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SOIL-STRUCTURE INTERACTION FOR INTEGRATED DESIGN OF 

WEAKENED AND DAMPED STRUCTURES 

Gian Paolo Cimellaro1, Diego Lopez-Garcia2 and Andrei M. Reinhorn3 

 

ABSTRACT 

Previous research has shown the effectiveness of the integrated design of weakening and 
damping techniques (WeD) for the seismic retrofitting of structures. Indeed WeD 
techniques are able reducing inter-story drifts and total accelerations, the two major 
performance measures to evaluate the seismic behaviour of structures. Past research has 
been applied to fixed based structures considering relatively stiff soil conditions. It has 
been suspected, though, that using such techniques in soft soil sites while considering soil 
structure interaction, may diminish some of the advantages observed in past research. 
This paper examines the effect of site conditions and soil-structure interaction on the 
seismic performance of Weakening and Damping techniques.   
An established rheological soil-shallow foundation–structure model with equivalent 
linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large 
number of models incorporating wide range of soil, foundation and structural parameters 
were generated using robust Monte-Carlo simulation. The various structural models, 
along with the various site conditions, have been used for the comparative study. The 
design methodologies previously developed by the authors have been applied to each 
model considering different site conditions leading to the optimal weakening and 
damping. The results of the comparative study are used to quantify the effects of site 
conditions and foundation flexibility on the performance of the retrofitted structures. 
 

KEYWORDS: weakening, weakening and damping, integrated design, damping, 

viscous, Optimization, soil structure interaction, passive control.  
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INTRODUCTION 

In the last thirty years, many researchers have been focusing on integrated design of 

structural/control systems and in weakening and damping techniques [1] which might be 

considered as a subgroup of integrated design.  Integrated optimal structural/control 

system design has been acknowledged as an advanced design methodology for space 

structures, but not many applications can be found in civil engineering.  Onoda and 

Haftka [2] minimized the weight of a structure and controller subject to constraints on the 

magnitude of structural responses.  Salama et al. [3] realized the simultaneous design of 

structure and control system for a composite objective function that is a linear 

combination of structural and control objective functions.  More recently, Curadelli and 

Amani [4] applied the concept of integrated design for linear structures with passive 

systems in the frequency domain. Similar approach has been used by Xu [5] using 

genetic algorithm to solve the optimization problem with discrete and continuous design 

variables.  After the initial work by Viti et al. [6] on weakening and damping techniques 

different approaches have been presented such as the two stage procedure for designing 

weakening and damping techniques (WeD) [7][8] for both linear [9] and nonlinear 

structures [10]. Sarlis et al. [11] introduced a negative stiffness device (NSD) for 

buildings which can emulate weakening and is based on a self-contained highly 

compressed spring in a double negative stiffness magnification mechanism. They tested 

both analytically and experimentally proving the feasibility of the weakening methods. 

Recently Pasala et al. [12] introduced the concept of apparent weakening which can be 

obtained by simulating yielding in an elastic system by adding a NSD, while controlling 

the displacements with viscous devices. Recently the same concept has also been used to 
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control the cable vibrations [13].  However, in none of the methods available in literature 

the effect of soil-structure interaction has ever been taken into account.   

The paper is analyzing the effect of soil-structure interaction (SSI) on the design of WeD 

techniques. Different types of soil have been considered assuming a rigid, but massless 

surface foundation. The steady-state response of the structure is determined using the 

usual structural analysis methods, combined with the matrix of dynamic impedance 

functions which are provided in dimensionless graphical or tabular forms in the work of 

Gazetas [14].   

 

SOIL-STRUCTURE INTERACTION 

The assumption that a structure is fixed on the ground surface of geologic media may 

lead to some deviations in the analysis results of the integrated design, especially for 

structures on a soft base. In reality, a structure is mounted on the foundation that is in turn 

supported and surrounded by soil with various properties.  The system analyzed in this 

paper is actually composed of three parts: structure, foundation and the soil base, which 

interact each other.   

Interaction types 

There are two kinds of interaction taking place with a vibrating structure on soil which 

are called:  

1) kinematic interaction;  

2) inertial interaction.  

 

The kinematic interaction is the interaction between the soil and foundation, which 

causes the motion of the foundation to be different from the displacement free field 
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motion X0.  In this case, the structure above the foundation is assumed massless (Figure 

1a) and the foundation motion is called foundation input motion (FIM).  The kinematic 

interaction is described by a frequency dependent transfer function Sk(ω) that relates the 

free field motion and the FIM.   

The inertial interaction is caused by the inertia of the structure due to its own vibration.  

The system is subjected to inertial forces transferred to the structure by the kinematic 

interaction (Figure 1b) that causes the displacements of the foundation. It can be modeled 

using an impedance function composed of stiffness and damping characteristics between 

the foundation and the soil.  The global motion of the foundation is therefore the sum of 

these two parts 

 

  0 1

Inertial kinematic 
interactioninteraction

(FIM)

kX S X X  ;       (1) 

where X0 is the free field motion; Sk(ω) is the transfer function that describes the 

kinematic interaction and ω is the circular frequency. When the structure rests on a fixed 

base (infinitely stiff soil), the transfer function Sk(ω) is a unit scale number and X1 is zero, 

so the displacement of the foundation X is the same as the free field motion X0.   
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Figure 1 Sub-structuring method (a) Kinematic interaction; (b) inertial interaction 

Substructure approach 

SSI problems in dynamic analysis can be solved using a substructure approach, which is 

composed of three parts independent each other: 

1) The first part is finding the FIM by considering the kinematic interaction 

effect; 

2) The second part considers the inertial interaction, in which the impedance 

function is used; 

3) The third part is the dynamic analysis for the structure supported on a 

compliant base represented by the impedance function, and subjected to a base 

excitation of FIM; 

The kinematic interaction makes the FIM deviate from the free-field motion X0 because 

of the existence of a stiff foundation on or in the soil media, which can be caused by 
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base-slab averaging, embedment/deconvolution effects and wave scattering.  Among 

them, the most significant contribution is given from base-slab averaging and embedment 

effects.  In the inertial interaction consideration, impedance function is given as a general 

expression in the frequency domain as 

     C C   1f K u      (1) 

where   T

C x y z x y zf f f m m m    f  is the reaction force-moment vector from the 

soil media to the foundation when the foundation has a movement 

  T

C x y z ox oy ozu u u      u  , and K1(ω) is the matrix of dynamic impedance, 

which is a 6 × 6 square matrix in a three-dimensional case.  Each coefficient Kprq of the 

matrix is in general expressed as the product of a rigid stiffness K and of a dynamic 

coefficients  f   which are composed of a real term and an imaginary term as shown 

below:  

 

       prq prq prqK K f K k F j c F       

   (2) 
 

 where SF B V  is the dimensionless frequency factor; B is the width of the foundation 

and Vs is the shear wave velocity; 1j    and p, q can be x, y, z.  On the basis of the 

Fourier transform theory, the real part kprq in the impedance function is the “dynamic 

stiffness” and represents the stiffness and the inertia of the supporting soil; its dependence 

on frequency is attributed solely to the influence that frequency exerts on inertia, since 

soil properties are practically frequency independent.  The imaginary part cprq is the 

damping and represents the radiation and the material damping generated in the system 
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(due to energy carried by the waves spreading away from the foundation and the energy 

dissipated in the soil by the hysteretic action, respectively).  They can be physically 

expressed as spring/dashpot pairs with their stiffness and damping coefficient changing 

with the excitation frequency (Figure 2).  The coefficients kprq and cprq are in general 

evaluated with numerical methods for different soil types [14].  In general, the matrices 

of dynamic impedance functions are provided in dimensionless graphical or tabular forms 

in the work of Gazetas [14] for an elastic and homogeneous half-space.  Equation (2) 

suggests for each mode of oscillation an analogy between the actual foundation-soil 

system and the system that consists of the same foundation, but is supported on a spring 

and dashpot with characteristic moduli equal to kprq and cprq, respectively as the one 

shown in Figure 2.  It is important to mention that the coefficients provided in the paper 

of Gazetas [14] do not include the soil hysteretic damping   which can be included by 

simply adding the corresponding material dashpot constant  2 K    to the foregoing 

(radiation) C value.   

Two-dimensional approach 

In the analyzed case study, the steady-state response of the two-dimensional structure is 

determined using the usual structural analysis methods, combined with the matrix of 

dynamic impedance functions.  The vertical ground motion is neglected; therefore, the 

impedance function in Equation (1) can be reduced as  

0

x xx xry x

oy yrx ry y

f K K u

m K K 
            
        

  (3) 
 or in extended form 
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       
       

0xx xx xry xryC

yrx yrx ry ryC

k j c k j cF x

k j c k j cM

     
      

     
          

   (4) 
 

where 0x  and   are the horizontal and rocking motions of the foundation, respectively; 

xxk and xxc  represent the frequency dependent stiffness and damping in the horizontal 

direction; ryk and ryc  represent the frequency dependent stiffness and damping for the 

rocking; and yrxk , xryk  and yrxc , xryc  represent the coupling terms which are negligibly 

small in the analyzed case study of shallow foundation (Figure 2). 
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(1) (2)

(3) (4)
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(3) (4)

k xx()
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Mo, Iry
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Foundation
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Free-field-motion

h 1

 

Figure 2 Two-dimensional mathematical model of the SSI structural system 

 

STRUCTURAL FORMULATION OF THE CONTROLLED MDOF SYSTEM 

WITH SSI 

Consider a multi-degree-of-freedom linear building structure equipped with active 

control systems and subjected to a one-dimensional external excitation considering soil 

structure interaction as the one shown in Figure 6.  The active control is introduced 

because it will be used to design passive control systems using the methodology 
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described in the paper of Cimellaro et al. [7].  However, the difference with respect to the 

fixed base model is that two more degrees of freedom are introduced when the 

translational and rocking motions of the foundation are included.  Furthermore, two more 

items appear in the inertia forces when the foundation motion is considered.  They are 

0im x and i im h  where mi and hi are the mass and the height of the ith free body, 0x  is the 

displacement of the ground at the foundation level.  So the equation of motion of the 

superstructure can be obtained by adding those inertial forces to that of the fixed base 

case as 

           t t t t t t    f a gMx MΓx Cx Kx H u H w      (5) 

 where x(t)(n1) is the displacement vector relative to the ground;       0 0 (1 2)

T t x t t


fx    is 

the acceleration vector of the foundation which includes the horizontal and the rocking 

motion; M, K and C are the mass, stiffness and inherent damping matrices, respectively; 

u(t)r1 is the vector of active control forces; Ha(nr) is the location matrix for the active 

control forces;       
(1 2)

T
g gt x t t


w   is the acceleration vector of the ground in term of 

horizontal and rocking motion; ( 2) ( ) ( 2)n n n n   gH M Γ  is the base excitation directivity 

matrix where   

(2 )
1 1

1 1 1T
n

n nh h h


 
  
 

Γ



    (6) 

 

 is the location matrix of the horizontal and rotational ground motion and hi is the height 

of the i-th story; n is the number of DOF and r is the number of active control forces.  

The horizontal-force balance of the free-body foundation is given by  
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 0 0 0 0 0g xx xx upm x x c x k x F           (7) 

 where Fup is the force transferred to the foundation from the superstructure through the 

columns of the first floor which is given by 

   1 1 1 1 1
1 1 1up n

F c x k x


     Kx Cx      (8) 

 

 where the time dependency has been removed for simplicity.  Substituting Equation (5) 

in Equation (8) it becomes 

          1
1 1 1up n

F t t t t


     f a gMx MΓx H u H w     (9) 

 

Since the active control forces are internally acting on the floors, they are self balanced 

within the superstructure, so they are equal to a null vector, so Equation (10) can be 

simplified as  

        1
1 1 1up n

F t t t


    f gMx MΓx H w      (10) 

 

Substituting Equation (10) in Equation (7) the equation of motion of the foundation in the 

horizontal direction becomes 

          0 0 0 01
1 1 1 0g xx xxn

m x x t t t c x k x


       f gMx MΓx H w       (11) 

 

 where the first term is the inertial force at the foundation level, the second term 

represents the force transferred from the superstructure and the last two terms represent 

the reaction force of the soil to the foundation in the lateral direction.  The equation of 
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rocking motion at the foundation can be obtained by moment balance of the whole 

system using a similar approach and its expression is given below 

          0 1 0 01
0ry g n ry ryn

I h h t t t c k   


       f gMx MΓx H w      (12) 

 where the first term is the inertial moment at the foundation level, the second term 

represents the moments transferred from the inertial forces at each mass of the 

superstructure and the last two terms represent the reaction moment of the soil to the 

foundation.  Equation (11) and Equation (12) can be combined to give the final equation 

of motion for the foundation 

      0 0 0 0

0 0 0

g xx xxT

ry g ry ry

m x x c kx x
t t t

I c k   
                                       

f gΓ Mx MΓx H w
  

     (13) 

Substituting Equation (5) in Equation (13) the equation of the foundation becomes 

 

     0 0 0 0

0 0 0

g xx xxT T T

ry g ry ry

m x x c kx x
t t t

I c k   
                                     

aΓ Cx Γ Kx Γ H u
  

    (14) 

The total floor displacement xt relative to the ground when considering SSI is defined as 

     t t t t fx x Γx      (15) 

 

 where       0 0 (1 2)

T t x t t


fx  is the displacement vector of the foundation which 

includes the horizontal and the rocking motion.  By substituting Equation (15) in 

Equation (5) and (14) it is obtained 
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               t t t t t t t t      t f t f t f a gMx MΓx Cx CΓx Kx KΓx H u H w      (16) 

 

     0 0xx xx gT T T T T

ry ry ry ry g

m c k m x
t t t

I c k I 
                                                 

f t f t f ax Γ Cx Γ CΓ x Γ Kx Γ KΓ x Γ H u


   

 (17) 

The equation of motion of the whole system can be obtained by assembling Equation (16) 

for the superstructure and Equation (17) for the foundation.   

  g

T T T T T
g

x
t


                                                                

at t t

s s af f f f f 2

C CΓ K KΓ HM x x x M Γ
u

Γ C Γ CΓ C Γ K Γ KΓ K Γ HM x x x M I

 
 

 

 (18) 

 where  

0 1
; ; ;

1
xx xx

ry ry ry

m c k

I c k

       
          

      
f s s 2M C K I   (19) 

By defining the mass, stiffness, damping matrices and input location matrices of the 

global SSI system  

, ,
1

T T T T

a rT

     
               

   
        

SSI SSI SSI
s sf

SSI SSI SSI
2

C CΓ K KΓM
M C K

Γ C Γ CΓ C Γ K Γ KΓ KM

H Γ
H H M

H I   (20) 

The general equation of motion of the linear system with active control forces 

considering SSI in Equation (18) can be simply expressed as 

          
 , ,

g
t t t a r

g

t
t t t t

t
       
  

SSI SSI SSI SSI SSI

x
M x C x K x H u H


     (21) 

 

INTEGRATED DESIGN 
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The two-step solution, defined further as the “redesign approach”, is then formulated and 

developed in detail in the paper of Cimellaro et al. [1]. The main idea is simultaneously 

optimize the structural parameters ξ and the active control forces u(t) in such a way to 

minimize an appropriate objective function.  The optimization problem can be solved 

using a two steps procedure.  In fact, while traditionally in control of buildings, the 

structure is designed first and then the controller, the proposed design method reverses 

the procedure by designing the structure after the controller is given.  The fundamental 

idea of redesign was proposed by Smith et al. [15]. In the paper of Cimellaro et al. [1], 

the idea of redesign is incorporated into the integrated design of structural/control 

systems.  The procedure is summarized in the following steps:  

First step: The desired structure is chosen based on best practice using engineering 

experience and it is assumed fixed while the controller is designed in order to satisfy a 

given performance requirement (e.g., drift, absolute acceleration, base shear, etc.) of the 

initial structure.  The dynamic response of the initial structure in this step is called “Ideal 

Response”. 

Second step: The structure and the controller are then redesigned to achieve a common 

goal prescribed by the performance obtained in the first step (the ideal dynamic 

response).  The structure is redesigned for better controllability by modifying the 

structural system and reducing the amount of active control power needed to achieve the 

“Ideal Response”.    
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Figure 3 Integrated redesign procedure in Sd-Sa plane  

 

These two steps can be better understood by considering relationship between spectral 

acceleration and spectral displacement (Sa-Sd) in structural design.  In Figure 3 is shown a 

typical (Sa-Sd) spectrum for several damping levels.  Sd(T0, 0) and Sa(T0, 0) are the 

spectral coordinates of the original structure with period T0 and damping 0.  In Step 1, 

the structure at point 1 is made lighter by reducing its structural mass (weight) and its 

stiffness and it moves to point 2 in Figure 1.  Then a controller is applied to bring back 

the structure to the initial ideal response at point 3.  In Step 2, the structure is redesigned 

in order to achieve the same performance, but with less amount of active control forces or 

damping.  During the redesign, mass, stiffness and damping are modified in order to 

achieve this goal, reaching finally point 4 in Figure 1.  At the end of this step, the 

building will maintain the same performance, but with less amount of control forces.   

Mathematical formulation of the redesign approach 
The integrated redesign procedure considering SSI for the case when the building is 

assumed linear is formulated in this paragraph.  In the state space, Equation (21) 

becomes:  
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Step 1. A control law is employed such that the structural system has acceptable 

performance such as satisfaction of certain constraints on the dynamic response. Many 

methods can be used for this purpose (e.g. Linear Quadratic Regulator (LQR), pole 

assignments, etc, [16]). Using a linear control law, for example, u(t)  can be expressed as: 

 

   t tu Gz      (24) 

where G is the gain matrix that can be obtained from the solution of the Ricatti equation.  

It is important to note that LQR implies optimality for a white noise excitation, 

assumption leading to Ricatti equation and its solution.  For any other motion, this is sub-

optimal [17]. However, the controllers designed using LQR were proven efficient in 

practical applications for seismic protection [18][19].  Moreover, the active control forces 

obtained for each DOF considered in the design procedure can be easily converted to 

equivalent passive devices using a method described in Lavan et al. [8] and Cimellaro et 

al. [7].  

Step 2. Following Step1, the redesign concept is to change the mass, stiffness, damping 

matrices, respectively, by ΔM, ΔK and ΔC, and to determine the control force u so that 

the new system becomes 

               
 , ,

g
a a r

g

t
t t t t

t
          
  

SSI SSI SSI SSI SSI

x
M ΔM x C ΔC x K ΔK x H u H


    (25) 
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where 

   a at tu G z      (26) 

where Ga is the active part of the controller after redesign.  The main idea is to separate 

the control law, Equation (24), into a passive part which is implemented into the physical 

system by redesign, and an active part which constitutes the remaining active control law 

required after structure redesign.  Therefore, the control law is written in the following 

form: 

   
 

 
     

   , , ,a a a a

t t t
t t

t t t

     
        

     
SSI SSI SSI

x x x
H u H G H G ΔK ΔC ΔMx

x x x


  
   (27) 

and the closed-loop system after redesign is 

               
 , ,

g
a a r

g

t
t t t t

t
          
  

SSI SSI SSI SSI SSI

x
M ΔM x C ΔC x K ΔK x H G z H


    (28) 

where  ua(t), which is given by the Equation (26), is the active part of the controller and 

     t t t ΔMx ΔCx ΔKx   is the passive part.  The objective of the redesign is to find the 

passive control (ΔM, ΔK, ΔC) in order to minimize the control power needed to satisfy 

Equation (27) for any given G.  Note that the closed-loop system response before and 

after redesign remains unchanged; therefore, all the designed closed-loop system 

properties remain unchanged.  Let Bk, Bc and Bm be the stiffness, damping and mass 

connectivity matrices of the structural system.  The changes in the structural parameters 

can be expressed in the form: 

T
k k k

T
c c c

T
m m m

ΔK = B G B

ΔC = B G B

ΔM = B G B

     (29) 
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where 
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Substituting the solution of  tx from Equation (21), into Equation (27) yields: 

     ,a active passivet t SSIH Gz G G z     (31) 

where 

,active a a SSIG H G      (32) 
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T

0 p p pG -I B G B L     (33) 
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I
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The necessary and sufficient condition to resolve the control law into an active and a 

passive part as in Equation (31), it is given as follows. 

Lemma 1: There exists an active controller Ga satisfying [15]: 

, ,a a a  T
SSI SSI 0 p p pH G H G I B G B L     (36) 

if and only if: 

, ,a a
 T T

SSI SSI 0 p p p 0 p p pH H I B G B L I B G B L     (37) 
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and, if this condition is satisfied, Ga is given by: 

a   T
0 p p pG G I B G B L      (38) 

where ( )+ denotes the Moore-Penrose inverse of a matrix.  For the passive control law to 

be physically implemented, it must satisfy certain inequality constraints due to the 

physics of the problem.  For example, the stiffness and the damping of any element of the 

system after redesign cannot be negative, while the weight of any element cannot be 

below a certain threshold, without compromising the stability of the structure. Then if 

C=diag[ki,..ci,…mi,…] is a matrix with diagonal elements containing the specified lower 

bound values of the structural elements after redesign and S= diag[k0i,..c0i,…m0i,…] is the 

matrix of the initial parameters, then these constraints can be presented as: 

p  G S C       (39) 

The objective function being minimized can be the square of the active part of the control 

law given by:   

       T
a aF t t dt trace  T

p a XX aG u Ru G R G R     (40) 

where RXX is the covariance matrix of the response.  Finally the formulation of the 

optimization problem is: 

   minimize     =F trace T
p a XX aG G R G R    (41) 

where Ga is given by Equation (38),  subjected to the equality constraints of Equation 

(37) and inequality constraint in Equation (39). An approach to solving numerically the 

constrained optimization problem is to use the “Exterior penalty function method” that is 

part of the Sequential Unconstrained Minimization Techniques (SUMT) [20]. This 
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requires the solution of several unconstrained minimization problems.  The approach 

consists of creating an unconstrained objective function of the form: 

     , p pr F r P  p p pG G G      (42) 

where F(Gp) is the original objective function, P(Gp) is the penalty function and rp is a 

multiplier which determines the magnitude of the penalty and it is held constant during a 

complete unconstraint minimization.  The penalty function P(Gp)  is given by the 

following expression in this case: 

 

       , ,

T

a aP trace trace      
+ T T

p P P 0 p p p SSI SSI 0 p p pG Z G + S - C G + S - C BB I B G B LH H I B G B L  

       , ,

T

a a
 + T T

0 p p p SSI SSI 0 p p pBB I B G B LH H I B G B L  (43) 

 where Z=diag(…zi…) is a diagonal matrix where the scalars zi are chosen such that zi=1 

if the corresponding inequality constraint Gpi+si-ci≥0 is active, and zi=0 if the constraint 

is not active.  Therefore, the new objective function is given by the following expression: 

 

      ,
T

p pr trace r trace      
T

P a XX a P PG G R G R Z G + S - C G + S - C

 

    , , , ,

T

p a a a ar trace   + T T + T T
0 p p p SSI SSI 0 p p p 0 p p p SSI SSI 0 p p pBB I B G B LH H I B G B L BB I B G B LH H I B G B L (44) 

Minimization of equation (44) requires that the following first-order necessary condition 

is satisfied. 

   vect diag 1 p 1P G r       (45) 

 where vec diag(Gp) denotes a vector with diagonal elements of Gp as its components.  

We have 
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 and 

   , , , vec diag vec diaga a a pr T T +T + T
1 p 0 SSI XX SSI SSI pr B I B RGH R H H L B Z S - C   (47) 

Therefore, the following algorithm can be used to find the optimal solution, where it is 

assumed that the matrix P1 is invertible.  If a small value of rp is chosen, the resulting 

function  , pr PG  is easily minimized, but may yield large constraints violations.  On the 

other hand, a large value of rp will ensure near satisfaction of all constraints but will 

create a very poorly conditioned optimization problem from a numerical standpoint.  

Therefore, the algorithm starts with a small value of rp and minimize  , pr PG .  Then rp is 

increased by a factor γ, say γ=3, and  , pr PG  is minimized again, each time beginning 

the optimization from the previous solution, until a satisfactory result is obtained.   

CASE STUDY 

SDOF steel portal frame with SSI 
 

Consider a 2-D moment resisting one-story and one-bay steel frame (Figure 4).  The 

frame consists of two columns (W14×257 and W14×311) and one beam (W33×118).  

The columns are 345 MPA (50ksi) steel and the beam is 248 MPA (36ksi).  The bay 

width L is 9.15m (30ft) and the height h is 3.96m (13 ft).  The frame is subjected to a 

zero-mean white noise stationary horizontal base acceleration with peak ground 

acceleration of 1.0 g.  The mass is M=159450 kg the stiffness is K=76987 kN/m and the 

damping coefficient is C= 140 kN sec/m that is determined assuming a Rayleigh damping 
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equal to 2%.  The period of the uncontrolled frame is T0 =0.28 sec.  The required lateral 

stiffness Ks necessary for supporting the gravity loads is: 

0.18sK K      (48) 

The frame has been designed in order to limit the drift to 0.5% (xlim=1.98cm).  Following 

Step 1, it considered now a possible reduction of K by introducing a diagonal active brace 

member while maintaining the original performance level (0.5% drift).  Mass will be 

changed accordingly while damping reduces according to Rayleigh damping constraint. 

If Ka is the achievable stiffness in the columns of the active structure, Figure 5 shows the 

value of Ka as a function of the required maximum control force uMAX.   
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Figure 4 SDOF steel frame with SSI before and after redesign 

 

In particular, it is possible to choose Ka while the dynamic requirements are satisfied 

entirely through activation of the active brace.  In this example, a reduction of stiffness of 

60% is selected to satisfy the same performance level of 0.5% drift with a maximum 

active control force for each soil type which is given in Table 1: 
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Table 1. Active control force for different soil types and foundation lengths 

 Soil Type 

Umax (kN) A B C D E 

L/B=1 192.4 192.4 191.9 186.6 161.9 

L/B=2 192.5 192.5 192.7 206.6 174.4 

L/B=4 192.5 192.7 193.4 209.9 198.9 

L/B=10 192.5 192.8 194.2 213.1 202.8 
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Figure 5 Maximum control force vs. normalized structural stiffness for different soil 

types and surface foundation dimensions 
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Many combinations are possible in determining the section properties of the columns and 

the beam for which it is possible to obtain a stiffness reduction of about 60%.  In this 

example, the two columns are substituted by two W14×99. Using this selection, it is 

possible to obtain a reduction of stiffness of 61.8% and the new updated stiffness is 

29401.127 kN maK = , while the initial structural steel mass (weight) of the frame is 

0 4959.5kg (10924lb)SM = . With added active brace, the structural steel mass is 

2775.7kg (6114lb)SM = .  Consequently, the structural steel weight is reduced by 44% by 

adding an active brace with a maximum control force which range from 162 to 213 kN, 

depending on the soil type and the foundation length (Figure 5).  For relatively stiff soil 

(A, B and C) the length variation of the surface foundation does not change the value of 

the active control force, therefore the redesign procedure is not affected. For softer soil 

(D, E) increasing the length of the foundation can instead have a negative impact on the 

value of the active control force which can increase of about 14% for soil type D and of 

about 25% for soil type E (Figure 5d-e).  In Table 1 can also be observed that the same 

integrated redesign can be achieved with less control force in the lateral brace, when soft 

soil are considered for the case of squared foundations, while the trend is the opposite for 

long foundations (L/B=10).   

 

6 story MDOF steel structure with SSI 
 

The controlled building and its characteristic are illustrated in Figure 6.  The main 

difference is that the equation of motion of the superstructure can be obtained for the SSI 

case by adding the foundation inertial forces to that of the fixed base case.  Details about 
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the derivation of the equation of motion for the 2D-dimensional shear-type building with 

SSI can be found in Franklin and Cheng [21].  

 

K1=3.51×108 N/m

K2=2.25×108 N/m

Fy2=21.20kN

K3=1.70×108 N/m

Fy3=18.24kN

K4=1.24×108 N/m

Fy4=13.46kN

K5=0.88×108 N/m

Fy5=7.29kN

m=1.1×105 kg

m=1.1×105 kg

m=1.1×105 kg

m=1.1×105 kg

m=1.1×105 kg

m=1.1×105 kg

K6=0.6×108 N/m

k xx()

c xx()
c ry() k ry()

hi

mo, Iry

 

Figure 6 Shear-type model of the MDOF system 

 

The foundation of the building is square with dimensions 12×12 m, mass of 2.2×105kg. 

Different soil conditions are considered and their respective parameters are given below: 
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Table 2. Parameters of the different soil types 

 
Seismic Velocity 

at the site 
Density 

Shear wave 
velocity 

Coefficient 
of Poisson 

 

Soil 
Type 

Vs 
(m/s) 

ρ 
(kg/m3) 

G 
(MPa) 

v 
Geological material 

A 1700 2800 8092 0.5 

e.g. Crystalline 
metamorphic rock or 

not altered 
B 1125 2400 3038 0.4 e.g. Limestone 

C 550 1690 511 0.2 
e.g. Medium sand 
near the surface 

D 275 1430 108 0.3 e.g. Consistent Clay 

E 100 1250 13 0.3 e.g. Loose sand 
 

The building is subjected to El Centro Earthquake.  The maximum inter-story drift 

(Figure 7b), absolute acceleration (Figure 7c) and base shear (Figure 7c) normalized with 

respect to the fixed base condition are shown for different soil types and different 

foundation lengths. Figure 7 shows that for soft soil (Type E) squared surface foundations 

(L/B=1) generate a reduction of the structural response of about 10% in term of drift, 

20% in term of acceleration and about 40% in term of base shear.  Then an optimal 

damping distribution has been selected using a simple heuristic search approaches called 

“Sequential Search” [22] which can be easily integrated in conventional design 

procedures used by practicing engineers dealing with damper-added structures, and they 

yield a solution which may be close to the optimal solution.  The objective function 

which has been minimized using the algorithm is the maximum inter-story drift. First, 

preliminary design was performed assuming 25% damping ratio on the first mode 

assuming one damper placed at every story unit (Uniform distribution) and then the 

optimization algorithm was applied to the fixed base structure.  The resulting optimal 

damping distribution is a uniform distribution, but with two dampers on the first floor and 
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none in the last floor.  The structural damped response considering SSI is shown in 

Figure 8.  
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Figure 7  Maximum drift, acceleration and base shear response vs. different 

foundations extensions and Soil Types for six story uncontrolled building 
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Figure 8  Maximum drift, acceleration and base shear response vs. different 

foundations extensions and Soil Types for six story damped building 

 

 It is shown that the optimal damping distribution selected for the fixed base case 

provides not conservative results when SSI in not considered.  In particular for soft soil 

(Type E) and squared surface foundations (L/B=1) the drift increases of about 40%, the 
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accelerations of about 15% and the base shear of about 65% with respect to the fixed base 

damped configuration.   

9 story MDOF steel structure with SSI 
 

The nine-story benchmark structure [23] considered in this example is 45.73 m (150 ft) 

by 45.73 m (150 ft) in plan, and 37.19 m (122 ft) in elevation.  The bays are 9.15 m (30 

ft) on center, in both directions, with five bays each in the North-South (N-S) and East-

West (E-W) directions.  The building’s lateral load-resisting system is comprised of steel 

perimeter moment-resisting frames (MRFs) with simple framing on the furthest south E-

W frame.  The interior bays of the structure contain simple framing with composite 

floors.  Typical floor-to-floor heights (measured from center-of-beam to center-of-beam 

for analysis purposes) are 3.96 m (13 ft).  The floor-to-floor height of the basement level 

is 3.65 m (12 ft) and for the first floor is 5.49 m (18 ft).  The floor system is comprised of 

248 MPa (36 ksi) steel wide-flange beams acting compositely with the floor slab, each 

frame resisting one-half of the seismic mass associated with the entire structure.  The 

seismic mass at the ground level is 9.65×105 kg (66.0 kip-sec2/ft),  1.01×106  kg (69.0 

kips-sec2/ft) for the first level, 9.89×105 kg (67.7 kip-sec2/ft) for the second through 

eighth levels and 1.07×106 kg (73.2 kip-sec2/ft) for the ninth level.  The seismic mass of 

the above ground levels of the entire structure is 9.00×106 kg (616 kip-sec2/ft).  The first 

three natural frequencies are 0.44, 1.18 and 2.05 Hz.  More details about the model can 

be found in Othori et al.  (2004).  Without loss of generality, an equivalent shear-type 

model is determined by minimizing the difference between the frequencies and the mode 

shapes of the finite element model and the shear-type model in order to reduce the 

number of DOFs involved in the methodology.  Rayleigh proportional damping is 
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considered, including 2% of damping ratio for the first two modes.  The structure is 

subjected to the first 30 sec of white noise with amplitude of 0.15g and with a sampling 

frequency of 0.02 sec.  The coefficient p of the R matrix [1], is assumed equal to 11.6 to 

obtain a maximum drift below 1.0% when excited with a white noise of 0.15g of 

amplitude.  After the structure and the controller are designed independently in Step 1, 

the controller and the building are redesigned together in Step 2 to achieve the same 

performance (Ideal Response) by reducing the amount of active control power.  The 

percentage of reduction of the total energy transferred to the structure from the controller 

is given in Table 3. 

Table 3. Percentage of reduction of energy transferred to the structure after 

redesign 

Fixed base A B C D E 

-18.5% -9% -6.9% -12.6% -10.1% -7.1% 
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Figure 9  Structural mass Ms before and after redesign of MRF for different soil 

types 

Finally, the story mass distributions before and after redesign for different soil types are 

shown in Figure 9, where it can be observed a diffused reduction of the structural mass, 

while the reduction of mass that was obtained with the fixed base case at the upper story 

levels [1] is no more observed.  The total mass reduction for different soil type after the 
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application of the integrated redesign is shown in Figure 10, where it is observed that for 

soil type B, C, and D the structural mass actually increases, while reduction has been 

observed on soil type E.   The results above draw the conclusion that SSI should be 

included in the Integrated Redesign, because in certain cases the design obtained for the 

fixed base case can bring to not conservative results.   
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Figure 10  Total mass reduction for different soil types after redesign 

 

CONCLUDING REMARKS 

Integrated Redesign has shown its effectiveness in optimizing both the controller and the 

structure simultaneously, by reducing the structural mass of the building.  However past 

research was applied to fixed based structures considering relatively stiff soil conditions. 

This paper examines the effects of soil-structure interaction on the seismic performance 

of integrated redesign.  A linear SDOF steel portal frame, a 6 story building and a linear 

9-DOF shear-type structure with different soil types and with a rigid surface foundation 

have been considered to analyze soil-structure interaction effects.  For the single portal 

frame with a soft soil (D, E) if the length of the foundation increases it can have a 

negative impact on the active control force which can increase of about 14% for soil type 
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D and of about 25% for soil type E.  It is also observed that the same integrated redesign 

can be achieved with less control force in the lateral brace, when soft soil are considered 

for the case of squared foundations, while the trend is the opposite for long foundations 

(L/B=10).  For the six story building if the optimal damping distribution is obtained from 

the fixed base case, it can provide larger interstory drifts (+40%) and larger base shear 

(+65%) with respect to the fixed base case when SSI is considered.  The optimal redesign 

approach on fixed base of a 9 story building causes a mass reduction on the upper stories, 

which is not observed when soil structure interaction is included in the model.  These 

observations bring to the conclusions that SSI should be included in the Integrated 

Redesign approach to determine the optimal damping distribution, otherwise in certain 

cases unconservative results might be obtained.  However, further investigations are 

necessary to draw more general conclusions.   
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