plot, where the line in the box defines the median and the error bars
define the minimum and maximum or the interquartile range. Source data are provided as a Source Data file
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involved in TLR4 binding. We identified a large arginine-rich
region at the surface of the human protein, absent in the bacterial
ortholog, as a likely candidate for signaling. A specific mutant,
where the arginine residues were replaced with alanine, failed to
activate NF-κB signaling, while retaining 3D structure, thus
validating our prediction. In keeping with this result, arginine-
rich domains of proteins are known to stabilize macromolecular

structures through several type of interactions41, and arginine/
lysine residues are often involved in the formation and stability of
productive TLR complexes42.

Among the biological processes commonly regulated by
NAPRT and NAMPT are those involved in macrophage
recruitment and differentiation, including CSF1, which is known
to be blocked by LPS34. Consistently, treatment of normal human
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PBMC with rNAPRT significantly enhanced differentiation to
full-fledged macrophages, with typical morphological features
and expression markers. These cells also expressed and released
eNAPRT, suggesting that there may be an autocrine functional
loop. This second, long-term function of eNAPRT suggests that it
may have a more complex role, not only related to inflammation,
but also to tissue repair, as recently described for other DAMPs,
including HMGB-17.

In vivo, high levels of NAPRT are associated with an unfa-
vorable outcome in septic patients. Our data, obtained in a trial
cohort and validated in a second cohort, show that patients with
levels of eNAPRT ≥15 ng/ml are characterized by overall worse
clinical parameters with 4.46-fold increased risk of mortality,
compared to the counterpart and suggest that eNAPRT is a novel
risk factor for sepsis. Even if the biological explanation behind
this observation is still partly missing, there are significant
starting points. First, eNAPRT is markedly increased in the
supernatant of cells undergoing necrosis, suggesting that this
could be the source in patients with sepsis or septic shock. In fact,
eNAPRT levels were significantly higher in the latter condition
(median eNAPRT levels were 13.6 ± 1.7 ng/ml in patients with
sepsis vs 24.7 ± 2.2 ng/ml in patients with septic shock, p=
0.0084, Supplementary Fig. 8h). Second, low doses of NAPRT
prevent LPS signaling in vitro and LPS-induced mortality in mice,
in keeping with what observed with other DAMPS, including
tRNA synthetase9. Importantly, this does not happen when
rNAPRT is administered at high doses, suggesting that there are
concentration-dependent effects.

Several issues remain to be addressed. First and foremost, it will
be important to understand the relationship between eNAPRT
and eNAMPT: our findings imply that they may have different
roles in acute vs chronic inflammation, engaging TLR4 in dif-
ferent pathological conditions and alerting the immune system to
different sets of “dangers”. In addition, the mechanisms of
release/secretion of the molecule, of its interplay with TLRs and of
its role in acute and chronic inflammatory states in vivo deserve
further attention. This will be the focus of future investigations.

Methods
Patient samples. Patient plasma/sera were collected in accordance with the
Institutional Review Board and the Declaration of Helsinki.

Plasma from healthy donors were obtained from the local Blood Bank.
Sera from all patients with a diagnosis of sepsis and septic shock admitted to the

emergency room of the Città della Salute e della Scienza Hospital (Ethical
committee of the Città della Salute e della Scienza Hospital, Turin, Italy) were used.

Samples from patients with cancer were provided by clinicians, cited in the
“Acknowledgements” section.

Antibodies used for western blot and immunoprecipitation. The following
antibodies were used for western blot: anti-NAMPT (A300-779A, Bethyl

Laboratories, Montgomery, TX), anti-NAPRT1 (NBP1-87243, Novus Biologicals,
Littleton, CO; AMAB90725 Atlas; 66159-I-Ig ProteinTech, Manchester, UK and
MBS1491066 MyBioSource), anti-phospho-p65 (Ser536, #3033S), anti-p65
(#8242S), anti-phospho-IKKα/β (Ser176/180, #2697), anti-IRAK1 (#4504), anti-
NLRP3 (#13158), anti-Caspase-1 (#3866) and Cyclophilin A (#2175) all from Cell
Signaling Technologies (Danvers, MA), anti-pERK1/2 (pT202/Y204, 612358) and
anti-panERK (610123) both from BD Biosciences (East Rutheford, NJ), anti-
MyD88 (sc-11356, Santa Cruz Biotechnology, Dallas, TX) and anti-actin horse-
radish peroxidase (HRP)-conjugated (ab20272, Abcam, Cambridge, UK). Sec-
ondary reagents were: goat anti-mouse IgG-HRP-conjugated (Perkin Elmer,
Waltham, MA), goat anti-rabbit HRP-conjugated (Santa Cruz Biotechnology).

Antibodies used for confocal microscopy. Antibodies used for immuno-
fluorescence were: anti-NAPRT1 (NBP1-87243, 1:100 Novus Biological) anti-p65
(sc-8008, 1:100 from Santa Cruz Biotechnology), anti-TLR4 (NB-10056566, 1:100
from Novus Biologicals), anti-CD68 AlexaFluor-488 (333812, 5 µl for well from
Biolegend, San Diego, CA), anti-CD11b (HPA002274, 1:200 from Sigma-Aldrich,
Saint Louis, MO). Secondary reagents were: goat anti-mouse IgG AlexaFluor488-
conjugated (1:50) and goat anti-rabbit IgG AlexaFluor488-conjugated (1:100, both
from Thermo-Fisher, Waltham, MA). After the primary and secondary antibodies,
cells were counter-stained with AlexaFluor 568-conjugated phalloidin (1:100) and
4′,6-Diamidino-2-phenylindole (DAPI, 1:30,000, both from Thermo-Fisher).

Preparation of recombinant proteins. Plasmids for human recombinant NAPRT
and G379A mutant are described in36. Plasmid for the R(65->73)A mutant was
obtained by site-directed mutagenesis using QuikChange Lightning kit (Agilent
Technologies, Santa Clara, CA). For the expression of Streptococcus pyogenes PncB
(NAPRT ortholog) the coding region of the pncB gene was amplified from genomic
DNA and cloned into the pET28a vector at NheI and EcoRI sites. Plasmids for the
expression of human NAMPT and its ortholog Acinetobacter bayly NadV are
described40,43. All proteins were expressed in ClearColi BL21(DE3) cells (Lucigen,
Middleton, WI) and purified by Ni-NTA affinity chromatography. His Trap col-
umns (GE Healthcare, Chicago, IL) were equilibrated with 100 mM potassium
phosphate pH 8.0, 300 mM KCl for NAPRTs and PncB and in 50 mM Hepes pH
7.5, 500 mM NaCl for NAMPT and NadV. After a washing step with 40 mM
imidazole in the same buffers, elutions were carried out with a linear gradient up to
350 mM imidazole. PD-10 columns (GE Healthcare) were then used to replace
imidazole with 20% glycerol.

Luminex assay to quantify eNAPRT. To measure eNAPRT we set-up, in colla-
boration with Bioclarma, Turin (http://www.bioclarma.com), a new assay exploiting
luminex technology and using highly specific monoclonal and polyclonal antibodies.
Commercially available rNAPRT-GST-tag (MyBioSource MBS969577) was used to
build a titration curve. The detection range of the assay is from 10 pg/ml to 500 ng/ml
(Italian patent I0174545 and PCT/IB2019/051314; Inventors: Deaglio S., Audrito V.;
Owners: University of Turin & IIGM). Schematic representation of the assay is shown
in Supplementary Fig. 9.

eNAMPT quantification assay. eNAMPT concentrations in plasma and culture
supernatants were determined using human NAMPT Enzyme-Linked Immuno-
sorbent Assay (ELISA) kit (Adipogen, Liestal, CH) and also using Bio-Plex Pro
Human Diabetes Assay panel (Bio-Rad, Hercules, CA) that includes NAMPT29.

Gel filtration chromatography. Gel filtration chromatography was carried out to
determine correct protein folding, comparing pure rNAPRT to the G379A mutant
or R(65->73)A NAPRT mutant. A fast protein liquid chromatography (FPLC,
Superose 12 10/300 GL column, GE Healthcare) was used, and the samples were
eluted with 100 mM potassium phosphate buffer, pH 8.0, 300 mM NaCl.

Fig. 4 eNAPRT binds to TLR4. aWestern blot analysis of p-p65 in HDs macrophages upon treatment (30min) with rNAPRT (WT) or the G379A mutant at
the concentration of 1 µg/ml (n= 5). b Confocal images showing p65 localization (green fluorescence) in human macrophages treated with rNAPRT (WT)
or the G379A mutant (1 µg/ml, 30min). Original magnification ×63, scale bar: 25 µm. c SPR measurements of TLR4 (1 μM), NAPRT (100 µM), and TLR4/
NAPRT (1 μM/100 nM). The measurements were performed at 25 °C and the flux was fixed at 30 μL/min. d Western blot analysis of p-p65 in scramble
(sc) or TLR4 siRNA-silenced macrophages upon treatment (30min) with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml). Box plot on the right
represents quantification obtained by ImageQuant of p-p65/p65 (n= 6 for rNAPRT and LPS, n= 4 for rNAMPT, paired t-test). e Confocal images showing
p65 localization (green fluorescence) in macrophages (n= 3) transfected with a scramble control siRNA (sc) or a TLR4 siRNA (white fluorescence for
TLR4 staining) and treated (30min) with rNAPRT (1 µg/ml). Original magnification ×63, scale bar: 50 µm. f Box plots showing mRNA expression levels of
IL1B and IL8 evaluated by qRT-PCR upon 15 h treatments with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml) of macrophages transfected
for 72 h with a scramble (sc) control siRNA or with a TLR4 siRNA (n= 8 for rNAPRT and LPS, n= 6 for rNAMPT, paired t-test). gWestern blot analysis of
p-p65 in macrophages derived from TLR4−/− (n= 7) or wt (n= 5) mice treated as in d. h Box plots showing mRNA expression levels of CCL2 evaluated
by qRT-PCR in macrophages derived from TLR4−/− (n= 6) or wt (n= 4) mice treated with rNAPRT (1 µg/ml), rNAMPT (1 µg/ml), and LPS (2 µg/ml) for
15 h, unpaired t-test. Results are reported as box plots, where the line in the box defines the median and the error bars define the minimum and maximum
of all data. Source data are provided as a Source Data file
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Fig. 5 Structural determinants of rNAPRT and rNAMPT involved in TLR4 binding. a Western blot analysis of p-p65 in HDs macrophages upon treatments
(30min) with rNAPRT, rNAMPT, and their bacteria ortholog, PncB (n= 7) and NadV (n= 4), respectively (all at 1 µg/ml). Box plot on the right represents
band quantification using ImageQuant software of p-p65/p65, Wilcoxon test. b Box plot showing relative quantification of nuclear p65 mean fluorescence
intensity in human macrophages after 30min treatments with rNAPRT, PncB, rNAMPT, and NadV (all at 1 µg/ml, at least n= 3, Mann–Whitney test).
c Representative confocal microscopy images showing p65 localization (green fluorescence, original magnification ×63, scale bar: 25 µm). Cells were
counter-stained with Alexa568-phalloidin and DAPI. d Superposition of dimeric human (Hs) (in pink, PDB: 4YUB) and E. faecalis (Ef, in gold, PDB: 4MZY)
NAPRT in ribbon representation. The 46 amino acids insertion of HsNAPRT is highlighted in magenta. e The protein surfaces (top view) of HsNAPRT (PDB
ID: 4YUB) and EfNAPRT (PDB ID: 4MZY) dimers are colored in white. The positively charged amino acids lysine and arginine are colored in cyan. The 46
amino-acid insertion of HsNAPRT is highlighted in yellow. The mouth-shaped areas of the two enzymes are contoured by a dotted oval. f Western blot
analysis of p-p65 in HDs macrophages upon treatments (30min at 1 µg/ml) with wt rNAPRT and R(65->73)A NAPRT mutant (n= 4). On the left, box
plots represent band quantification using ImageQuant software of p-p65/p65, paired t-test. g Box plots showing mRNA expression levels of IL1B, IL8, and
TNFA evaluated by qRT-PCR in RNA from HD macrophages (n= 8) treated with wt rNAPRT (1 µg/ml) and R(65->73)A NAPRT mutant (1 µg/ml) for 15 h,
paired t-test. Results are reported as box plots, where the line in the box defines the median and the error bars define the minimum and maximum of all
data. Source data are provided as a Source Data file
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Fig. 6 eNAPRT is a risk factor for septic patients. a Western blot analysis of NAPRT in 10× concentrated HD macrophages supernatants (SN), in which
apoptosis (APO) and necrosis (NECRO) were induced as described in “Methods” section. Detection of cyclophilin A in SN was used as positive control
for necrosis induction. b Kaplan–Meier curves showing overall survival (OS) of mice treated intraperitoneally with LPS (25 mg/kg) with or without rNAPRT
(1 mg/kg) or rNAPRT (25 mg/kg) 1–2 h prior to LPS administration. N= 6 mice/treatment group. Log-rank test shows statistical significance. c Box plots
showing mRNA expression levels of TNFA evaluated by qRT-PCR in RNA from HD macrophages (n= 5) treated as follow: 30 h of pre-conditioning (preT)
with LPS 10 ng/ml or rNAPRT 10 ng/ml followed by 6 h of challenging with LPS 1 µg /ml. Paired t-test. d Scatter dot plot showing eNAPRT levels in septic
patients, according to outcome. e Graph representing the percentage of septic patients who survived (black bars) or died (gray bars) when dividing
patients according to the eNAPRT cut-off of 15 ng/ml. f Scatter dot plots reporting LDH, creatinine and CRP levels in septic patients dividing according to
the eNAPRT cut-off. Mann–Whitney test. g Kaplan–Meier curves showing overall survival (OS) of the cohort of 100 septic patients divided on the basis of
eNAPRT levels. Log-rank test shows statistical significance. h Regression line showing a positive correlation between CRP (x-axis) and eNAPRT (y-axis)
levels, as detected in 92 plasma from septic patients. Pearson coefficient (r) and the corresponding p-value are noted. Results are reported as box plots and
dot plot, where the line in the box defines the median and the error bars define the minimum and maximum or the interquartile range. Source data are
provided as a Source Data file
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Determination of NAMPT and NAPRT activities. The activity of eNAMPT and
eNAPRT was determined by a multi-coupled fluorometric assay30.

Proteomics. Proteomic analyses were performed by the Protein Microsequencing
Facility (ProMiFa) of the San Raffaele Scientific Institute, Milan, Italy. The strategy
to confirm that the protein identified by luminex was NAPRT was to enrich normal
human plasma containing < 1 ng/ml of eNAPRT with human rNAPRT, to reach
the final concentration of 50 ng/ml. This plasma was analyzed as is or was depleted
of 20 abundant proteins using the ProteoPrep 20 spin column (Sigma-Aldrich).
These two samples were prepared with the aim of verifying the feasibility of the
identification of NAPRT in a real sample of plasma containing a similar con-
centration of the protein. The latter was obtained by pooling plasma coming from
15 donors with high level of eNAPRT (≅50 ng/ml).

The immunodepletion procedure for each sample was performed on 8 µl of
plasma each time (6 times per sample) and twice repeated in order to get ~99%
depletion. The recovered supernatant was analyzed to determine total protein
concentration using Direct Detect IR spectrophotometer (Merck-Millipore,
Burlington, MA) and bovine serum albumin (BSA) as standard. Total proteins
(40 µg) were in-solution digested using Filter Aided Sample Preparation (FASP)
protocol as reported in literature44. Samples were desalted using C18 home-made
tip columns (C18 Empore membrane, 3 M) and injected in a nano UPLC system
(Easy nLC-1000, Proxeon Biosystem, Odense, Denmark). Peptide separations
occurred on a home-made 12.5 cm reverse phase spraying fused silica capillary
column, packed with 1.9 µm ReproSil Pur 120 C18-AQ (DrMaisch GMBH,
Ammerbuch, Germany). A gradient of eluents A (pure water with 0.1% v/v formic
acid) and B (ACN with 0.1% v/v formic acid) was used to achieve separation
(300 nl/min flow rate) from 0 to 45% B in 45 min. Parallel reaction monitoring
analyses were performed using a Q-Exactive mass spectrometer (Thermo-Fisher).
The acquisition method combined two scan events corresponding to a full scan MS
[resolution set at 35,000 mass to charge (m/z) 200] and a PRM event (resolution set
to 17,500 at m/z 200; isolation window set to 2m/z; maximum fill time of 120 ms
and normalized collision energy set to 27) which targeted the precursor ions of the
peptides at their relevant charge states in a 1 min window. Starting from trypsin-
digested rNAPRT, a local spectral library was created to generate reference MS/MS
spectra, including b- and y-fragment ions, and to determine the elution time for
each peptide. Peptides were selected as unmodified proteotypic peptides with good
signal stability and a wide range of elution times. Data processing was performed
with Skyline software, freely available45. The identification of NAPRT was
performed by extracting, post-acquisition, the chromatographic traces of specific
fragment ions with acceptable purity, which have been subjected to an iterative
selection. For each targeted peptide, extracted ion chromatograms (XIC) were
selected for three to five transitions.

RNA extraction and quantitative real-time PCR. Quantitative real-time PCR
(qRT-PCR) was performed as described46. TaqMan Gene Expression Assays
(Thermo-Fisher) used: Hs01555410_m1 (IL1B), Hs01113624_g1 (TNFA),
Hs00174103_m1 (IL8), Hs00234142_m1 (CCL3), Hs00354836 (CASP1),
Hs00175721_m1 (P2XR7), Hs00174164_m1 (CSF1), Hs00152939_m1 (TLR4),
Mm00441242_m1 (Ccl2), Mm00434228_m1 (Il1b), Mm00443258_m1 (Tnf).
Hs00984230_m1 (B2M), and Mm02619580_g1 (Actb) were used as
housekeeping genes.

RNA sequencing. Libraries were generated from total RNA of macrophages
treated (6 h) with rNAPRT, rNAMPT (1 µg/ml) or LPS (2 µg/ml; Sigma-Aldrich)
using the TruSeq RNA Sample Preparation v2 (Illumina, San Diego, CA). Samples
were sequenced on the Illumina NextSeq 500 platform. Reads were mapped on the
hg19 Homo sapiens reference assembly using TopHat v2.0.6 (Johns-Hopkins
University, Baltimore, MD). Raw counts were computed using the featureCounts
package47 and the latest RefSeq annotation downloaded from the UCSC server
(https://genome.ucsc.edu/cgi-bin/hgTables). Differential expression analysis was
performed using R and the DESeq2 package48. Genes with abs (log2(Fold Change))
≥0.5, and p < 0.05 were retained for downstream analysis considered. Venn dia-
grams were created using Venny free on-line tools (http://bioinfogp.cnb.csic.es/
tools/venny/) to visualize intersections between class comparison results and to
select the sequences of interest. For enrichment analysis, differentially expressed
genes were classified according to their gene ontology (GO) annotations using
Database for Annotation, Visualization and Integrated Discovery (DAVID)
Bioinformatics Resources (http://david.abcc.ncifcrf.gov/), and REVIGO (http://
revigo.irb.hr/).

Western blot and immunoprecipitation. Cells lysates or immunoprecipitated
fractions were resolved by SDS-PAGE and transferred to nitrocellulose membranes
(Bio-Rad)49. Western blot reactions were visualized using ImageQuant LAS4000
and densitometric analyses performed using ImageQuantTL 7.0 software (GE
Healthcare, Chicago, IL). Band intensity was quantified after normalizing over the
corresponding unphosphorylated protein or over actin, used as loading control.

Anti-NAPRT monoclonal antibody (ProteinTech), chemically coated to
luminex beads was used for immunoprecipitation of NAPRT from plasma samples.
Immunoprecipitated fractions were resolved by SDS-PAGE and NAPRT detected

with a different antibody (MyBioSource). For detection of NAPRT in macrophage
supernatants (SN), macrophages were plated for 24 h in RPMI+ 0.1%FCS before
western blot analysis.

Surface plasmon resonance experiments. SPR measurements, using MP-SPR
Navi 210A VASA system (BioNavis), were used in order to confirm in vitro the
TRL4/NAPRT interactions. For the measurements, 2D (planar) carbox-
ymethyldextran (CMD) hydrogel-coated sensor slides (SPR102-CMD-2D, BioNa-
vis) were chosen. The monoclonal antibodies against NAPRT purchased from
Proteintech (www.ptglab.com) were immobilized on the carboxymethyldextran
chip 2D (SPR102-CMD-2D) after activation with N-hydroxysuccinimide and N-
ethyl-N-(3-diethylaminopropyl) carbodiimide (0.2 M EDC/0.05 M NHS). Anti-
NAPRT (50 μg/ml) diluted in 10 mM sodium acetate buffer pH 5.0, was injected
for immobilization on the CMD sensor surface. Non-reacted NHS ester groups
were deactivated with 1 M ethanolamine pH 8.5 injection. The degassed running
buffer for the immobilization process and TRL4/NAPRT measurements was of
10 mM HEPES, 0.05% Tween (pH 7.5). For binding experiment, the follow samples
were fluxed on the functionalizated surface: TRL4 (1 μM), NAPRT (100 nM) and
the complex TRL4/NAPRT (1 µM/100 nM) diluted in running buffer. The injection
time was 210 s at a flow rate of 30 μl/min. At the end of the binding the regen-
eration step occurred via addition of 10 mM glycine pH 2.0. SPR Navi control and
SPR Navi Data Viewer/Trace Drower (BioNavis) were used to control the SPR
measurements.

Light microscopy. Giemsa staining images were acquired using a CANON EOS
600D camera fitted to an AXIO Lab A1 ZEISS microscope.

Confocal microscopy. Cells on glass cover slips were rinsed, fixed, permeabilized,
saturated, and stained with the indicated antibodies. Counter-staining was with
AlexaFluor 568-comjugated phalloidin and DAPI. Fluorescence was acquired using
a TCS SP5 laser scanning confocal microscope, using an oil immersion ×63
objective. Images were acquired with LAS AF software (both from Leica Micro-
systems, Milan, Italy). Files were processed with Photoshop (Adobe Systems, San
Jose, CA). Pixel intensity was calculated using the ImageJ software (http://rsbweb.
nih.gov/ij/).

Cytokine/chemokine measurement. IL8, TNFα, and CCL3 concentrations were
determined using Bio-Plex/Luminex assays (Bio-Rad). IL-1β and M-CSF were
determined using ELISA assays (Thermo-Fisher, Waltham, MA).

Human and murine macrophage generation and treatment. Peripheral blood
mononuclear cells (PBMC) were seeded in 24-well plates (107 per well) in
monocyte attachment medium (1 h, 37 °C PromoCell-GmbH, Heidelberg, Ger-
many). Non-adherent cells were removed before adding RPMI+ 10% FCS (Sigma-
Aldrich, Saint Louis, MO) supplemented with recombinant human macrophage
colony-stimulating factor (M-CSF; 50 ng/ml PeproTech, London, UK). Cell mor-
phology and numbers were studied by Giemsa staining50.

To exclude endotoxin contamination of rNAPRT preparations, macrophages
were treated with: (i) boiled rNAPRT (100 °C, 10 min); (ii) digested rNAPRT
(trypsin-EDTA 0.05%, 37 °C, overnight), (iii) inactivated LPS [polymyxin B,
100 μg/ml (Sigma-Aldrich, 4 °C, 1 h)].

For triggering of apoptosis macrophages were treated for 16 h with TNF-α
(2 ng/ml; Peprotech) plus cycloheximide (35 µM; Sigma), while for necrosis 16 h
with ionomycin (5 µM; Sigma) plus carbonyl cyanide m-chlorophenylhydrazone
(CCCP, 20 µM; Sigma). Macrophage SN were collected and then 10× concentrated
and loaded for WB.

For endotoxin tolerance experiments HD macrophages were preconditioned for
30 h with a sublethal dose of LPS (10 ng/ml) or rNAPRT (10 ng/ml), and then
challenged with an acute dose of LPS (1 μg/ml) or rNAPRT (1 μg/ml) for 6 h. The
negative control contained only medium, while the positive control received medium
during the pre-conditioning phase but perceived an acute dose of LPS or rNAPRT
during the challenging phase. Experiments were performed in RPMI 5% FCS.

TLR4−/− mice [B6(Cg)-Tlr4tm1.2Karp/J] or C57BL/6 wt were purchased from
The Jackson Laboratory (Bar Harbor, ME). Macrophages were obtained from the
peritoneal cavity and bone marrow, by the procedures described in refs. 51,52 and
incubated for 6 days with 50 ng/ml of murine M-CFS (315-02, Peprotech, London,
UK) and then treated as indicated.

TLR4 and MyD88 silencing. Differentiated macrophages were transfected with
200 nM of Silencer TLR4 Select Validated small interference RNA (siRNA, s14194)
or 100 nM of MyD88 gene solution siRNA (#1027416, Qiagen, Venlo, NL) and
Silencer Select Negative Control #1 siRNA (scramble, AM4611, Thermo-Fisher),
using effectene transfection reagent (Qiagen). Cells were transfected in RPMI 10%
FCS without changing the medium after transfection and analyzed after 72 h.

Mice treatment. Balb/c mice were bred in the animal facility at the Molecular
Biotechnology Center, University of Turin. LPS from E. coli O55:B5 (25 mg/kg,
Sigma) was injected intraperitoneally (i.p.) in male mice aged 6–8 weeks. rNAPRT
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was injected i.p. at concentration of 1 or 25 mg/kg per mouse alone or 1–2 h before
LPS treatment. Mice were closely monitored periodically to detect signs of endo-
toxemia and survival rate.

Bioinformatics tools. Molecular graphics and analyses were performed with the
UCSF Chimera Package53. The 3D structures of HsNAPRT (PDB code: 4yub) was
aligned to EfNAPRT (PDB code: 4mzy) and HsNAMPT (PDB code: 2gvg) using
PROMALS3D54 and the figures were produced using ESPript55 EfNAPRT repre-
sents the closest homolog to SpNAPRT (73% sequence identity) with an available
3D structure and was thus used for structural comparison.

Statistical analyses. Continuous variables were compared by Mann–Whitney U
(unpaired data) or with unpaired t-test and Wilcoxon signed rank test or paired t-
test (all two-tailed tests). Results are reported as box plots, where the top and
bottom margins of the box define the 25th and 75th percentile, the line in the box
defines the median and the error bars define the minimum and maximum of all
data. In the scatter dot plots the line represents the median and the error bars
define the interquartile range. *p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001, ****p ≤ 0.0001.

In order to identify the best NAPRT cut-off to maximize the marker prognostic
power, we also developed an automatic R pipeline to deterministically test all the
NAPRT thresholds. Thus, we computed a confusion matrix for each NAPRT
threshold to perform significance tests and have data prepared in a convenient
fashion for further risk ratio analysis. Each confusion matrix has been validated
against Fisher exact test, to assess its statistical significance, and the pipeline
produced an output file, which summarizes, for each cut-off, its risk ratio along
with 95% confidence intervals and the p-value of the Fisher exact tests. We also
trained a generalized linear model (GLM) to better understand combined effect
among variables and to highlight possible NAPRT interactors, to further tune up its
prognostic capabilities. The GLM model has been trained with a binomial link
function. In order to explore the very large population produced after computing
all the permutations among the effects, we took advantage of a genetic algorithm in
order to increase efficiency and automate the selection of the top models. In order
to obtain more reliable results, models have been ranked according to their
Bayesian information criterion (BIC) score. BIC score is in fact more robust against
overfitting, possibly induced when dealing with multiple combined effects56.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in the Source Data file. For
further request please contact the corresponding author. The RNA-seq data have been
deposited in the Gene Expression Omnibus (GEO) database under the accession
GSE135753.
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