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Thermodynamic instabilities in compact stars

A. Lavagnoa,b and D. Pigatoa

aDepartment of Applied Science and Technology, Politecnico di Torino, I-10129, Italy
bINFN, Sezione di Torino, I-10125 Torino, Italy

Abstract

We investigate the presence of thermodynamic instabilities in the high density
nuclear matter reached in the central core of compact stars. In the framework of
a relativistic mean-field theory, we study the cold hadronic equation of state in
beta-equilibrium and charge neutral matter, including hyperons and ∆-isobar
degrees of freedom. By considering fluctuations of the electric charge concentra-
tion of strongly interacting matter, we analyze a finite density phase transition
characterized by pure hadronic matter with both mechanical instability that
by chemical-diffusive instability. It turns out that in this situation hadronic
phases with different values of electric charge content may coexist, with several
implications in the bulk properties of compact stars.
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1. Introduction

The physics of compact star is strictly connected with statistical mechanics
and possible phase transition phenomena due to a large average number of
particles involved in the high density core of the stars. In the recent years, many
data from X-ray satellites provide important information on the structure and5

formation of compact stellar objects giving a unique opportunity to explore the
bulk thermodynamics and the equation of state (EOS) of strongly interacting
matter at different regimes [1, 2, 3, 4, 5, 6].

Relativistic heavy-ion collisions have provided several information about the
nuclear EOS in regime of high temperature and low baryon chemical potential10

where new phase of strongly interacting matter, named quark gluon plasma, can
be generated and non-conventional statistical mechanics effects can take place
[7, 8, 9, 10, 11, 12].

At low temperatures and subnuclear densities, a liquid-gas type of phase
transition was first predicted theoretically and later observed experimentally15

in a nuclear multifragmentation phenomenon at intermediate-energy nuclear
reactions [13, 14, 15, 16]. On the other hand, the behavior of matter at large
densities is still poorly known but, on general grounds, new degrees of freedom
with the inclusion of baryon heavier than the nucleons are expected to appear
and they should generate a softening of the equation of state. In the recent year,20
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liquid-gas phase transition in the nuclear EOS has been extended in different
regimes below and above the nuclear saturation density [17, 18, 19, 20].

By requiring the Gibbs conditions on the global conservation of baryon num-
ber and zero net electric charge, in this paper we are going to investigate the
possible presence of thermodynamic instabilities and subsequent phase transi-25

tions in the high density hadronic matter. Differently of previous investigations,
we will see that the inclusion of the ∆-isobar degrees of freedom in the EOS
plays a crucial role in the generation of mechanical and chemical instability in
the core of compact stars.

2. Hadronic β-stable equation of state30

We study the hadronic β-stable nuclear matter at zero temperature in the
framework of a relativistic mean-field model in which the interaction between
baryons is mediated by the exchange of a scalar meson σ, an isoscalar vec-
tor meson ω, and a isovector vector ρ. We consider the recently introduced
parametrization of the nuclear EOS, called SFHo [21], which accounts for the35

experimental observation related to the symmetry energy and of constraints
from terrestrial and astrophysical data relative to the density derivative of the
symmetry energy. In this context, it is relevant to observe that the nuclear EOS
is obtained at the mean-field level. Recently, the effect of bosonic quantum fluc-
tuations have been estimated by means of a functional renormalization group40

technique with massless fermions coupled to scalars through Yukawa coupling
[22, 23]. Within this approach, due to quantum fluctuations, an effect of about
5% in the mass-radius relation of a compact star were obtained [24].

Hyperon degrees of freedom are included in the EOS by fixing the values of
the hyperon-meson coupling constants to reproduce the potential depth of hy-45

perons at saturations (UNΛ = −28 MeV, UNΣ = +30 MeV, UNΞ = −18 MeV) [25].
Besides hyperons, a state of high density resonance ∆(1232)-isobar matter may
be formed in the core of the compact star. Transport model calculations and
experimental results indicate that an excited state of baryonic matter is domi-
nated by the ∆-resonance at the energy from AGS to RHIC [26, 27, 28, 29]. It50

has been pointed out that the existence of ∆-isobars can be very relevant also in
the core of neutron stars [30, 31, 32, 33]. Moreover, in symmetric nuclear matter
and in the framework of a non-linear Walecka model, it has been predicted that
a phase transition from nucleonic matter to ∆-excited nuclear matter can take
place and the occurrence of this transition sensibly depends on the value of the55

∆-meson coupling constants [27, 34].
Qualitatively, it has been possible to establish that the ∆-isobars inside a

nucleus feel an attractive potential. There are several purely theoretical studies
on the properties of the isobars in the nuclear medium: for instance, in Ref.
[35], from QCD sum rules, it has been found that the coupling ratio ∆−ω with60

respect to the nucleons-ω is significantly smaller than one. One the other hand,
in Ref. [36], by studying coherent pion production in neutrino-nucleus scattering
a good agreement with the experimental data was obtained by assuming a ∆
potential equal to the nucleon one.
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From phenomenological analysis of electron-nucleus, photoabsorption and65

pion nucleus scattering data can be extracted different experimental constraints
related to the physical values of the ∆-meson coupling constants xσ∆ = gσ∆/gσN
and xω∆ = gω∆/gωN , which can be used in the nuclear EOS [31, 37, 38, 39, 40,
41]. For what concerns the coupling with the ∆ − ρ meson is not possible to
extract experimental constraints and from here on we will fix the same coupling70

with the nucleons (xρ∆ = gρ∆/gρN = 1).
In Fig. 1, we report the relation between the coupling ratios obtained by

considering the experimental constraints (see Ref.[31] for details) for the SFHo
EOS [21]. Furthermore, as we will see, for coupling ratios below the red line,
the EOS results to be unstable and there is therefore a window of parameters,75

compatible with the experimental constraints, for which an hadronic phase tran-
sition can take place. In the next Sections, we are going to investigate how this
matter of fact can influence the bulk properties of compact stars.
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Figure 1: Relation between the coupling ratios xω∆ and xσ∆ in terms of experimental con-
straints related to pion and electron scattering and from photoabsorption on nuclei. Below
the red line, thermodynamic instabilities are present in the equation of state.

3. Thermodynamic instabilities in β-stable nuclear matter

As previously observed, we are dealing with the study of a multi-component80

system with two conserved charges: baryon number and zero net electric charge
(strangeness is not conserved in β-stable matter). The baryon chemical poten-
tial µi of the ith baryon particle are obtained by the β-equilibrium conditions:
µi = µB + ci µC , where µB and µC are the chemical potentials associated with
conservation of the baryon number and electric charge, respectively, and ci is85

the electric charge of the ith baryon.
Assuming the presence of two phases (denoted as I and II, respectively),

the system is stable against the separation in two phases if the free energy of a
single phase is lower than the free energy in all two phases configuration. The
phase coexistence is given by the Gibbs conditions90

µIB = µIIB , µIC = µIIC , (1)
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P I(T, µB , µC) = P II(T, µB , µC) . (2)

Therefore, at a given baryon density ρB and at a given net electric charge density
ρC = rc ρB (with rc = Z/A), the chemical potentials µB are µC are univocally
determined.

An important feature of this conditions is that, unlike the case of a single
conserved charge where the pressure in the so-called Maxwell construction is95

constant, for two conserved charges the pressure in the mixed phase is not con-
stant and, although the total ρB and ρC are fixed, baryon and electric charge
densities can be different in the two phases. For such a system in thermal equi-
librium, the binodal coexistence surface is two dimensional and the instabilities
in the mixed phase arise from fluctuations in the electric charge concentra-100

tion (chemical instability) and in the baryon density (mechanical instability)
[15, 20, 42].

As usual the condition of the mechanical stability implies

ρB

(
∂P

∂ρB

)
T, ρC

> 0 . (3)

When the compressibility becomes negative, at fixed temperature and electric
charge density, a mechanical instability is present in the EOS.105

Furthermore, the chemical stability condition is satisfied if [15, 20]

(
∂µC
∂rc

)
T,P

> 0 or



(
∂µB
∂rc

)
T,P

< 0 , if rc > 0 ,

(
∂µB
∂rc

)
T,P

> 0 , if rc < 0 .

(4)

Whenever the above stability conditions are not respected, the system be-
comes unstable. The coexistence line of a system with one conserved charge
becomes in this case a binodal surface in (T, P, rc) space enclosing the area
where the system undergoes to the phase transition.110

In Fig. 2, we show the pressure as a function of baryon density for different
∆-meson couplings. Let us observe that for the upper curve, corresponding to
xσ∆ = 1.05 and xω∆ = 0.95, the equation of state is stable. Otherwise, for the
two lower curves, the chosen coupling constants are below the red line of Fig.
1 (as well as satisfying experimental constraints) and it is possibly to observe115

that the mechanical stability condition in Eq.(3) is not satisfied.
In Fig. 3, we report the same curves of Fig. 2 where thermodynamical

instabilities are present with the solution obtained by means of the Gibbs con-
struction (red lines). Let us note that, depending on the ∆-meson couplings,
the baryon density region in which the equation of state is unstable can become120

very large (2 ÷ 3 ρ0) and it is realized for typical values present in the core of
the compact stars.

Let us further remark that, although the system has globally zero net electric
charge (rc=0), in the mixed phase there are two phases with different and finite
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Figure 2: Pressure as a function of baryon density (in units of the nuclear saturation density
ρ0) for different coupling ratios xσ∆ and xω∆. In the two lower curves instability conditions
are present.
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Figure 3: The same of Fig. 2 with the Gibbs construction (red lines) in region of the unstable
EOSs.

values of electric charge (baryon and electric charges are globally conserved but125

are different in the two hadronic phases).
In order to better understand the different content of electric charge density

in the phase coexistence of the system and the evolutions of the two phases in
the mixed phase, in Fig. 4, we show the binodal section for the value of the
∆-meson coupling ratios xσ∆ = 0.95 and xω∆ = 0.75 (the same couplings of the130

blue curve of Fig. 3) where both mechanical and chemical-diffusive instabilities
are present.

The right branch (phase I at lower density, red line) corresponds to the initial
phase, where the dominant component of the system is given by nucleons. The
left branch (phase II at higher density, blue line) is related to the final phase,135

where the system has a large content of ∆-isobar particles. In the presence of
∆-isobars the phase coexistence region extends up to regions of negative electric
charge fraction rc due to the formation of ∆− particles. The binodal surface
enclose the area where the system undergoes to the phase transition.
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Figure 4: Binodal section with in evidence the point of maximum asymmetry (MA) and the
point of equal equilibrium (EQ). In the mixed phase (from the points A to C) the system has
different electric charge concentration rc in the two phases.

During the isothermal compression, the system evolves through configura-140

tions at constant rc = 0 and meets the lower branch in a point A. At this
point the system becomes unstable and an infinitesimal ∆-dominant phase in
B appears at the same temperature and pressure of A, but at higher baryon
density and different electric charge content. In the phase transition, each phase
evolves towards a configuration with increasing rc until the value of pressure in145

the point C in the phase II where the system becomes stable.
In Fig. 5, we display, for the same couplings of Fig. 4, the evolution of

the two phases during the phase transition as a function of baryon density. Let
us note that, in the branch related to the phase I, the baryon density decrease
during the isothermal compression, while in the phase II the baryon density150

increase. At the point C the system becomes stable in the phase II.
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Figure 5: Pressure as a function of the baryon density (in units of the nuclear saturation
density ρ0) during the phase transition from the point A to C related the binodal section of
Fig. 4.
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4. Bulk properties of compact stars

We are going now to investigate the relevance of the thermodynamic insta-
bilities in the core of the compact stars. In Fig. 6, we report the gravitational
mass as a function of radius R of the star in absence (np) and in presence (npH)155

of hyperons, without ∆-isobar particles. Otherwise, in the three lower curves
the ∆-isobar degrees of freedom are open. For the coupling ratios: xσ∆ = 1.05,
xω∆ = 0.95, the equation of state is always stable and the core of the star
is composed by nucleons, hyperons and ∆-particles. Instead for the values:
xσ∆ = 0.95, xω∆ = 0.75 and xσ∆ = 0.90, xω∆ = 0.72, mechanical and chemical-160

diffusion instability are present and the Gibbs construction must be applied to
equation of state.

np

npH

xσΔ=1.05
xωΔ=0.95

xσΔ=0.90
xωΔ=0.72

xσΔ=0.95
xωΔ=0.75

10 11 12 13 14
R[km]

0.5

1.0

1.5

2.0

MG/M⊙

Figure 6: Gravitational mass of the stars (in units of the solar mass) as a function of the radius
for different parameter sets. The symbol np stands for stars without hyperons and ∆ degrees
of freedom, npH with hyperons but without ∆ particles. The two lower curves correspond to
values of the meson-∆ coupling constants where thermodynamic instabilities are present.

In Fig. 7, we show the gravitational mass as a function of central baryon
density ρcB of the star. The notation and the parameter sets are the same of
Fig. 6.165

In according to previous calculations [30, 32], the presence of ∆-isobar de-
grees of freedom smooths the equation of state. This effect is much more evident
when thermodynamic instabilities are present with a sensible reduction of the
maximum gravitational mass. This feature is principally due to the fact that in
the presence of a phase transition a mixed phase of low (phase I) and high (phase170

II) baryon density takes place, as displayed in Fig. 5. In the high density phase
is enhanced by the early appearance of hyperons in the stars providing a further
softening of the EOS, with a consequent further lowering of the maximum mass.

On the other hand, the recent discovery of compact stars having mass of the
order of 2M� indicates the need of a stiff EOS at large densities to allow such175

massive configurations [1, 2]. This matter of fact seems to be contradictory with
a very soft EOS of state realized in the presence of thermodynamic instabilities.
On the other hand, the constraint of 2M� configuration could be satisfied by
the existence of quark stars, absolutely stable stellar objects composed entirely
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Figure 7: Gravitational mass of the stars (in units of the solar mass) as a function of the
central baryon density (in units of the nuclear saturation density ρ0) for the same parameter
sets of Fig. 6.

of quark matter under the validity of the so-called Bodmer-Witten hypothesis180

[43, 44, 45], since quark matter is known to be rather stiff and to support massive
configurations [32, 46, 47] 1.

In order to reconcile the presence of different hadronic degrees of freedom,
such as hyperons and ∆-isobars that softer the EOS close to their production
threshold, with the observation of large masses compact stars configuration,185

in literature different papers discuss the hypothesis of a solution based on two
family of compact stars, one made of hadrons with small masses and radii and
the other made of deconfined quarks which satisfy large mass constraints [32, 48,
49, 50, 51]. A crucial recipe to realize the transition from hadronic to quark stars
is the formation of hyperons, which carry strangeness, in the center of the star.190

Such a feature can be satisfied in the phase transition due to the formation
of hyperons in the high density phase (phase II). Under this condition it is
relatively easy to have a transition to quark star because droplets of strange
quark matter can be formed by means nucleation [52] and the star can decay
into a more stable quark star with the same baryon mass, since this process is195

energetically favored due to the lower value of gravitational mass in the quark
star configuration.

More explicitly, in the case of xσ∆ = 0.95, xω∆ = 0.75, we have a maximun
gravitational mass MG = 1.05M� (corresponding to a baryon mass of MB =
1.13M�) with a radius R = 10.6 km. If we consider the pQCD calculations200

of Ref. [47] with the scale parameter X = 3.5 (for which the maximun mass
of quark stars is 2.53 M�), at the same baryon mass (MB = 1.13M�), the
quark star has a lower value of gravitational mass MG = 0.96M� at a radius of

1Let us note that in Ref. [33] with a different parametrization of hyperons and ∆-isobars
couplings, in the framework of a covariant density functional model, the condition of large
stellar masses results to be satisfied also for a pure hadronic star in the presence of hyperons
and ∆-isobar degrees of freedom.
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R = 12.5 km. Similarly, in the case of xσ∆ = 0.90, xω∆ = 0.72, the maximun
gravitational mass is MG = 1.13M� (corresponding to a baryon mass of MB =205

1.23M�) with a radius R = 10.6 km. On the other hand, at the same baryon
mass, the above quark star configuration has a smaller gravitational mass (MG =
1.03M�) even if its radius is larger (R = 12.8 km).

These features can be very relevant in the phenomenological interpretation
of compact star objects. Massive quark stars should show anomalous cooling210

histories and spinning frequency distributions with respect hadronic stars [53].
Moreover a large formation of ∆-isobars in the core of the compact star may
significantly influence the thermal evolution of the compact star through modi-
fication of the direct Urca neutrino emissivity process [33].
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