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S U M M A R Y
The joint inversion of multiple data sets encompasses the advantages of different geophysical
methods but may yield to conflicting solutions. Global search methods have been recently
developed to address the issue of local minima found by derivative-based methods, to analyse
the data compatibility and to find the set of trade-off solutions, since they are not unique. In
this paper, we examine two evolutionary algorithms to solve the joint inversion of electrical
and electromagnetic data. These nature-inspired metaheuristics also adopt the principle of
Pareto optimality in order to identify the result among the feasible solutions and then infer the
data compatibility. Since the joint inversion is characterized by more than one objective, we
implemented the algorithm multi-objective particle swarm optimization (MOPSO) to jointly
interpret time-domain electromagnetic data and vertical electrical sounding. We first tested
MOPSO on a synthetic model. The performance of MOPSO was directly compared with that
of a multi-objective genetic algorithm, the non-dominated sorting genetic algorithm (NSGA-
III), which has often been adopted in geophysics. The adoption of MOPSO and NSGA-III
enabled avoiding both simplification into a single-objective problem and the use of a weighting
factor between the objectives. We tested the two methods on real data sets collected in the
northwest of Italy. The results obtained from MOPSO and NSGA-III were highly comparable
to each other and largely consistent with literature findings. The MOPSO performed a rigorous
selection of the best trade-off solutions and its convergence was faster than NSGA-III. The
analysis of the Pareto Front reported data incompatibility, which is very common for real data
due to different resolutions, sensitivities and depth of investigations. Notwithstanding this,
the multi-objective optimizers provided a complementary interpretation of the data, ensuring
significant advantages with respect to the separate optimizations we carried out using the
single-objective particle swarm optimization algorithm.

Key words: Non-linear electromagnetics; Joint inversion; Numerical solutions; Statistical
methods.

1 I N T RO D U C T I O N

The joint inversion of multiple data sets can significantly improve
their modelling by overcoming the intrinsic limitations of each geo-
physical method. The advantages in combining different geophysi-
cal measurements using a unique inversion scheme have been clear
since the first introduction of joint inversion methods (Vozoff &
Jupp 1975; Yang & Tong 1988). Joint inversion has been exten-
sively applied to electrical and electromagnetic data to interpret one
physical property, that of electrical conductivity. However, as with
single inversion, joint inversion is still affected by non-uniqueness,

nonlinearity and ill-posedness, meaning that many different models
can fit the data within a certain misfit range (Tarantola 2005).

In the last decade, many derivative-based methods have been
proposed for the joint inversion of different data sets. These meth-
ods have proved to successfully image the properties of the layered
subsurface, thus outperforming the separate inversions and the cor-
respondent ambiguities (Hering et al. 1995; Gallardo & Meju 2003;
Musil et al. 2003; Moorkamp et al. 2011). A main issue with joint
inversion is data compatibility since real-world data are acquired
using different methods and usually present different resolutions,
sensitivities, depth of investigations and/or error levels. Data in-
compatibility can hence lead to either a variety of final results or
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conflicting models. These are commonly avoided using a weight-
ing factor between the objective functions that rule the inversion
(Candansayar & Tezkan 2008; Commer & Newman 2009; Meqbel
& Ritter 2015). However, even when using appropriate weighting
factors, the choice of the proper one is still critical and may not
resolve the conflict (Akca et al. 2014). Moreover, the search for a
single best solution for a joint-inversion problem can still produce
biased results. Therefore, the main drawbacks of the derivative-
based joint inversion are (1) the simplification of a multi-objective
(MO) problem (joint inversion) into a succession of single-objective
optimization problems with weighted objective functions and (2) the
strong influence of the starting model on the final result, which is
typical of the deterministic inversion techniques.

MO evolutionary algorithms (MOEAs) have recently been pro-
posed for the joint inversion of multiple data sets because they
deploy an MO optimizer (MOO) to solve the problem, without
transforming it into a series of single-objective optimizations. This
approach avoids the adoption of user-dependent weighting factors.
MOEAs rate the solution quality using the concept of Pareto opti-
mality, first introduced by Edgeworth (1881) and Pareto (1896).
A solution is considered Pareto optimal if there is not another
feasible solution that improves one objective without deteriorat-
ing the other objective. The whole set of solutions that fulfils this
criterion is called the Pareto-optimal set. MOEAs are attracting
widespread interest since the objective function is a unique vector
of as many components as the different data sets to be optimized,
without any need to rank them. The most widely used EAs are
the genetic algorithm (GA) and the particle swarm optimization
(PSO) algorithm (Kennedy & Eberhart 2001; Engelbrecht 2007).
In geophysics, the PSO algorithm has been accurately investigated
to solve the inverse problem involving vertical electrical sound-
ing (VES; Fernandez Martinez et al. 2010), direct current (DC)
method (Shaw & Srivastava 2007), audio-magnetotelluric (AMT)
and MT data (Pace et al. 2017; Godio & Santilano 2018; Pace et al.
2019), MT and time-domain electromagnetic (TDEM) data (San-
tilano et al. 2018). Due to the positive outcomes of PSO applied
to single-objective problems, it has been proposed to tackle MO
problems. Coello Coello et al. (2004) showed highly competitive
results of MO particle swarm optimization (MOPSO) applied to
benchmark test functions. Unfortunately, few studies have so far
dealt with MOPSO applied to geophysics. One of the first works
that adopted PSO for the joint inversion of synthetic data (GPR and
P-wave seismic traveltimes) was Tronicke et al. (2011), but it ac-
tually simplified the problem into a single-objective one. Similarly,
Paasche & Tronicke (2014) developed a hybrid approach on radar
and P-wave traveltimes. Cheng et al. (2015) then applied PSO to a
whole forward process synchronized between transient electromag-
netic method (TEM) and DC methods. There is hence little evidence
of the potentiality of MOPSO on the geophysical joint inversion.
The MO version of GA has instead been more explored; examples
include the inversion of Raleigh-wave dispersion curves and reflec-
tion traveltimes (Dal Moro & Pipan 2007), surface wave dispersion
and horizontal-to-vertical spectral ratio (Dal Moro 2010), AMT and
broad-band MT data (Schnaidt et al. 2018), magnetic resonance and
VES data (Akca et al. 2014), seismic and well-log data for reservoir
modelling (Emami Niri & Lumley 2015), and receiver functions,
surface wave dispersion and MT data (Moorkamp et al. 2010). Al-
though these works have adopted the non-dominated sorting GA
called NSGA-II (Deb et al. 2002), little attention has been paid to
the most recent NSGA-III (Deb & Jain 2014).

This work explores the 1-D joint inversion of different geophysi-
cal data sets using MOPSO as the MO solver since its potential has

Figure 1. The scheme of the TV-MOPSO algorithm.

not been fully investigated so far. Each data set was composed of in-
tegrated TDEM and VES soundings, so we dealt with a bi-objective
problem. The adoption of MOEAs avoided both simplification into
a single-objective problem and the use of the weighting factor. A
preliminary introduction on our method can be found in Pace et al.
(2018). The novelty of this paper is that our method is first tested
on synthetic data and then applied to two real data sets from two
different surveys for groundwater prospection in northwest Italy
(Piedmont region). Moreover, the performance of MOPSO applied
to real data was directly compared with that of a NSGA-III, which
is stable and widely adopted in geophysics. The economic concept
of Pareto optimality was used to identify the final set of results
among the feasible solutions. We present also the advantages of the
MOPSO with respect to the separate PSO inversions.

2 M E T H O D

2.1 The objective function and Pareto optimality

The EAs are nature-inspired and population-based metaheuristics
that simulate the complex social dynamics of groups of animals to
find the optimized solution of a nonlinear problem. The MO version
of these algorithms has been developed to solve that problems char-
acterized by more than one objective, as explained in Coello Coello
et al. (2007). The joint inversion of multiple geophysical data sets
is an example of MO problem. The MOEAs adopted in this work
are the MO versions of PSO and GA, the MOPSO and NSGA-III
algorithms, respectively. Dealing with different geophysical mea-
surements at the same site makes the inversion critical because
the resolution, sensitivity and depth of investigation can extremely
vary from one method to another. Consequently, the interpretation
of the data can yield to conflicting solutions and the components
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Figure 2. The result of TV-MOPSO applied to the synthetic example: (a) TDEM theoretical signal (the red dots with error bars) and predicted response in the
range 0.9 × 10−5–2 × 10−3 s, (b) VES data cover 1–1000 m of half-spacing, (c) the true model (the red-dashed line), the final resistivity models derived from
the PF (the green lines) and the best solution highlighted in blue.

of the objective function may not converge. The optimization of
different physical parameters may further influence the problem of
conflicting solutions.

In this study, we jointly analysed two geophysical methods,
TDEM and VES, which deal with the same physical parameter,
that is, electrical resistivity. The problem unknown was the p-
dimensional vector m = [m1, . . . , mp] of electrical resistivity, being
p the number of layers whose thickness was defined before the op-
timization. The 1-D profile m is a feasible solution found after the
minimization of the objective function:

f (m) = [ f1 (m) , f2 (m)] , (1)

where the two components of the vector refer to TDEM and VES,
respectively. These components were simultaneously minimized in
the multidimensional space of the objective function.

Since a variety of solutions is identified at the end of the MO
optimization, the choice of the best solution is a critical point.
MOEAs select the best set of trade-off solutions using the optimality
notion originally proposed by Edgeworth (1881), then generalized
by Vilfredo Pareto and today well known as the Pareto optimality
(Pareto 1896). This principle identifies a range of compromises as
feasible solutions, thus avoiding the results being biased by the
user-driven weighting approach. This is the mathematical definition
of Pareto dominance: given two possible solutions ma and mb, the
vector f(ma) is said to dominate f(mb) (denoted by f(ma) � f(mb)) if
and only if ∀ j ∈ {1, 2}, fj(ma) ≤ fj(mb)�∃ j ∈ {1, 2}: fj(ma) < fj(mb).
For us, j = 1 refers to the TDEM component and j = 2 to the
VES component. All the non-dominated solutions form the Pareto-
optimal set (P∗) or non-dominated set. The corresponding objective
functions of the non-dominated solutions form the Pareto front (PF)
in the objective space:

P F = { f (m) = ( f 1(m), f 2(m))|m ∈ P∗}. (2)

That is, when P∗ is projected onto a surface, it is referred to as the
PF. In our 2-D objective space, the PF is graphically depicted as a
trade-off surface showing which component of f(m) is mostly min-
imized. Besides, the PF can be analysed to infer the compatibility
between the different data sets (Dal Moro & Pipan 2007; Schnaidt
et al. 2018).

Each jth component of the objective function to be minimized
was defined as the Euclidean norm of the misfit between observed

Table 1. Analysis of the performance of MOPSO on the synthetic example.
The rows report the number of iterations run, repository index (RI), spacing
(SP), deviation angle (α) between the ideal and Theil–Sen regression line,
total runtime in hours, data misfit (NRMSE) for TDEM and VES and model
misfit (NRMSE).

Synthetic data MOPSO

Iterations 1000
RI (per cent) 7.6
SP 0.0033
α (◦) 48.3
Runtime (h) 13
Data NRMSE TDEM 0.0367
Data NRMSE VES 0.0209
Model NRMSE 0.188

data and calculated response plus an additional term to regulate the
model smoothness:

f j (m) =
∥∥∥∥ϕo − ϕc

σ ϕ

∥∥∥∥
2

+ λ j ‖ log10(∂m)‖2, (3)

where ϕa,o is the observed TDEM signal if j = 1 or the observed
apparent resistivity if j = 2; ϕa,c is the calculated response for
TDEM signal if j = 1 or the calculated apparent resistivity if j = 2;
the difference in ‖ · ‖2 is normalized by the corresponding errors
(σϕ) on the observed data; λj is called the Lagrange-multiplier, or
smoothing parameter. The right-hand side of eq. (3) is composed
of two terms: the first one assesses the distance of the observed
data from the response calculated by the forward modelling; the
second term addresses the minimization of the roughness of the
model, using the smoothing parameter λj on the first derivative
of the model m. The subscript of λj addressed the different level
of smoothing required by the specific geophysical method. Even
though the Occam’s inversion was first introduced for deterministic
methods (Constable et al. 1987), the ‘Occam-like optimization’ has
been effectively proposed for PSO in Godio & Santilano (2018),
Pace et al. (2019) and Santilano et al. (2018). We here applied
the ‘Occam-like optimization’ in order to search for the smoothest
model that fitted the data, that is, a trade-off between the minimum
misfit achievable and unnecessary structure (or roughness) in the
model. The proper value of λj was chosen following the L-curve
criterion, which identified the optimal trade-off between the misfit
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Figure 3. The result of TV-MOPSO applied to the Stupinigi data set: observed data (the red dots with error bars) and predicted apparent resistivity (ρapp) for
TDEM (a) and VES (b) data; (c) the final resistivity models derived from the PF (the green lines) and the best solution highlighted in blue.

of the data and the roughness of the final model (i.e. the model
norm; Farquharson & Oldenburg 2004). It is obvious from eq. (3)
that a high value of λj results in a smooth model penalizing the
misfit, while, on the contrary, a low λj yields a minimum data
misfit and high resistivity contrasts (roughness) between the layers
of the model. The forward modelling used to handle TDEM data
was derived from the CR1Dmod algorithm (Ingeman-Nielsen &
Baumgartner 2006). The VES forward modelling was adapted from
the code VES1dmod in Ekinci & Demirci (2008).

The MO optimization of TDEM and VES data was defined as a
problem without equality and inequality constraints. The problem
had boundary conditions: the search space of the solutions was
bounded between a minimum and maximum value of electrical
resistivity. This interval was set as large to enable the exploration
of all the feasible solutions.

2.2 The multi-objective particle swarm optimization
algorithm

The PSO algorithm is a population-based algorithm inspired by the
social behaviour of animals such as flocks of birds or schools of fish.
Fundamental theory can be found in Kennedy & Eberhart (1995,
2001) and Engelbrecht (2007). Successful applications of PSO have
covered a wide variety of scientific disciplines (Poli 2008 and ref-
erences therein). We here explain the main differences between
single-objective PSO and MOPSO in relation to the geophysical
inversion. The particles of the swarm occupied the search space of
solutions and represented the possible solutions of joint inversion.
After starting from a random distribution, the adaptive behaviour
adjusted the particles’ positions and ruled their interactions in order
to minimize the objective function (eq. 3). This complex behaviour
ensured, iteration after iteration, the exploration and exploitation
of the search space and, finally, the convergence of the solution
(Fernández Martı́nez et al. 2010; Pallero et al. 2018). The particles

iteratively changed their positions according to

vk+1
i = ωk vk

i + αk
1γ1

(
P i − xk

i

) + αk
2γ2

(
Gk − xk

i

)
, (4)

xk+1
i = xk

i + vk+1
i , (5)

where i = [1,. . . ,N]; N is the number of particles; k is the iter-
ation number; xk

i and vk
i are the current vectors of position and

velocity of the ith particle, respectively; ωk is the inertia weight
that linearly decreases from 0.9 (first iteration) to 0.4 (last itera-
tion) in order to tune the momentum remembered from the previous
iteration (Shi & Eberhart 1999); α1

k is the cognitive acceleration
towards the particle best solution Pi, also called ‘local best’; α2

k

is the social acceleration towards the best global position G, also
called ‘global best’; γ 1 and γ 2 are random numbers, uniformly dis-
tributed in [0, 1] to provide stochastic perturbation to the solutions
found. While in single-objective PSO the leader G is the unique
best particle of the swarm, in MOPSO the set of non-dominated
solutions worked as swarm leader. The non-dominated solutions
were stored in an archive called repository. It was updated at each
k iteration with the advantage that a high number of iterations did
not directly imply a high number of non-dominated solutions since
a new non-dominated solution could dominate (and hence replace)
a non-dominated solution of the previous iteration (Coello Coello
et al. 2004). Gk was hence selected from the repository at each
iteration according to a quasi-random criterion based on the most
crowded regions of the objective space. Eq. (4) establishes that the
particle’s velocity resulted from the balance among three terms:
the cognitive knowledge α1

k, the social attraction α2
k towards the

leader and the inertia ωk, accounting for the past experience. At the
first iteration (k = 0), the particles were initialized with null velocity
( v0

i = 0) and random positions uniformly distributed in the search
space.

Since the first appearance in 2000, several MOPSO variants
have been proposed (for a review, see Reyes-Sierra & Coello Coello
2006). We implemented the time-variant (or TV) MOPSO to take
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Figure 4. TV-MOPSO applied to the Stupinigi data set: the evolution of the TDEM (a) and VES (b) components of the objective function from the first to
the last iteration for the best particle (the red stars) and the remaining ones (the black circles); (c) the 2-D space of the objective function (TDEM and VES
components) at the last iteration: the red symbols identify the PF and the black circles the objective-function values assumed by the other solutions; (d) the
intersection between the ideal line (grey dashed) and the Theil–Sen regression line (blue) or the least-squares regression line (black) identifies the deviation
angle α.

advantage of the k-dependent coefficients ωk, α1
k and α2

k changing
at each iteration to provide global exploration of the search space at
the beginning of the optimization and local exploitation at the end. In
detail, the TV inertia weight was proposed by Shi & Eberhart (1999),
while the TV acceleration coefficients by Ratnaweera et al. (2004)
and Tripathi et al. (2007). These works clearly demonstrated that a
high α1

k improves the solution diversity, while a high α2
k fosters the

convergence towards the global best. Therefore, we set α1
k larger

than α2
k at the initial iterations. Then, during the optimization, α1

k

linearly decreased and α2
k linearly increased, so that at the end they

were reversed. In detail

αk
1 = αmax

1 − (αmax
1 − αmin

1 )

(
k − 1

max (k) − 1

)
, (6)

αk
2 = αmin

2 + (αmax
2 − αmin

2 )

(
k − 1

max (k) − 1

)
, (7)

where αk is the acceleration value at iteration k; α1
max and α2

max are
the maximum values for the cognitive and social accelerations, re-
spectively; α1

min and α2
min are the minimum values for the cog-

nitive and social accelerations, respectively; and max(k) is the
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Table 2. Analysis of the performance of MOPSO and NSGA-III on the data
set from Stupinigi. The rows report the number of iterations run, repository
index (RI), spacing (SP), deviation angle (α) between the ideal and Theil–
Sen regression line, total runtime in hours and normalized root-mean-square
error (NRMSE) for TDEM and VES.

Stupinigi data set MOPSO NSGA-III

Iterations 1000 1000
RI (per cent) 21.5 100
SP 0.0041 0.0023
α (◦) 78.9 79.2
Runtime (h) 8.9 8.3
NRMSE TDEM 0.1611 0.2728
NRMSE VES 0.0681 0.0645

maximum number of iterations set for the optimization (Engel-
brecht 2007 and references therein). Therefore, at the first iteration
(k = 1), αk = 1

1 = αmax
1 and αk = 1

2 = αmin
2 , while, at the last iteration

(k = max(k)), α
k = max(k)
1 = αmin

1 and α
k = max(k)
2 = αmax

2 . Following
the stability criteria in Perez & Behdinan (2007) and the sensitiv-
ity analysis in Pace et al. (2019), we set αmax

1 = αmax
2 = 2 and

αmin
1 = αmin

2 = 0.5.

Our TV-MOPSO algorithm included the mutation operator,
which is typical of GA and scarcely effective in single-objective
PSO. However, many theoretical studies have proposed the intro-
duction of the mutation operator in MOPSO, in order to boost the
exploration of the remote regions of the search space and prevent
premature convergence to the local PF (Coello Coello et al. 2004;
Tripathi et al. 2007). We adopted the mutation operator equal to
0.5, in line with that works. It operated on a wide percentage of
particles at the early iterations and then exponentially decreased
its influence towards the end. The main advantage of the mutation
operator is that it compensates for the loss of diversity throughout
the optimization process.

The algorithm ran until a specific number of iterations was
achieved, that is, up to 1000 iterations. However, the total num-
ber of iterations is problem dependent and its initial and arbitrary
choice has proven to be inadequate as the single stopping criterion
(Engelbrecht 2007). Few iterations can lead to premature ending
before the solution convergence and, on the other hand, too much
iterations can result in unnecessary computation. Therefore, we set
another stopping criterion: if the objective function did not minimize
for 300 consecutive iterations, the run was terminated.

Another fundamental setting of the MOPSO was the number of
particles forming the swarm, that is, population size. This setting is
dependent on the number of unknowns of the problem, namely, the
number of layers the 1-D profile was discretized into. The rule of
thumb prescribes the number of particles proportional to about 8–12
times the unknowns (Engelbrecht 2007; Fernández Martı́nez et al.
2010; Pace et al. 2019). We discretized the model into 19 layers and
set the swarm size equal to about nine times the unknowns, that is,
a total of 170 particles. The scheme of the MOPSO algorithm is
listed in the flowchart of Fig. 1.

Our algorithm was developed in the Matlab programming envi-
ronment using the Parallel Computing Toolbox. The general code
of TV-MOPSO was adapted from Coello Coello et al. (2004) for
the geophysical problem. The simulations ran on a 12-core node
of the high performance computing (HPC) cluster for academic re-
search at Politecnico di Torino. The CPU model of the single node
is 2x Intel Xeon E5–2680 v3 2.50 GHz 12 cores. The sustained
performance of the cluster is globally 20.13 TFLOPS.

2.3 The NSGA-III

This section briefly describes the NSGA-III, being our study fo-
cused on swarm intelligence. NSGA-III was essentially chosen as
basis of comparison for MOPSO since GAs are the most common
global optimizers in geophysics. The NSGA-III is a bio-inspired
metaheuristic that mimics the inheritance of the highest qualities
from parents to children, the natural selection and the biodiversity.
The population members represented the possible solutions of joint
inversion and were sorted according to the Pareto-dominance rank-
ing method. The selection of the non-dominated solutions was per-
formed using the non-domination rank and the so-called crowding
distance that measured the neighbours surrounding each individual.
The diversity was preserved according to the tenet of fitness shar-
ing that promoted the solutions in the least populated regions of the
search space (Coello Coello et al. 2007). These criteria of ranking
and selection allowed the Pareto-optimal set to be identified.

Some input arguments of NSGA-III were similar to MOPSO
and hence were set following the criteria explained in the previous
section. These inputs were the population size, the number of itera-
tions, the boundary conditions and the stopping criteria. The main
difference between NSGA-III and MOPSO are the genetic oper-
ators known as crossover and mutation, the number of reference
points and the absence of the external archive called repository. The
crossover percentage was 0.5, meaning that, given any two random
parents, half of the population of the new generation, namely the
offspring, was subjected to the genetic crossover. The mutation per-
centage was 0.5 too, so that half of the population was subjected
to mutation. In detail, the mutation rate was 0.02, meaning that
the 2 per cent of the model represented by each selected individual
was forced to mutate. A major novelty of NSGA-III compared to
NSGA-II is the adoption of the reference points in order to enhance
the diversity among the solutions found. In a two-objective problem,
the reference points are placed in the line that in the 2-D objective
space intercept the axes in 1. The population members associated
with the reference points are emphasized, that is, allowed to evolve
in the next generation (elitist selection). It has been proven that the
most adequate number of reference points is equal to the population
size, so we set it accordingly. This and further details are given in
Deb & Jain (2014), which also reports the other differences and
advantages with respect to the well-known NSGA-II.

2.4 Solution evaluation

We adopted three metrics as performance measures assessing both
the number of non-dominated solutions and the PF.

(1)The repository index (RI):

RI (per cent) = Nrep

Ntot
, (8)

where Nrep is the number of non-dominated solutions (or, in
MOPSO, the particles stored in the repository), and Ntot is the to-
tal number of solutions analysed (i.e. the population size in both
MOPSO and NSGA-III). RI measured the level of non-dominated
solutions at the last iteration.

(2)The spacing (SP):

SP =
√√√√ 1

Nrep − 1

Nrep∑
i=1

(
d̄ − di

)2
, (9)
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Figure 5. The result of NSGA-III applied to the Stupinigi data set: observed data (the red dots with error bars) and predicted apparent resistivity (ρapp) for
TDEM (a) and VES (b) data; c) the final resistivity models derived from the PF (the green lines) and the best solution highlighted in blue.

where di = minj (| f i
1 (m) − f j

1 (m)| + | f i
2 (m) − f j

2 (m)|); i, j =
1, . . . , Nrep, and d̄ is the mean of all di (Coello Coello et al. 2004).
This metric effectively measured the distribution of the solutions
throughout the PF and was 0 in case of uniform distribution (i.e.
equidistant spacing) between the beginning and the end of the PF
curve.

(3)The deviation angle (α) between two lines: the bisector of the
objective space (with slope 1) and the linear fit of the PF calculated
using the Theil–Sen estimator (Theil 1950; Sen 1968). The angle α

was derived from the tangent:

tan α =
∣∣∣∣ m̃ − 1

1 + m̃

∣∣∣∣ , (10)

where m̃ is the median of the slopes between all the possible pairs
of points of the 2-D PF {(xi , yi )|i = 1, . . . , Nrep} :

m̃ = median
{
mi, j

∣∣i, j = 1, . . . , Nrep, i 
= j, i
〉

j
}
, (11)

mi, j = y j − yi

x j − xi
. (12)

The deviation angle α is an indicator of the data set compatibility
because only if the data sets are perfectly compatible, the objective
components converge to the same value and the PF aligns along the
ideal line of slope 1 (Schnaidt et al. 2018). Otherwise, conflicting
objective components lead to a marked deviation of the Theil–Sen
regression line. In detail, the condition 0◦ < α < 45◦ proves data
compatibility and can be easily observed in case of synthetic data
sets. If, instead, 45◦ < α < 90◦ data incompatibility occurs, and the
PF deviates from the ideal line. Unfortunately, field data sets are
commonly affected by incompatibility or partial compatibility due
to the specific differences of the geophysical methods. However,
the regression line, or simply, the PF shape is effective in showing
how much one objective component is in contrast with the other
one (Dal Moro 2010).

3 M U LT I - O B J E C T I V E O P T I M I Z AT I O N
O F S Y N T H E T I C A N D F I E L D DATA S E T S

The MOPSO was first tested on synthetic data to evaluate the perfor-
mance of the algorithm. Then, it was applied to two field data sets:
one over a known stratigraphic setting and one over an exploration
site. The two test sites are both placed in Piedmont, northwest Italy.
The first site is located in the Stupinigi area (about 10 km southwest
of Torino), while the second one in Villafranca d’Asti (about 40 km
southeast of Torino). For all the data sets, simulated or real TDEM
and VES soundings were analysed and combined.

The TDEM data are based on the propagation of an induced EM
field. For data acquisition, a steady current is forced to flow through
a loop for some milliseconds to allow a turn-on transient to be dissi-
pated in the ground. One or more coils, the receivers, are adopted to
acquire the response: the transient of the secondary field is a func-
tion of the distribution of electrical conductivity in the subsoil. The
volume investigated by TDEM is a function of the descending and
expanding image of the transmitted current. The electrical resistiv-
ity is estimated by analysing the transient decay of the secondary
field (McNeill 1990). The basic interpretation of TDEM data is a
1-D resistivity profile under the receiver position. The method is
sensitive mainly to conductive formations and, therefore, it is used
to extend their evidences with respect to aquifer formations.

The VES is an electric method that deploys two potential elec-
trodes that measure the electric field induced by two current elec-
trodes. The depth of investigation depends on the configuration of
the electrodes and the spacing between the current electrodes. The
measurements are typically displayed as apparent resistivity (ρapp)
as function of the current-electrode half-spacing. Despite VES be-
ing one of the oldest geophysical methods, it is still considered
worthy due to the efficiency of the set-up and the sensitivity to high
resistivity contrasts. Moreover, new joint interpretations of vintage
data could provide a more complete characterization if combined
with new acquisitions.
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Figure 6. NSGA-III applied to the Stupinigi data set: the evolution of the TDEM (a) and VES (b) components of the objective function from the first to the
last iteration for the best individuals (the red stars) and the remaining ones (the black circles); (c) the 2-D space of the objective function (TDEM and VES
components) at the last iteration: the red symbols identify the PF, while the black circles the objective-function values assumed by the other solutions; (d) the
intersection between the ideal line (grey dashed) and the Theil–Sen regression line (blue) or the least-squares regression line (black) identifies the deviation
angle α.

3.1 Test on synthetic data

The MOPSO was first tested on synthetic data. The synthetic test
model was composed of five layers of different resistivity. The 1-D
model is shown in Fig. 2(c) with a red-dashed line, while the TDEM
and VES curves are marked with the red dots in Figs 2(a) and (b),
respectively. These curves were computed using the forward solvers
mentioned before and adopted for the optimization. The error bars
refer to 10 per cent Gaussian noise added to the data.

The model solution was discretized into 19 layers and its max-
imum depth was consistent with the concept of electromagnetic
diffusion depth. The application of the L-curve criterion identified

the optimal Lagrange multipliers equal to 0.1 for TDEM and 0.01
for VES. The boundary conditions of the search space of solutions
were 1 and 500 ohm-m. The TV-MOPSO stopped after 1000 iter-
ations and the outcome is presented in Fig. 2. On the left (Figs 2a
and b), the blue lines represent the calculated responses satisfactory
fitting the synthetic curves. Fig. 2(c) displays the final result (the
blue line) compared to the true model (the red-dashed line) and the
other optimized solutions belonging to the PF (the green lines).
Table 1 lists other details of the optimization, such as: the RI (eq. 8),
the SP (eq. 9), the angle α (eq. 10), the total runtime (in hours),
the data misfit and model misfit calculated as the root-mean-square
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Figure 7. The result of TV-MOPSO applied to the Villafranca data set: observed data (the red dots with error bars) and predicted apparent resistivity (ρapp)
for TDEM (a) and VES (b) data; (c) the final resistivity models belonging to the PF (the green lines) and the best solution highlighted in blue.

error normalized by the mean value (NRMSE). The graphic rep-
resentation of the performance of the algorithm (i.e. the objective
minimization, the PF, etc.) will be shown for the real data sets.

3.2 Stupinigi test site

The site of Stupinigi was chosen to assess the reliability of the
suggested method. The area is characterized by a well-known litho-
logical and stratigraphic sequence and a flat morphology. From a
geological perspective, the site lies on an alluvial plain, charac-
terized by sand and gravel deposits. The uppermost formation is
composed of recent coarse gravel deposits and is followed by an
alternation of gravel and sand (well consolidated and cemented) up
to hundreds of meters of depth. These two formations constitute
two different aquifers separated by embedded clayey layers.

The TDEM data have been acquired using a coincident-loop
configuration with a 50-m-long loop for both the transmitter and
receiver. The injected current was equal to 3 A, the turn-off time
was 4μs, and a total of 27 samples were acquired in the range be-
tween 10−5 and 10−3 s. The VES have been collected according to a
Schlumberger array and deploying a 100 m maximum half-spacing
of the current electrodes. The observed ρapp and the correspond-
ing error bars for TDEM and VES are plotted with the red dots
in Figs 3(a) and (b), respectively. The TDEM measurements had
the correspondent uncertainties associated with the data, while the
errors of VES data were not available and hence assumed by adding
10 per cent of Gaussian noise.

A preliminary analysis of the data was performed to assess the
compatibility between the electrical and electromagnetic sounding
curves. It is known that VES curves may be affected by electri-
cal static shift, or galvanic distortion, that must be identified and
removed before the joint inversion. We adopted the scaling rela-
tionship of Meju (2005) to compare, on one hand, the VES appar-
ent resistivity curve as a function of the equivalent TDEM delay
time and, on the other hand, the TDEM apparent resistivity curve
transformed from the signal as a function of the delay time. The
presence of a vertical displacement between the VES and TDEM
curves is generally regarded as the proof of static-shift occurrence.

Conversely, a good parallelism means that the data are compatible
and suitable for 1-D joint inversion (Meju 2005). This preliminary
analysis proved that there was no vertical displacement of the curves
and hence the 1-D joint optimization could be carried out.

The maximum depth of investigation granted by the half-spacing
of VES electrodes was about 60 m. Keeping this value for the va-
lidity of the interpretation, we extended the maximum depth of
the model up to 110 m to graphically represent the half-space. The
model was discretized into 19 layers, whose thickness increased
logarithmically with depth. Once the L-curve criterion was ap-
plied, the optimal Lagrange multiplier was set equal to 0.1 for
both TDEM and VES components of the objective function. The
boundary conditions of the solution search space were the minimum
and maximum resistivity values of 1 and 500 ohm-m, respectively.
The MOPSO algorithm ran for 1000 iterations, giving in the end the
family of the resistivity models, or Pareto-optimal solutions, plotted
in Fig. 3(c). The solutions drawn from the PF are depicted in green,
while the blue line corresponds to the solution with the minimum
value for both the components of the objective function. As visible
from Figs 3(a) and (b), the fitting between the observed ρapp and
calculated response is remarkable for both TDEM and VES, respec-
tively. The model displayed in Fig. 3(c) reveals a resistive layer of
about 200 ohm-m in the shallow subsurface, till 10 m of depth. A
conductive region of less than 50 ohm-m appears from a depth of
about 20–40 m, while, at higher depths, the resistivity increases to
77 ohm-m.

Figs 4(a) and (b) show on separate plots the contextual mini-
mization of the two components of the objective function (TDEM
and VES, respectively) from the first to the last iteration: the red
stars correspond to the particles with the minimum fj(m), while the
black circles to the mean fj(m) among the remaining particles, that
is, solutions found. Fig. 4(c) displays the 2-D space of the objective
function at the final iteration. The black circles represent the fj(m)
of the particles forming the swarm, while the red stars highlight
the PF, that is, the fj(m) of the non-dominated solutions stored in
the repository. The PF was assayed using the metrics reported in
eqs (8), (9) and (10). The RI was 21.5 per cent, the SP was 0.0041
and the deviation angle α was 78.9◦, as listed in Table 2. Fig. 4(d)
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Figure 8. TV-MOPSO applied to the Villafranca data set: the evolution of the TDEM (a) and VES (b) components of the objective function from the first to
the last iteration for the best particle (the red stars) and the remaining ones (the black circles); (c) the 2-D space of the objective function (TDEM and VES
components) at the last iteration: the red symbols identify the PF and the black circles the objective-function values assumed by the other solutions; (d) the
intersection between the ideal line (grey dashed) and the Theil–Sen regression line (red) or the least-squares regression line (blue) identifies the deviation angle
α.

zooms in the PF that gave the deviation angle between the grey-
dashed ideal line and the Theil–Sen-regression blue line over the
non-dominated solutions. As previously explained, α > 45◦ proved
data incompatibility (Schnaidt et al. 2018) and a slight conflict be-
tween TDEM and VES was inferred from the asymmetric shape of
PF (Dal Moro & Pipan 2007).

The resistivity model obtained using NSGA-III is shown in
Fig. 5(c), together with the satisfactory match between TDEM
and VES observed data and computed response of Figs 5(a) and
(b), respectively. The model appears considerably similar to that of

Fig. 3(c). The most apparent correspondences are the resistive layer
in the shallow subsurface (about 200 ohm-m) and the conductive
region (with the minimum 20 ohm-m) from 20 to 40 m of depth.
The main difference from Fig. 3(c) is the evident similarity among
the non-dominated solutions (the green lines of Fig. 5c), which will
be discussed later.

The performance of the algorithm can be analysed from Fig. 6.
Figs 6(a) and (b) show how, at the end of the optimization, both
the TDEM and VES components converged towards the minimum



MOPSO of TDEM and VES data 11

Table 3. Analysis of the performance of MOPSO and NSGA-III on the data
set from Villafranca. The rows report the number of iterations run, repository
index (RI), spacing (SP), deviation angle (α) between the ideal and Theil–
Sen regression line, total runtime in hours and normalized root-mean square
error (NRMSE) for TDEM and VES.

Villafranca data set MOPSO NSGA-III

Iterations 600 1000
RI (per cent) 12.4 100
SP 0.3584 0.0164
α (◦) 47.3 46.7
Runtime (h) 7.1 10.8
NRMSE TDEM 0.173 0.2009
NRMSE VES 0.0272 0.0384

value of the objective function, which is found by the best individ-
uals of the population (the red stars). Like Figs 4(a) and (b), the
objective decreased by more than 80 per cent after about 400 itera-
tions, but the effective minimization was reached in 1000 iterations.
At the end, the objective space hosted the PF plotted in Fig. 6(c)
with the red stars that are coincident to the black circles because
all the population corresponded to non-dominated solutions, thus
giving RI = 100 per cent. The Theil–Sen regression line identified
a deviation angle of 79.2◦ with the ideal line (Fig. 6d), in line with
that of MOPSO (see Table 2). The NRMSE was calculated for the
results of MOPSO and NSGA-III, as listed in Table 2.

3.3 Villafranca test site

The second case study is located in Villafranca d’Asti, where a
large well-field extensively exploits a confined aquifer to supply
drinking water to 43 municipalities within the Asti Province (De
Luca et al. 2018). The exploited aquifer consists of Pliocene marine
deposits (mainly ‘Asti Sands’ formation) bounded at the base by a
Pre-pliocene marine complex, consisting of silty–clayey sediments,
and by a Lower-Middle Pliocene marine complex (represented by
the Lugagnano Clay), consisting of sandy–marly clay, upward inter-
calated with coarser sediments (De Luca et al. 2014; Lasagna et al.
2014). Both these lower complexes have a very low or negligible
permeability and represent an aquiclude, under the overlying Asti
Sands. By contrast, the Asti Sands are sandy sediments, alternated
with levels of fine sand, sandy–gravel, clayey sand, silty–sandy and
silty–clayey levels with very low permeability. The alternation be-
tween mainly sandy sediments with a good permeability and poorly
permeable levels makes this complex a multilayered aquifer system,
in which the various aquifer levels can intercommunicate through
semipermeable levels.

A geophysical survey has been carried out in the area to better
understand the formation of this aquifer layer and potentially iden-
tify new positions for water wells (De Luca et al. 2018). Within
the performed surveys, acquisition of TDEM data has been carried
out using a coil size of 100 × 100 m for the transmitter, and both
0.6 × 0.6 m (20 turns) and 10 × 10 m (2 turns) receiver coils for the
receiver, located at the centre of the transmitter coil. TDEM tran-
sient curve has consisted of 40 measuring points, from 1.2 × 10−6

to 8.8 × 10−3 s. Injected current has been around 10 A and a stack-
ing of 2000 measurements has been performed. The acquisition has
been carried out using an ABEM WalkTEM instrument. Several of
these soundings have been performed over the area and then glob-
ally inversed with a spatially constrained inversion (SCI) algorithm
(De Luca et al. 2018). In our study, a single TDEM sounding was

integrated with one VES sounding. The available vintage VES ac-
quisition has been performed using the Schlumberger configuration
with a maximum half-spacing of about 850 m between the cur-
rent electrodes (Città di Asti 1962). As in the Stupinigi case study,
the TDEM measurements had the original uncertainties associated
with the data, while the errors of VES data were assumed by adding
10 per cent of Gaussian noise. This may be regarded as the contri-
bution of the original experimental errors, the possible inaccuracy
of the conversion from the original data to the digital form and the
inaccuracy of editing and smoothing apparent resistivity curves.

VES and TDEM curves were preliminary analysed to infer the
possible occurrence of the electrical static shift. After applying the
scaling relationship of Meju (2005), we verified that the two data
sets were acceptably compatible for joint inversion.

In the MOPSO algorithm, the lower and upper boundaries of
the search space were fixed at 1 and 200 ohm-m, respectively. The
application of the L-curve criterion identified the optimal Lagrange
multipliers equal to 0.1 for TDEM and 10−4 for VES. The results
from MOPSO are presented in Fig. 7. On the left, the fitting between
observed (the red error bars) and calculated (the blue line) data
is noteworthy for both TDEM signal (Fig. 7a) and VES apparent
resistivity (Fig. 7b). On the right, Fig. 7(c) displays the set of Pareto-
optimal solutions in green and the selected one with the minimum
components of f(m) in blue. The 1-D vertical profile was composed
of 19 layers, up to a maximum depth of about 380 m. The family
of non-dominated solutions reveals two resistive regions: the first
overcomes 100 ohm-m in the shallow subsurface (about 20 m of
depth); the second ranges from 100 ohm-m to 200 ohm-m at a depth
from about 50 to 150 m. This last resistive layer may be related
to the confined aquifer object of the investigation in the area, as
mentioned before.

The MOPSO ran for 600 of 1000 iterations since the repository
was not filled for 300 consecutive iterations (second stopping crite-
rion). Figs 8(a) and (b) plot the trend, iteration after iteration, of the
TDEM and VES components of the objective function, respectively.
At the final stages of the optimization, the mean fj(m) (the black
circles) slightly increased, but the minimum fj(m) (the red stars)
showed convergence. At the last iteration, the PF took the shape
shown in Fig. 8(c) with the red stars. The objective-function values
of the other particles of the swarm are marked with the black cir-
cles. The zoom-in box reveals a complete view of the search space
and, in particular, the wide range of the VES-component values
for the particles outside the repository. The metrics for the solution
appraisal are listed in Table 3: the RI was 12.4 per cent and the SP
was 0.3584. The deviation angle of 47.3◦ is highlighted in Fig. 8(d)
between the Theil–Sen regression and ideal line, that is, the blue and
grey-dashed lines, respectively. The vertical shape of the PF as well
as the α slightly greater than 45◦ suggested a partial compatibility
between the data sets.

The benchmark algorithm NSGA-III was applied to the Vil-
lafranca data set yielding the outcome illustrated in Fig. 9. Fig. 9(a)
shows the appreciable match between observed TDEM signal (the
red dots) and calculated response (the blue line), while Fig. 9(b)
reports an acceptable fitting for the VES ρapp. The non-dominated
solutions drawn from the PF are plotted in green in Fig. 9(c) and the
selected blue model does not present significant differences from
them. A resistive body with a peak of 130 ohm-m is imaged at about
10–15 m of depth, while from 50 to 100 m of depth the resistivity in-
creases up to a maximum of 85 ohm-m. Then, it gradually decreases
to 50 ohm-m.

The performance of NSGA-III can be read from Fig. 10 and
Table 3. A total of 1000 iterations were requested for a robust
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Figure 9. The result of NSGA-III applied to the Villafranca data set: observed data (the red dots with error bars) and predicted apparent resistivity (ρapp) for
TDEM (a) and VES (b) data; (c) the final resistivity models belonging to the PF (the green lines) and the best solution highlighted in blue.

minimization of both components of the objective function. Even
though Figs 10(a) and (b) show a decreasing trend, the mean value
of the VES component (the black circles in Fig. 10b) was two or-
ders of magnitude larger than the corresponding TDEM. However,
at the end of the optimization, the minimum values of the TDEM
and VES components were quite similar, as depicted in Fig. 10(c).
It is the snapshot of the objective space at the last iteration. All
the population members were evaluated as non-dominated solu-
tions and hence the corresponding objective-function values were
marked with the black circles and the red symbols at the same time
(RI = 100 per cent). The PF is plotted with the red stars in Fig. 10(d)
to highlight the deviation angle α = 46.7◦ between the Theil–Sen
regression blue line and the grey-dashed ideal line. The NRMSE is
reported in Table 3 for the results from MOPSO and NSGA-III.

4 R E S U LT S F RO M T H E
S I N G L E - O B J E C T I V E S E PA R AT E
O P T I M I Z AT I O N S

This section presents the separate optimizations of the synthetic and
real data sets using the single-objective PSO. The input parameters
of the algorithm were kept as previously explained: the model was
discretized into 19 layers, the swarm was composed of 170 particles
and the L-curve criterion identified the optimal the Lagrange mul-
tiplier. Since the process of separate optimization is simpler than
the MO problem, few iterations were required to gain the solution
convergence. The PSO algorithm ran for a maximum of 500 iter-
ations or stopped before if the fitness functions did not minimize
for 100 consecutive iterations (second stopping criterion). Each run
was launched 10 times (or ‘trials’) in order to test the solution vari-
ability coming from the initial random distributions. Santilano et al.
(2018) indeed proved for 1-D MT that different random initializa-
tions of the model resulted in highly comparable but not identical
final solutions. The MOPSO was not launched for different trials
because the dominance criterion exercised, among the possible so-
lutions, the same selective choice performed by several trials of
single-objective PSO. In MOPSO, the best-solution selection is a

mathematically refined process, while in simple PSO it is based on
the straightforward minimization of a single objective. The solution
with the minimum NRMSE among the 10 solutions was eventually
selected as the best optimized model. The boundary conditions of
the search space of the solutions were kept as reported in the previ-
ous paragraphs for the two data sets, respectively. The simulations
have been run by adopting only two workers of the HPC cluster be-
cause unnecessary computational resources were not allowed. For
this reason, the comparison between the MO and single-objective
optimizer could not be assessed in terms of runtime.

For the single-objective PSO of synthetic data, the Lagrange mul-
tiplier was 10−3. The best trial of TDEM optimization ran for 398
iterations and the corresponding predicted response and final resis-
tivity model are plotted in blue in Figs 11(a) and (b), respectively.
The outcomes from the other trials are marked in green, while the
true model in red. The final NRMSE of the data fitting was 0.0277
and of the model fitting was 0.4445 (Table 4). The best result from
PSO of VES synthetic data, after 419 iterations, is shown in Fig. 12
and gave a final NRMSE of 0.0065 as data misfit and of 0.27 as
model misfit (Table 4).

As regard the Stupinigi site, the Lagrange multiplier was 10−3

and the best trial ran for 500 iterations. The response from PSO
of TDEM data is shown in Fig. 13. Fig. 13(a) plots the significant
match between the observed data (the red dots and error bars) and
the calculated response (the blue line) from the best model. It is
marked in blue in Fig. 13(b) and the solutions from other trials in
green. All the models concur in identifying a conductive region of
about 30 ohm-m between 20 and 40 m of depth. Table 4 lists the
final NRMSE of 0.0791.

The trend of the optimization is visible in Fig. 14. Fig. 14(a) plots
the decrease of the objective function (f(m)) from the first to the last
iteration as assumed by the best particle (the black dots) and the
mean value of the remaining particles (the blue dots). Fig. 14(b)
represents the value of f(m) assumed by the particles as a function
of their position in the first two layers of the model (represented
by the two horizontal axes): the grey dots reveal the initial random
positions of the particles, while the red-circled blue dot is the final
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Figure 10. NSGA-III applied to the Villafranca data set: the evolution of the TDEM (a) and VES (b) components of the objective function from the first to
the last iteration for the best individuals (the red stars) and the remaining ones (the black circles); (c) the 2-D space of the objective function (TDEM and VES
components) at the last iteration: the red symbols identify the PF, while the black circles the objective-function values assumed by the other solutions; (d) the
intersection between the ideal line (grey-dashed) and the Theil–Sen regression line (red) or the least-squares regression line (blue) identifies the deviation angle
α.

position of the whole swarm at convergence. Fig. 14(c) is the plain
view of Fig. 14(b) and highlights the random initialization of the
particles (the grey dots). The bar plot of Fig. 14(d) displays how
many particles had the same f(m) at the end of PSO.

The response from PSO of VES data is shown in Fig. 15.
Fig. 15(a) plots the significant match between the observed ρapp

(the red dots and error bars) and the calculated response (the blue
line) from the best model, which is marked in blue in Fig. 15(b).
Excepting one trial, the remaining models (the green lines), are
highly comparable and image a resistive body of about 180 ohm-m
at about 5 m of depth. Table 4 lists the final NRMSE of 0.0288.

The independent optimizations of TDEM and VES from the Vil-
lafranca data set spawned the results of Figs 16 and 17, respectively.
The predicted TDEM signal of Fig. 16(a) is not dissimilar to the
observed data marked with the red dots and error bars. The re-
sistivity models of Fig. 16(b) are plotted in green, while the best
trial is marked in blue and was obtained after 325 iterations. The
model shows a slight decrease of resistivity from 10 to 25 m of
depth and then at 40 m deep an increase from 20 to 80 ohm-m.
The NRMSE was 0.2106, as listed in Table 4. The VES ρapp was
distinctly matched after 421 iterations as reported in Fig. 17(a).
The observed ρapp is plotted with the red dots and without the er-
ror bars because the measurements were resampled on the original
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Figure 11. Single PSO of TDEM synthetic data. (a) fitting between observed signal (the red dots and error bars) and predicted response (the blue line); (b) the
red-dashed line is the true model, the green lines correspond to the resistivity models from different PSO trials, while the blue line is the best solution.

Table 4. Analysis of the performance of single-objective PSO on the synthetic, Stupinigi and Villafranca data sets. The columns report the method, the number
of iterations run, the normalized root-mean square error (NRMSE) and the runtime of a single trial (in minutes’).

Method Iterations NRMSE
One-trial

runtime(’)

Synthetic test TDEM 302 0.0299
(data)0.4276

(model)

122.45

VES 465 0.0053
(data)0.2621

(model)

2.6

Stupinigi data set TDEM 500 0.0791 21.37
VES 500 0.0288 1.48

Villafranca data set TDEM 325 0.2106 84.86
VES 421 0.0148 3.61

Figure 12. Single PSO of VES synthetic data. (a) fitting between observed apparent resistivity ρapp (the red dots and error bars) and predicted response (the
blue line); (b) the red-dashed line is the true model; the green lines correspond to the resistivity models from different PSO trials, while the blue line is the best
solution.

smoothed curve, thus making ambiguous any consideration about
errors. Fig. 17(b) shows the solutions obtained after the 10 trials: the
best trial is plotted in blue and gave an NRMSE of 0.0148 (Table 4).
The best model images in top-down order: a resistive subsurface of
about 90 ohm-m, a conductive break with the minimum 6 ohm-m at
about 30 m of depth and a deep resistive region of about 100 ohm-m.

5 D I S C U S S I O N

Our novel joint-optimization algorithm was first validated on a syn-
thetic example. The true model was conceived in some ways similar
to the experimental data to be tested. The MOPSO outcome was
largely consistent with the true synthetic model, thus demonstrating
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Figure 13. Single PSO of TDEM measurements at Stupinigi site. (a) fitting between observed apparent resistivity ρapp (the red dots and error bars) and
predicted response (the blue line); (b) the resistivity models in green correspond to the different PSO trials, while the best solution is marked in blue.

Figure 14. PSO performance at the end of the optimization: (a) the decrease of the fitness function, iteration after iteration, for the best particle (the black
dots) and the remaining swarm (the blue dots); (b) the fitness-function value as a function of the particle positions in the resistivity (ρ) search space, at the first
(the grey dots) and final (the red-circled blue dots) iterations; (c) plain view of (b); (d) final distribution of the fitness-function values among all the particles.

its applicability to real data. The validity of the synthetic test was
also evident from the model misfit: the one of MOPSO (Table 1)
was lower than those of the single optimizations (Table 4). By con-
trast, the data misfits from the single optimizations (Table 4) were
a little lower than those from MOPSO, but this was not surprising.
It is reasonable to assume that the interpretation of both TDEM
and VES information limited the data fitting but yielded a better
definition of the final model (i.e. lower model misfit).

The general overview of the results coming from the MOPSO
and NSGA-III algorithms suggests some preliminary comments.
The objective-function components were iteratively minimized ac-
cording to a sharp slope at the early stages and, later, a flat trend
(see a and b of Figs 4, 6, 8 and 10). This happened because of
the initial heterogeneity and the significant changes from one iter-
ation to another given by k-dependent coefficients in MOPSO and
mutation and crossover in NSGA-III. After that, the largest part of

the minimization was overtaken, the models became more homo-
geneous even though in MOPSO a slight diversity was ensured by
the accelerations.

As regards the MOPSO algorithm applied to the Stupinigi data
set, the shape of the PF and the high deviation angle in Fig. 4(d)
suggested data incompatibility. It was actually expected since it is
known that a perfect compatibility can be found only for synthetic
data (Schnaidt et al. 2018) and real-world problems commonly have
conflicting objectives (e.g. completing a task in the shortest time
and in the cheapest way can be a MO problem with conflicting
objectives!). The incompatibility may be attributed to the different
depths of investigation: that associated with the VES half-spacing
was lower than that of TDEM. This difference resulted because
TDEM explores subsurface volumes enlarging with depth according
to the principle of the diffusion depth, while VES covers volumes
more laterally extended. Despite incompatible, we may conclude
that the data were complementary, as shown in Figs 13 and 15:
TDEM is more sensitive to the conductive region and VES to the
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Figure 15. Single PSO of VES data at Stupinigi site. (a) fitting between observed apparent resistivity ρapp (the red dots and error bars) and predicted response
(the blue line); (b) the resistivity models in green correspond to the different PSO trials, while the best solution is marked in blue.

Figure 16. Single PSO of TDEM measurements at Villafranca site. (a) fitting between observed signal (the red dots and the error bars) and predicted response
(the blue line); (b) the resistivity models in green correspond to the different PSO trials, while the best solution is marked in blue.

superficial resistive layers. Our results can be directly compared
to those obtained from separate Monte Carlo inversions in Piatti
et al. (2010). This work was a benchmark for our models despite
some differences between the two methods: TV-MOPSO deployed a
random initialization and then the adaptive behaviour, while the im-
portance sampling method of Piatti et al. (2010) exploited the scale
property of the apparent resistivity curves to integrate sampling and
optimization. Fig. 18 shows the solutions of our joint optimizations
with MOPSO (the dashed line) and NSGA-III (the solid line) and
Monte Carlo inversion of TDEM (the dotted line) from Piatti et al.
(2010). This comparison made evidence of the clear advantages of
MOPSO: the final model was achieved using a single optimizer for
both the data sets instead of separate inversions. The dotted line in
Fig. 18 supports the model of Fig. 13 (b) and reveals the limit of
the single inversion. Given the same forward-modelling code, Pi-
atti et al. (2010) performed 2 × 105 simulations with a three-layer
parametrization, while MOPSO ran for 1000 iterations with a 19-
layer parametrization. The samplings and the runtime were less than

in Piatti et al. (2010). Our results are also supported by the geolog-
ical information derived from a borehole located very close to the
investigated site. The stratigraphy is depicted in the right of Fig. 18
and is in good agreement with the inversion results. Particularly, the
correspondence between the gravel structure and high-resistivity
layers in the shallow subsurface is notable. Our outcomes outper-
form the result of Piatti et al. (2010), which underestimated the
superficial resistive structure and overestimated the thickness of the
clay layer.

The application of MOPSO to the Villafranca data set offered an
insight into data compatibility. Given the maximum half-spacing of
the current electrodes (844 m), the VES reached a depth of investi-
gation higher than that of TDEM sounding, which was negatively
affected by the superficial conductive region. The deviation angle
of 47.3◦ > 45◦ (Table 3) proved the lack of data compatibility. How-
ever, a partial compatibility may be assumed because α was slightly
bigger than 45◦ and the PF was almost vertical, as proved by the
Theil–Sen regression line that tends to bend towards the y-axis (VES
component in Fig. 8c). What is more, the models from the separate
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Figure 17. Single PSO of VES data at Villafranca site. (a) fitting between observed apparent resistivity ρapp (the red dots) and predicted response (the blue
line); (b) the resistivity models in green correspond to the different PSO trials, while the best solution is marked in blue.

Figure 18. Comparison of the different interpretation of the Stupinigi data
set using MOPSO (the dashed line), NSGA-III (the solid line) and Monte
Carlo from Piatti et al. (2010; dotted line). On the right, the stratigraphy
from a borehole placed very close to the sounding.

optimizations (Figs 16 and 17) were in good agreement on the con-
ductive region at about 40 m of depth. From this depth downwards,
the TDEM data lost resolution and hence the trade-off solutions
from MOPSO mainly interpreted the information from VES. In
fact, Fig. 8(c) showed a clear convergence of the particles on the
same value for the TDEM component and, in contrast, a large dis-
tribution for the VES components. This explains the vertical shape
of the PF and the high value of SP. Compared to the optimization
of the Stupinigi data set, less iterations ran (600 versus 1000) to
ensure a significant minimization of the objective function (Figs 8a
and b). Even though, at the beginning of the optimization, the VES
component of the objective function was two orders of magnitude
larger than the TDEM component, they both assumed almost the
same value at the final iterations. The resistivity model obtained

Figure 19. Comparison of the different interpretation of the Villafranca
data set using MOPSO (the dashed line), NSGA-III (the solid line) and SCI
(the dotted line) from De Luca et al. (2018).

from the Villafranca data set using the MOPSO algorithm is in line
with the results published in De Luca et al. (2018) using the same
TDEM data set. Fig. 19 gives a direct comparison among the models
from MOPSO (the dashed line), NSGA-III (the solid line) and the
SCI (the dotted line) from De Luca et al. (2018). This last model
interprets only TDEM data and hence does not image the superfi-
cial resistive layer. All the models are in good agreement about the
top and bottom of the deep resistive layer constituting the aquifer.
Moreover, the introduction of VES information in the MOPSO in-
version allowed a more refined definition of the highest resistive
portions of the multilayered aquifer system. From literature, these
portions are supposed to be related to the more permeable sandy
layers and, therefore, relevant for water exploitation. Unfortunately,
there is no availability of geological or geophysical information
on this specific site (well logs, seismic, etc.). In fact, this was the
reason for the recent geophysical investigations. We can conclude
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that we analysed three different case studies with increasing level of
uncertainty: the synthetic model was a priori known, the Stupinigi
model was validated by the stratigraphy and finally, the Villafranca
model had no external information to be compared with. However,
we here stress on the advantages of the new joint-optimization ap-
proach and any geological or lithological interpretation of our result
goes beyond the scope of this paper.

A significant novelty of this work is that the results from two
different MO algorithms were directly compared with each other.
For the Stupinigi case study, both MOPSO and NSGA-III essen-
tially gave the same models (Fig. 18), runtimes and deviation an-
gles (Table 2). For the Villafranca case study, the main similarities
were the deviation angles (Table 3) and the models (Fig. 19), even
though the deep layer was imaged in NSGA-III less resistive than in
MOPSO. A major difference emerging from Table 3 was the total
number of iterations to end in convergence; MOPSO required less
iterations than NSGA-III. This outcome was not unexpected since
in the literature MOPSO has proven a competitive speed of con-
vergence (Kennedy & Eberhart 2001; Coello Coello et al. 2004).
Another dissimilarity was that the resistivity models from MOPSO
presented a slight reciprocal discrepancy (the green plots in Figs 3c
and 7c), while all the non-dominated solutions from NSGA-III were
quite similar each other (see Figs 5c and 9c). This was also evident
from the SP index, which in MOPSO was always higher than in
NSGA-III. A possible explanation might be the different criteria to
keep and ensure the variability and diversity of the non-dominated
solutions. It is worth noting the RI of both case studies (Tables 2
and 3). Interestingly, it was below 22 per cent for MOPSO and al-
ways 100 per cent for NSGA-III, meaning that MOPSO gave less
and sparse non-dominated solutions (low RI and high SP) and, re-
versely, NSGA-III more and similar ones. This contrast could be
attributed to some inner differences in the core of the methods,
that is, the main loop of the algorithms: in MOPSO the selection
of the leader and the updating of the repository were ruled differ-
ently from the NSGA-III’s population selection and association to
the reference points. Notwithstanding these dissimilarities, the fi-
nal models from MOPSO were always largely consistent with that
from NSGA-III. The NRMSEs reported in Tables 2 and 3 provided
compelling evidence that MOPSO outperformed NSGA-III since
the data misfit from MOPSO was always lower than that (or at least
the same) of NSGA-III.

The results obtained from the single-objective optimization can
be schematically appreciated from Table 4. For the real data sets, the
TDEM optimization resulted always in longer runtimes and higher
NRMS errors for both case studies, while the number of iterations
for the Villafranca optimizations was lower than for the Stupinigi
optimizations. The models resulting from the several trials were
always in good agreement with each other, excepted for an outlier
of little significance in Fig. 15.

6 C O N C LU S I O N S

This study set out with the aim of providing a new evolutionary
method for the joint optimization of different geophysical data sets.
The MO problem was solved using a pure MOO called MOPSO,
which had hitherto been little applied to geophysics. The problem
of possible conflicting solutions was solved by adopting the Pareto
optimality. The data sets were TDEM data and VES, resulting in
a bi-objective problem. The MOPSO was tested for synthetic data
and two different sites placed in northwest Italy. The synthetic ex-
ample provided a first evidence of the validity and advantage of the

MOPSO. The model misfit, measuring the correspondence to the
reference model, was lower than the model misfits calculated from
the separate optimizations.

For the field data sets, the performance of MOPSO was compared
to that of a commonly used GA, the NSGA-III. In general, both
MOPSO and NSGA-III revealed a number of attractive features: a
single tool to tackle multiple data sets, a set of final models without
multiple conflicting solutions and because of the Pareto optimality,
an effective insight in the trade-off meaning of the final solutions.
In fact, the best trade-off solutions and their range were identified as
final solutions because of the Pareto dominance. We also analysed
the shape of the PF to infer the compatibility between different
geophysical data sets. Even in the case of a proven data incompati-
bility, the separate optimizations with single-objective PSO showed
the complementarity of the data sets and hence the validity of the
joint-optimization results. Their comparison with stratigraphic in-
formation coming from boreholes, when available, corroborated
our findings. Therefore, we conclude that the PF is fundamental to
understanding the limits of joint inversion and the reliability of its
outcomes.

Although the long computation time could be seen as a minor
drawback, it must be borne in mind that the stochastic nature of
the algorithm requires many forward-modelling calculations that
result in a significant computational load. We managed the compu-
tationally demanding nature of the global search algorithms using
the HPC cluster provided by our University. However, we are aware
that there is room for improvement and, given the current striking
progress in computational efficiency, we are confident this issue will
be addressed in future investigations.

The most important finding to emerge from the analysis was that
the resistivity models obtained from MOPSO were fully compara-
ble to the ones from NSGA-III, thus supporting the validity of the
new proposed method. It can be concluded that MOPSO outper-
formed the NSGA-III given: the higher speed of convergence in
one of the two tests, the more selective filling of the repository and
wider variability of the non-dominated solutions (due to an effective
exploration of the search space).

Future developments will extend the suggested method to other
geophysical data sets whose compatibility may be more easily
achievable (e.g. TDEM and controlled-source AMT data). A chal-
lenging research opportunity could be the investigation of more than
two data sets, thus leading to a 3-D Pareto space.
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