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High-Fidelity Vibration Analysis of Tapered Swept

Tailored Composite Wing Boxes

Andrea Viglietti1, Enrico Zappino2, and Erasmo Carrera3

MUL2 Team, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

I. Introduction

Composite laminates are primarily used in those engineering fields where high specific mechan-

ical proprieties are required maintaining a low weight. Layers with different orientations can be

overlapped through a process called tailoring, in order to obtain a lamination with the desired prop-

erties [1]. Tailoring is used extensively to address aero-elastic stability problems, where the coupling

between torsion and bending plays an important role [3]. Shirk et al. [2] presented an overview

of the theories used in this research field such as the beam model proposed by Librescu [4]. The

development of theories able to describe the mechanical behavior of laminated structures, e.g. the

development of Layer-Wise models, is of primary importance to provide computationally efficient

tools that can be used in the structural design.

Carrera et al. [5] presented an advanced numerical tool, named Carrera Unified formulation

(CUF), which allows refined structural models to be derived in a compact form. By using the

Lagrange Expansion (LE Model) to approximate the behaviour of the beam cross-section, Carrera

et al. [6] have performed tailoring analyses of a simple prismatic laminated thin-walled wing box.

Recently, Zappino et al. [7] have extended the model to the analyses of complex structures with

tapered shapes. Since the capabilities of this model allow complex geometrical couplings to be

taken into account, the model has been extended in this work to the tailoring analyses of taper

swept reinforced structures characterized by a multi-component nature, evaluating the alterations
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on the free-vibration response.

II. Refined one-dimensional models formulation

The current FE one-dimensional model considers the displacement field u as the product of two

contributions, one over the cross-section and one along the beam axis:

u(x, y, z) = Fτ (x, z)Ni(y) τ = 1, 2 . . .M, i = 1, 2 . . .N (1)

where uτ is the displacement vector, Fτ represents a function expansion used to approximate the

kinematic of the beam cross-section, and M is the number of the expansion terms. Ni is the shape

function of the beam element with N nodes. The present work uses the Lagrange polynomials to

describe any shape geometry of the cross-section through high-order elements which use an iso-

parametric formulation. Several sets of Lagrange polynomial exist, the nine-point (L9) functions

have been adopted in this work. The use of Lagrange functions leads to models with only displace-

ments as degrees of freedom, as shown reported by Carrera and Petrolo [9]. In this way, this feature

makes it possible to connect different models just imposing the congruence of the displacements

at the shared nodes [10]. Zappino et al. [7] exploited these models to study complex structures

including tapered beams and wing structures.

A detailed explanation of the CUF and the derivation of the stiffness and mass matrix are not

reported here for sake of brevity, but they can be found in the work by Viglietti et. al.[8] and in the

book by Carrera et. al. [5].

III. Results

Two whin-walled boxes with wing-like geometry are presented in this work. The structures are

made of a 2-ply laminate of CFRP: Carbon Fiber Reinforced Polymer. Each layer of the laminate

has the following proprieties: ELL = 50e9 Pa, ETT = EZZ = 10e9 Pa, G = 5e9 Pa, Poissons’s ratio

ν = 0.25 and density of 1700 kg/m3. ELL is referred to the fiber direction. The results presented

in the following sections have been compared with those from the commercial code NASTRAN

using CQUAD elements to validate the accuracy of the model. Different lamination cases have
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1 2 3 4 5 6 7 8 9 10 11 12 13

θ1 90◦ 75◦ 60◦ 45◦ 30◦ 15◦ 0◦ −15◦ −30◦ −45◦ −60◦ −75◦ −90◦

θ2 0◦ −15◦ −30◦ −45◦ −60◦ −75◦ −90◦ −105◦ −120◦ −135◦ −150◦ −165◦ −180◦

Table 1 Lamination Cases. θ1 is referred to the inner layer. θ2 is related to the outer one.
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Fig. 1 Geometry of the rectangular box with sweep angle.

been considered, Table 1 shows the values of the lamination angles for each case. θ1 and θ2 refer

to the inner and the outer layer respectively. As an example, lamination case 5 has θ1 = 30◦ and

θ2 = −60◦.

A. Rectangular sweep box

A simple rectangular box has been taken into account. A sweep angle has been introduced as

shown in Figure 1a. The structure has the following dimensions: L = 2 m, h = 0.08 m, R = 0.3 m,

d = 0.3 m and thickness equal to 1 cm. The direction of the fibers rotation is shown in Figure 1b.

The panels are described using one beam element placed along the thickness of each layer. Figure

2 shows a comparison of the results obtained with the present model with the first four frequencies

evaluated using a Nastran 2D model. The present approach can describe the tailoring effects with

a reasonable approximation even if it uses a much lower number of degrees of freedom DOF, in

fact, the current model has 11844 DOFs while the Nastran model requires 130000 DOFs. The third

frequency, which corresponds to the second bending mode, has a minimum when the lamination is

equal to ±45◦. In contrast, the first torsional mode, which corresponds to the fourth frequency, has

a maximum for this lamination, see case 4 and 10. As expected the choice of the lamination can
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Fig. 2 First 4 modes of the swept rectangular box. Comparison between the results obtained
from the present model (11844 Dofs) and from the Shell model (130000 Dofs).
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Fig. 3 Geometry and reference systems for different tailoring approaches.

have a significant effect on the dynamic response of the structure, and this can be exploited in the

aeroelastic design of wing structure.

B. Tapered sweep box

In this section, a tapered box characterized by a swept angle, shown in figure 3a, is considered.

The structure has been described using the beam elements through the thickness of the panels. The

geometrical characteristics are the following: L = 2 m, R = 0.4 m, r = 0.2 m. The height and the

thickness are constant over the whole wingspan and they are equal to h = 0.08 m and t = 0.01 m.

Several cases with different rotation directions of the fibers have been investigated. The lamination
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Panels Webs

Inner Layer Outer Layer Inner Layer Outer Layer

Case 1 θ1 θ2 θ1 θ2
Case 2 θ1 θ2 45◦ −45◦

Case 3 45◦ −45◦ θ1 θ2
Case 4 θ1 θ2 90◦ 0◦

Case 5 90◦ 0◦ θ1 θ2

Table 2 Lamination cases details

angles in each panel are defined according with the normals shown in 3b. Five lamination setups

have been considered. Case 1 has a variable lamination in all the components. Cases 2 and 4

consider a fixed lamination angle in the webs and investigate the effects of the tailoring of the upper

and lower panels while Cases 3 and 5 consider a variation of the web lamination angle given a fixed

layout of the upper and lower skins, as reported in Table 2. Figures 4a-d show the variation of

the natural frequencies when Case 1 to 5 are considered. When the results from cases 3 and 5 are

considered, the first frequency is not influenced by the lay-up of the webs and maintains an almost

constant value for both cases. Cases 2 and 4 consider a variable angle in the upper and lower skins.

They show a large variation of the first frequency highlighting that the stiffness of the panels governs

the first mode. A cross-ply lamination ensures the higher frequency value if compared with that

of the angle-ply lamination. The effects on the second mode are shown in Figure 4b. In this case,

both panels and webs play an essential role in the dynamic response. In fact, the higher frequency

values are obtained for Cases 4 and 5. Figure 4c shows the variation of the third frequency. The

results show that the frequency can be strongly modified with the tailoring of the panels while the

web lamination has not such a big effect. The higher frequency value is obtained when the panels

have a cross-ply lamination, and the webs have an angle-ply set-up. Finally, Figure 4d shows the

results related to the torsional mode. In this case, an angle-ply lamination of both panels and webs

produces the higher frequency value, see Case 2 lamination 11.

C. Tapered wing-box structure

The last case concerns the evaluation of the effects due to a tailoring process on a complex

structure, shown in Figure 5, that involves several structural components such as unidirectional ele-
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Fig. 4 Variation of the first four frequencies at different laminations for cases 2
rd, 3th, 4th and

5
th.

ments (stiffeners), transverse reinforcements (rib), top and bottom skin and two spar webs (vertical

panels). The global dimensions are the following: L = 2 m, R = 0.5 m, r = 0.3 m, h = 0.1 m. The

skin and the ribs have a thickness equal to t = 5 mm. The cross-section of the stiffeners have the

following dimensions expressed in meters: A = 0.03, B = 0.015 and a = b = 0.005. The stiffeners

are described using ten three-node beam elements (B3) over the length of each reinforcement. Panels

and webs maintain the same description of the previous cases: one B3 element through the thickness

of each layer. To conclude, five B3 elements, placed parallel to ZG, are used to describe the ribs.

The frequencies are compared with those obtained using a refined NASTRAN solid model. Table 3

reports the first five global frequencies considering a cross-ply lamination of the skin and the webs,

unidirectional reinforcements and traversal ribs with a lamination of 45◦/−45◦. The tailoring effects

on this structure have been investigated referring to the lamination scenarios reported in Table 2.

The traversal ribs have been considered with a fixed stacking sequence equal to 45◦/− 45◦, and the
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Fig. 5 Geometry of the tapered wing box with stiffeners and traversal webs.

Present Model Solid Nastran

DOF 26952 181740

1st yz-Bending 28.99 29.12

1st xy-Bending 104.65 105.51

1st Torsional 124.30 123.61

3rd yz-Bending 334.01 317.29

2nd xy-Bending 362.51 362.82

Table 3 Global frequencies of tapered reinforced wing box: 90
◦/0◦ lamination.

stiffeners are unidirectional. The fiber rotations have been performed accordingly with the material

reference systems shown in Figure 3b. Figure 6 shows the variation of the first three modes consid-

ering different lamination setup. The first bending mode in the plane yz has the highest frequencies

with a lamination of the panel blocked at 90◦/0◦. These results confirm the importance of the panel

respect the webs in this mode. A variation in the web lamination introduces weak effects on the

frequency. The second mode has the higher frequency when a lamination of 90◦/0◦ for the spar

webs are used. The highest frequency peaks are achieved by introducing the same lamination in the

panels. As expected, the panels characterized by a lamination of 45◦/ − 45◦ increase the torsional

frequency and the more significant peaks of this value is obtained when the same lamination is used

in the webs.
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Fig. 6 Tailoring effects on the natural frequencies.

IV. Conclusions

A refined one-dimensional model, based on the Carrera Unified Formulation, has been adopted

to describe the kinematic field of structures with non-prismatic shapes. In particular, the current

model can investigate complex structures composed of several components, each one represented by

an ad-hoc beam formulation. In this way, the effects of the tailoring on each structural component

of these structures have been considered in order to emphasize the role played by each part in

the dynamics of the structure. The model has provided accurate results compared with those

from commercial codes that are more expensive in term of computational costs. As confirmed by

the results, the tailoring of the composite materials has a significant influence on the frequencies..

The results show that the frequencies can be shifted to the suitable values, without modifying the

geometry, using appropriate laminations. Furthermore, direct control of the geometrical coupling

between the bending and torsional effects is possible. The results confirm the potentialities of
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the present model and make it a reliable tool for the tailoring analysis during preliminary design

processes of complex structures.
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