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18 Abstract

19 The gravity of ischemic strokes is the key factor in deciding upon the optimum therapeutic intervention. Ischemic strokes can be
20 divided into three main groups: lacunar syndrome (LACS), partial anterior circulation syndrome (PACS), and total anterior circulation
21 stroke (TACS), where the corresponding severity is mild, medium, and high, respectively. Herein, a unique method for the automatic
22 detection of ischemic stroke severity is presented. The proposed system is based upon the extraction of higher order bispectrum entropy
23 and its phase features from brain MRI (Magnetic Resonance Imaging) images. For classification, which is used to establish stroke sever-
24 ity, a support vector machine was incorporated into the design. The developed technique effectively detected the stroke lesion, and
25 achieved a sensitivity, specificity, accuracy, and positive predictive value equal to 96.4%, 100%, 97.6% and 100%, respectively. The results
26 were obtained without the need for manual intervention. This design is advantageous over state-of-the-art automated stroke severity
27 detection systems, which require the reading neuroradiologist to manually determine the region of interest. Hence, the method is effica-
28 cious for delivering decision support in the diagnosis of ischemic stroke severity, thereby aiding the neuroradiologist in routine screening
29 procedures.
30 � 2019 Elsevier B.V. All rights reserved.
31

32 Keywords: Ischemic stroke; Entropy; Bispectrum; Classifier; ADASYN; HOS
33

341. Introduction

35Ischemic stroke results from a lack of blood supply to a
36specific region of the brain (Fig. 1). This diminishes the
37basic functions of nerve cells in the affected brain area,
38and can lead to significant long-term disability. Stroke is
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39 a worldwide issue, being the second leading cause of death
40 and the third leading cause of disability (Bonita, 1992).
41 Ischemic strokes can be grouped into one of three types
42 (Lindgren, Norrving, Rudling, & Johansson, 1994):

43 1. Partial anterior circulation syndrome (PACS): the mid-
44 dle/anterior cerebral regions are affected due to this type
45 of stroke.
46 2. Lacunar syndrome (LACS): this stroke results from the
47 occlusion of vessels that provide blood to the deep brain
48 regions;
49 3. Total anterior circulation stroke (TACS): middle/ante-
50 rior cerebral regions are affected due to a massive brain
51 stroke.
52

53 Osmani, Durrani, and Ara (2010) compared the out-
54 come in these three different types of stroke. A chi-
55 squared test was employed to compare proportion differ-
56 ence in results across the different types strokes, with
57 p < 0.05 considered to be statistically significant. They
58 established that TACS has the worst outcome with the
59 highest number of mortalities, whereas LACS had a better
60 outcome. To be specific, a majority of LACS patients were
61 functionally independent after 6 months. The patients with
62 PACS had an average outcome, better than those with
63 TACS, but not as positive as those with LACS.
64 In order to decide upon therapeutic intervention, the
65 diagnosis, along with the severity of the ischemic stroke,
66 are of fundamental importance (Zaidi, 2012). MRI images
67 contain salient information for classification of ischemic
68 stroke severity. However, the scan results are difficult to
69 analyze, because subtle changes in the images are the points
70 that are indicative of stroke severity. This difficulty

71translates into a long time spent in manual image analysis.
72Executing the mental tasks necessary to establish stroke
73severity causes fatigue, and in turn fatigue may lead to
74human error, which lowers diagnostic quality. Apart from
75fatigue, inter- and intra-observer variability exists for all
76human-based classification methodology. Education of
77the clinical analyst is a tool that can partially ameliorate
78these pitfalls. Yet, training a person to the expert level is
79time consuming and expensive, which makes routine stroke
80risk estimation tasks uneconomical.
81Scientists and engineers have addressed these problems
82by developing reliable methods for the automatic detection
83of ischemic stroke severity. Recent research focuses on
84design systems which aid reading neuroradiologists by
85reducing both the amount and duration of routine tasks.
86Numerous studies in the literature focus on the diagnosis
87of ischemic stroke in magnetic resonance imaging (MRI)
88of the brain. Among the various MRI imaging modalities,
89diffusion weighted imaging (DWI) is quite sensitive to small
90water diffusion changes in the acute ischemic brain, and is
91therefore often used for timely stroke detection (Lutsep
92et al., 1997; Newcombe, Das, & Cross, 2013). Many previ-
93ous ischemic stroke classification methods were based upon
94an intimal segmentation of the brain lesion within the
95image, ranging from the use of simple edge-based and
96threshold-based methods (Carson, Belongie, Greenspan,
97& Malik, 2002; Wang, Xiang, Pan, Wang, & Meng,
982013) to clustering-based and supervised methods (Ji,
99Xia, & Zheng, 2017; Sridevi & Mala, 2019) to methods
100based on Delaunay triangulation (Subudhia, Dash, Jena,
101& Sabut, 2018). The downside to these techniques is that,
102since the segmentation is the first stage of the entire classi-
103fication process, an inaccurate segmentation of the brain
104lesion, within the DWI image, percolates throughout the
105processing chain. As a result, even small variations during
106image segmentation have a disproportionally large effect
107on ischemic stroke classification. Prior studies have sup-
108posed perfect image segmentation, which is difficult to
109achieve in practice. Thus, the possibility of an imperfect
110image segmentation is expected to have a negative impact
111on ischemic stroke classification quality in a practical
112setting.
113Artificial intelligence techniques have been used in med-
114ical applications to predict diseases and the outcome in
115ischemic stroke patients (Scalzoa et al., 2013). Ramli,
116Ghazali, and Tay (2018) employed three emboli detection
117techniques; the sinusoidal model, energy and zero crossing
118rate and short time average zero crossing rate to examine
119the spectrum of high magnitude frequency element. Sinu-
120soidal modelling yielded the highest accuracy of 84.2%
121for the classification of ischemic stroke. Chin, Lin, Wu,
122Weng, Yang, and Su (2017) developed a network using
123deep learning algorithms, to classify ischemic stroke auto-
124matically and obtained an accuracy of more than 90%.
125Many other methods have also been deployed using

Fig. 1. Illustration of ischemic stroke.
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126 machine learning to confront issues of lesion segmentation
127 and/or classification (Feng, Zhao, & Huang, 2016;
128 Hemanth, Vijila, Selvakumar, & Anitha, 2013; Hevia-
129 Montiel, 2007; Mitra, 2014), and yet, the majority of tech-
130 niques still depend strongly upon a first accurate segmenta-
131 tion of the lesion.
132 Recently, higher order spectra (HOS) methods have
133 been effectively used to pick the minute details in the sig-
134 nals and images (Martis, Acharya, Mandana, Ray, &
135 Chakraborty, 2013; Noronha, Acharya, Nayak, Martis,
136 & Bhandary, 2014; Swapna, Rajendra Acharya,
137 Vinithasree, & Suri, 2013). The bispectrum entropy and
138 phase features have been effectively used in many applica-
139 tions, such as in cardiac decisions (Martis et al., 2013),
140 the diagnosis of fatty liver disease and cirrhosis (Acharya
141 et al., 2015; Acharya, 2016), and in thyroid nodule severity
142 diagnosis (Raghavendra, 2018).
143 In this study, we aim to provide an automatic detection
144 of ischemic stroke severity using machine learning tech-
145 niques, without employing any segmentation method that
146 relies upon the calculation of higher-order bispectrum
147 entropy features on the input DWI image, overcoming
148 the problems that can derive from inaccurate lesion
149 segmentation.

150 2. Materials and methods

151 This section introduces the materials and methods used
152 to develop the proposed stroke severity classification sys-
153 tem. The basic idea behind the system design is to find dis-
154 criminative features which extract diagnostically relevant
155 information from DWI images. Feature extraction is neces-
156 sary, because the machine learning algorithms, in our case
157 the SVM, cannot readily address high dimensional data,
158 such as is typically found in biomedical imagery. The fea-
159 ture extraction projects the image into a lower dimensional
160 space, which is then input to a machine classifier. Fig. 2
161 provides an overview block diagram of the system. The
162 subsequent sections introduce the functionality of the indi-
163 vidual blocks.

164 2.1. Image database

165 The dataset used in this study was obtained from stroke
166 patients at the IMS and SUM Hospital, Bhubaneswar,
167 Odisha, India, and each patient had a prominent visible
168 stroke lesion evident within the image. All images were
169 acquired with Signa HDxT 1.5 T Optima Edition (GE
170 Healthcare, Waukesha, WI) and were exported for offline
171 processing. The ethics committee approved the study, and
172 the patients signed an informed consent before to being

173included. The image database consisted of 267 brain
174MRI images using the DWI modality, including 3 different
175stroke types. There were 18 images relative to LACS, 222
176images relative to PACS, and 27 images relative to TACS.
177Fig. 3 shows an example image for each stroke type.
178Table 1 summarizes the image data details. Column 2 of
179Table 1 details the number of images in the original data-
180set. There are only 18 LACS images, which is a small series
181compared to the 222 PACS images. Hence, the initial data-
182base is imbalanced. To address this problem, we used a
183synthetic sample method to balance the three considered
184classes. Column 3 indicates the amount of synthetic data
185generated for the individual classes. Column 4 states the
186total number of images, i.e. the sum of original and syn-
187thetic images. The process of generating synthetic images
188is described in Sections 2.2–4.

1892.1.1. ADASYN synthetic sampling

190In classification and learning methods, it is of funda-
191mental importance to have a balanced dataset in order to
192avoid biasness due to disproportionate data distribution.
193Adaptive synthetic sampling (ADASYN) is employed to
194boost the performance, by decreasing the bias and balanc-
195ing the samples (Haibo, Yang, Garcia, & Shutao, 2008;
196Molinari, Raghavendra, Gudigar, Meiburger, & Rajendra
197Acharya, 2018). It is apparent in part 2.1, the initial data-
198base is very imbalanced, with a high bias toward images
199with PACS. To overcome this issue, we employed ADA-
200SYN to balance the database. ADASYN first evaluates
201the disproportion among different classes, and produces
202the number of synthetic data for the minority classes there-
203after, according to the density distribution. The quantity of
204synthetic samples to be simulated are evaluated by the fol-
205lowing equation: ðm1 � mSÞ � b, where b is an empirical
206parameter between 0 and 1. In this study, we chose b ¼ 1
207to obtain the optimal performance. After ADASYN
208employment, the database then consisted of 223 LACS
209images, 222 PACS images, and 222 TACS images (Table 1),
210for a total of 667 images.

2112.2. Automatic stroke detection approach

2122.2.1. Image preprocessing and Radon transform

213During the initial processing step, each image underwent
214adaptive histogram equalization (Pizer, 1987) in order to
215enhance the image and increase contrast. The histogram
216equalization algorithm used local regions within which
217the contrast is amplified in an adaptive manner.
218After equalization, the images were processed with the
219Radon transform (RT). This projects the pixel values along
220a radial line at a particular angle onto a two dimensional

Fig. 2. Flowchart of the proposed system.
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221 graph. Algorithmically, the mathematical operation is
222 modeled as a summing the values of pixel in the observed
223 direction (Radon, 1986). The RT is therefore capable of
224 capturing specific directional signatures from an image,
225 and simultaneously preserving intensity distinctions, to

226enhance image spatiofrequency information. In this study,
227we calculated the RT from 0� to 179�, with a step size of 1�.

2282.2.2. Feature extraction

229In this step, we extracted features based on Higher
230Order Spectra (HOS) and various entropies.

2312.2.2.1. Higher order spectra (HOS). Using the obtained
232180 1D RT sinogram signals were extracted the higher-
233order bispectrum entropy and phase features (Nikias &
234Raghuveer, 1987). The bispectrum plots are shown in
235Fig. 3B, D, F for LACS, PACS and TACS types of stroke
236respectively.

Fig. 3. Examples of ischemic strokes and bispectrum images. (A) MRI image of LACS stroke (B) bispectrum image of LACS stroke (C) MRI image of
PACS stroke (D) bispectrum image of PACS stroke (E) MRI image of TACS stroke (F) bispectrum image of TACS stroke.

Table 1
Summary of number of data.

Class Actual Synthetic Gross

LACS 18 205 223
PACS 222 0 222
TACS 27 195 222
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237 Various bispectrum entropies (first, second, third order
238 entropies and phase entropies) were extracted as presented
239 in (Chua, Chandran, Acharya, & Lim, 2008; Chua,
240 Chandran, Acharya, & Lim, 2008). The bispectrum there-
241 fore is a non-linear method for analyzing images and is able
242 to detect subtle image variation.

243 2.2.2.2. Entropy features. Entropy is a measure of uncer-
244 tainty, which is associated with the randomness of the mea-
245 sured structure. In this study, we used seven different
246 measurements of entropy, which are defined here and are
247 explained in more detail in Singh and Singh (2010):
248 Given that an image Iðx; yÞ has Ni distinct gray levels
249 (where i ¼ 0; 1; � � � ; Li�1), the normalized histogram from
250 a specific region-of-interest (ROI) with dimensions
251 ðA� BÞ can be defined as:
252

F i ¼ Ni

A� B
ð2Þ254254

255 Therefore, Shannon entropy can be expressed as:
256

Sn ¼ �
XL�1

i¼0

F ilog2F i ð3Þ
258258

259 Yager entropy can be expressed as:
260

Y ¼
PL�1

i¼0 2F i � 1j j
A� Bj j ð4Þ

262262

263 Kapur entropy can be expressed as:
264

Ka;b ¼ 1

b� a
log2

PL�1
i¼0 F

a
iPL�1

i¼0 F
b
i

ð5Þ
266266

267 where a–b; a > 0; b > 0.
268 Rényi entropy can be expressed as:
269

R ¼ 1

1� a
log2

XL�1

i¼0

F a
i ð6Þ

271271

272 Vajda entropy is a special case of the Kapur entropy
273 where b ¼ 1, and can be defined as:
274

V a ¼ 1

1� a
log2

PL�1
i¼0 F

a
iPL�1

i¼0 F i

ð7Þ
276276

277 Fuzzy entropy can be expressed as:
278

Sn ¼ �
XL�1

i¼0

F ilog2F i ð8Þ
280280

281 Max entropy can be expressed as:
282

Sn ¼ �
XL�1

i¼0

F ilog2F i ð9Þ
284284

285 2.2.3. Feature ranking

286 Feature ranking and the subsequent feature selection
287 plays an important role when building a robust learning
288 model, because these steps will determine which informa-

289tion is presented to the machine classification system. There
290are various statistical techniques that can be used for select-
291ing significant features. A particular feature can be consid-
292ered more important if we can rank the feature among the
293other features based on some metric. Therefore, a higher
294ranked feature is more valuable for classification than a
295lower-ranked feature. Moreover, ignoring features that
296have a rank lower than a specific threshold can also
297increase classification speed.
298In this study, the computed features were ranked using
299the F-value obtained from analysis of variance (ANOVA)
300(Hoaglin & Welsch, 1978). The features with higher F-
301values are ranked first, and vice-versa. We input the highest
302ranked features first to the classifiers in the descending
303order one by one in the descending order until the highest
304performance is achieved.

3052.2.4. Classification and validation

306The following classification methods were utilized in our
307three-class system: decision tree (DT), linear discriminant
308analysis (LDA), quadratic discriminant analysis (QDA),
309k-nearest neighbor (k-NN), probabilistic neural network
310(PNN), and support vector machine (SVM) with ten-fold
311strategy. The SVM classifier (polynomials 1 to 3) and radial
312basis function (RBF) kernels were used (Duda, Hart, &
313Stork, 2012). Acharya et al. (2016) provides a detailed
314description of each of these classification methods.
315As discussed in the Introduction, LACS is considered a
316mild stroke, whereas PACS and TACS are considered as
317medium and severe strokes, respectively. Therefore, for
318the calculation of the validation parameters, a LACS is
319considered as a negative, whereas PACS and TACS are
320considered as a positive. Hence, the number of true nega-
321tives correspond to the number of LACS images correctly
322classified as LACS images, whereas the number of true pos-
323itives correspond to the number of PACS and TACS
324images that are correctly classified.

3253. Results

326The completely automatic approach presented herein
327relies first upon image preprocessing, and then on the
328extraction of specific features, specifically image entropies
329and higher order spectra entropy and phase features. The
330final number of features for each image was equal to 79.
331These features were ranked according to the ANOVA F-
332value, and the top 45 ranked features are reported in
333Table 2. Fig. 4 provides a graphical representation of the
334feature performance based upon the F-value. As can be
335observed, the higher order bispectrum entropy and phase
336features are the highest ranked features, and are therefore
337the most discriminant for the determination of ischemic
338stroke with brain MRI imagery.
339The final results of classification and the number of fea-
340tures used for each method are reported in Table 3. As can
341be noted, the SVM with RBF kernel provided the best
342results, using a total number of 36 features (i.e., the first
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343 36 listed in Table 2), with an accuracy of 97.6%, a PPV
344 equal to 100%, a sensitivity equal to 96.4%, and a speci-
345 ficity equal to 100%.
346 Our results demonstrate indicate that, or system is able
347 to correctly identify mild stroke in 100% of cases, and mis-
348 diagnosed a medium or severe stroke as mild in only 2.4%
349 of cases (16 false negatives).

350 4. Discussion

351 It can be seen from the Table 2 that, most of the entropy
352 features gradually decreases from LACS to PACS to

353TACS. The entropy values decreases depending on the
354severity of the brain stroke. In LACS, the change in the
355pixel value is very subtle, so the entropy values are large.
356In PACS and TACS, there will be more white patches
357resulting in the reduction of variability in the pixel values
358and entropy values.
359Medical imaging technology is progressing toward
360higher resolution systems, and is capturing more images
361per patient (Ng, Faust, Sudarshan, & Chattopadhyay,
3622015). For example, the field strength in MRI systems is
363increased to have higher signal-to-noise ratio with a better
364resolution which is suitable for clinical applications (Stucht

Table 2
Top 45 features sorted using the ANOVA (F-value).

Feature LACS PACS TACS

Mean SD Mean SD Mean SD p-value F-value

HOS Ent1
17 0.5655 0.1848 0.4761 0.1635 0.3224 0.1902 0.0000 13.4663

HOS Ent2
18 0.4976 0.2091 0.3895 0.2301 0.1918 0.1344 0.0000 12.4899

HOS Ent1
18 0.6514 0.0944 0.5516 0.1731 0.4098 0.2016 0.0000 11.9117

HOS Ent2
17 0.4998 0.2520 0.3407 0.1819 0.2281 0.1832 0.0000 11.3593

HOS EntPh1 0.7459 0.1998 0.6556 0.2432 0.4517 0.2683 0.0001 10.2516
HOS EntPh2 0.7362 0.1956 0.6320 0.2392 0.4473 0.1948 0.0001 9.9853
HOS Ent3

18 0.3771 0.2831 0.2760 0.2464 0.0917 0.0809 0.0001 9.3878
HOS Ent3

17 0.3733 0.2730 0.2200 0.1940 0.1329 0.1491 0.0004 8.1473
HOS EntPh3 0.6822 0.1712 0.6131 0.2386 0.4362 0.2819 0.0006 7.7068
HOS Ent2

15 0.4217 0.2517 0.2927 0.2058 0.1865 0.0848 0.0007 7.4890
Max Entropy 0.5113 0.1290 0.4551 0.1802 0.3361 0.1055 0.0009 7.1760
Shannon Entropy 0.5114 0.1290 0.4552 0.1802 0.3362 0.1055 0.0009 7.1668
HOS Ent1

13 0.6304 0.1905 0.4513 0.1932 0.4239 0.2853 0.0012 6.9091
HOS EntPh5 0.5973 0.2467 0.5969 0.2643 0.3995 0.2522 0.0012 6.8902
HOS Ent1

14 0.5738 0.1570 0.4566 0.1958 0.3571 0.1954 0.0013 6.8567
HOS EntPh18 0.7181 0.1473 0.6617 0.2037 0.5137 0.3012 0.0013 6.8303
HOS Ent2

5 0.4406 0.1777 0.2723 0.1938 0.2760 0.1412 0.0015 6.6791
HOS Ent3

15 0.3455 0.2917 0.2076 0.2326 0.0962 0.0639 0.0016 6.6110
HOS Ent1

8 0.5020 0.2515 0.3873 0.2031 0.2887 0.1634 0.0027 6.0398
HOS Ent1

15 0.4369 0.2022 0.3436 0.2007 0.2391 0.1042 0.0029 5.9725
Vajda Entropy 0.5855 0.1008 0.5309 0.1664 0.4316 0.1524 0.0031 5.9175
HOS EntPh4 0.6561 0.2205 0.5962 0.2430 0.4387 0.2625 0.0032 5.8729
HOS EntPh13 0.5743 0.2220 0.6546 0.2106 0.5142 0.2785 0.0038 5.6950
HOS Ent3

8 0.3145 0.2908 0.1860 0.2051 0.1101 0.1091 0.0050 5.4098
HOS Ent1

7 0.5670 0.2097 0.4393 0.1920 0.3743 0.2122 0.0054 5.3296
Rényi Entropy 0.3570 0.1494 0.3195 0.1986 0.2046 0.0653 0.0064 5.1556
HOS Ent3

5 0.3035 0.2206 0.1632 0.1820 0.1597 0.1190 0.0064 5.1535
HOS EntPh11 0.5673 0.2451 0.6571 0.2346 0.5168 0.2837 0.0081 4.9008
HOS Ent1

5 0.5142 0.1342 0.3743 0.1950 0.4122 0.1566 0.0085 4.8580
HOS Ent2

8 0.4130 0.2699 0.2931 0.2041 0.2218 0.1327 0.0090 4.7917
HOS EntPh6 0.5586 0.2832 0.6034 0.2395 0.4574 0.2036 0.0108 4.6043
HOS Ent3

4 0.2632 0.2400 0.1464 0.1526 0.1877 0.2312 0.0127 4.4388
HOS Ent2

16 0.4236 0.2813 0.3011 0.2268 0.2231 0.1542 0.0146 4.2985
HOS Ent2

14 0.4352 0.2624 0.3182 0.2009 0.2539 0.1989 0.0153 4.2494
HOS Ent2

7 0.4643 0.2782 0.3282 0.2171 0.2768 0.2108 0.0176 4.1048
HOS Ent3

16 0.3037 0.3070 0.1849 0.2145 0.1179 0.1160 0.0180 4.0802
HOS EntPh12 0.6605 0.2570 0.6482 0.2303 0.5077 0.3412 0.0183 4.0613
HOS Ent1

2 0.4787 0.1081 0.4183 0.1440 0.4904 0.1934 0.0207 3.9357
HOS Ent2

4 0.4083 0.2592 0.2733 0.1858 0.3002 0.2590 0.0215 3.8967
HOS Ent3

14 0.3149 0.2868 0.1977 0.1833 0.1618 0.1896 0.0248 3.7503
HOS Ent2

13 0.4686 0.1793 0.3282 0.2145 0.3111 0.2859 0.0297 3.5640
HOS Ent1

11 0.5281 0.1659 0.4365 0.1823 0.3801 0.2264 0.0342 3.4201
HOS Ent1

6 0.5861 0.1697 0.4377 0.2403 0.4263 0.2389 0.0351 3.3931
HOS EntPh15 0.6780 0.2541 0.6588 0.2414 0.5333 0.2839 0.0397 3.2655
HOS Ent1

10 0.5380 0.1472 0.4720 0.1704 0.4083 0.1984 0.0440 3.1600

++HOS: higher order spectra; Ent: bispectrum entropy; EntPh: bispectrum phase entropy; the number in subscript corresponds to the order of the
bispectrum entropy (i.e., first, second, or third); the number in superscript corresponds to the considered Radon angle.

6 U. Rajendra Acharya et al. / Cognitive Systems Research xxx (xxxx) xxx

COGSYS 859 No. of Pages 9, Model 5+

30 May 2019

Please cite this article as: U. Rajendra Acharya, K. M. Meiburger, O. Faust et al., Automatic detection of ischemic stroke using higher
order spectra features in brain MRI images , Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2019.05.005

https://doi.org/10.1016/j.cogsys.2019.05.005


365et al., 2015). That means that human interaction with these
366images becomes more labor intensive, since the cognitive
367processes involved in understanding images with more
368detail requires more time. That extended time requirement
369is amplified by the fact that there are more images available
370for analysis. Hence, the goal of decision support systems
371for reading cardiologists must be to reduce human interac-
372tion as much as possible. Ideally, a human decision maker
373should only be presented with suspected positive cases. In
374our case, the reading radiographer should only see the
375MRI images that show signs of the selected stroke severity.
376As a consequence, the automated stroke severity detection
377systems must have a high sensitivity to reduce the changes
378of missing true positives, i.e. MRI images showing the signs
379of the selected stroke severity. State-of-the art decision sup-
380port systems do not meet these requirements. All of the
381support systems, as summarized in Table 4, utilize image
382segmentation techniques that require manual intervention.
383To be specific, the reading radiographer needs to deter-
384mine, or at least to confirm, a region of interest within
385the MRI image. This is undesirable, because of the time

Fig. 4. Spider diagram to display the F-value for the individual features.

Table 3
Classification results for ischemic stroke identification.

Classifier No. features TP TN FP FN Acc. (%) PPV (%) Sens. (%) Spec. (%)

DT 11 375 199 24 69 86.06 93.98 84.46 89.24
LDA 26 305 163 60 139 70.16 83.56 68.69 73.09
QDA 24 348 185 38 96 79.91 90.16 78.38 82.96
SVM Poly 1 45 329 221 2 115 82.46 99.40 74.10 99.10
SVM Poly 2 19 370 223 0 74 88.91 100.00 83.33 100.00
SVM Poly 3 10 359 222 1 85 87.11 99.72 80.86 99.55
k-NN 11 335 223 0 109 83.66 100.00 75.45 100.00
PNN 2 301 171 52 143 70.76 85.27 67.79 76.68
SVM RBF 36 428 223 0 16 97.60 100.00 96.40 100.00

++ TP: true positives; TN: true negatives; FP: false positives; FN: false negatives; Acc: accuracy; PPV: positive predictive value; Sens: sensitivity; Spec:
specificity.

Table 4
Comparison with rest of the similar works.

Authors Technique Data Performance

Mitra et al. (2014) Bayesian-Markov
Random Field

36 patients 3 month after stroke Sensitivity of segmentation: 0.53 ± 0.13

Tsai et al. (2014) Thresholding 22 patients with acute cerebral
infarction

Similarity index 89.9 ± 6.5%

Maier et al. (2015) Clustering (Fuzzy) 37 patients prec . = 0.80 and recall = 0.54 on average
Muda, Saad, Bakar, Muda,

and Abdullah (2015)
Clustering (Fuzzy) 20 MRI images Dice index 0.74

Griffis, Allendorfer, and
Szaflarski (2016)

Image algebra 30 patients with left-hemisphere stroke
of at least 6 months duration

Dice index 0.66

Chen, Bentley, and
Rueckert (2017)

Deep learning 741 acute stroke patients Lesion detection rate = 0.94.

Subudhi et al. (2018) 17 statistical and
geometrical features

142 S patients Accuracy of 85%

Subudhi et al. (2018) Delaunay triangulation
and texture features

192 MR brain images of stroke lesion Sensitivity of 0.93, accuracy of 0.95

This study HOS features 267 MRI images Sensitivity = 96.4%, specificity = 100%, accuracy
97.6%, positive predictive value = 100%
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386 required to identify the region of interest, and the training
387 required to interact with the decision support system in an
388 optimal way. Furthermore, indicating the region of interest
389 is inevitably associated with problems of inter- and intra-
390 observer variability, which limit diagnostic quality in a
391 practical setting. In the current study, we have undertaken
392 a different approach by using HOS features. Extracting
393 these features does not require manual intervention; hence
394 we established a truly automatic stroke severity evaluation.
395 The number of available datasets is crucial for the
396 design of decision support systems, because that dataset
397 limits the amount of transferrable knowledge concerning
398 the disease that can be extracted. In our case, we require
399 the decision support system to function in a practical envi-
400 ronment, where all of the data is unknown, and the stroke
401 severity must be estimated. That estimation is based upon
402 the knowledge extracted from the dataset that was avail-
403 able during the design time. We have used 267 MRI
404 images. These are increased from the number of images
405 N used in prior work (Subudhi, Jena, & Sabut, 2018;
406 Subudhi, Acharya, Dash, Jena, & Sabut, 2018). Hence,
407 there is the possibility that our system may have improved
408 performance in a practical setting.
409 The practical performance of a system cannot be estab-
410 lished during design time. It is only possible to reason
411 about the practical performance based upon statistical
412 measures, such as the accuracy, sensitivity, and specificity.
413 In our study, these measures were established with ten-fold
414 cross validation, which provides a better estimate of the
415 performance achievable for the available dataset. However,
416 we did not attempt a blindfold validation of the system.
417 Neither did any of the studies summarized in Table 4
418 implement a blindfold procedure. This is a shortcoming,
419 because a blindfold validation mimics the use case scenario
420 for the decision support system. The blindfold cases can be
421 established by excluding specific patients from the dataset
422 used for training and testing the classification system.
423 The images from these patients are tested in a separate
424 blindfold validation step. During the design time, we
425 decided against blindfold validation, because it would have
426 restricted the number of available datasets, and hence it
427 would have limited the volume of extractable diagnostic
428 knowledge.

429 5. Conclusion

430 In this paper, higher order spectra bispectrum entropy
431 and phase features were used to extract salient information
432 from MRI imagery, for stroke severity estimation. To
433 establish a result, we built an automated decision support
434 system which classifies MRI images as showing signs of
435 PACS LACS or TACS. Through competitive testing, we
436 established that the SVM RBF classifier outperformed
437 DT, LDA, QDA, SVM Poly 1, SVM Poly 2, SVM Poly
438 3, k-NN and PNN. To be specific, the SVM RBF classifier
439 achieved a sensitivity = 96.4%, specificity = 100%, accu-
440 racy 97.6%, and positive predictive value = 100%.

441Our decision support system does not require any man-
442ual intervention from the reading radiographer. Hence, our
443method is automatic and not affected by inter- and intra-
444observer variability. We achieved this property by replac-
445ing features based on image segmentation results with
446higher order spectra bispectrum entropy and phase fea-
447tures. Despite that restriction, we were able to achieve a
448best classification performance among all of the surveyed
449studies.
450We have achieved the specificity is 100%. This means
451that, our proposed system is able to automatically identify
452all the LACS images correctly. Hence, we will be able to
453identify the early stage of the brain stroke correctly.
454Having a truly automatic stroke severity classification
455support system has the potential to reduce time and effort
456spent on routine cases. The reading radiographer can there-
457fore focus on corner cases which require more manual
458effort to establish an accurate diagnosis.
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