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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

In this paper, the crack propagation behaviour in tube gears has been investigated. This kind of gear find application in aerospace 
and in particular in helicopter drivelines. For this reason, an accurate design against catastrophic failure due to particular crack 
propagation paths, has to be performed. In this work, the effect of tube length and rim thickness and also speed on crack 
propagation path has been analysed by means of extended finite elements models. In particular, to better understand the effect of 
speed, the changes in stress intensity factors KI and KII have been considered. Particular crack propagation shapes (wave 
propagation) have been found in some cases where the length ratio is particularly high. 
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1. Introduction 

Lightweight gears are used in applications where weight reduction is a key factor, such as in aerospace industry. 
They are characterized by quite thin geometries and are realised in different shapes, according to the application 
requirements. These kinds of gear is geometrically characterized by thin rim thickness, Lewicki et al. (1997), and, if 
it is present, by a thin web thickness, Curà et al. (2015). Considering planetary gearboxes, in particular for helicopter 
applications, the solution to reduce weight consist in realizing satellites whose internal diameter is used as internal 
bearing race, Curà et al. (2016), and the sun as a part of the shaft. In this work, we focus on sun gear. 
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Sun gear for helicopter applications has particular shape that may be described as “tube shape gear” (see Figure 
1). This kind of lightweight gears may be geometrically characterized by rim thickness and tube length. 

Fig. 1. Tube shaped gear. 

As other aerospace gears, also tube shaped gear has to be designed with a failsafe approach, in order to avoid 
catastrophic failures, Lewicki (2011). 

In the literature, many works may be found investigating the crack path behaviour in thin rim gear. Glodez et al. 
(1998) experimentally investigated the effects of different load distributions, while Pehan et al. (1998) made a 
numerical investigation about the effect of non-uniform load distributions and non-uniformly crack growth along the 
tooth width.  

Other authors focused on life estimation, as Flasker et al. (1998), that evaluated the effect of different loading 
conditions on the residual life of wheels with a crack along the tooth root. Podrug et al. (2008) considered the effect 
of moving gear tooth load on the gear service life.  

Rad et al. (2014) calculated the fatigue life of a helical gear by means of the extended finite element method 
(XFEM); Kramberger et al. (2004) investigated the effect of rim thickness on bending fatigue life of a thin-rimmed 
spur gear by finite element and boundary element methods. Lalonde et al. (2011) studied the effect of teeth number, 
speed, rim thickness, initial crack length, initial crack orientation and relative fillet position on the crack path 
propagation by means of boundary element simulations. One of the main parameters affecting crack path is the 
initial crack position, Curà et al. (2014).  

Initial crack position may be influenced by both wheel rotation speed and external bending load, Curà et al. 
(2015). Crack path in thin rim gear may also be influenced by centrifugal loads as shown in some works as the 
Lewicki (2001) one, where experiments and 2D finite element results are shown. Li, in his two works, Li (2008), Li 
(2013), investigated, by means of FE models, the effects of centrifugal load on bending, contact strength and 
deformations of a high speed thin-rimmed spur gear, and Curà et al. (2016) investigated the effect of high speed on 
crack path by extended finite elements models. 

All these works consider the effect of rim thickness, web thickness, load conditions, etc, but the literature is 
lacking about the crack path behavior of tube shape gears. In this kind of gear, the effect of tube length has to be 
taken into account. 

To this aim a geometrical parameter named length ratio has been introduced (it consists in the ratio between tube 
length and face width). 

In this work, the crack propagation path of tube shape gears has been investigated, considering the effect of both 
rim thickness and tube length and the effect of speed. The investigation has been carried out by means of extended 
finite elements models (XFEM). 
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Sun gear for helicopter applications has particular shape that may be described as “tube shape gear” (see Figure 
1). This kind of lightweight gears may be geometrically characterized by rim thickness and tube length. 

Fig. 1. Tube shaped gear. 

As other aerospace gears, also tube shaped gear has to be designed with a failsafe approach, in order to avoid 
catastrophic failures, Lewicki (2011). 

In the literature, many works may be found investigating the crack path behaviour in thin rim gear. Glodez et al. 
(1998) experimentally investigated the effects of different load distributions, while Pehan et al. (1998) made a 
numerical investigation about the effect of non-uniform load distributions and non-uniformly crack growth along the 
tooth width.  

Other authors focused on life estimation, as Flasker et al. (1998), that evaluated the effect of different loading 
conditions on the residual life of wheels with a crack along the tooth root. Podrug et al. (2008) considered the effect 
of moving gear tooth load on the gear service life.  

Rad et al. (2014) calculated the fatigue life of a helical gear by means of the extended finite element method 
(XFEM); Kramberger et al. (2004) investigated the effect of rim thickness on bending fatigue life of a thin-rimmed 
spur gear by finite element and boundary element methods. Lalonde et al. (2011) studied the effect of teeth number, 
speed, rim thickness, initial crack length, initial crack orientation and relative fillet position on the crack path 
propagation by means of boundary element simulations. One of the main parameters affecting crack path is the 
initial crack position, Curà et al. (2014).  

Initial crack position may be influenced by both wheel rotation speed and external bending load, Curà et al. 
(2015). Crack path in thin rim gear may also be influenced by centrifugal loads as shown in some works as the 
Lewicki (2001) one, where experiments and 2D finite element results are shown. Li, in his two works, Li (2008), Li 
(2013), investigated, by means of FE models, the effects of centrifugal load on bending, contact strength and 
deformations of a high speed thin-rimmed spur gear, and Curà et al. (2016) investigated the effect of high speed on 
crack path by extended finite elements models. 

All these works consider the effect of rim thickness, web thickness, load conditions, etc, but the literature is 
lacking about the crack path behavior of tube shape gears. In this kind of gear, the effect of tube length has to be 
taken into account. 

To this aim a geometrical parameter named length ratio has been introduced (it consists in the ratio between tube 
length and face width). 

In this work, the crack propagation path of tube shape gears has been investigated, considering the effect of both 
rim thickness and tube length and the effect of speed. The investigation has been carried out by means of extended 
finite elements models (XFEM). 
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Nomenclature 

B face width;  
F bending force; 
KI mode I stress intensity factor; 
KII mode II stress intensity factor; 
HR rim thickness; 
HT tooth thickness; 
L tube length; 
mb backup ratio; 
mw web ratio;  
W web thickness. 

2. Numerical models 

From different works available in the literature, three different behaviors have been identified (safe failure, 
uncertainty zone, catastrophic failure), Lewicki (2001), related to different backup ratios ranges. In the present work, 
tube shaped gears with different rim thicknesses (belonging to all the three above quoted backup ratios ranges) have 
been considered, in order to investigate if these kinds of gears have the same behavior of “classical” thin rim gears. 
Then the effect of length has been considered in order to investigate its influence on crack path direction. The main 
characteristics of tube gears considered in this work are: 31 teeth, modulus = 3mm, face width = 51mm, pressure 
angle = 20°.  

     Table 1. Gears parameters (B = bending load; S = centrifugal load. 

Test Case Backup ratio Lengh ratio Load 
1 0.2 1.1 B 
2 0.2 1.1 B+S 
3 0.2 2 B 
4 0.2 2 B+S 
5 0.2 4 B 
6 0.2 4 B+S 
7 0.2 6 B 
8 0.2 6 B+S 
9 0.4 1.1 B 

10 0.4 1.1 B+S 
11 0.4 2 B 
12 0.4 2 B+S 
13 0.4 4 B 
14 0.4 4 B+S 
15 0.4 6 B 
16 0.4 6 B+S 
17 0.6 1.1 B 
18 0.6 1.1 B+S 
19 0.6 2 B 
20 0.6 2 B+S 
21 0.6 4 B 
22 0.6 4 B+S 
23 0.6 6 B 
24 0.6 6 B+S 
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Three different rim thickness values have been considered with four different tube lengths. In addition, the effect 
of speed has been investigates, running, for each geometry, simulations without and with centrifugal load, consisting 
in rotating speed of 10000rpm. Table 1 resumes all test cases analyzed in this work. 
Models consist in 3D extended finite elements (XFEM) created by Simulia Abaqus. The crack has been initiated at 
the point where the maximum equivalent stress is achieved. This point has been previously obtained by means of 
static FE analysis. The initial crack has ellipse shape with 0.25 mm length for the mayor axis and 0.1mm length for 
the minor one. The initial crack orientation is perpendicular to the tooth fillet tangent. The load consists in a force 
distributed along the face width, applied at the pitch diameter (see Figure 2). In some cases, a centrifugal load has 
also been applied, according to the test cases resumed in Table 1. The wheel has been blocked at the free end of the 
tube, as shown in Figure 2. 

Fig. 2. FE model. 

The crack propagation has been calculate by the Virtual Crack Closure Technique (VCCT). This method 
considers that the released energy during the crack propagation is equal to the energy necessary to close the crack,  
Collini et al. (2011). 

3. Results and discussion 

It is interesting to compare the crack path behavior of tube shaped gears against the behavior of classical thin rim 
gears whose have been investigated in many works available in the literature. First of all, it is important to highlight 
that tube shaped gears, compared to standard gears, are subjected to both bending and torsional stresses. Because of 
the boundary conditions, the bending stress is higher as the length ratio increases.  

According to the literature considering classical thin rim gears, one of the main parameters influencing the crack 
propagation path is the backup ratio, Lewicki et al. (1997).  

In particular, if the backup ratio is higher than one, the crack propagates through the tooth (safe failure), if the 
backup ratio is less than 0.5, the crack propagates through the rim (catastrophic failure) and, if the backup ratio is 
between 0.5 and 1, the crack path depends from other parameters (i.e. crack initiation position, speed, etc).  

Considering tube shaped gears, Figure 3 shows some examples of the obtained results considering gears with 
backup ratio respectively of mb= 0.4 (Figure 3a) and mb= 0.6 (Figure 4b), with different length ratios. From these 
images, it is possible to observe that the tube length (length ratio) seems not to influence the crack path direction in 
the frontal view, but (as will be shown in the next section), it may influence the crack path shape on the face width 
direction. 
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Table 2. crack propagation paths in tube shaped gears: T = propagation through the tooth, R = propagation through the rim.( B = bending load S = 
speed load). 

Backup ratio mb Length Ratio LR 
1.1 2 4 6 

0.2 T R T R T R T R 
0.4 T T T T T T T T 
0.6 T T T T T T T T 
1 T T T T T T T T 

Load type B B+S B B+S B B+S B B+S 
 
Table 2 resumes all crack propagation results obtained in this work. In particular, the letter T means that the crack 

propagated through the tooth, while the letter R means a propagation though the rim. Table 2 also shows the effect 
of the centrifugal load, in particular the letter B means that the simulation ran with only bending load, while B+S 
means that the simulation involved both bending and centrifugal loads. 

Fig. 3. Results for backup ratio = 0.4 (a) and for backup ratio = 0.6 (b) 

These results are very interesting because show that in tube gears the crack seems always to propagate through 
the tooth in case of negligible centrifugal load, independently from the value of the backup ratio. 

This behavior is very different respect to classical thin rim gears, where, as explained before, the backup ratio 
defines the crack path. It is also interesting to highlight that the centrifugal load affects the crack path only in case of 
very thin rim (mb = 0.2), while in classical thin rim gears its effect is very important also for backup ratio up to 1, 
Curà et al. (2015). Anyway, in most of cases the centrifugal load acts on the crack path shifting the crack 
propagation in a direction more close to the rim. 
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3.1. Effect of centrifugal load on stress intensity factors 

To better understand how the crack path direction may change when the centrifugal load is applied, the values of 
stress intensity factors KI and KII have been evaluated for two tests where crack propagates respectively through the 
rim (Test Cases 1, Figure 4(a)) and through the tooth (Test Cases 2, Figure 4(b)). Stress intensity factors have been 
calculated in different simulation steps. 

From Figure 4 it is possible to observe that, when the crack propagates through the rim, the stress intensity factor 
KI always increases while KII always decreases. On the other hand, when the crack propagates through the tooth 
(Figure 4(b)), KI has again an increasing trend, while KII at the beginning of the propagation tends to decreased and 
then it change its values and increases up to the end of the propagation. 

Fig. 4. KI and KII trends for a crack propagated through the rim: (a) Test Case 1: bending + centrifugal load; (b) Test Case 2: only bending 
load 

3.2. Effect of length ratio (wave shaped propagation)  

Results show that long tube gear (length ratio >2) have a particular crack propagation path (see Figure 5).  

Fig. 5. Wave shaped crack paths for test case 22 (A), test case 24 (B), test case 13 (C) and test case 15 (D). 

As a matter of fact, in these gears the crack propagates in the face width direction, with sinusoidal shape. 
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Table 2. crack propagation paths in tube shaped gears: T = propagation through the tooth, R = propagation through the rim.( B = bending load S = 
speed load). 

Backup ratio mb Length Ratio LR 
1.1 2 4 6 

0.2 T R T R T R T R 
0.4 T T T T T T T T 
0.6 T T T T T T T T 
1 T T T T T T T T 

Load type B B+S B B+S B B+S B B+S 
 
Table 2 resumes all crack propagation results obtained in this work. In particular, the letter T means that the crack 

propagated through the tooth, while the letter R means a propagation though the rim. Table 2 also shows the effect 
of the centrifugal load, in particular the letter B means that the simulation ran with only bending load, while B+S 
means that the simulation involved both bending and centrifugal loads. 

Fig. 3. Results for backup ratio = 0.4 (a) and for backup ratio = 0.6 (b) 

These results are very interesting because show that in tube gears the crack seems always to propagate through 
the tooth in case of negligible centrifugal load, independently from the value of the backup ratio. 

This behavior is very different respect to classical thin rim gears, where, as explained before, the backup ratio 
defines the crack path. It is also interesting to highlight that the centrifugal load affects the crack path only in case of 
very thin rim (mb = 0.2), while in classical thin rim gears its effect is very important also for backup ratio up to 1, 
Curà et al. (2015). Anyway, in most of cases the centrifugal load acts on the crack path shifting the crack 
propagation in a direction more close to the rim. 

6 Francesca Curà et Al./ Structural Integrity Procedia  00 (2017) 000–000 

3.1. Effect of centrifugal load on stress intensity factors 

To better understand how the crack path direction may change when the centrifugal load is applied, the values of 
stress intensity factors KI and KII have been evaluated for two tests where crack propagates respectively through the 
rim (Test Cases 1, Figure 4(a)) and through the tooth (Test Cases 2, Figure 4(b)). Stress intensity factors have been 
calculated in different simulation steps. 

From Figure 4 it is possible to observe that, when the crack propagates through the rim, the stress intensity factor 
KI always increases while KII always decreases. On the other hand, when the crack propagates through the tooth 
(Figure 4(b)), KI has again an increasing trend, while KII at the beginning of the propagation tends to decreased and 
then it change its values and increases up to the end of the propagation. 

Fig. 4. KI and KII trends for a crack propagated through the rim: (a) Test Case 1: bending + centrifugal load; (b) Test Case 2: only bending 
load 

3.2. Effect of length ratio (wave shaped propagation)  

Results show that long tube gear (length ratio >2) have a particular crack propagation path (see Figure 5).  

Fig. 5. Wave shaped crack paths for test case 22 (A), test case 24 (B), test case 13 (C) and test case 15 (D). 

As a matter of fact, in these gears the crack propagates in the face width direction, with sinusoidal shape. 



482 Francesca Curà  et al. / Procedia Structural Integrity 7 (2017) 476–483
 Francesca Curà et Al./ Structural Integrity Procedia 00 (2017) 000–000  7 

In these cases the crack first propagates in the tooth (or rim) direction and then the propagation continues in the 
face width direction. Although the most number of investigation on crack propagation are related to straight cracks, 
in the literature it is possible to find only few works about sinusoidal cracks. In particular, this kind of propagation 
has already been observed in the literature, a in glass plate subjected to thermal stress and in polyethylene tubes with 
high pressure gas, Fujimoto (2009). 

The mechanism of sinusoidal crack path is not completely understood, but it seems to be related to the stress 
intensity factors ratio (KII/KI,) Lu et al. (1989). In particular if the KII/KI >0 the crack turns by side and if KII/KI <0 
the crack goes through the opposite side, Fujimoto (2009). 

4. Conclusions 

In the present paper the crack path behavior of tube gears has been investigated in order to fill the lack existing in 
the scientific literature about this subject. 

To this aim, the effect of the tube length has been taken into account and some new design guidelines have been 
established for tube gears, able to prevent catastrophic failure modes. 

In addition to the classical parameters (back up ratio and web ratio), a new geometrical parameter named length 
ratio has been introduced, consisting in the ratio between tube length and face width. 

Three effects have been considered: two related to the gears geometry  (rim thickness and tube length) and one 
related to the load condition (bending with or without the effect of the centrifugal load). 

3D XFEM technique has been successfully used to analyze tube gears for as concerns crack propagation paths. 
Twenty four test cases have been run, referring to twelve different gears geometries (three back up ratio and four 
length ratio values) and two loading conditions (bending and bending with centrifugal loads). As already done in 
previous papers, the initial crack has been positioned at the point in the tooth root fillet where the maximum 
equivalent stress (Von Mises) has been achieved. 

Then, by reasoning strictly from the geometrical point of view, the tube length (length ratio) seems not to 
influence the crack path direction in the frontal view, but it may influence the crack path shape in the face width 
direction. In particular, long tube gears showed a crack propagation path with sinusoidal shape in the face width 
direction. 

For as concerns the frontal view, the behavior of tube gears is totally different respect to classical thin rim gears 
where the backup ratio substantially defines the crack path. As a matter of fact, the crack seems always to propagate 
through the tooth in case of negligible centrifugal load, independently from the value of the backup ratio. 

If the centrifugal load is considered in simulations, in most cases this condition causes a shift of the crack path in 
a direction more close to the rim.  

Finally, to better investigate this phenomenon, in two cases with the same geometry, but respectively without and 
with centrifugal load, the values of the stress intensity factors KI and KII have been calculated at different 
simulations steps. Stress intensity factors values (KI and KII) showed a trend that seems to emphasize a different 
behaviour related to propagations respectively through the rim (the ratio between KI and KII has always the same 
sign) or through the tooth (the ratio between KI and KII changes in sign).  

Values of the ratio between stress intensity factors (KI and KII) seemed also related to the phenomenon of 
sinusoidal crack paths, but this mechanism of propagation needs to be further investigated. 
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