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Summary

This PhD Thesis is about the in-silico simulation of soft matter. A multiscale ap-
proach was used to face the current limitations related to the modelling of both complex
mixtures at molecular level, and the industrial equipment, needed for their manufactur-
ing, at macroscopic level.The term softmatter refers to those products that are obtained
by mixing two or more phases (miscible or immiscible, w/ or w/o surfactants), that flow
as a response to the application of a reasonable shear stress. A fundamental aspect, when
dealing with soft matter, is related to its rheology. Microstructures, such as micelles and
droplets, may influence the viscosity of the final products. These structures can evolve,
due to the presence of high shear regions in mixing devices, that influence aggrega-
tion, shape changes and re-orientation of the aggregates. The capability of predicting
both the final shape and the polydispersity of these peculiar structures is required to
overcome limitations of the current empirical models that fail beyond their limits of
applicability. The range of applications of soft matter is massive. Home and personal
care, food industry, drug delivery are some of the possible applications. In particular,
copolymers and emulsions, have been investigated using meso- and macro- modelling,
keeping in mind that approaches and systems may be interchanged. Computer sim-
ulations have been performed on two different scales, i.e. mesoscale and macroscale,
by using respectively Dissipative Particle Dynamics (DPD) and Computational Fluid
Dynamics (CFD). Copolymers, e.g. tri-block copolymer (Pluronics by BASF) and water
systems have been investigated in both equilibrium and non-equilibrium configura-
tions using DPD, a mesoscale approach. In DPD, molecular identity is lost, and atoms,
molecules and particles are replaced by clusters of entities that interact via soft poten-
tials. Equilibrium simulations were performed on LAMMPS for three different species
of Pluronics, and phase diagrams, at equilibrium, were validated against experimen-
tal results. The microstructures were qualitatively and, when possible, quantitatively
validated by identifying their status of aggregation. In particular, when micelles and
worm-like structures were present, their sphericity was calculated with an in-house
developed clustering algorithm that is able to identify different clusters, calculate their
gyration radius and how they evolve during the simulation time in response to shear
stress.Tests were repeated for Pluronics P104 and P85, proving that the set of simula-
tion parameters ensures the scalability of the models on similar mixtures. This reduces
the necessity of performing lab-scale experiments to identify peculiar microstructures.
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Shear effects, e.g. because of the stirring, have been evaluated, at this scale, by looking at
the modification of the microphases, such as coalescence, deformation, and alignment.
In order to perform these simulations, Lees-Edwards Boundary Conditions (LEBC) were
used meaning that a linear velocity profile is obtained across the simulation box, such
that the viscosity of the system can be obtained from the stress tensor, directly obtained
via DPD.

Attention was focused on the variation of the number of aggregates identified, their
morphological changes, and the variation of the viscosity in time for all the range of
concentration. Shear thinning behavior, observed between 40% and 65% vol. of Pluronics
was confirmed with experimental tests, while Newtonian behavior lasts at low concen-
tration.

On the other side, in the manufacturing process to produce commercial soft matter
products, stirring is a fundamental operation. In this work, mixing at industrial scale
was simulated by using Computational Fluid Dynamics (CFD). Two mixers, a stirred
tank with inclined impeller and anchor and an inline rotor-stator mixer, were simulated
by using the two-fluid model and population balance equation. Emulsions of silicone-
oil in water, at low volume fraction (1% vol.) and different viscosities, and surfactants
were investigated on a full 3D scale, with in-house implementation of population bal-
ance equation into Ansys Fluent. Multiple reference framework was used to reproduce
the stirring effect and results have been validated against the empirical correlations
for the power number of these systems and experimental evolution of the droplet size
distribution.

In order to obtain the evolution of droplet size distribution for all the silicone-oil-
in-water mixtures, two kernels have been implemented in Fluent and tested to better
describe the breakage phenomenon, while coalescence was turned off because of the
presence of surfactant into the system.

In this work we explored the capabilities of computer simulations of assessing both
the quasi-molecular and the macro scale, regarding the manufacturing of products re-
lated to home and personal care industries. It was proved that coupling simulations
with experiments is a powerful tool that can be used to speed up and optimize indus-
trial processes. This will reduce the gap of knowledge about the many aspects of soft
matter, such as all those phenomena that can only be appreciated at molecular level.
Eventually, it was developed an OpenFOAM solver (C++, CFD code, open source code),
where CFD scale sends information, such as shear rate and concentration of compo-
nents, to DPD scale and receives a feedback on the evolution of transport coefficients.
However, the conversion between the values obtained from DPD and real quantities is
still missing. In the future, this tool will allow 3D macroscale simulations where models
are directly derived from mesoscale observations.

iv





Acknowledgements

And I would like to acknowledge Professor Ignacio Pagonabarraga, Professor Paola
Carbone and Principal Engineer Adam Kowalski.

vi



I would like to dedicate
this thesis to my loving
parents
̇



Contents

List of Tables xi

List of Figures xii

1 Thesis Guidelines 1
1.1 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Reading Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Flowing soft Matter: structured fluids and emulsions 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Structured fluids, copolymers:
self-Assembly and microstructures . . . . . . . . . . . . . . . . 8

2.1.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Structured fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Self-assembly and microstructures . . . . . . . . . . . . . . . . 12
2.2.2 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Water/Pluronics Mixtures . . . . . . . . . . . . . . . . . . . . . 16

2.3 Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Properties of Emulsions . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Manufacturing Emulsions . . . . . . . . . . . . . . . . . . . . . 23

3 Computational Models 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Full-Atoms and Coarse-Grained Models . . . . . . . . . . . . . . . . . . 27

3.2.1 From Liouville to Boltzmann Equation: Mesoscale Modelling . 27
3.2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



3.2.3 The Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Coarse-Grained Models . . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 Dissipative Particle Dynamics . . . . . . . . . . . . . . . . . . . 38

3.3 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 From the Boltzmann equation to the Navier-Stokes equation . . 46
3.3.2 Two-Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Turbulence models . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Population Balance Equation . . . . . . . . . . . . . . . . . . . 51
3.3.5 Breakage Models . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Solution Algorithms 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Dissipative Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Euler Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Leap Frog Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Verlet Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Quadrature Method of Moments . . . . . . . . . . . . . . . . . . . . . . 62

5 Computational Details 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Coarse-Grained model: LAMMPS . . . . . . . . . . . . . . . . . 66
5.2.2 Equilibrium Simulations: Pluronics in Water . . . . . . . . . . 70
5.2.3 Non-Equilibrium Simulations: Lees-Edwards Boundary Condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Non-Equilibrium Simulations: Pluronics in Water . . . . . . . . 74
5.2.5 Code Download . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 DBSCAN Algorithm and quantitative comparison . . . . . . . . 80
5.3.2 Code Download . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Continuum CFD Models: Fluent . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Fluent UDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 ESCO 6L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 Silverson Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Results 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Equilibrium Simulations . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



6.2.4 Chemical Potentials . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.5 Non-Equilibrium Simulations . . . . . . . . . . . . . . . . . . . 114
6.2.6 Range of applicability . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.7 DPD Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.1 ESCO 6L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.2 Silverson Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Coupled Solver: CFD-DPD . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5 Coupled Solver: 3D CFD - 0D CFD . . . . . . . . . . . . . . . . . . . . . 165

7 Conclusions 169
7.1 Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2 Emulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Codes 177
A.1 LAMMPS file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 Python Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Fluent UDF - Laakkonen kernel . . . . . . . . . . . . . . . . . . . . . . 190

B PBE Algorithm 219
B.1 Product Difference Algorithm . . . . . . . . . . . . . . . . . . . . . . . 219
B.2 Wheeler Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Bibliography 222

x



List of Tables

5.1 Interaction parameters for the three species, Water, PEO and PPO. All
values are reported in DPD units. . . . . . . . . . . . . . . . . . . . . . 72

5.2 Geometrical details of the mixing vessel and operating conditions . . . 85
5.3 Physical properties of the different silicone oils tested in the ESCO

Mixer. In particular, different viscosities and initial diameter were studied. 89
5.4 Computational methods and numerical schemes adopted in the simula-

tion of ESCO Mixer for all the different viscosities. . . . . . . . . . . . . 90
5.5 Under relaxation factors for all the quantities of ESCO Mixer testcase. . 90
5.6 Initial values of the moments according to a log-normal distribution for

the case of 1.31%𝑤𝑡 of silicone-oil (low viscosity) in water and 1% for
the other viscosities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Physical properties of the different silicone oils tested in the Silverson
in-line rotor-stator Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Initial values of the moments according to a log-normal distribution for
the case of 1%𝑤𝑡 of silicone-oil in water. . . . . . . . . . . . . . . . . . 95

6.1 𝑑 coefficient of Eq. 5.2 calculated for the main lines (red lines in Fig 6.10
and similar) and boundary lines (blue-green) for L64 . . . . . . . . . . . 110

6.2 𝑑 coefficient of Eq. 5.2 calculated for the main lines (red lines in Fig. 6.10
and similar) and boundary lines (blue-green) for P104 . . . . . . . . . . 112

6.3 ESCO 6L parameters of the laboratory equipment. . . . . . . . . . . . . 135
6.4 Meshes and operating conditions tested for the ESCO 6L in Ansys Flu-

ent. Power number obtained from the torque and the turbulent dissipa-
tion rate is compared against the constructor power number. . . . . . . 137

6.5 Turbulence models and drag-forces tested for the ESCO 6L in Ansys
Fluent, for the same mesh (Hexahedrons, 3000 RPM, Refined). Power
number obtained from torque and turbulent dissipation rate are com-
pared between them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Slopes and intercepts obtained from the fitting of the experimental re-
sults of the Silverson 150/250 Mixer compared against the experimental
curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xi



List of Figures

1.1 A graphical summary of the different aspects covered in this thesis: two
different systems have been assessed from amicroscopical point of view
to determine macroscopic properties by using computer simulations. . 2

1.2 Modelling scales are reported as a function of length and time. . . . . . 3
2.1 Phases that can be obtained by varying the concentration of a copoly-

mer in water. a) micelles, b) cylinders, c) desordered-lamellae d) ordered
lamellae. These phases can exhibit completely different rheological be-
haviour due to the size and shape of the aggregates that are formed
(Pasquino et al., 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Pluronics structure: tri-block copolymer, A-B-A structure. The two tails
are formed by PEO (slightly hydrophilic) repeating groups while the
central part is made by PPO repeating groups (slightly hydrophobic). . 16

2.3 On the x-axis, the increasing percentage of PEO groups into a chain,
while on the y-axis the molecular mass of the PPO group in one chain
(Alexandridis, 1997). Types of Pluronics classified by concentration of
hydrophilic part. Different labels, based on their state of aggregation
(P: paste, F: flake, L: liquid), are used. Numbers refer instead to the per-
centage of the hydrophobic vs hydrophilic chains (i.e. last number is the
percentage of PEO divided by ten, the remaining numbers represent the
molecular weight divided by three hundred. In the graph, Pluronics L64,
P104 and P85 is circled in red. . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Critical Micellar Temperature for different Pluronics as a function of the
natural log of the concentration. In particular, this figures shows how
the temperature can affect the formation of micelles (Alexandridis, 1997). 19

3.1 The Lennard-Jones potential. source:https://chemistry.stackex-
change.com/questions/34214/physical-significance-of-double-well-
potential-in-quantum-bonding . . . . . . . . . . . . . . . . . . . . . . . 32

xii



3.2 On the left: representation of the periodic boundary condition. When a
particle (black) leaves the simulation box (solid lines) from one face/side,
a new particle enters in the simulation box from a corresponding posi-
tion of a replica of the simulation box located on the opposite face/side.
On the right: representation of the concept of neighboring list. Each
particle (blue) can interact with other particles (green) surrounding it
within a certain radius of interaction. When a particle is located on the
boundary, it can also interact with replicas of the particle provided by
the periodic boundary condition (red), in order to reproduce bulk effects. 34

3.3 Representation of the force acting between two beads interacting with
a soft potential. In this specific case, the maximum value of the force is
equal to 25, corresponding to 𝑟𝑖𝑗 = 0, meaning that in contrast with the
LJ potential, when the distance between the two particles is zero, the
value of the potential is still bounded and the force has a finite value.
DPD particles, due to the form of the potential, can indeed cross each
other or overlap. When two beads move apart from each other such
that the distance between them is greater than a critical value, the force
between the two beads is equal to zero. . . . . . . . . . . . . . . . . . . 39

3.4 Three scales are used in continuum modelling. The level of accuracy
moves from DNS (most accurate) to E-E (least accurate) but the compu-
tational cost moves in the opposite direction. . . . . . . . . . . . . . . . 45

4.1 Cells defined by their position (N, S, E, W). The center of the cell is
reported in capital letter. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Dissipative Particle Dynamics representation of a simulation box con-
taining water beads. Each bead (spherical particle) represents a cluster
of molecules of water. In this rapresentation, the molecular identity is
completely lost and replaced by soft potentials. . . . . . . . . . . . . . . 70

5.2 Coarse grained models of the Pluronics L64, P104 and P85 according the
described level of coarse-graining. . . . . . . . . . . . . . . . . . . . . . 71

5.3 Lees-Edward boundary conditions are explained.The boxA ismain sim-
ulation box and it contains P particles. On the top and bottom, replicas of
the box move at the same velocity but in the opposite direction, causing
the development of a linear velocity profile across the simulation box
A. Modification of the periodic boundary condition can be also appre-
ciated. When P leaves the box, its replica does not re-enter as a P’ but
as P” because of the sliding velocity on the top of the box. In fact, the
new position must consider the distance covered by the particle during
the new timestep due to the velocity at the top of the box. . . . . . . . 73

5.4 QR code can be used to download Lammps simulation files. . . . . . . . 76

xiii



5.5 From left to right, column represent clustering algorithm that can be
implemented into python. In each column can be appreciated the per-
formances of the clustering algorithm on clouds of points. Different
colours represent different clusters identified by the algorithm. In par-
ticular, the seventh column represents DBSCAN, which can be used to
identify structures such as micelles or distinct clouds of points, in the
shortest time and not knowing the number of clusters a-priori. . . . . 80

5.6 From left to right, three different scenarios where beads are identified
as ”reachable” if they are closer than a certain distance, hence grouped
into the core of one cluster (blue), as boundary points (green) if they
are within the distance but they can be reached only from less beads,
hence belongin to the same cluster, and ”non-reachable” (red) if they are
isolated from the remaining beads, hence not counted as belonging to
the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 QR code can be used to download the python version of the clustering
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 On the top: laboratory scale of the ESCO Mixer in Manchester Univer-
sity. The mixer has a working capacity of 10 litres, an inclined sawtooth
impeller and a rotating anchor with scrapers. On the bottom: 3D CAD
model of the ESCOMixer reproduced with Design Modeller, Ansys.The
3D model has the same dimension of the lab scale one (EL-Hamouz et
al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 Detail of the sawtooth impeller of the ESCO mixer. Also, the sampling
point and the body of the anchor can be identified in the picture (EL-
Hamouz et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 3D CAD detail of the sawtooth impeller and rotating anchor of the
ESCO mixer obtained in Design Modelles, Ansys. . . . . . . . . . . . . 86

5.11 On the top: Example of mesh used in the CFD simulations. The mesh
was obtained with the cutcell method and it is composed by almost 800
000 hexahedrons. On the bottom: section view of the mesh, where it
is possible to appreciate the level of refinement closer to the impeller
region (rotating zone) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 Threemodels of Silversonmixer (from left to right: lab, pilot, plant scale)
used in personal/home caremanufacturing as an ending part of themix-
ing process to furhter reduce the size of the droplets. In particular, it is
possible to observe how the number and dimension of the holes of the
screens change together with the number of blades of the different im-
pellers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.13 3D CAD of the Silverson Mixer, pilot plant scale, obtained with Design
Modeller. On the left: overview of the CAD model. On the right: detail
of the impeller of the Silverson Mixer. The impeller is composed by two
series of blades that move together. . . . . . . . . . . . . . . . . . . . . 93

xiv



5.14 Example of one Mesh of the Silverson Mixer, composed by almost 3 000
000 of tetrahedrons. An high number of elements is required to model
the numerous holes present in the two screens and the impeller which
is located in their proximity. The mixer is composed by an inlet and an
outlet pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.15 Details of the Mesh. In particular, it is possible to observe the rotating
zone surrounding the two screens and the high number of holes that
require most of the elements composing the mesh. . . . . . . . . . . . . 94

6.1 Experimental phase diagram (Zhou et al., 1996) for the mixture of
Pluronics L64/Water mixture showing the different phases that are
obtained by varying the temperature and the concentration of the
Pluronics L64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 From left to right, top to bottom: Graphical outputs of the simulation
results of Pluronic L64 in Water at increasing concentrations (5%, 15%,
25%, 45%, 75%, and 90% wt) where all the experimental phases can be
recognized. In particular, micelles, worm-like, lamellae, and reversed
micelles can be observed at different concentrations. In each snapshot,
different colours represent different beads (PPO beads: green, PEO
beads: red) and in many cases water was faded for the sake of clarity
(Droghetti et al., 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Experimental phase diagram (Álvarez-Ramírez et al., 2009) for the
mixture of Pluronics P104/Water mixture showing the different phases
that are obtained by varying the temperature and the concentration
of the Pluronics P104. Dots represent the simulations that have been
performed. Colors represent the different phases that have been
identified in our simulations: blue - isotropic, light blue - elongated
micelles, green - cylinders, yellow - hexagonal, red - lamellar, grey -
two phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 From left to right, top to bottom: Graphical outputs of the simulation re-
sults of Pluronics P104 in Water at increasing concentrations (5%, 15%,
25%, 40%, 60%, 75%, and 90% wt) where all the experimental phases
can be recognized. In particular, micelles, worm-like, hexagons, lamel-
lae, and reversedmicelles can be observed at different concentrations. In
each snapshot, different colours represent different beads (PPO beads:
purple, PEO beads: cyan, Water: pink) and in many cases water was
faded for the sake of clarity. . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Experimental phase diagram (Hammouda, 2010) for the mixture of
Pluronic P85/Water mixture showing the different phases that are
obtained by varying the temperature and the concentration of the
Pluronic P85. Dots represent the simulations that have been performed. 103

xv



6.6 From left to right, top to bottom: Graphical outputs of the simulation
results of Pluronic P85 in Water at increasing concentrations (10%, 25%,
50% 70% 90% wt) where all the experimental phases can be recognized.
In particular, micelles, worm-like, and lamellae, can be observed at dif-
ferent concentrations. In each snapshot, different colours represent dif-
ferent beads (PPO beads: grey, PEO beads: pink, Water: cyan) and in
many cases water was faded for the sake of clarity. . . . . . . . . . . . 104

6.7 From left to right: Pluronic L64/water mixtures at different concentra-
tions (5%, 10% 15%, and 25% wt) in a simulation box of 20 × 𝑟𝑐. Spherical
micellar structures can be identified. . . . . . . . . . . . . . . . . . . . 106

6.8 From left to right: Pluronic L64/water mixtures at different concentra-
tions (5%, 10% 15%, and 25% wt) in a simulation box of 30 × 𝑟𝑐. Spherical
micellar structures can be identified. . . . . . . . . . . . . . . . . . . . . 106

6.9 From left to right: Pluronic L64/water mixtures at different concentra-
tions (5%, 10% 15%, and 25% wt) in a simulation box of 40 × 𝑟𝑐. Spherical
micellar structures can be identified. . . . . . . . . . . . . . . . . . . . . 106

6.10 Gyration radius, 𝑅𝑔, is reported against the aggregation number, 𝑁, for
four concentration of Pluronic L64 in water (from left to right, top to
bottom: 5%, 10%, 15% and 25%).The red line indicates a slope of 0.3 while
the yellow line a slope of 0.5. Clusters have been identified by using the
cluster algorithm developed in this work. . . . . . . . . . . . . . . . . . 108

6.11 L64 Cluster analysis - From left to right, top to bottom: Gyration radius
is plotted against the number of chains contained into a single cluster.
The concentrations are: 3%, 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, 50% of Pluronic in water. Red line is the slope of the trend of the
structures, while the blue line indicates the limit of the cloud of points 110

6.12 P104 Cluster analysis - From left to right, top to bottom: Gyration radius
is plotted against the number of chains contained into a single cluster.
The concentrations are: 3%, 5%, 6%, 8%, 9%, 10%, 12%, 15%, 18%, 20%,
25%, 30%, 35%, 40%, 45%, 50% of Pluronic in water. Red line is the slope
of the trend of the structures, while the blue line indicates the limit of
the cloud of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.13 Theoretical value of the chemical potential (red line) is plotted against
the simulation results (dots) for Pluronics L64 (left) and Pluronics P104
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.16 Values of the viscosity (top graph) and temperature (bottom graph) in
DPD units, obtained with LEBC in a box of 30 × 𝑟𝑐, a simulation time
of 1 000 000 timesteps after 500 000 equilibration steps, with a 0.01
𝜏𝐷𝑃 𝐷 using different thermostats (black: Berendsen, red: SLLOD, green:
Langevine, blue: SLLOD + velocity ramp, cyan: Nose-Hoover) . . . . . 115

xvi



6.17 Viscosity of a system containing water beads at different shear rates.
The viscosity is constant in all the shear range explored, which indicates
that the fluid behaves as a Newtonian fluid. . . . . . . . . . . . . . . . . 116

6.18 Velocity profiles obtained acros the simulation box when LEBC are ap-
plied.The simulation box has a side length of 30𝑟𝑐 and it containsmainly
water beads. Colors refer to different velocities obtained by varying the
shear rate imposed on the system (black: 0.005, blue = 0.02, red = 0.2,
green = 2.0). The axis have been normalized to the maximum dimension
of the box and the velocity. . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.19 On the top: velocity profiles developed across the simulation box in a
system composed by Water and Pluronics L64. The shear rate imposed
on the system is equal to 0.01 DPD units. On the bottom: density pro-
file, i.e. number of beads per unit volume, along the 𝑦-axis. Similarly
we found this profile on 𝑥-axis and 𝑧-axis. The uniform distribution of
the beads in the box ensures no border effects. Colors refer to different
timesteps (black = 0.001, red = 0.005, green = 0.01). . . . . . . . . . . . . 119

6.20 Viscosity of 25%wt (top) and 35% (bottom) wt mixture of Plurnics L64
in water for different box sizes (black: 20× 𝑟𝑐, red: 30× 𝑟𝑐, green: 40× 𝑟𝑐)
against the DPD shear rate. 30× and 40× curves are overlapping while
small differences are obtainedwith the 20× box due to confinement effects. 120

6.21 Velocity profile (top) at different shear rates (black: 0.005, blue: 0.007,
red: 0.01, green: 0.02, cyan: 0.05, magenta: 0.1, yellow: 1.0); value of the
viscosity (middle) recorded over the simulation time until a plateau has
been reached in all the cases for different shear rates (similar to top).
Final value of the viscosity (bottom) reported against the DPD shear
rate. All the cases refer to a box containing 25% wt of Pluronics L64 in
water in a box with side length equals to 30× 𝑟𝑐 . . . . . . . . . . . . . 121

6.22 Viscosity, in DPD units, of a mixture of Pluronics L64 in water (25%
wt) against shear rate (in DPD units) obtained by varying the harmonic
constant (black: 4,0, green: 50.0, blue: 100.0, red: 200.0) in a box with
length equals to 30x 𝑟𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.23 Comparison between the obtained viscosity, in DPD units, against the
shear rate, again in DPD units, by using Harmonic (circles) and FENE
(diamonds) bonds in the polymeric chains. Colors refer to different con-
centrations (black: 25% wt, red: 45% wt, and blue: 75% wt) of Pluronics
L64 in Water. 𝜅ℎ𝑎𝑟𝑚 and 𝜅𝐹 𝐸𝑁𝐸 are equal to 50 DPD units. . . . . . . . 123

6.24 Number of clusters identified in each simulation box as a function of the
timesteps: three different concentration of Pluronics L64 (black: 25% wt,
blue: 45% wt, green: 75% wt), in equilibrium and non-equilibrium (red-
dashed interval) simulations. . . . . . . . . . . . . . . . . . . . . . . . . 124

xvii



6.25 Morphological transition, obtained at 60% wt of Pluronics L64 in water,
from a disordered interconnected structure into a more ordered hexag-
onal phase when a uniform shear of 0.01 DPD units is applied on the
simulation box. Hexagons that are formed can be easily counted. . . . . 126

6.26 Equilibrium configuration of a mixture of Pluronics L64 in water ob-
tained with DLMeso, by using the interaction coefficients already used
for LAMMPS simulations. The two snapshots represent two different
views of the same system . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.27 Non-Equilibrium configuration of a mixture of Pluronics L64 in water
obtained with DLMeso, by using the interaction coefficients already
used for LAMMPS simulations. Again, the morphological transition
from a disordered into hexagonal phase can be appreciated with this
simulation software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.28 Snapshots of three different concentrations (left: 25%wt,middle: 45%wt,
and right: 75%wt) of Pluronics L64 inwater analyzedwith the clustering
algorithm. Colors refer to single structures identified by the algorithm. 128

6.29 Cluster mass distribution (CMD), i.e. the probability of finding a cluster
of dimension N (number of chains in one structure) in the simulation
box, plotted against N, for a concetration of 25% Pluronics L64 in water
at Equilibrium (blue) and Non-Equilibrium (red). Shear rate is equal to
0.01 DPD units. White histograms are a graphical artifact to show close
values overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.30 Cluster mass distribution (CMD), i.e. the probability of finding a cluster
of dimension N (number of chains in one structure) in the simulation
box, plotted against N, for a concetration of 45% Pluronics L64 in water
at Equilibrium (blue) and Non-Equilibrium (red). Shear rate is equal to
0.01 DPD units- White histograms are a graphical artifact to show close
values overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.31 Cluster mass distribution (CMD), i.e. the probability of finding a cluster
of dimension N (number of chains in one structure) in the simulation
box, plotted against N, for a concetration of 75% Pluronics L64 in water
at Equilibrium (blue) and Non-Equilibrium (red). Shear rate is equal to
0.01 DPD units. White histograms are a graphical artifact to show close
values overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.32 Comparison between the gyration radius reported for two con-
centrations (5% (black) and 25%(red) wt) in equilibrium (top) and
Non-Equilibrum (bottom) configurations. It is possible to appreciate
that all the points lie on a line with the same slope, except for few
bigger aggregates that result from the coalescence of smaller ones.
This explains that the shear has no effect on the morphology of such
systems that keep their spherical shape. . . . . . . . . . . . . . . . . . 131

xviii



6.33 Viscosity, in DPD units, reported against the shear rate, again in DPD
units, for different concentrations (amaranth: 0%, black: 25%, yellow:
35%, red: 45%, green: 55%, dark blue: 65%, light blue: 75%, purple: 85%
wt) of Pluronics L64 in water with FENE potential. . . . . . . . . . . . . 132

6.34 Experimental steady shear and dynamic viscosity of a mixture water/-
Pluronics L64 at different concentration.(Pasquino et al., 2019) . . . . . 133

6.35 Snapshots of the velocity vectors and contours obtained around the in-
clined impeller for a speed of rotation of 3000 RPM. Different snapshots
refer to different planes. It is possible to appreciate the evolution of the
velocity field around the impeller and the modification due to the pres-
ence of the anchor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.36 Snapshot reporting the velocity vectors obtained around the inclined
impeller for a speed of rotation of 2000RPM. The pattern is similar to
3000RPM because we are in fully turbulent regime in both cases. . . . . 140

6.37 Mesh independence study validated by comparing the power numbers
calculated from the torque acting on the impeller (circle) and the tur-
bulent dissipation rate (diamond) for hexahedrons dominant (red) and
tetrahedrons dominant (black) grids with 𝜅 − 𝜖 turbulence model. . . . 141

6.38 Mesh independence study validated by comparing the power numbers
calculated from the torque acting on the impeller (circle) and the tur-
bulent dissipation rate (diamond) for hexahedrons dominant (red) and
tetrahedrons dominant (black) grids with Reynolds stress turbulence
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.39 Countour plot of the velocity field obtained including the fixed anchor,
with 𝜅 − 𝜖 turbulence model, at 3000 RPM. The grid is composed by 2
000 000 hexahedrons, refined around the rotating region and the anchor. 142

6.40 Countour plot of the velocity field obtained including the fixed anchor,
with Reynolds stress turbulence model, at 3000 RPM. The grid is com-
posed by 800 000 hexahedrons, refined only around the rotating region.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.41 Example of the Sauter diameters distribution on the plane of the im-
peller, using Tavlarides kernel, after 600s and starting with an initial
diameter of 5.5e-5 m, at 3000 RPM for a low viscosity oil. Droplets are
smaller in the region closer to the impeller where the turbulent dissipa-
tion rate is higher compared to the remaining volume. . . . . . . . . . . 144

6.42 Experimental values of the Sauter diameter for different viscosities
(black: 0.5 mPas, red: 12 mPas, green: 30mPas, blue: 242 mPas) of
silicone oil in water reported against the stirring time (EL-Hamouz
et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xix



6.43 Experimental Sauter diameters (full dots) are compared against the full
3D simulations with Ansys Fluent (solid lines). The evolution of the
Sauter diameter for different viscosities (blue: 0.5 mPas, red: 12 mPas,
green: 30mPas, magenta: 242 mPas) is reported against the physical
(and simulation) time for 4000s. In black is reported the evolution of
the Sauter diameter calculated with the Laakkonen kernel by varying
the value of one the constants (𝐶3) from 0.2 to 0.15. . . . . . . . . . . . 147

6.44 Experimental Sauter diameters (full dots) are compared against the full
0D simulationswithMATLAB (dashed lines).The evolution of the sauter
diameter for different viscosities (blue: 0.5 mPas, orange: 12 mPas, gray:
30mPas, green: 242 mPas) is reported against the physical (and simu-
lation) time for 4000s. In black is reported the evolution of the Sauter
diameter calculated with the Laakkonen kernel by varying the value of
one the constants (𝐶3) from 0.1 to 0.3. . . . . . . . . . . . . . . . . . . . 148

6.45 Evolution of themoment of order 0, representing the number of droplets
originated into the system, during the simulation time obtainedwith the
Laakkonen kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.46 Evolution of the moment of order 3, representing the volume fraction of
disperse phase, during the simulation time obtained with the Laakko-
nen kernel. The conservation of moment of order 3 ensures that mass is
always conserved along the simulation time. . . . . . . . . . . . . . . . 150

6.47 Comparison between the moments of order 0 obtained with Laakkonen
(black) and Tavlarides (red) kernel for a mid viscosity silicone oil in wa-
ter. It is possible to appreciate how the two kernels produce a completely
different dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.48 Breakage frequency for the Tavlarides kernel plotted against the simula-
tion time. It is possible to observe how the frequency rapidly goes to zero
after few hundreds seconds of simulations, meaning that no breakup oc-
curs after that limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.49 Experimental Sauter diameters (full dots) are compared against the full
3D simulations with Ansys Fluent (solid lines) using Coulaloglou and
Tavlarides kernel. The evolution of the Sauter diameter for different
viscosities (blue: 0.5 mPas, red: 12 mPas, green: 30mPas, magenta: 242
mPas) is reported against the physical (and simulation) time for 4000s. 153

6.50 0D simulations with MATLAB (dashed lines) using Coulaloglou and
Tavlarides kernel.The evolution of the Sauter diameter for different vis-
cosities (blue: 0.5 mPas, red: 12 mPas, green: 30mPas, orange: 242 mPas)
is reported against the simulation time for 500s. . . . . . . . . . . . . . 154

6.51 Comparison between reconstructed droplet size distributions calculated
from the moments, using CT (blue) and LA (black) kernels after 300s
(dashed) and 1200s (solid) for a mid viscosity silicone oil in water. . . . 155

xx



6.52 Sensitivity analysis on the value of the two groups present in the
Laakkonen kernel. The group containing the interfacial tension
(dashed) is compared with the group containing the viscosity (solid)
at different values of the viscosity (red: 0.1mPas, green: 0.5mPas, blue:
1mPas, light blue: 5mPas, pink: 10mPas, yellow: 20mPas, grey: 40mPas,
dark red: 100mPas, dark green: 200mPas, dark blue: 400mPas, dark
cyan: 500mPas, dark purple: 700mPas with 𝜖 = 4.5𝑘𝑔𝑚2𝑠−3 . . . . . . . 156

6.53 Sensitivity analysis on the value of the two groups present in the
Laakkonen kernel. The group containing the intefacial tension (dashed)
is compared with the group containing the viscosity (solid) at different
values of the viscosity (red: 0.1mPas, green: 0.5mPas, blue: 1mPas,
light blue: 5mPas, pink: 10mPas, yellow: 20mPas, grey: 40mPas, dark
red: 100mPas, dark green: 200mPas, dark blue: 400mPas, dark cyan:
500mPas, dark purple: 700mPas with 𝜖 = 115𝑘𝑔𝑚2𝑠−3 . . . . . . . . . . 156

6.54 Countour plots of the velocity fields obtained for the Silverson mixer at
different velocities of the impeller and mass flow rate. . . . . . . . . . . 158

6.55 Comparison between the power number obtained from the Torque and
the turbulent dissipation rate, with 𝜅−𝜖 turbulencemodel for two differ-
ent meshes (different level of refinement) compared against the experi-
mental results obtained byHall, Cooke, Pacek, et al., 2011; A. J. Kowalski
et al., 2011. The black line is the experimental Power Number, while the
red line represents the best simulation fitting curve. Slope and intercept
of experimental line can be compared against the simulation ones. Blue
symbols represent the PO obtained by torque, yellow dots represent the
PO obtained by the turbulence. . . . . . . . . . . . . . . . . . . . . . . . 159

6.56 Comparison between the power number obtained from the Torque and
the turbulent dissipation rate, with 𝜅 − 𝜔 turbulence model for two
different meshes (different level of refinement) compared against the
experimental results obtained by Hall, Cooke, Pacek, et al., 2011; A. J.
Kowalski et al., 2011. The black line is the experimental Power Number,
while the red line represents the best simulation fitting curve. Slope and
intercept of experimental line can be compared against the simulation
ones. Blue symbols represent the PO obtained by torque, yellow dots
represent the PO obtained by the turbulence. . . . . . . . . . . . . . . . 159

6.57 Power draw obtained at different flowrates and speed of rotation of the
impeller (blue: 11000 RPM, orange: 6000 RPM) obtained by experiments
(solid line) and simulations (dots). Dashed lines represent an interval of
confidence of 20% which is related to experimental uncertainties. . . . 161

6.58 Simulation results of the Laakkonen kernel for the silverson mixer.
Sauter diameter is reported on a horizontal section plane of the mixer.
Smallest reported diameter is in the order of magnitude of 3 × 10−5𝑚. . 162

xxi



6.59 Working flow of the coupled DPD/CFD code. In the first step, the DPD
simulations are run and variables are computed for each cell of the CFD
domain. DPD values are converted into physical units and loaded into
the mesh. CFD time is updated together with the related fields. Time is
stopped and DPD calculations are repeated. . . . . . . . . . . . . . . . . 163

6.60 Coupled solver overview. LAMMPS is linked to OpenFOAM. The cycle
of operations previously illustrated is now given in a simpler way. . . . 164

6.61 Workflow of the procedure followed in the current work in order to re-
duce the number of full 3D simulations, without affecting the accuracy
of the solution by coupling MATLAB 0D simulations and full 3D Fluent
Simulations. In this case, the low fraction of the disperse phase allowed
the simulation of a single cell by using the velocity field obtained from
Fluent and test the different kernels to forecast the behavior of the DSD
in time. This also allowed the tuning of the kernel constants without
running full 3D simulations. . . . . . . . . . . . . . . . . . . . . . . . . 167

xxii



Chapter 1

Thesis Guidelines

1.1 Current Limitations
In the personal and home care industries, complex fluids are widely used for many

different applications, and depending on some specific physical properties, they may
determine the success or failure of a brand in the market. Complex fluids are manu-
factured by mixing numerous ingredients including polymers, copolymers, ionic and
non-ionic surfactants, and water in large mixing vessels. Although the manufacturing
process might seem simple at first sight, the inherent complexity of such systems, in
turn caused by the high number but also variety of microscopic molecular structures
and patterns, that can be obtained by varying formulations and operating conditions,
make the use of predictive computational models extremely useful. Such models be-
come interesting in scaling up/down equipment from lab to pilot and industrial scale,
or for process optimization.

An additional reason that makes computational models quite interesting is that
dealing with complex fluids from an experimental point of view is quite challenging
because of the high number and nature of interactions between the many ingredients.
Even though they are fundamental, experiments may be not sufficient to overcome un-
certainties and often, their high cost, the difficulties associated in construction of pilot
plants, the lack of standardization and difficulties in reproducing similar operating con-
ditions, makes the understanding of the process by experiments above challenging

On the other side, computational models can help scientists and engineers in bet-
ter understanding the physics and chemistry behind each experiment and provide the
necessary support to empirical observations. Different length and time scales, meaning
different geometrical and temporal ranges, can be assessed by different computational
models. In fact, the complexity of those systems may require a multiscale approach that
involves different levels of resolution.

Complex fluids, and in particular those belonging to the category of ”soft matter”,
have in common some peculiar features, such as the presence of microstructures that
drive most of the macroscopic features of the final products. In this work we are mainly
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concerned in emulsions, whose microstructure is constituted by droplets, and struc-
tured fluids, whose microstructure is constituted by molecular clusters and assembly,
resulting in spherical, rod-like micelles and lamellar structures. In both systems, the
main microscopic feature induced by a specific microstructure is the final rheology.
Particular attention is paid, in this work, on aggregation and breakage of micellar struc-
tures, in structured fluids or droplets in emulsions.

Figure 1.1. A graphical summary of the different aspects covered in this thesis: two differ-
ent systems have been assessed from amicroscopical point of view to determinemacroscopic
properties by using computer simulations.

The current state of the development of the computational models that are currently
used to describe these systems at the macroscale, are mostly based on empirical evi-
dences such that they behave properly only in limited ranges of applications. They may
therefore produce extremely erroneous outcomes where extrapolated or when wrong
assumptions are made, or even worse, when the underlying physics and chemistry are
ignored. Microscale molecular models are capable of extract information from a semi-
atomistic level of resolution, but they become too computationally expensive when it
comes to explore intermediate scales. This is why coarse-grained models were devel-
oped, however still now their application is limited because of many uncertainties that
come with them. They are considered as toy models that do not provide useful infor-
mation.
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Figure 1.2. Modelling scales are reported as a function of length and time.

It is important to highlight that different scales need different models to be repro-
duced. Atomistic models are used at the molecular scale, mesoscopic models are used
at mesoscale and continuum models are used at macroscopic (or continuum) scale. Dif-
ferent models have completely different hypothesis and ways of being applied. In this
work, the principal scales will be assessed and the models explained in details.

1.2 Objective of the thesis
The main objective of this thesis is to provide a guide on how chemical computa-

tional models may be used in industrial applications where the complexity of involved
products and processes is extremely high. In these specific cases, the deeper the level of
investigation that may be achieved, the better the results that can be provided. For these
industries where products have such low added value, and so many different versions
are released every year, the success is based on peculiar properties that can be manip-
ulated and finely tuned only through complex formulations. Wastes must be reduced
as much as possible, and experiments can be coupled to predictions from computa-
tional models in a smart way, to help forecasting those properties. In this work, two
different scales are addressed by using computational models. In fact, the complexity of
the phenomena involved in the fate of the microstructures present in structured fluids
and emulsions, can be treated with the help of computational models. Structured fluids
and emulsions are assessed with two approaches that are capable of describing these
systems as continua and as composed by discrete elements. In particular, structured
fluids are studied from a quasi-molecular point of view with a discrete particle-based
model, whereas emulsions from a macroscopic point of view, with a continuum model.
It must be highlighted that these systems may be completely interchanged and simi-
lar procedures may be used to model polymers as macroscopic systems and emulsions
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as microscopic ones. The important aspect here lies in the capability of predicting the
fate of the microscopical patterns at different scales and how these patterns influence
the entire manufacturing process. Computational Fluid Dynamics (CFD) and Dissipa-
tive Particle Dynamics (DPD) were used for the purpose of forecasting and highlight
peculiar behaviours of such systems. In this work, concepts regarding these two com-
putational models, strengths and limitations are explained, especially in relation to the
complexity of the assessed cases.

1.3 Summary of the work
In this work, we wanted to overcome current difficulties and reluctance against the

use of computational model to replace empirical ones. We wanted to prove how it is
possible to obtain a good level of prediction for systems composed by structured fluids
and emulsions, for which as already mentioned complex interactions take place. Both
systems are complicated to assess also from the experimental point of view, and phe-
nomena (such as formation and modification of microphases in structured fluids and
droplets breakage and coalescence in emulsions) take place on a small timescale that
is usually lost with the level of resolution of most experimental techniques. Also, ex-
periments may be falsified by human errors or misunderstanding. With the support of
computational models, the possibility of reproducing a wide variety of different cases
and operative conditions gives the chance to explore in more detail the real physics and
chemistry behind experiments, but also the capability of improving existing techniques
and producing standard protocols of analysis or design of experiments. Still, predic-
tive computational models are not perfect and validation and bench-marking play and
important role.

According to the required level of accuracy, different models can be used for simu-
lating completely different systems. In particular, it is possible to identify macro-groups
of models such as atomistic/molecular models, coarse-grained/mesoscopic models and
continuummodels. The first group can be used to reproduce a system at its microscopic
scale (i.e. atoms to 10−10 m as a length reference and 10−8 s as a time reference. The
second group can be used to reproduce aggregates of molecules, clusters and micelles
(i.e. 10−6 as a length ref. and 10−4 as a time ref.). The last group can be used to re-
produce macroscopic systems (i.e. 10−4 m up to km as a length ref. and 10−4 up to
years as a time ref.). In this work, we focused our attention on two particular models:
Computational Fluid Dynamics (CFD) for continuummodeling and Dissipative Particle
Dynamics (DPD) for mesoscale modelling. We did not dig into molecular models since
we were interested in capturing the evolution of micellar aggregates, that happens at
timescales that cannot be easily assessed by microscopic techniques.

Coarse-Grained models, such as DPD, is used in understanding the nature of the
microphases that are generated when different compounds are mixed, but also their
fate when the fluid is stirred in a mixer or flow in a pipe. However, this technique is
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quite recent and yet more validation work is necessary, in order to better understand
its limitations. In this thesis, we assessed different aspects and capabilities of this tech-
nique, in order to highlight how information can be extracted from this model and used
to improve more empirical macroscale models. On the other side, we highlight how
equipment can be simulated by using CFD in complex geometries and results can be
compared to experimental evidences with a decent level of agreement between experi-
ments and simulations.

To sum up, in this work two different systems are assessed by using two in-silico
techniques in order to identify peculiar changes that happen at a mesoscale and are
reflected on their macroscopic behavior. DPD is used to reproduce copolymer systems
used as surfactant to understand the fate of microaggregates when shear rate is ap-
plied on a system, as it happens in industrial mixers. Starting from this point, when the
mixture is validated against the experimental results, it is possible to derive important
information such as trends in the rheological curves for non-Newtonian fluids, relax-
ation times, cluster mass distribution and coalescence/breakage rates. In this part of the
work, we also introduced an in-house developed open-source clustering algorithm to
identify and track the evolution of the aggregates according to the explored simulation
setups. CFD is used to reproduce emulsions by using continuum models and that can
potentially take information directly from the meso-/microscale. The two techniques
and the two systems can be interchanged, meaning that DPD can be used to simulate
emulsions and CFD to simulate surfactant. Moreover, as a proof of concept, we have
developed an open-source C++ OpenFoam solver that can be used to perform coupled
simulations of the two scales. In this code, information is obtained at mesolevel and
transferred to a macroscopic level. This final part is still in a validation phase.

1.4 Reading Guidelines
The reminder of this thesis is structured as follows:

• Chapter 1 introduces the aim of the thesis, some fundamental concepts the prin-
cipal concepts and the industrial context

• Chapter 2 describes different types of softmatter, their applications and manufac-
turing processes and particular attention is given to the systems investigated in
this work. Structured fluids, copolymers in solution and emulsions are discussed
with a short description of the most important industrial aspects and rheological
problems.

• Chapter 3 contains the mathematical details and the description of the state-of-
the-art computational models used in computer simulations. Particular attention
is given to Molecular Dynamics, that lies behind the Coarse-grained technique
employed in this work, Dissipative Particle Dynamics, and Computational Fluid
Dynamics, coupled with Population Balance Models.
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• Chapter 4 introduces the solution algorithms of the models introduced in Chapter
3 and the associated computational details.

• Chapter 5 describes the operating conditions employed in simulations. For non-
commercial codes, the modified version of the tool, and simulation setups can be
easily downloaded from Github, through a QR code. Also, a guide to run the cases
is provided.

• Chapter 6 contains all the findings of this work, organized in two sections for the
two different scales. In the DPD section, equilibrium results are presented before
non-equilibrium results, while in the CFD part, equipment is validated against
experimental evidences.

• Chapter 7 contains the discussion regarding the findings, and it highlights how
these results can be exploited for further works, but it also shows current limita-
tions of the investigated techniques.

The Thesis is concluded with the listing of routines and codes, that have been de-
veloped and used in this work contained in Appendix A. Appendix B contains instead
material regarding the solution of the population balance models by using the quadra-
ture method of moment.
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Chapter 2

Flowing soft Matter: structured fluids
and emulsions

2.1 Introduction
In everyday life, we all are able to recognize and clearly chategorize substances

according to the three fundamental states of the matter (i.e. solid, liquid and gas).
However, this extremely simple concepts and our capability of distinguish between
them are actually quite limited when we move to the products that are used in many
fields of application of chemical engineering. For some of them, this distinction
becomes less clear, and without exploring extreme conditions (superhot/cold), it is
possible to identify intermediate states. If we stick to the common definition of ”fluid”,
which implies that even an arbitrary small stress allows flowing effects, familiar
substances, such as mayonnaise and window glass are respectively a solid and a
liquid. This is true because mayo does not simply flow under the effect of gravity and
window glasses may flow (i.e. creeping and ageing effects) because of gravity. This
classification may seem counter intuitive, and in order to avoid such confusion, in a
field of application where matter can be composed of so many different components,
the term ”complex fluid” or ”soft matter” was created. Soft matter refers to all those
thick, rubbery, gel and similar substances that cannot be simply classified as purely
solid or liquid. According to Larson, 1999, soft matter can be identified as every
substance flowing when smooth and modest (at humanly accessible time scale, not in
geological ages!) deformation is applied. It can be considered as an intermediate or
more a complete definition for such condensed matter that behaves in between solid
and liquid states. If we follow this definition, detergents, shampoos, suspensions of
colloidal particles, mixtures of polymers, food products, cosmetics and similar fall in
this category. In this work, particular attention will be paid to structured fluids made
of block-copolymers in solution, i.e. surfactant solutions, emulsions and foams.

One of the most important aspects of soft matter is represented by the response
to shear resulting in flowing effects, which translates into complex rheology. Their
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rheological response may drive the use of one of these fluids for some applications
or others, as it happens in cosmetic, home and personal care, and food industries. In
such fields, the final viscosity may determine the failure of one product compared to its
competitors. Not only the final viscosity is important but also the rheological behavior
during the manufacturing process along the different parts of the processing line is
crucial. These fluids may exhibit changes in the viscosity which have to be considered
in order to tune their flowing in the process, control mixing and save energy.

In this work, twomain systems have been assessed, structured fluids and emulsions.
Here, basic concepts related to soft matter are introduced and a specific section is
provided for each of these system. In particular, these sections are about the typology
of microphases that can be identified, the rheology and the industrial applications.

2.1.1 Structured fluids, copolymers:
self-Assembly and microstructures

Structured fluids can be obtained by mixing species with different properties.
According to their compatibility with one componet or another, the variety of
microstructures that can be obtained is elevated. The term microstructure refers to the
shape and dimension of the molecular aggregates or molecular clusters that form in a
structured fluid (Jain and Bates, 2003a; Larson, 1999; M., 2013; Sollich et al., 1997). In
particular, if one looks at the case of amphiphilic co-polymers with surfactant character
(i.e. compounds that can lower the interfacial tension in a mixture; they are composed
of an hydrophobic part and an hydrophilic part) in water, it is possible to observe how
molecules organize their micelles in the mixture, such that peculiar structures can be
identified at different concentrations. An example is given by copolymer micelles in
water. Micelles are microstructures that are formed by a core (hydrophobic part of the
surfactant) surrounded by a shell (hydrophilic part). Concentration, temperature and
pH are just some of the parameters that influence the formation of these aggregates.
Also, these structures or aggregates may be different because of their shape, dimension
and orientation. They can be defined as microphases, and each of these is related
to macroscopic properties of a mixture. The different kinds of microstructure will
be assessed in each part of this chapter in relation to the reference system. From
an experimental point of view many techniques may be used as an aid to provide
a complete characterization of the system. These techniques are: microscopy, SANS
(small-angle neutron scattering), SAXS (small angle x-ray scattering), and polarimetry.
Optical microscopy allowed scientists to see structures up to 0.5 ̃ 𝜇m, but if electron
(scanning electron microscopy or transmission electron microscopy) microscopy is
used, it is possible to observe distances up to 1.5̃nm. SANS and SAXS are the most
common used experimental techniques. These techniques consist in the evaluation of
the change in the direction of the radiation when it passes through complex reticula.
By using these techniques, it is possible to appreciate up to 1̃nm of length. Larger
structures, between 0.1̃ and 100 ̃ 𝜇 m, can be instead observed by using dynamic light
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scattering, while for smaller strctures it is necessary to use x-ray. Finally, polarimetry
exploits the capability of oriented microstructures to rotate the plane of oscillation
of polarized light. It is important to highlight that if the amount together with the
dimension of the structures is extremely high, specific techniques, such as Raman
spectroscopy can be used to identify the composition of each structure. The outcome
of many experimental techniques can be the reproduction of phase diagrams. Thanks
to these diagrams, it is possible to identify microphases that are generated when the
spectrum of concentrations of one component into another is explored. Also, peculiar
rheological behavior can be extracted from these diagrams.

2.1.2 Rheology
Rheology and viscosity are indicators of how matter flows and behaves under shear

(Malkin and Isayev, 2011; Tadros, 2010; Wang, 2017). In simple terms, they are a way
to express how soft or hard matter is. There are many ways to retrieve the viscosity
of soft matter, mostly grouped in two categories: drag driven and pressure driven
methods. Among the first class of methods, sliding plates (planar Couette), concentric
cylinders (Taylor - Couette flow), cone/plate and the slit (plane Poiseuille) are the most
important. In all these geometries, the induced flow is viscometric, i.e. a constant, or
almost constant shear stress is exerted on every small element of the sample.

The velocity imposed on each sample together with the geometry play a
fundamental role in defining the value of the shear acting on the system. If we look,
for example, at the case of the planar moving plates, the shear rate can be obtained
by dividing the velocity imposed on the moving walls by the distance among the two
walls. A shear viscosity can be derived by dividing the shear stress (force of a fluid on
a surface per unit area in the direction of the flow) by the shear rate.

When the applied shear is constant and applied for long time, the system reaches
a sort of steady state, even if in dynamic conditions. However, when it comes to soft
matter, steady shear viscosity is not enough to characterize a system. When any kind of
stress is applied on the system, at the beginning of the event but also during the whole
test, the viscosity may change during time. This is the case of start-up flows. In fact,
it is possible to record the evolution of the viscosity in time, since the applied shear
is constant but the recorded shear stress of the fluid is time dependent. The viscosity
obtained in this way is called transient shear viscosity. One example of transient
shear viscosity can be provided by creep tests for glassy or plastic materials, where
the temperature of the system is increased to exaggerate the flowing response of the
system because of this variation in the viscosity during time.

If one wants to test the response of a structured fluid or an emulsion without
modifying the microstructures (i.e. the system is not significantly deformed), it is
possible to apply small-amplitude oscillatory shearing. These experiments can be
performed in plate-cone geometries. Sinusoidal oscillations of the cone around the
axis generate a shear rate that itself is a sinusoidal function in time. Within such
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experimental setup, the microstructures present in the fluid can freely arrange
themselves (equilibrium structures reached after the relaxation time has elapsed),
without the formation of anomalous structures induced by strong deformations.

The viscosity may increase (shear-thickening) or decrease (shear-thinning) when
the value of the imposed shear increases. When the viscosity of the system is not
affected by the applied shear, the fluid is Newtonian. Structured fluids and emulsions
behave as intermediate between pure liquids and solids and exhibit both viscous and
elastic behaviors, moreover the viscosity can be either Newtonian or non-Newtonian,
if one explores different regimes of flow or concentration of components (Gentile et
al., 2014; Newby et al., 2009. These systems often exhibit a specific pattern when the
viscosity is reported against the applied shear rate. It drops quickly when the value
of the shear is high, but, in the low shear region, a plateau is usually identified. The
viscosity obtained in this area is called zero shear viscosity, 𝜂0. Zero shear viscosity is
an important value because it can be related to the relaxation time (longest time for the
elastic structures to relax) of different systems. A rule of thumb for systems composed
by spherical aggregates reports:

𝜂0 = 𝑛𝑘𝑏𝑇, (2.1)

where the zero-shear viscosity is obtained by the number of structures recognized
per unit volume times the Boltzmann constant and the temperature. The shear
viscosity has usually the same value of the complex viscosity obtained from oscillatory
experiments. This rule is called Cox-Merz and is valid for many systems, but when
it comes to polymers, this rule is not valid. The necessity to discern between the
relaxation time and a characteristic time of the flow was translated into the Deborah
number:

De =
𝜏𝑟
𝜏𝑓
, (2.2)

where 𝜏𝑟 is the relaxation time of the structure and 𝜏𝑓 is a characteristic time
of the fluid. When this ratio is much lower than one, the fluid can be considered
Newtonian.Elastic effects become more and more relevant as this ratio is higher. Also
Wi, theWeissenberg number was defined to highlight some strange effects of polymers
when its value was around one:

Wi = ̇𝛾𝜏𝑓, (2.3)

where ̇𝛾 is the shear stress.
Shear viscosity is not the only viscosity that can be calculated for complex fluids,

because the response to elongation stresses, in the case of fluids composed by many
long chains of polymers, is different if the reference axis is changed. It is possible to
obtain the elongation viscosity when the two extremities of the test are stretched with
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an exponentially increasing velocity, such that the deformation is also exponential and
the obtained shear rate, the ratio between these two parameters is constant.

Rheology is a fundamental tool to understand the overall behavior of complex fluids
(Jain and Bates, 2003b; Jansen et al., 2001; Moulik and Paul, 1998; Rehage and Hoffmann,
1988) such that manufacturing process and macroscopic properties can be tuned to
obtain desired viscosity.

2.1.3 Applications
Structured fluids and emulsions have mechanical properties that derive from both

the liquid and solid the states. If we consider the capability of a fluid of taking the shape
of the body in which is contained, softmatter, in contrast, can keep its original shape for
a while and then eventually fill the container. This transition from solid to liquid (even
few seconds, minutes up to hours years) places them in the category of viscoelastic
fluids. Another property regards the distinction between anisotropic, typical of solids
and isotropic, typical of liquids, responses. These two states of matter react differently
when a mechanical deformation is applied. If the variation of a mechanical properties
depends on the orientation of the perturbation, the system is anisotropic, if not, the
system is isotropic. For example, liquid crystals, also classified as soft matter, are able
to flow as liquids but they have anisotropic properties as solids. Another example is
that of surfactant copolymers in solution that are viscoelastic and anisotropic. A last
example is an emulsion, notably moyonnaise, an emulsion of oil in vinegar stabilized by
lechitin contained in egg yolk that can hold its shape under gravitational effects. In the
food industry, many other examples can be recognized such as ice cream, (a mixture of
sugar, cream and milk), mustard, cheese, derived from milk which is already a complex
fluid containing micelles, gelatin, gel obtained from collagen and water, and chocolate.

Another important field of application regards home and personal care industries.
Starting from toothpaste, that can be classified into the soft matter category due to
its capability of flowing under modest shear, up to deodorants, shampoos, detergents,
conditioners, and body/skin creams. Shampoos can flow from their bottles but they are
”strong” enough not to drip when applied on our bodies and form foams when they
come in contact with water.

In the polymer industries, numerous examples of soft matter can be found: from
the common solid types of plastic, used in packaging, tires, clothes and so on, that can
be extruded, manufactured in fibers or melted. Two common examples of polymers are
represented by the triblock copolymer Pluronics, that have been used for many years as
surfactant in medicine, food and cosmetic industries and polyurethane foams, that find
a great number of applications in coating, insulating and as fillers in car bumpers, seats
and refrigerators. Waxy crude oils and pulp fiber in paper industry are again examples
of soft matters. In the reminder of the chapter we will discuss more in details the two
examples of flowing soft matter that are studied in this work: structured fluids and
emulsions. (Larson, 1999).
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2.2 Structured fluids
If one is familiar with the concept of polymer, chains of unimers (i.e. single

repeating units) bonded together, the concept of copolymer is quite straightforward
(Carraher, 2017; Guo, 2016). A copolymer is composed by different unimers that are
linked together according to a specific pattern. For example, the most common example
of copolymer is formed by alternate blocks of A-type and B-type unimers. The length
of the chain determines the kind of complex fluid and it can be ideally endless. Many
unimers can form copolymers and two or more of them can be the same, as it happens
in the case of the triblock copolymers 𝐴𝑛𝐵𝑚𝐴𝑛, formed by repeating blocks of A-type
linked to B-type and again to A-type. Branched architectures are also possible, such
that the variety of copolymers that can be synthesized is incredibly wide. By varying
the length of the chains and the unimers present in each chain, one is allowed to
confer specific properties to the resulting fluid obtained by dissolving the polymer
in a solvent (e.g. water) or by considering the polymer melt. An important feature
that is peculiar of copolymers is their capability to microseparate from each other
aggregating together forming super-molecular structures or clusters resulting in a
wide range of patterns and configurations. Each of these pattern or phase has peculiar
properties that are generally linked to a specific product or process. This means that
the equipment and the processing conditions are tuned such that only specific phases,
orientations or states of aggregation are obtained at the end of the process. The process
related to microphase creation and modification is called self-assembly (Lavino et al.,
2015; Pelesko, 2007; Sundararajan, 2016). Thanks to the high variety of structures, it is
possible to obtain network-like, gels, rigid and tough materials that can be exploited
for different applications. One use of copolymer is related to their capability of acting
as surfactants, by lowering the interfacial tension of two immiscible components.
This is the case of the triblock copolymer Pluronics constituted by two blocks of
polyethylene oxide (PEO) chained to a central block of polypropylene oxide (PPO).
When in water, Pluronics can self assemble in different ways, trying to expose the
aqueous environment the hydrophilic PEO chains. A fundamental parameter that
has been introduced in the study of copolymer is Flory parameter, 𝜒. This parameter
measures the solubility or compatibility of a single block in a solvent and tells how
the polymer molecules will self-assemble or microseparate. When this parameter is
positive, unimers of one specific type have a strong tendency to segregate from the
other blocks. 𝜒 varies with temperature and in Flory-Huggins theory (Flory, 1941;
Huggins, 1942), the product 𝜒𝑘𝑏𝑇 repesents the interaction energy when A blocks are
mixed with B blocks.

2.2.1 Self-assembly and microstructures
With the word microphases, we refer to a set of different configurations of

aggregates that can be generated when copolymers are dissolved into a solvent or
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when they are in a melt. Due to the different affinity between the blocks of the polymer
and the surrounding solvent, the variety of observed patterns at the microscopic level
is huge. Based on the level of aggregation and orientation the structures, it is possible
to recognize spherical micellar structures, cylindrical aggregates and lamellae (i.e.
alternate sheets). In each of these phases, that can be obtained by varying the volume
fraction of each component, the super molecular structures or clusters formed can
arrange themselves in peculiar patterns. For example, if one looks at a mixture of water
and triblock copolymer, where the triblock is amphiphilic, in the spherical micellar
region, hydrophobic groups are shielded against the water environment by hydrophilic
groups, and that form a shell around the hydrophobic core. In the hexagonal region
(that can be found at higher concentration), the behavior is similar, but single spherical
aggregates merge into more complex yet ordinate structures (i.e. cylindrical, rod-like
micelles), oriented into an hexagonal matrix, where each cylinder is the vertex of an
hexagon. At even higher concentrations, lamellae can be obtained. Lamellar phase is
obtained when sheets of copolymer alternate to sheets of water. In this specific chase,
each chain of copolymer is stretched such that the hydrophobic tails of one chain are
in contact with two (top and bottom) layers of water. However, these structures are not
enough to cover the whole range of microphases that can be recognized moving along
different concentrations of a mixture of copolymer into a solvent. In fact, the transition
between spherical and hexagons is not instantaneous but spherical aggregates may
coalesce into worm-like, elongated structures that lose their sphericity and ordered
pattern. Also hexagons can merge into intermediate pierced sheets before moving
to lamellae. Finally, vesicles are also peculiar aggregates that can be obtained when
elongated cylinders close on themselves ”trapping” a secondary phase inside. Ordering
is also an important aspect that varies with the concentration. If one looks at the
micellar state, for some copolymer, at low-intermediate concentrations (e.g. around
10%), spherical micells are not randomly oriented but they may position themselves
into ordered structures (body centered cubic, face centered cubic). Temperature also
plays an important role in the transition between ordered and disordered structures.
An example of different phases is reported in the following figure. In particular, four
phases can be identified: micelles, cylinders, disordered lamellae and lamellae. These
phases are obtained starting from the same components by varying the concentration
and keeping the temperature constant. These examples, together with ordered micellar
structures and reverse-micelle are the most important in completely define a phase
diagram.
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Figure 2.1. Phases that can be obtained by varying the concentration of a copolymer in
water. a) micelles, b) cylinders, c) desordered-lamellae d) ordered lamellae. These phases
can exhibit completely different rheological behaviour due to the size and shape of the
aggregates that are formed (Pasquino et al., 2019).

2.2.2 Mixing
Mixing (i.e. the transfer of energy through mechanical agitation) is one of the most

important process in manufacturing structured fluids and emulsions. Two or more
immiscible fluids can be mixed together by using a specific equipment in order to
obtain stable products that must last for a long time without losing their properties.
This is the case of shampoos, conditioners, detergents and similar, where their shelf-life
has to be granted for several months or even years. For these industries where the
complexity of the products is high due to the high number of species that are present
in one recipe, it becomes fundamental to achieve perfect mixing, hence produce stable
solutions in the smallest possible amount of time. Parameters, such as the dimension of
the microstructures that arise during the process become incredibly important in the
characterization of one formulation or another, because they can affect macroscopical
properties, such as viscosity, mass transfer and stability of a mixture.

Mixing equipment can be different based on the required size of themicrostructures,
but are mostly stirred tanks ( i.e. vessels containing impellers and baffles) and rotor-
stator devices. One of the most common problems in calibrating such devices is related
to the scale-up from lab to factory scale. It is crucial to identify the relevant set of
parameters for each device that can be used as a reference in these scaling operations.
For example, the use in-line rotor-stator mixers is quite common, but the physics behind
such mixers, is quite unknown, so that the tuning is mostly based on experience (e.g.
Hall, Cooke, El-Hamouz, et al., 2011; Hall, Cooke, Pacek, et al., 2011; James, Cooke, A.
Kowalski, et al., 2017; A. J. Kowalski et al., 2011).
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2.2.3 Rheology
Rheology of structured fluids constituted by copolymers is a non-trivial topic

(Tadros, 2010; Wang, 2017). It depends on many different variables such as the type
and number of blocks that form the copolymer, the size, shape and orientation of the
microphases obtained, the level of interaction between the copolymer and the other
media present in the mixing, entanglement and branching of the chains, to cite few
of them. A general distinction sees two different behaviours at low shear and high
shear. In the extremely low shear limit, the ordered aggregates allow the copolymer to
behave as a solid in many cases, while in the high shear regime, copolymers behave as
homopolymers and in the specific case of well-aligned lamellae, they behave as a true
fluid system. An intermediate behaviour, between pure solid and pure liquid, known as
”gel-like”, can be observed when hexagons and more generally cylindrical aggregates
are obtained. In this specific case, it is possible that the viscosity depends on the kind of
stress that is applied. In fact, when the stress is perpendicular to the oriented cylinders,
the fluid behaves as a solid, and when the shear is aligned with the direction of the
shear, they simply slide and a liquid behaviour can be observed. Ordered structures
can be obtained also when a flow field is applied, such that structures are oriented
according to the general flow. On the contrary, disordered structures or ordered
domains can be observed when equilibrium is reached without any external force
acting on the sample. In this case, ordered structures can be appreciated only in small
regions (grains).

The capability of changing the viscosity by alignment of copolymer gives the
possibility of obtaining structured fluids with high anisotropic behaviours. In the
lamellar phase, shearing flow can be parallel, perpendicular and transverse. In the first
case, the normal vector of each sheet is perpendicular to the velocity vector and the
velocity vector lies on the plane of the sheet. In the second case, the normal of the
sheets is parallel to the vorticity axis, whereas in the last case the normal vector of the
sheets is parallel to the velocity vector. The three orientations produce variations in
the viscosity of the copolymer aggregate.

Defects present in the sheets, due for example to rapid quenching (fast cooling or
heating), can produce holes that are also responsible for variation in the viscosity.When
cylinders are present, the behavior and the possibility of having different orientations
resemble the lamellar phase, but in general the cylinders seem always to be aligned with
the flow. In many applications, cylinders can also have different dimension (thicker or
thinner) and not just a unique size. A variation in the viscosity can be appreciated also
in this domain, when there is a transition between ordered and disordered structures.
Finally, in the case of spherical aggregates, when the applied shear is small, fluids behave
as pure liquids, and micelles interact according to the hard sphere collision theory.
Viscoelastic behavior can be appreciated when the shear becomes extremely high and
disordered structures or modification of the structures is achieved.
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2.2.4 Applications
The possibility of tuning physical properties, based on the length of the polymeric

chains, allows manufacturing an incredible number of products and copolymers
can be used in many fields of application in the chemical industry. It is possible to
observe how the formation of peculiar microphases is required for example in drugs
encapsulation, personal and home care, food industry. An example can be provided
by triblock copolymer such as Pluronics mixed with water. At low concentration of
Pluronics, spherical micells are obtained. When an organic hydrophobic phase (Lince
et al., 2008; Valente et al., 2012) is added to the mixture, this phase is readily trapped
into the core of the micelle and these aggregates can be used as micro-carrier for
medical applications. In fact, it is possible to drive the velocity of drug release by
varying the concentration of copolymer in the mixture. In biotech and especially in
fermenters, copolymer membranes can be used to protect microorganisms during the
stirring without influencing the growth of the species. Gels can be formed and used
because of special rheological properties (mixtures behave as semi-solids) in food and
cosmetic industries.

2.2.5 Water/Pluronics Mixtures
In this work, we focused our attention on one specific type of structured fluid,

originated from the mixing of water and Pluronics (Alexandridis, 2000, 1997), a class
of polymers that behave as surfactant. The term “Pluronics” refers to a class of non-
ionic tri-block copolymers, widely investigated (e.g. Aydin et al., 2016; Cao et al., 2005;
Cheng et al., 2015; Y. Li et al., 2012; Nicolaides, 2001; Song et al., 2016; Sun et al., 2013),
made by already mentioned PEO and PPO, following an A-B-A rule (see Fig.2.2 below):

Figure 2.2. Pluronics structure: tri-block copolymer, A-B-A structure. The two tails are
formed by PEO (slightly hydrophilic) repeating groups while the central part is made by
PPO repeating groups (slightly hydrophobic).

Pluronics-type copolymers are used every day as surfactants in many products for
the personal care and pharmaceutical industries because of their amphiphilic behaviour.
This means that they tend to form microstructures, based on the concentration of
copolymer in solvent (e.g. water), such as spherical micelles, cylinders and lamellae. In
Fig. 2.3 is reported a grid of the dierent kind of Pluronics based on the percentage of
ethylene oxide present in the copolymer.
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Figure 2.3. On the x-axis, the increasing percentage of PEO groups into a chain, while on
the y-axis the molecular mass of the PPO group in one chain (Alexandridis, 1997). Types
of Pluronics classified by concentration of hydrophilic part. Different labels, based on their
state of aggregation (P: paste, F: flake, L: liquid), are used. Numbers refer instead to the
percentage of the hydrophobic vs hydrophilic chains (i.e. last number is the percentage of
PEO divided by ten, the remaining numbers represent the molecular weight divided by
three hundred. In the graph, Pluronics L64, P104 and P85 is circled in red.

For example, Pluronics L64, P104, and P85 are different names that identify three
Pluronics, where the phyisical state is Liquid or Paste and the length of the chain,
hence the ratio between the hydrophobic and hydrophyilic part, varies. The name of
the Pluronics is representative of the physical structure of the surfactant. The letters
such as ”L,P,F” mean Liquid, Paste and Flake; the rst number indicates approximatively
the weight of the PPO part divided by three hundred; the last number, instead, is the
percentage of PEO part divided by ten. For example, L64 indicates a liquid Pluronics,
with molecular weight of around 1800 g/mol of PPO that contains 40% of PEO.

Both the monomers show hydrophilic behaviour, but the ramification of PPO
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groups, causes a slight hydrophobicity. For example, the cloud point (i.e. the separation
from water) ranges from 10° C to 100° C while increasing PEO (more hydrophilic)
content as it happens for the dissolution rate, which also increases while increasing
the number of PEO groups (Alexandridis, Olsson, et al., 1995; Zhou et al., 1996). Both,
PEO and PPO, contain slightly hydrophilic groups, and can form hydrogen bonds with
the solvent. At higher temperatures, the hydrophilicity of PPO groups decreases, and
aggregation phenomena can occur. When temperature and concentration cross critical
values, namely the Critical Micellar Concentration (CMC) and the Critical Micellar
Temperature (CMT), aggregates of Pluronics in the form of micelles (i.e. hydrophobic
core is surrounded by hydrophilic shell) are formed. This amphiphilic feature gives to
Pluronics the possibility of forming complex microstructures, when they are mixed
with water and organic components. These microstructures can have shapes and
dimensions that directly depends on the kind of copolymer and on the solvent. A
broad experimental characterization has been performed on such systems to prove
how microstructures are related to experimental conditions, such as concentration,
temperature and flowing effects (Alexandridis, Olsson, et al., 1998; Newby et al., 2009;
Youssry et al., 2010. In fact, it has been proved that high PEO content or low molecular
weight Pluronics do not form these structures at room temperature. The micellization
process is mainly driven by entropy and the free energy of micellization is a function
of PPO block. When the surfactant is organized in micelles, its Δ𝑆𝑡𝑒𝑛𝑠 < 0. However
when is dropped into the solvent (e.g water), whose entropy is much higher, the sum
total entropy is greater than zero, Δ𝑆𝑡𝑒𝑛𝑠 + Δ𝑆𝑤𝑎𝑡𝑒𝑟 » 0 Critical Micelles Concentration
(CMC) decreases with increasing PPOs (larger PPO regions show lower CMC) and
with increasing temperature, as it is reported in Figure 2.4:
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2.2 – Structured fluids

Figure 2.4. Critical Micellar Temperature for different Pluronics as a function of the
natural log of the concentration. In particular, this figures shows how the temperature can
affect the formation of micelles (Alexandridis, 1997).

If Pluronics L64 is considered, the standard enthalpy of micellization (Δ ̃𝐻0) was
found to be around 339 kJ/mol, the standard free energy (Δ ̃𝐺0) around -28.8 kJ/mol
and the standard entropy (Δ ̃𝑆0) around 1.244 kJ/mol. The fact that the enthalpy
of micellization is positive indicates that the process is endothermic. According to
experimental studies, L64 was proved to form visible micelles when the concentration
of copolymer in water is at least greater than 6%. Micelle size increases with
concentration ranging from 10 nm at 8% to 12.5 nm at 20%. The experimental radius
of micelles at room temperature ranges from 4 to 5 nm, but it increases when the
temperature increases and where the PEO fraction in the polymer chain decreases. At
higher temperature and high PPO concentration, the size of the micelle resembles a
stretched PPO chain and the shape changes from spherical to rod-like. It has been also
reported that at 35℃ the hydrodynamic radius of micelles was almost monodisperse
while at lower temperature it was found to be polydisperse.

Monomers can be found at low concentrations and temperatures, meaning that they
do not form micelles or complex structures. CMT and CMC, for different Pluronics,
depend on the ratio between PPO and PEO groups and, of course, on the solvent.
Pluronics that have a ratio of PPO over PEO groups greater than 0.5 form spherical
micelles in solution. On the other hand, when this ratio is less than 0.5, aspherical or
cylindrical micelles are obtained. As a rule of thumb, Pluronics with smaller amount of
PPO tent to form micelles at slightly lower concentrations and temperatures.

Even though they are very common, spherical and aspherical micelles are not
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2 – Flowing soft Matter: structured fluids and emulsions

the only microstructures that can be found in the Pluronics phase diagram. While
increasing the concentration of Pluronics in water, it is possible to observe a transition
from disordered micelles to more complex structures. In their micellar phase, the
slightly hydrophobic PPO groups come together, namely the core of the micelle, while
the PEO tails orient themselves through the solvent, namely the corona of the micelle.

When a critical value of temperature and concentration is crossed, the number
of micelles is high enough to allow PEO groups to create links between them and
ordered structures. Typical structures are FCC (face centred cube) or BCC (body
centred cube) can be recognized at this stage, which behaves as a solid gel. When
the gel is formed, the viscosity of the mixture increases, but small variations of the
temperature could destroy these ordered structures and promote the transition from
hard- to soft-gel. Cylinders that are already present at intermediate concentrations,
can gather and coalesce in order to form bigger and more complex reticulates. If
these cylinders arrange themselves into an ordered lattice, the microstructure is
named hexagonal (Alexandridis, Olsson, et al., 1995; Holmqvist et al., 1998). At even
higher concentrations, the distance between the cylinders becomes so small that they
eventually coalesce forming the so called “lamellar phase”, where sheets of tri-block
copolymer alternate to solvent layers (Almgren et al., 1995; Zhou et al., 1996). Finally,
at very high concentrations (close to pure copolymers), a new network is formed,
and micelles of solvent are trapped in this structure. Based on the Pluronics type,
boundaries between the microphases can be shifted. Also, temperature and flow fields
contribute to this shift.

In order to ease the process of labeling all these phases based on the amount of
water and polymer, phase diagrams can be experimentally built by using small-angle
light scattering (SALS), small-angle X-ray scattering (SAXS), and small-angle neutron
scattering (SANS), but also rheological analysis of the response of the system to flow
effects.
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2.3 Emulsions
As already mentioned, another interesting example of soft matter is emulsion.

Emulsions can be defined as an heterogeneous and opaque system composed by (at
least) two fluids, defined as disperse and continuous phases (Bernard P. Binks, 1998).
The most common example of emulsion is provided by oil-in-water and water-in-oil
mixtures. They are present in many applications such as pharmaceutical, oil and gas,
detergents, food and cosmetic industries and can be obtained by vigorous agitation,
whose energy is able to create droplets of the disperse phase, that are stabilized by
addition of surface-active agents (surfactants). The introduction of surfactants in
the sysytem is able to minimize the surface tension of the droplets of the disperse
phase, and prevents them to coalescence into a bulk phase (Walstra, 1996). Important
concepts that are used to better describe the behaviour of the emulsion are the
hydrophile-lipophile Balance (HLB), the stability, phase-inversion, formation of gels
and so on. These concepts will be presented in what follows.

In order to make an emulsion, three key elements are needed, two immiscible fluids,
surfactant and external energy. The combination of these features may produce a rich
variety of emulsion with completely different properties, such as the final dimension
of the droplets and the final droplet size distribution. A droplet is formed when the
difference in the pressure between the inside and the outside crosses a crucial value,
defined as Laplace pressure. This critical value is proportional to the surface tension
of the two phases and to the inverse of the radii of curvature of the droplet. This is a
simple model that highlights the effect of a surfactant, which is able to lower the surface
tension, or the deformation needed to form a droplet.

2.3.1 Properties of Emulsions
The concept of HLB has been initially developed, as a rule of thumb, considering

only the solubility of the surfactant in one of the two phases. For example, in
oil-in-water emulsions that can be obtained by mixing oil, water and a surfactant
which is more soluble in water, the HLB was mostly introduced as a way to forecast
the type of mixture obtained. For example a system with high HLB forms micelles
or similar structures in water (as a continuous phase). This concept becomes more
difficult when mixtures are not binary or composed by polymeric chains rather than
simple monomers. Also, temperature and different experimental conditions play an
important role in the stability and solubility of surfactant into water and oil. An
evolution of the concept of HLB, is the HLB related to the whole system, rather
than only to the surfactant.Thanks to this concept, HBL was unrelated to the nature
and concentration of the surfactant but only to the type of structures formed in one
phase or in another (Walstra and Smulders, 1997). Moreover these concepts but also
experimental procedures become more and more difficult as we move from a binary
to a tertiary mixture. In those cases (for example water-in-third-in-oil, i.e. a mixture
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composed by water, oil and a third phase) the variety of structures that may be
originated is even wider and the experimental techniques may fail in capturing all of
them or their niche behavior. So, from the experimental point of view, phase diagrams
are introduced. They are able to predict which one is the continuous and the disperse
phase were initially obtained by conductivity studies, where the total conductivity is
obtained by summing the conductivity of each phase by the volume fraction of the
component (Walstra, 1996, 1993).

Another fundamental concept in emulsions is their stability, that is mainly related
to kinetic aspects. In fact, a stable emulsion does not show any changes in time (e.g.
seconds, hours, up to years). Phenomena such as sedimentation (due to the gravitational
effects on the droplets), flocculation or coalescencemay cause instability of an emulsion.

Sedimentation (or creaming) can be seen as droplets that move under the effect
of the gravity or centrifugal forces and accumulate in layers (bulk) separated from
the continuous phase. During the creaming process, no coalescence is present, and
agitation may bring the system back to its original state. Creaming depends directly
on the difference in the density between the phases, the dimension of the droplets
and the viscosity of the continuous phase. This means that it is possible to inhibit this
phenomenon by producing small droplets or reducing the difference in density between
phases.

Flocculation is related to the capacity of droplets of coming close together without
destroying the interface between them. Larger droplets obtained in this way could also
cause faster creaming, because of their size, and in some cases, the formation of gels.
Also, if the droplet size distribution is wide, this can help flocculation because smaller
droplets can come closer to the bigger ones much easier.

Coalescence instead involves the fusion between two droplets into a new, unique
droplet. In order to obtain coalescence, the layer of continuous phase between two
approaching droplets must be such small that it can deform and eventually break to
allow the droplets to come in contact. The properties of the thin layer between droplets
have been studied in order to obtain parameters that can be related to the macroscopical
properties of the emulsion, such as shear and bulk viscosity, surfactant diffusion, surface
tension and so on. If no electrostatic forces are present, the rate at which droplets come
in contact becomes the driving factor that contributes to coalescence.

Finally, gel emulsions can be created when the volume fraction of the disperse phase
is around 0.5 and 0.8. These emulsions are known as biliquid foams, meaning that the
spherical aggregates cannot arrange themselves in ordered reticula but they coalesce in
more complex structures, i.e. cylinders, lamellae, disordered aggregates or combinations
of them that can be trivial to describe. Gels can be experimentally observed by using
SAXS, SANS and similar.
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2.3.2 Rheology
The simplest example of viscosity of an emulsion can be obtained under the

assumption that droplets do not deform. The Taylor’s formula reads as follow:

𝜇 = 1 +
1 + 5

2
𝜇𝑐
𝜇𝑑

1 + 𝜇𝑐
𝜇𝑑

𝜙
(2.4)

where 𝜇𝑐 and 𝜇𝑑 are the viscosity of the pure continuous and disperse phases,
and 𝜙 is the volume fraction of the disperse phase. The ratio between the viscosities
can be extremely different if we consider droplets or bubbles. Droplet size distribution
and presence of surfactant can influence the overall viscosity of the system. Models
have been obtained to reproduce the behavior of small and large droplets but also
monodisperse or polydisperse systems.

Flocs can be related to the viscosity of the emulsions. Many studies (e.g. B. P. Binks,
2002; Jain and Bates, 2003b; Janssen and Meijer, 1993) have proved that when the
concentration of surfactant is below a certain value, emulsions behave as Newtonian
fluids, but if the concentration is higher, flocs may break up, causing non-Newtonian,
shear-thinning behaviour. However, when the viscosity of the disperse phase is high
enough, these droplets do not directly break into smaller entities, but they are instead
deformed into cylindrical shapes and may drop into an high number of smaller
daughters, because the viscosity is able to reduce the instability of the interfacial
forces.

2.3.3 Manufacturing Emulsions
Emulsions can be manufactured by stirring the different species in vessels by

using particular geometries of the impellers that can enhance the mixing by causing
the formation of regions where shear stresses are extremely high. Agitation becomes
the main driver in providing the energy required to deform each droplet and causing
breakage. If one is familiar with the concept of turbulence, in turbulent regime, large
eddies can interact with the droplets, by shear stresses. But if the size of the eddies is
comparable with the droplets, the rupture is caused by inertial forces. In cases of high
viscosity or small geometries, the flow regime becomes laminar, and such that only
viscous rupture is present. In this work, the turbulent regime is explored. The presence
of eddies means that local fluctuations in the velocity field are present. Large eddies
transfer energy to smaller eddies, that in contrast have higher velocity gradients. The
smallest size of the eddies that are to transfer energy is called Kolmogorov length scale,
and it depends on the viscosity of the continuous phase and on the turbulent dissipation
rate, which is produced by agitation. Inertial and viscous forces are responsible for the
breakup of the droplets. Based on the dimension and structures obtained at the end of
the stirring process, mixtures may be distinguished.
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In fact, mixtures of miscible or immiscible fluids can produce a rich variety of
structures, that can be appreciated only at a microscopical level. Those structures
are responsible for peculiar properties of the mixtures, and they may evolve during
the manufacturing process, based on experimental setup, in completely different
structures. Forecasting their behavior is of fundamental importance in the research
area for such industries, and this is where phase diagrams, previously introduced,
come to play.
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Chapter 3

Computational Models

3.1 Introduction
In these last years, the concept of lean industry is driving the change and lot of

effort is put into reducing wastes, standardizing and on optimizing industrial processes.
One important tool, which is supporting this revolution, is the capability of providing
computer simulations of industrial processes but also new formulations to better
understand the intrinsically present physics and chemistry in all the production lines
of the chemical industry, within short time and appropriate accuracy. Simulations, that
were invented just as a tool to prove the computational power of the first electrical
computers during World War II, allowed operators to easily recover the basics behind
experimentally-driven choices but also to improve and tune operating parameters
such to reduce human errors. More and more complicated operations were needed to
test those machines, hence, new models describing the physics and chemistry in an
accurate way, were coded, implemented and tested.

Computer simulations became soon a turning point, because until then, even
describing the interactions between more than two bodies using paper and pencil was
extremely hard and time consuming. By passing the time, the increased computational
power and the development of accessible, cross-platform, coding languages, allowed
engineers to unleash their capability to predict and improve real industrial processes.
Nowadays, computational engineering is a widespread field of application in many
areas (from chemistry, to mechanics, to aerospace, to finance and economy). However,
the complexity of some phenomena needs specific tools and techniques in order
to obtain exact predictions but also the capability of capturing niche events (e.g.
microscopical phenomena, multiphase fluids, complex interactions, …). This is the
natural playground for a variety of models to come to life.

Soon, computer in-silico experiments became a fundamental tool to revise, prove
or improve old theories derived only from empirical observations. This new way of
coupling experiments to simulations moved science to a deeper level of knowledge and
gave the possibility to discover underlying, unexplored events until that point.
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Different mathematical models can be used to assess the different scales of
the system. The word scale here wants to define both a geometrical and temporal
scale. If one wants to understand the chemistry behind each process and have a
deep understanding of molecular interactions, atomistic or semi-atomistic models
are required. Examples of these models are provided by Quantum Chemistry (QC),
Molecular Dynamics (MD), Coarse-Grained (CG), and Monte Carlo Simulations (MC).
These models consider the true atomic nature of the matter and try to describe their
behaviour, via modelling the interactions between atoms or by using statistics.

In this work, the concepts of MD and CG will be described in detail, with particular
attention to the connection between the two models. However, by using the above-
mentioned models, it is impossible to simulate industrial equipment that is relevant
for the chemical industries, where further approximation is needed in order to obtain
reasonable results in an acceptable amount of time. For such purpose, Computational
Fluid Dynamics (CFD), can be used instead. CFD allowed chemical engineers to
characterize flow fields, assess transport phenomena, and optimize the production
at industrial scale, without the degree of accuracy of atomistic and semi-atomistic
models. The reduced computational time coupled with the possibility of exploring
bigger scales and the reliability of the results, however, depend on the accuracy of the
approximated models (mostly empirical) that are used. One example can be provided
by the calculation of transport coefficients for multiphase systems, simulated at quasi
molecular scales and transferred into more complex models, i.e. observing the response
of a system when strong perturbations are affecting it.

This latter approach started a new way of thinking about computer simulations.
Each scale, with its own level of resolution, can provide partial of complete information
on the overall behaviour of a complex system (from the equipment to the mixtures).
In this framework, a multiscale modelling approach was developed. The idea behind
multiscale modelling is to create, first off-line and then on-line, connections between
detached levels of resolution. Information which can be obtained at atomistic/semi-
atomistic (MD and CG) level of resolution can be passed to less accurate scales (CFD)
to enhance or replace empirical approximation with new concepts derived from
first principles. However, the discrepancy between the time and space scales can
cause problems in the physical coupling between the scales. This is a critical point
of multiscale modelling, that cannot be easily overcome, also because of a practical
limitation due to the computational power. However, a need for a completely defined
multiscale framework is now clear. In particular we started our analysis by using a
semi-atomistic level of resolution and moved to an industrial scale description. In order
to have a better understanding on the state of the art of the simulation tools, with
advantages and limitations, some techniques are here discussed in detail.
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3.2 Full-Atoms and Coarse-Grained Models
In this first part, an overview of the state-of-the-art computational models that are

used to describe a system with atomistic/semi-atomistic level of resolution is provided.
Particular attention is given to Molecular Dynamics (MD), used as a starting point
to derive Coarse-Grained (CG) models, with specific interests to Dissipative Particle
Dynamics (DPD). The different models refer to the spatial and time resolution that can
be assessed by varying the initial assumptions. In the microscale and with a discrete
description of the systems, Hamilton’s equations are solved, while in the macroscale
where continua are assessed, variables are mostly related to thermodynamics. All the
scales in between can be defined as mesoscales, and each of them carries a different
level of information.

The smallest scales can be addressed by MD or even QC, if needed. As an example,
MD can be used to study complex problems involving proteins, membranes, and
polymers, however some phenomena can be only appreciated at timescales that are
not commonly accessible by this method (Allen and Tildesley, 2017). In the area of
modelling and simulations, this became soon a problem and new concepts and tools to
investigate these unknown scales, even with reduced accuracy. Coarse-Grained (CG)
models were initially developed to study mostly detergents and membranes, system
composed by many different components, interacting between them and forming
complex microstructures. The creation, modification or orientation of such structures
can cause a strong variation in the transport coefficients (Alexandridis, Olsson, et al.,
1998; Gentile et al., 2014; Newby et al., 2009; Youssry et al., 2010). However, all these
phenomena happen on a scale which is much larger than the actual capability of MD,
but smaller compared to the approximations made in CFD modeling. This becomes
exactly the point where CG models can be exploited. CG models can be derived from
MD. However, it is important to have in mind some important concepts related to it.

3.2.1 From Liouville to Boltzmann Equation: Mesoscale
Modelling

In this part, the governing equations behind micro- and meso-scale modelling are
presented. In particular, concepts related to the modelling of discrete elements and
their distributions are provided and eventually the well-known Liouville equation is
derived starting from a microscopic approach (Chiarotti et al., 1990; Gombosi, 1994;
Leaf, 1972. This equation is fundamental beacuse it describes how particles interact and
it is a bridge from the microscale to the assumption of continua. Before we start, it is
necessary to introduce the concepts of configuration space, i.e. each particle is defined
by its position (i.e. 𝑥, 𝑦, 𝑧 coordinates) with M degrees of freedom (i.e. independent
variables that define a single state of the configuration space) and the phase-space (i.e.
the collection of all the possible states of the system). Each point of the phase-space
can be represented by a general P(x, v), which is one state defined by positions and
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velocities (or momenta).
An element of fluid, comprising an incredibly large number of particles (M> 1023),

is the domain of investigation. If one wants to completely describe this domain must
define for each of the 𝑁-particles, the following quantities:

r = (𝑥, 𝑦, 𝑧);p = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧); s = (𝑠1, 𝑠2, 𝑠3...𝑠𝐾); (3.1)

where r is the position vector, p is themomentum vector, and 𝑠𝑖 is an internal degree
of freedom (e.g. vibrational modes of molecules). For simplicity, the number of internal
degrees of freedom is considered as zero, such that to define a state only 6M d.o.f. are
necessary. The microstate of a system composed by 𝑀 particles (i.e. one point in the
phase-space diagram) follows:

Γ = (r1, r2, ...rM,p1,p2, ..pM) (3.2)

where ri is the position of the 𝑖 -th molecule and pi is the momentum of the 𝑖 -th
molecule. Due to its discrete nature, the system of particles can be only described by
using the Hamiltonian formalism:

̇ri = 𝜕ℋ
𝜕pi

; ̇pi = 𝜕ℋ
𝜕ri

(3.3)

The solution of the Hamiltonian at time 𝑡 and the equations of motion define a
trajectory in the phase-space diagram. Because of the deterministic character of the
system, two trajectories cannot cross each other.

This equation can be used to describe any single element of fluid and can provide
a complete description of the system. However, due to the incredibly high number of
particles and trajectories thatmust be computed, and the impossibility of defining initial
conditions for all the particles at time 𝑡, this formulation of the system is useless.

Characterizing a system through the definition of the behaviour of each single
particle is also not needed because, most of the time, what is important is their average
behaviour and the properties derived from it, such as temperature and density. Here it
is possible to reduce the complexity of the high number of microstrates into a single
macrostrate through the definition of ensamble.

It is now important to clarify that ri will be used to describe the position of the
𝑖-th particle, while r will be used to define the position of all the particles, such that
r = (𝑟1, 𝑟2, ..., 𝑟𝑀), and the same applies for pi and p. An ensamble can be described
using a distribution function, 𝑓 (𝑁)(ri,pi) of the particles within it, defining the following
quantities:

∫ 𝑓 (𝑀)(ri,pi)
𝑀

∏
𝑖=1

𝑑3ri𝑑2pi = 1 (3.4)

normalized to one, where the value inside the integral is the probability of finding
the system in a specific microstate defined by {ri,pi}. The probability of finding all the
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microstates is equal to one, meaning that all the microstates are explored.The evolution
of the distribution function in time and space can be described according to the Liouville
equation, which must respect a continuity equation where the properties change in
time, are advected because of the flow, and the total flow within a volume is conserved.
Three equations of Liouville can be used to describe the evolution of the probability
distribution function:

𝜕𝑓 (𝑀)

𝜕𝑡
+

𝑀

∑
𝑖=1

( ̇ri ⋅
𝜕𝑓 (𝑀)

𝜕ri
+ ṗi ⋅

𝜕𝑓 (𝑀)

𝜕pi ) = 0, (3.5)

The Liouville equation shows that an element of fluid can be followed in space,
and its shape may change but the volume is always constant. The resolution of the
Liouville theorem is non-trivial, since probability distribution functions depend on 6 −
𝑀 variables. It is possible to reduce the complexity of the system by assuming the
following:

wi = (ri,pi) (3.6)

and the reduced or 𝐾-body distribution function given by:

𝑓 (𝐾)(w1,w2, ..,wK) = 𝑀!
(𝑀 − 𝐾)! ∫

𝑀

∏
𝑖𝐾+1

𝑑6wi𝑓 (𝑀)(𝑤1, ..𝑤𝑀, 𝑡), (3.7)

which for a single particle becomes:

𝑓 (1)(w1, 𝑡) = 𝑀 ∫

𝑀

∏
𝑖=2

𝑑6wi𝑓 (𝑀)(w1, ..,wM, 𝑡) (3.8)

representing the number of particles enclosed in a volume centered in (𝑥, 𝑦, 𝑧) and
(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) and with volume 𝑑3r𝑑3p.

At this point, it is important to say that the expected value of any observable
quantity 𝑄(w), depending additively on single particles of the phase space is given by:

< 𝑄 >= ∫ 𝑑6w1..𝑑6wM𝑓 (𝑀)(w1,w2, ..,wM)
𝑁

∑
𝑖=1

𝑄𝑖, (3.9)

Particles are identical and this implies that the distribution function is a symmetric
function and indices can be swapped without altering our solutions such that:

< 𝑄 >= ∫ 𝑑6w1𝑄(w1)𝑓 (1)(w1) (3.10)

meaning that knowing a single probability distribution function (PDF) is sufficient
to determine a quantity 𝑄(w). The temporal evolution of the reduced probability
distribution function can be re-written using Hamiltonian formulation:
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𝜕𝑓 (𝐾)

𝜕𝑡
= 𝑀!

(𝑀 − 𝐾)! ∫

𝑁

∏
𝑖=𝐾+1

𝑑6wi{𝐻, 𝑓 (𝑀)}, (3.11)

and for one particle:

𝜕𝑓 (1)

𝜕𝑡
= {𝐻 (1), 𝑓 (1)} + (

𝜕𝑓 (1)

𝜕𝑡 )𝑐𝑜𝑙𝑙
(3.12)

being the Hamiltonian term given by:

ℋ (ri,pi, 𝑡) =
𝑀

∑
𝑖=1

p2

2𝑚
+

𝑀

∑
𝑖=1

𝑉 (ri) + ∑
𝑖<𝑗

𝑈(ri − rj), (3.13)

where the Hamiltonian is the sum of a kinetic energy, a potential energy and the
energy corresponding to an external force. For one particle the Eq.3.12 can be reduced
to

𝑑𝑓 (1)

𝑑𝑡
= (

𝜕𝑓 (1)

𝜕𝑡 )𝑐𝑜𝑙𝑙
, (3.14)

where

(
𝜕𝑓 (1)

𝜕𝑡 )𝑐𝑜𝑙𝑙
= ∫ 𝑑3r2𝑑3p2

𝜕𝑈(r − r2)
𝜕𝑟

⋅
𝜕𝑓 (2)

𝜕p
, (3.15)

The solution of this equation requires knowledge of 𝑓 (3) (BBGKY hierarchy). The
simplest of the equations belonging to the BBGKY equations is the closed version for
𝑓 (1), known as the Boltzmann equation:

𝑑𝑓 (1)

𝑑𝑡
= 𝒞 [𝑓 (1)] (3.16)

where 𝒞 is the collision operator, under the assumption that the probability
distribution function (PDF, i.e. the probability of finding a particle in a specific position
r andwith a specific velocity v), of two particles 𝑓 (2)(r, r,p1,p2) = 𝑓 (1)(r,p1)𝑓 (1)(r,p2)
is given by the product of the PDF of two single particles (i.e. collisions at position r
happen between particles with uncorrelated velocities, under the assumption of the
theory of molecular chaos (Bird et al., 2002) ).

3.2.2 Molecular Dynamics
When it comes to evaluate the interactions within many bodies, MD becomes a

fundamental computational tool (Frenkel and Smit, 1996). In such a context, particles,
representing single atoms, can interact via classical mechanics. It becomes possible to
simulate a wide variety of materials by neglecting quantum effects. MD spectrum of
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applications is large and it ranges from biology, where complex proteins are simulated,
to chemistry and to medicine. However, for extremely complex systems, the timescale
for relevant phenomena to be observed cannot be assessed by this technique and
less accurate ones are instead used (coarse-grained methods). MD tries to fill the gap
between information contained at microscale and the empirical data obtained at lab
scale. We can have accurate results regarding bulk properties (transport coefficients,
rheological properties, spectra) based on our computational time, power and, of
course, budget. The main concept behind MD, is to reproduce at a microscopic level,
what experiments do at laboratory scale. Different sets of samples are produced and
connected to measuring devices, noise is filtered through averaging procedures, and
desired behaviours can be detected as a final result. The aim is to reduce the fitting and
guessing that is done at lab scale, by assessing directly measuring quantities related to
microscopic behavior of such complex systems. In MD samples, atoms can interact via
different potentials and moved according to the Newton’s equations of motions (Allen
and Tildesley, 2017):

𝑚ai = FMD,i(r) (3.17)

FMD,i(r) = − d
dri

𝐸, (3.18)

Integration of the equation of motion, can be performed via different algorithms,
and one of the most common is the Velocity-Verlet algorithm (VV):

r(𝑡 + Δ𝑡) = r(𝑡) + v(𝑡)Δ𝑡 + 1
2
a(𝑡)Δ𝑡2 (3.19)

v(𝑡 + Δ𝑡) = v(𝑡) + a(𝑡) + a(𝑡 + Δ𝑡)
2

Δ𝑡 (3.20)

The standard implementation of VV implies that the velocity is updated by half
timestep, using the initial velocity and acceleration, then position is fully updated to
the next time step using the calculated value of the velocity. Updated acceleration is
calculated using the potential, and eventually, the velocity is obtained:

v(𝑡 + 1
2

Δ𝑡) → r(𝑡 + Δ𝑡) → a(𝑡 + Δ𝑡) → v(𝑡 + Δ𝑡), (3.21)

Exact reversibility, low order in time (allowing long timesteps), easy to be
implemented in computational codes, one expensive calculation (force evaluated
once per timestep), made this algorithm one of the most used in MD simulations and
modification to the original version allowed the spreading of new models. Particles
representing atoms can interact via bonded and non-bonded interactions. Non-bonded
interactions can be obtained by considering one pair of atoms and evaluating the
following contribution:
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𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟𝑁) = ∑
𝑖

𝑒(𝑟𝑖) + ∑
𝑖

∑
𝑗>𝑖

𝐸(𝑟𝑖𝑗) + .., (3.22)

Where 𝑒(𝑟𝑖) can be any external potential field and 𝐸(𝑟𝑖) is the non-bonded
interaction potential. As an example, one of the most common type of potential that is
used to describe how two non-bonded atoms interact is the Lennard-Jones potential
(Lennard-Jones, 1924) and reported in Figure 3.1:

𝐸𝐿𝐽(𝑟𝑖𝑗) = 4𝜀𝐿𝐽 [(
𝜎𝐿𝐽
𝑟𝑖𝑗 )

12
− (

𝜎𝐿𝐽
𝑟𝑖𝑗 )

6

]
, (3.23)

where 𝑟𝑖𝑗 = |ri − rj|,

Figure 3.1. The Lennard-Jones potential.
source:https://chemistry.stackexchange.com/questions/34214/physical-significance-of-
double-well-potential-in-quantum-bonding

Where 𝜀 is the depth of the potential well, 𝜎 is the finite distance at which the
potential is zero, 𝑟 is the distance between atoms. Molecules can also be simulated using
MD. For such purpose, bonded interactions must be taken into account in evaluating
the value of the force acting on each particle. In its general formulation, the bonded
potential has the following expression:

𝐸𝑖𝑛𝑡𝑟𝑎 = 𝐸𝑏𝑜𝑛𝑑𝑠 + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛, (3.24)
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As an example, 𝐸𝑏𝑜𝑛𝑑𝑠 can be expressed as harmonic potential:

𝐸𝑏𝑜𝑛𝑑𝑠 = 1
2 ∑

𝑁𝑏𝑜𝑛𝑑𝑠

𝐾𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑒𝑞)2, (3.25)

where 𝐾𝑖𝑗 is the harmonic constant, 𝑟𝑒𝑞 is the equilibrium distance between two
bonded particles.

An important aspect in presenting MD and similar methods, lies in the concept of
periodic boundary conditions (see Fig. 3.2). If one tries to simulate complex systems,
containing a huge number of exactly identical particles (atoms, molecules), it may
be extremely computational expensive to consider all of them. Also, MD simulations
are performed in closed boxes containing the different particles, meaning that many
atoms will be located at outer faces of the system. These outer layers could negatively
affect the calculation of some properties and nullify the validity of the simulation. To
avoid this problem, replicas of the original box can replace each edge of the initial
simulation region. In such a way, if an atom leaves the box from one side, an identical
copy enters the box on the opposite side. Using periodic boundary conditions, atoms
can also interact with out-positioned atoms, or better, images of atoms that are a
replica of the originals. A neighboring list can be created at every timestep (or updated
when necessary) because only pairwise interactions are considered. This means that
each atom in the box has a certain number of possible interactions based on a cut-off
distance. Only the interactions between the atom 𝑖 and the 𝑗-s included into the list
are evaluated. When flow effects are applied on the system, it may be useful to update
this neighboring list every timestep, because particles can move apart from each other
after every single timestep, hence interactions may be lost.
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Figure 3.2. On the left: representation of the periodic boundary condition. When a particle
(black) leaves the simulation box (solid lines) from one face/side, a new particle enters
in the simulation box from a corresponding position of a replica of the simulation box
located on the opposite face/side. On the right: representation of the concept of neighboring
list. Each particle (blue) can interact with other particles (green) surrounding it within a
certain radius of interaction.When a particle is located on the boundary, it can also interact
with replicas of the particle provided by the periodic boundary condition (red), in order to
reproduce bulk effects.
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3.2.3 The Langevin Equation
Introducing the Langevin equation is fundamental in order to understand the

transition from atomistic to mesoscopic (coarse-grained) models. It is generally used to
describe Brownian motion, which was initially described by A. Einstein, who related
for the first time the diffusion constant to atomic properties (Langevin, 1908). In
order to obtain the Langevin equation, a Brownian particle is immersed in a control
volume comprising many smaller particles. If the Brownian particle is bigger than
the remaining particles (i.e. they are as smaller as atoms), its agitated motion will be
slower compared to the others. In this systems, it is possible to assume that different
timescales are present, in particular one related to the motion of the atoms, one to the
the Brownian particle to relax its velocity and one to diffuse of a distance at least as
big as its radius. As an example, the timescale related to atoms fluctuations is in the
order of magnitude of:

𝜏𝑠 = atoms fluctuations = 10−12s; (3.26)

the motion of a particle must obey the Newton’s law and the force acting on the
Brownian particle at time 𝑡 is due to the interaction between the big particle and the
surrounding fluid composed by atoms.This force is however driven by a frictional effect
and a stochastic contribution due to random density fluctuations in the fluid such that
we can derive a model to describe the Brownian motion of a particle:

𝑑r(𝑡)
𝑑𝑡

= v(𝑡) (3.27)

𝑑v(𝑡)
𝑑𝑡

= −
𝛾
𝑚

𝑚(𝑡) + 1
𝑚

𝜂(𝑡) (3.28)

where 𝛾 is given by 6𝜋 ̇𝜂̊ (being 𝜂 representative of the fluid viscosity) according to the
Stokes law. The role of the stochastic force is to kick the Brownian particle, otherwise
its velocity would decay to zero within a certain time 𝑡. The physical explanation is that
atoms in the surrounding fluid randomly hit the Brownian particle keeping the velocity
different from zero.

3.2.4 Coarse-Grained Models
In CG models, clusters of atoms are considered as single particles (or beads), and

the interactions between pairs of atoms are replaced by interactions between beads.
Even if the atomic resolution is lost, the basis of such methods lies in the underlying
molecular aspects. In the clustering procedure, the degrees of freedom of the system
are reduced. In fact, if a particle (atom or molecule) was able to move freely along 𝑥,𝑦,
and 𝑧 coordinates before, now it belongs to a new entity (bead) together with similar
atoms and they move only according to the overall bead motion. The clear advantage
of this technique is that by coarse-graining we are able to access much larger time span
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compared to MD in less computational time. In order to validate results obtained from
CG procedures, results are compared against experimental evidences (a-posteriori) (Di
Pasquale et al., 2019).

Complex systems may be described by using many degrees of freedom, and their
number is directly related to the level of information (or scale) that we can derive from
them. By defining these peculiar sets of variables, the state of a system can be completely
defined. If one reduces the number of those degrees of freedom (by coarse-graining), the
number of these variables can be reduced and some of the information is lost. Dynamic
equations are given for each specific variable and different time scales can have different
sets. A detailed definition of these specific time scales allows a correct CG procedure,
that is able to detect phenomena that can be observed only on an equal or bigger time
scale.

The loss of degrees of freedom is reflected into stochastic terms which appear into
the equations describing the evolution of the system, simply because it is impossible
to go back to the initial stage, since many different coarse-grained initial stages are
compatible with a current microscopic state but also it is impossible to predict the
future states of such systems. If stochastic terms are introduced in the coarse-graining
procedure, the dynamic equation can be derived in the form of Fokker-Planck equation,
where together with the stochastic term, a systematic dissipative variable is introduced.
This dissipative term, related to the thermal fluctuations, cannot be independent from
the stochastic one, therefore there exists a correlation, formulated in the fluctuation
dissipation theorem (Kubo, 1957), that links these two variables. The Fokker-Plank
equation, which is the base of coarse-grained models, can be derived from Liouville
theorem. Starting from a microscopic description, we can define classical equations
using Hamiltonian notation:

̇ri = 𝜕ℋ (𝑧)
𝜕𝑝𝑖

; ̇pi = −𝜕ℋ (𝑧)
𝜕𝑟𝑖

; ̇𝑧 = 𝐿0
−𝜕ℋ (𝑧)

𝜕𝑧
; 𝐿0 = ( 0 1

−1 0 ) (3.29)

Where the initial microstate of the system can be completely defined by knowing
z = (ri,pi) and the set of all 𝑧 defines the phase space of the system. In order to solve
Hamiltonian equations, the initial state z0 must be identified, even if defining this value
can be non-trivial. A solution of the Hamilton’s equations can be 𝑧(𝑧0, 𝑡) = 𝑇𝑡𝑧0, where
𝑇𝑡 is a time evolution operator. If we define 𝜌𝑡,𝐿𝑖𝑜(𝑧), as the probability distribution
function of one state 𝑧 at time 𝑡, and 𝑀 the region of non-vanishing states, the Liouville
equation can be obtained:

∫𝑀
𝜌𝐿𝑖𝑜(𝑧,0)𝑑𝑧 = ∫𝑇𝑡𝑀

𝜌𝐿𝑖𝑜(𝑧, 𝑡)𝑑𝑧, (3.30)

By performing a changing in variables, integrating and then taking the derivatives
of both terms (omitted for brevity), the solution of the equation is the following:
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d𝜌𝐿𝑖𝑜(𝑇𝑡𝑧, 𝑡)
d𝑡

=
d𝜌𝐿𝑖𝑜(𝑧,0)

d𝑡
= 0 (3.31)

And introducing the Liouville operator results in:

𝑖𝐿 = ∑
𝑖

(
𝜕ℋ
𝜕𝑝𝑖

𝜕
𝜕𝑟𝑖

− 𝜕ℋ
𝜕𝑟𝑖

𝜕
𝜕𝑝𝑖 ) (3.32)

Previous equation can be written as follows:

𝜕𝜌𝐿𝑖𝑜(𝑧, 𝑡)
𝜕𝑡

= −𝑖𝐿𝜌𝐿𝑖𝑜(𝑧, 𝑡) (3.33)

The Liouville equations becomes the base to derive the Fokker-Plank (FP) equation.
In this work, the complete derivation is not reported, instead the final form of the FP
equation for the probability distribution function, which is a general form of the Green-
Kubo equation, is reported:

𝜕𝑡𝑃 (r, 𝑡) = − 𝜕
𝜕𝑟𝑖

⋅ vi(𝑟)𝑃 (𝑟, 𝑡) + 𝜕
𝜕𝑟

Ω(𝑟)𝐷𝑖𝑗(𝑟) ⋅ 𝜕
𝜕ri

𝑃 (r, 𝑡)
Ω(𝑟)

(3.34)

More details can be found in Espanol, 2004, but it is important to highlight that
thanks to this formulation for coarse-grained models, transport coefficients can be
derived.
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3.2.5 Dissipative Particle Dynamics
Dissipative Particle Dynamics was firstly introduced to Hoogerbrugge and Koelman

(Hoogerbrugge and Koelman, 1992) as an alternative to lattice-gas automata.Thismodel
was proposed as a different tool compared to MD that was able to to simulate complex
hydrodynamic behaviour of fluids with shorter computational times. During the years,
the initial DPD model was corrected and improved by many contributors, and among
them, it is important to underline the work of Espanol, Pagonabarraga and Warren
(Español, 1995; Groot and Warren, 1997; Soddemann et al., 2003). DPD belongs to a
class of methods related to coarse-grained models, in which, compared to MD, the
atomistic resolution is lost, and classical mechanics is used to describe the evolution
of the particles composing the system. Those aggregates (beads) are not single atoms,
as it is in MD, but instead they are representative of clusters of atoms, molecules or
parts of molecules, that move together and interact via only-repulsive potentials. All
the beads, present into a simulation box, move according to the Liouville equations of
motion:

dri
d𝑡

= vi, (3.35)

dvi
d𝑡

=
fi
𝑚𝑖

, (3.36)

where ri is the position of the 𝑖 -th particle, vi is its velocity, 𝑡 is the time and fi is
the sum of the forces, acting on each bead that can be obtained as follows:

fi = ∑
𝑖≢𝑗

(FCij + FRij + FDij ), (3.37)

representing respectively conservative, stochastic and dissipative forces. The
conservative force can be described as follows:

FCij =
{

𝑎𝑖𝑗(1 −
rij
rc

) ̂𝑟𝑖𝑗 𝑟𝑖𝑗 < 𝑟𝑐

0 rij > 𝑟𝑐
(3.38)
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Figure 3.3. Representation of the force acting between two beads interacting with a soft
potential. In this specific case, the maximum value of the force is equal to 25, corresponding
to 𝑟𝑖𝑗 = 0, meaning that in contrast with the LJ potential, when the distance between the
two particles is zero, the value of the potential is still bounded and the force has a finite
value. DPD particles, due to the form of the potential, can indeed cross each other or overlap.
When two beads move apart from each other such that the distance between them is greater
than a critical value, the force between the two beads is equal to zero.

where 𝑎𝑖𝑗 represents the conservative soft potential parameter, 𝑟𝑖𝑗=|ri − rj| is
the relative distance between two beads 𝑖 and 𝑗, ̂r𝑖𝑗=

𝑟𝑖𝑗
|𝑟𝑖𝑗|

, and 𝑟𝑐 is the cut-off radius,
a characteristic length of the model. These repulsive potentials are much softer
than the normal Lennard-Jones potentials, meaning that the overlap between two
different beads during a single timestep is allowed. The choice of the 𝑎𝑖𝑗 parameter
is not straightforward, and actually different values of this parameter, can be
used to reproduce complex fluids. Its tuning becomes crucial to obtain the correct
thermodynamic state. The first attempt to obtain results that were related to real
systems, was the use of the fluctuations in liquid phase, physically represented by the
compressibility of the system(Groot and Warren, 1997), 𝜅:

𝜅−1 = 1
𝑛𝑘𝐵𝑇 𝜅𝑇

= 1
𝑘𝐵𝑇 (

𝜕𝑃
𝜕𝑛 )𝑇

(3.39)

where 𝑛 is themolecular density, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature,
𝑃 is the pressure and 𝜅𝑇 is the isothermal compressibility of the fluid. Water, at room
temperature, was used as a reference and the non-dimensional value of 𝜅−1 was found
to be equal to 15.9835. When the density of the DPD system is higher than two particles
per unit volume, a good approximation for the evaluation of the pressure can be given
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by:

𝑃𝐷𝑃 𝐷 = 𝜌𝐷𝑃 𝐷𝑘𝐵𝑇 + 𝛼𝐷𝑃 𝐷𝑎𝑖𝑖𝜌2
𝐷𝑃 𝐷 (3.40)

where, 𝜌 is the number of beads per unit volume, 𝛼 is a tuning parameter equals
to 0.101, and 𝑎𝑖𝑖 is the repulsive coefficient. Following from the equation of 𝜅−1, the
compressibility of a fluid can be directly related to the repulsive coefficient:

𝜅−1 = 1 + 2
𝛼𝐷𝑃 𝐷𝑎𝑖𝑖𝜌𝐷𝑃 𝐷

𝑘𝐵𝑇
, (3.41)

resulting for water in:

𝑎𝑖𝑖 =
75𝑘𝐵𝑇
𝜌𝐷𝑃 𝐷

. (3.42)

Simulations of different species, for example liquid-liquid systems, are extremely
important in the chemical industry and in order to describe different chemical
components, a correction to the 𝑎𝑖𝑗 parameter is needed. Polymers can be also
described with a similar approach, where each bead has a specific value of the repulsive
coefficient, based on the addition of an extra repulsion contribution, Δ𝑎. These extra
contributions are directly derived from the Flory-Huggins 𝜒-parameters, and they are
physically representative of the solubility of one component into another. When the
density of a DPD system is set equal to 3 (meaning that there are three beads for unit
volume), the repulsive term between two species 𝑖 and 𝑗 is:

𝑎𝑖𝑗 ≈ 𝑎𝑖𝑖 + 3.27𝜒𝑖𝑗 (3.43)

In fact, the variation of the repulsive coefficient, according to the solubility of one
component into another, allows the simulation of many species that reproduce the
behaviour of chemical compounds.

The dissipative force is described as follows:

Fij
𝐷 = −𝛾𝑖𝑗𝑤𝐷(𝑟𝑖𝑗)( ̂rij ⋅ vij) ̂rij (3.44)

where 𝛾 represents the dissipative coefficient acting as an artificial drag on the beads,
𝑤𝐷 is a weight function that defines the maximum range of application of the force and
vij = vi − vj is the relative velocity between two beads 𝑖 and 𝑗. Its dependence on the
velocity of the beads allows DPD to act as a thermostat in regulating the temperature
of the system. The physical interpretation of the product between the velocity and the
distance between two beads is the following: if this value is positive, a viscous force is
exerted against particle 𝑖, and because of this, 𝑖 moves apart from 𝑗.

If only dissipative and conservative forces were present, the system would simply
freeze in its state. To solve this problem, continuous kicks to keep the particles in
thermal motion are provided by a stochastic force, that can be described as follows:
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Fij
𝑅 = 𝜎𝑖𝑗𝑤𝑅(𝑟𝑖𝑗)𝜁𝑖𝑗Δ𝑡−1/2 ̂rij, (3.45)

where 𝜎 is the stochastic coefficient, 𝑤𝑅 is again a weight function, 𝜁𝑖𝑗 is a
random fluctuating variable with zero mean and unitary variance and Δ𝑡 is the
simulation timestep. Also, 𝜁𝑖𝑗 = 𝜁𝑗𝑖 ensures that the total momentum is conserved,
that is a fundamental aspect of this technique (Español and Warren, 2017). The
weight functions and the stochastic and dissipative coefficients are linked through the
fluctuation-dissipation theorem (Kubo, 1957) as follows:

𝑤𝐷(rij) = [𝑤𝑅(𝑟𝑖𝑗)2] =
{

(1 − 𝑟𝑖𝑗
𝑟𝑐

)2 𝑟𝑖𝑗 < 𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐
(3.46)

𝜎2 = 2𝛾𝑖𝑗𝑘𝐵𝑇, (3.47)

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature of the system. This
last equation clarifies that the choice of one of the interaction parameter implies that
the other is already defined.

Starting from the Newton’s equations of motion, we now obtained a set of Langevin
equations:

dvij =
[∑

𝑖≠𝑗
𝐹 𝐶

𝑖𝑗 (𝑟𝑖𝑗) + ∑
𝑖≠𝑗

−𝛾𝑖𝑗𝑤𝐷(𝑟𝑖𝑗)( ̂rij ⋅ vij) ̂rij]
d𝑡 + ∑

𝑖≠𝑗
𝜎𝑖𝑗𝑤𝑅(𝑟𝑖𝑗) ̂rijd𝑊𝑖𝑗 (3.48)

where 𝑑𝑊𝑖𝑗 = 𝑑𝑊𝑗𝑖 are independent increments of the Wiener process.

DPD Polymeric Chains

Chains of beads used to represent for example polymers can be simulated by
using DPD by adding an extra set of interactions to non-bonded ones. These bonded
interactions can be described using different models. Bonded interactions are needed
to maintain the topology of the polymer chains, meaning that a force is acting between
two connected beads, preventing them to move apart from each other. In this work,
two types of bonded potentials have been investigated: harmonic and finite-extensible
nonlinear-elastic (FENE) potentials (Kremer and Grest, 1990). The harmonic potential
is described as follows:

𝐸ℎ𝑎𝑟𝑚 = 𝜅𝑖𝑗ℎ𝑎𝑟𝑚(𝑟𝑖𝑗 − 𝑟𝑒)2, (3.49)

where 𝜅𝑖𝑗ℎ𝑎𝑟𝑚 is the harmonic constant and 𝑟𝑒 is the equilibrium distance between
two connected beads, while the FENE potential is expressed by:

𝐸𝐹 𝐸𝑁𝐸 = −𝜅𝑖𝑗𝐹 𝐸𝑁𝐸𝑟2
𝑒 ln [1 − (

𝑟𝑖𝑗

𝑟𝑒 )

2

] , (3.50)
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where 𝜅𝑖𝑗𝐹 𝐸𝑁𝐸 is the FENE bond constant, 𝑟𝑒 is the equilibrium distance and
𝑟𝑖𝑗 is the distance between two beads. FENE potential is commonly used to prevent
particles over-elongation of polymeric chains, when strong shear rates are applied on
the systems. The value of the energy grows to infinite, while using harmonic potential,
it could be possible that two beads belonging to the same chain, move further than the
equilibrium distance.

DPD Scaling Factors

In order to describe a system, composed by identical particles, a coarse-graining
level must be introduced (𝑁𝑔). This number specifies how many real, physical particles
or atoms or molecules are clustered into one single bead. According to this number, a
set of units, reproducing equilibrium properties, can be retrieved and DPD quantities
scaled to physical values. It is important to highlight that fundamental quantities are
reported in DPD units and set equal to one. For example, a mass, 𝑚, a length, 𝑟𝑐, and
an energy, 𝑘𝐵𝑇, can be used as a conversion set to retrieve equilibrium properties of a
system. If these three values are used, the characteristic DPD time, 𝜏, becomes equal to
(Groot and Madden, 1998):

𝜏 = 𝑟𝑐√
𝑚

𝑘𝐵𝑇
(3.51)

In the original DPD formulation, beads of different species are similar in shape
(spherical) and volume. Usually, a certain number of water molecules (from three to
six) is selected as benchmark. Other components then are clustered keeping in mind
that each bead must contain similar volume occupied by water beads. Also, energy is
not conserved, meaning that energy transport cannot be simulated if a corrected version
of the DPD, Energy DPD is used instead. Marsh et al., 1997 proved that the dissipative
forces acting on DPD beads, which depend on the thermal velocity, act as a thermostat
on the system, meaning that temperature gradients in the system are not allowed. Also,
the energy dissipated by those forces is invested into increasing the internal energy of
the clusters (Español and Revenga, 2003). The calculation of the transport coefficient of
a DPD system is non-trivial. As a practical example, one way to obtain the viscosity can
then be by using the following equation:

𝜇𝐷𝑃 𝐷 = −
𝑃𝑥𝑦

̇𝛾
, (3.52)

where ̇𝛾 is the imposed shear rate, while 𝑃𝑥𝑦 is the non-zero, 𝑥𝑦 non-diagonal
component of the stress tensor. This technique can be used on a system where
Lees-Edward boundary conditions (LEBC) are already implemented (see section 5.2.3
for LEBC description). In such a way, it is possible to reproduce and understand the
behaviour of a bulk portion of the system where continuous stress is applied on
a single element of fluid. But other techniques have been provided by Kubo, 1957
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to obtain not only the viscosity but other transport coefficients (i.e. Green-Kubo
formulation). However, the calculation of transport coefficients for DPD fluids may
lead erroneous observations. One of the problems, present in the standard version of
the DPD algorithm, is linked to the relation between the hydrodynamic interactions
and the timescale for diffusion, namely the Schmidt number (Sc):

Sc = 𝜈
𝐷

(3.53)

The value obtained for a fluid representing water, using DPD, was in the order
of magnitude of the unity, meaning that the mass is diffusing as fast as momentum,
which is in constrast with experimental observations. This result is physically wrong,
and the correct value should be in the order of magnitude of 103. Since Sc number is
proportional to 𝛾2, by varying this parameter, an higher Sc can be achieved. This means
that the evaluation of the correct transport coefficients should pass through the tuning
of the 𝛾 parameter together with 𝑎𝑖𝑗.

A final remark regards the conversion between DPD and real units. In order
to compare the results of DPD simulations with experiments, it is necessary to
define a conversion benchmark, such as a set of values representative of physical
quantities. Having in mind that DPD beads are indeed a group of different clusters of
atoms/molecules with the same size and weight, three variables can be used to define
one possible conversion set (i.e. a length, a mass and a kinetic energy). The length,
defined as a cut-off radius, represents the maximum level of interaction between DPD
beads, the mass represents the number of particles clustered into one bead and the
kinetic energy is an indicator of the thermal velocity of the beads. DPD simulations
are performed using these parameters normalized to unity. If this set is fixed, all
the remaining parameters can be obtained by their combination. An example of this
conversion was reported by Groot and Rabone, 2001, and when the 𝑁𝑐, coarse-graining
number is set equal to three:

𝑟𝑐𝑢𝑡 = (3𝜌𝐷𝑃 𝐷𝑉𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)1/3 = 6.463Å, (3.54)

where the cut-off length was obtained by assuming that each bead contains three
molecules of water and the volume of one molecule of water is assumed to be:

𝑉𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 3 × 10−29m3, (3.55)

𝑚𝑏𝑒𝑎𝑑 = 3 ⋅ 𝑚𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 8.967 ⋅ 10−26kg, (3.56)

hence themass of a single bead can be obtained by defining the number of molecules
clustered in it. Finally, the energy or the velocity of the beads in the system can be used
to derive the time unit. If the thermal velocity if chosen, the following approach can be
selected at equilibrium:
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𝑣𝑏𝑒𝑎𝑑 = √
3𝑘𝐵𝑇

𝑚
(3.57)

While if the temperature is chosen as a standard reference, the value of 298 K can
be used to calculate the value of the DPD energy and it is independent from the coarse-
graining number:

𝜖𝐷𝑃 𝐷 = 𝑘𝐵𝑇 = 4.112 ⋅ 10−21J, (3.58)

Although this conversion set of parameters is producing consistent results in
evaluating equilibrium properties, the same does not apply in non-equilibrium
conditions. The conversion of DPD values into real physical units, according to the
equilibrium conversion set, could produce unrealistic values for non-equilibrium
quantities, such as for example the conversion between real shear rate and the DPD
one (similarly to what happens in non-equilibrium AAMD). It is also necessary to say
that, given this set of parameters and types of interaction, chain-crossing is allowed.
This could also bring to deviations from real, physical quantities. Despite all these
limitations we think the present analysis is useful and can generate interesting results.
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3.3 Computational Fluid Dynamics
Multiphase and mixing processes can be modelled at the industrial scale by using

CFD (Aubin et al., 2004; Coroneo et al., 2011; Nere et al., 2003; Sahu et al., 1999;
Sommerfeld and Decker, 2004). CFD can be used at industrial level for length and
timescales that cannot be accessed by the models previously discussed. The capabilities
of CFD scale with both the available computing power (tech limit) and the progresses
made in the derivation of more and more accurate models, for example coming from
MD, CG but also experiments (knowledge limit). Starting from single flows in common
geometries and validations against empirical solutions, it also became possible to tackle
problems related to multiphase and multifluid systems, by using this computational
tool, even if strong approximations and closure models were needed.

When assessing multiphase systems, three main categories can be used to describe
a system depending on the desired output and on the required level of detail that is
requested. These are: Eulerian-Eulerian (E-E) , Eulerian-Lagrangian (E-L) and Direct
Numerical Simulation (DNS). Moving from E-E to DNS it is possible to move down in
the geometrical scale, but the computational time is increased.

Figure 3.4. Three scales are used in continuum modelling. The level of accuracy moves
from DNS (most accurate) to E-E (least accurate) but the computational cost moves in the
opposite direction.

In the E-E model (or two- multi- fluid model), all the phases are treated as
compenetrating media and solved as segregated fluid phases. For each phase, a
continuity equation (i.e. mass balance) together with a momentum and energy balance
are solved. In this model, it is important to define a control volume bigger than
the molecular (or particle) scale but smaller with the equipment scale, in order to
average the properties of the continua over a fixed volume. The main disadvantage of
E-E models lies in the impossibility of tracking single particles, hence only average
fields can be obtained. For such purpose strong approximations and models based on
empirical evidences can be provided .

To overcome these problems, a new method was introduced: the Lagrangian-
Eulerian formulation or Discrete Element Model (DEM). In 1979, Cundall and Strack,
1979 proposed this new methodology where one phase is treated as a continuum
while the second one is still a disperse phase, but each particle or cloud or particles
can be tracked. Transport equations for properties related to the continuum phase
are solved in a segregate manner in respect to the disperse phase. On the other side,
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trajectories and collisions are computed for each single discrete element. Different
coupling techniques between the two phases have been proposed, depending on the
interaction level between Eulerian and Lagrangian phases. Phases can be fully coupled,
i.e. they both influence each other, partially coupled or fully decoupled. Many models
have been introduced in order to describe the interactions between particles (hard
spheres, soft spheres, etc.) which becomes the crucial part of E-L model. The main
disadvantage in using L-E models is the computational time that is used to simulate the
interaction between particles and the calculation of the trajectories of each single body.
This means that systems containing a big number of bodies cannot be simulated using
this approach. The last technique which was introduced in CFD that contains an even
higher level of information is called Direct Numerical Simulation (Tryggvason et al.,
2001). Using this model, it is possible to solve directly the interface of each particles
and quantify the contribute of different forces acting on it. More than thirty cells must
be used to describe each single particle, meaning that a short spatial resolution can be
explored. Volume of fluid, level-set and front-tracking methods, represent some of the
most important applications of such method. For all of them, just one set of equation
is solved together with an extra function that tracks the evolution of the interface
between the phases (Brennen, 2013; Osher and Fedkiw, 2001).

In this work, E-E model is used to model emulsions.

3.3.1 From the Boltzmann equation to the Navier-Stokes
equation

In this section the governing equations are obtained starting from the Boltzmann
equation. Some concepts must be re-introduced: the probability of finding a particle
at time t, in the position x and with velocity v is described by the probability density
function f(t,x,v). If we consider the quantity f(t,x,v)dxdv, it represent the mass of fluid
contained within a cube of dimension 𝑑𝑥 = 𝑑𝑥𝑑𝑦𝑑𝑧, with velocity 𝑑𝑣 = 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧.
Average quantities, such as density or average velocity, in time and space can be derived
by the integration of the probability distribution function over the space of all the
possible velocities:

𝜌(𝑡, r) = ∫ ∫ ∫
+∞

−∞
𝑓(𝑡,x, v)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧, (3.59)

𝑣𝑖(𝑡, r) = 1
𝜌 ∫ ∫ ∫

+∞

−∞
𝑣𝑖𝑓(𝑡, r, v)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧, (3.60)

The Boltzmann equation can be used to describe the evolution of the system:

𝜕𝑓
𝜕𝑡

+ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

− 𝑔
𝜕𝑓
𝜕𝑣3

= 𝒞 (𝑓), (3.61)

where summation is represented by repeated indices, 𝑔 is gravitational force and
𝑣3 is the axis of the force of gravity but in the opposite direction. This equations means
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that the probability distribution function moves in space because of the velocity of the
particles and this velocity is altered by the gravity and redistributed by the collisions.
An assumption must be made at this point in order to recover the Navier-Stokes
equation, that describes the transport of momentum within the continuum framework.
The effect of the collision integral, 𝒞 is to move 𝑓 towards an equilibrium distribution.
The equilibrium distribution can be written in the form of the Maxwell-Boltzmann
distribution:

𝑓 𝑒𝑞(𝑡,x, v) =
𝜌(𝑡,x)

2(𝜋)3/2𝑉 3(𝑡,x)
𝑒𝑥𝑝 (−

|v − v(𝑡,x)|2

2𝑉 2(𝑡,x) ) (3.62)

where 𝑉 is the standard deviation, and the collision term can be approximated as:

𝒞 (𝑓) = 1
𝜏

(𝑓 𝑒𝑞 − 𝑓). (3.63)

such that the Eq. 3.65 becomes:

𝜕𝑓
𝜕𝑡

+ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

= 1
𝜏

(𝑓 𝑒𝑞 − 𝑓) + g
𝜕𝑓
𝜕𝑣3

. (3.64)

Mass can be obtained by integrating in the velocity space Eq. 3.64, or calculating the
moment of order zero:

∫ ∫ ∫
+∞

−∞ {
𝜕𝑓
𝜕𝑡

+ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖 } 𝑑v = ∫ ∫ ∫

+∞

−∞ {
1
𝜏

(𝑓 𝑒𝑞 − 𝑓) + 𝑔
𝜕𝑓
𝜕𝑣3 } 𝑑v (3.65)

according to the definition of density derived in Eq. 3.59, assuming that temporal
and spatial derivates can be taken outside the integrals because they do not depend
on the velocity, and the collisional term vanishes because mass is conserved in each
collision, the continuity equation can be obtained:

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌𝑣𝑖) = 0 (3.66)

Similarly, starting from the moment of order one of the Boltzmann equation,
it is possible to derive the Navier-Stokes equation, that describes the transport of
momentum:

∫ ∫ ∫
+∞

−∞ {𝑢𝑗
𝜕𝑓
𝜕𝑡

+ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖 } 𝑑v = ∫ ∫ ∫

+∞

−∞
𝑣𝑗 {

1
𝜏

(𝑓 𝑒𝑞 − 𝑓) + 𝑔
𝜕𝑓
𝜕𝑣3 } 𝑑v

(3.67)
by assuming that the collisions conserve momentum and the overline represents

the average value, Eq 3.67 becomes:

47



3 – Computational Models

𝜕
𝜕𝑡

(𝜌𝑣𝑗) + 𝜕
𝜕𝑥𝑖

(𝜌𝑣𝑖𝑣𝑗) =
𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
− 𝜌𝑔𝛿𝑗3 (3.68)

where

𝜎𝑖𝑗 = ∫ ∫ ∫(𝑣𝑖 − 𝑣𝑖)(𝑣𝑗 − 𝑣𝑗)𝑓𝑑v. (3.69)

for a single phase Newtonian fluid, it is therefore possible to write the Navier-Stokes
equation in its complete form:

𝜕𝜌𝑣𝑖
𝜕𝑡

+ [
𝜕

𝜕𝑥𝑖
(𝜌𝑣𝑖𝑣𝑗)] = −

𝜕𝑝𝑖
𝜕𝑥𝑖

+ 𝜇 𝜕2

𝜕𝑥2
𝑖

𝑣𝑖 + 𝜌g (3.70)

3.3.2 Two-Fluid Model
In the E-E formalism the most common model is the Two-Fluid model (TFM)

introduced by Ishii and Mishima (Ishii et al., 1982), in which volume fraction and
average velocity fields are used to describe the evolution of the system. This model
can be used to describe complex multiphase systems (i.e. a continuum and a disperse
phase) where properties are defined in terms of average quantities. Single identities,
as per the disperse phase, are merged and described as fields. Thanks to TFM, the
evolution of these fields is tracked and average quantities are retrieved. Two sets of
governing equations are written for the disperse and continuum phase and since these
two can interact, extra terms are introduced according to the level of interaction. A
continuity equation for the disperse phase, reads as follows:

𝜕(𝛼𝑑
𝑖 𝜌𝑑

𝑖 )
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝛼𝑑
𝑖 𝜌𝑑

𝑖 𝑣𝑑
𝑖 ) = 0, (3.71)

where 𝛼𝑑
𝑖 , 𝜌𝑑

𝑖 , and 𝑣𝑑
𝑖 are respectively the volume fraction, the density and the

velocity of the disperse phase, while 𝑡 is the time. Right-hand side is null because mass
is conserved and no source terms are present. A momentum balance equation is solved
for the continuous phase:

𝜕𝛼𝑐
𝑖 𝜌𝑐

𝑖 𝑣
𝑐
𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
𝛼𝑐

𝑖 𝜌𝑐
𝑖 (𝑣

𝑐
𝑖 𝑣

𝑐
𝑖 ) + 𝜕

𝜕𝑥𝑖
(𝛼𝑐𝜏𝑐) + 𝜕

𝜕𝑥𝑖
(𝛼𝑐𝑅𝑐

𝑖 ) = −𝛼𝑐
𝑖

𝜕𝑝
𝜕𝑥𝑖

+ 𝛼𝑐
𝑖 𝜌𝑐

𝑖 𝑔𝑖 − 𝑀𝑐
𝑖 (3.72)

and another one is solved for the disperse phase:

𝜕𝛼𝑑
𝑖 𝜌𝑑

𝑖 𝑣𝑑
𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
𝛼𝑑

𝑖 𝜌𝑑
𝑖 (𝑣𝑑

𝑖 𝑣𝑑
𝑖 ) + 𝜕

𝜕𝑥𝑖
(𝛼𝑑

𝑖 𝜏𝑑) + 𝜕
𝜕𝑥𝑖

(𝛼𝑑
𝑖 R

d
i ) = −𝛼𝑑

𝑖
𝜕𝑝
𝜕𝑥𝑖

+ 𝛼𝑑
𝑖 𝜌𝑑

𝑖 𝑔𝑖 + 𝑀𝑑
𝑖 (3.73)
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Where 𝑣𝑐
𝑖 and 𝑣𝑑

𝑖 are the velocity of the continuous and disperse phase, 𝜏
𝑐 and 𝜏𝑑 are

the viscous stress tensors, and Rc and Rd ,the Reynolds stress tensors, 𝑝 is the pressure,
𝑔 is the gravity, andMc andMd describe the interfacial forces. In particular,Md can be
expressed by:

Md = 𝛼𝑑𝛼𝑐 (
3
4

𝐶𝐷
𝜌𝑑
𝑑32

|vr|) vr, (3.74)

where vr = vc − vd, 𝑑32 is the Sauter diameter, while the drag force coefficient 𝐶𝐷
can be described according to Schiller and Naumann correlation:

𝐶𝐷 = {

24
Re (1 − 0.15Re0.687) Re ≤ 1000

0.44 Re > 1000} . (3.75)

where Re is the local Reynolds number (Re = 𝜌𝑐|vr|𝑑32
𝜇𝑐

). Different models for
the interfacial stresses were tested and results reported in the Results session. The
turbulence plays an important role in mixing problems. In particular, for this model,
we used Reynolds-averaged Navier-Stokes equation (RANS) and tested different
turbulence models.

3.3.3 Turbulence models
Turbulence models must be included in the correct formulation of flow fields, when

the Reynolds number is sufficiently high. In particular, in the part related to the mixing
of this work, different turbulence models have been tested, since high velocities are
obtained in some regions of the systems. Reynolds-Averaged Navier-Stokes (RANS)
models have been used and compared against each other. These models describe
from two to seven different sets of transport equations for the turbulent variables. In
particular, 𝜅 − 𝜖, 𝜅 − 𝜔 and Reynolds Stress models were used. Only the governing
equations that are solved for each model are reported.

Standard 𝜅 − 𝜖 Model

In 𝜅 − 𝜖 model, two transport equations are solved for the turbulent kinetic energy
and the turbulent dissipation rate:

𝜕
𝜕𝑡

(𝜌𝜅) + 𝜕
𝜕𝑥𝑖

(𝜌𝜅𝑣𝑖) = 𝜕
𝜕𝑥𝑗 [(𝜇 +

𝜇𝑡
𝜎𝜅 )

𝜕𝜅
𝜕𝑥𝑗 ] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜖𝑡𝑢𝑟𝑏 − 𝑌𝑀 + 𝑆𝜅 (3.76)

and
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𝜕
𝜕𝑡

(𝜌𝜖𝑡𝑢𝑟𝑏)+ 𝜕
𝜕𝑥𝑖

(𝜌𝜖𝑡𝑢𝑟𝑏𝑣𝑖) = 𝜕
𝜕𝑥𝑗 [(

𝜇 +
𝜇𝑡

𝜎𝜖𝑡𝑢𝑟𝑏 )
𝜕𝜖𝑡𝑢𝑟𝑏
𝜕𝑥𝑗 ]

+𝐶1𝜖𝑡𝑢𝑟𝑏

𝜖
𝜅

(𝐺𝜅+𝐶3𝐺𝑏)−𝐶2𝜖𝑡𝑢𝑟𝑏
𝜌

𝜖2
𝑡𝑢𝑟𝑏
𝜅

+𝑆𝜖.

(3.77)
where 𝐺𝑘 and 𝐺𝑏 represent the generation of turbulent kinetic energy because of

the mean velocity gradients and buoyancy, 𝑌𝑀 is given by 2𝜌𝜖𝑡𝑢𝑟𝑏
𝜅

𝛾𝑅𝑇 , being √𝛾𝑅𝑇
the speed of sound, 𝜎𝑘 and 𝜎𝜖𝑡𝑢𝑟𝑏

are the turbulent Prandtl numbers and 𝑆 are external
sources. The turbulent viscosity can be obtained with the following equation:

𝜇𝑡 = 𝜌𝐶𝜇
𝜅2

𝜖𝑡𝑢𝑟𝑏
(3.78)

The constants have values 𝐶1𝜖𝑡𝑢𝑟𝑏
= 1.44,𝐶2𝜖𝑡𝑢𝑟𝑏

= 1.92,𝐶𝜇 = 0.09, 𝜎𝜅 = 1.0 and
𝜎𝜖𝑡𝑢𝑟𝑏

= 1.3

𝜅 − 𝜔 Shear Stress Transport Model

In 𝜅 − 𝜔 - SST model the following equations are solved:

𝜕
𝜕𝑡

(𝜌𝜅) + 𝜕
𝜕𝑥𝑖

(𝜌𝜅𝑣𝑖) = 𝜕
𝜕𝑥𝑗 (Γ𝜅

𝜕𝜅
𝜕𝑥𝑗 ) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘, (3.79)

𝜕
𝜕𝑡

(𝜌𝜔) + 𝜕
𝜕𝑥𝑖

(𝜌𝜔vi) = 𝜕
𝜕𝑥𝑗 (Γ𝜔

𝜕𝜔
𝜕𝑥𝑗 ) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔, (3.80)

where the single terms represent:

Γ𝑖 = 𝜇 +
𝜇𝑡
𝜎𝑖
, (3.81)

𝜇𝑡 =
𝜌𝜅
𝜔

1

𝑚𝑎𝑥 [
1

𝛼∗ ,
𝑆𝐹2
𝛼1𝜔 ]

, (3.82)

𝜎𝑖 = 1
𝐹1

𝜎𝑖,1 + (1−𝐹1)
𝜎𝑖,2

, (3.83)

𝐺𝜅 = 𝑚𝑖𝑛(𝐺𝜅, 10𝜌𝛽∗𝜅𝜔), (3.84)

𝐺𝜔 = 𝛼
𝜈𝑡

𝐺𝜅, (3.85)

𝑌𝜅 = 𝜌𝛽∗𝜅𝜔, (3.86)
𝑌𝜔 = 𝜌𝛽𝜔2, (3.87)

𝐷𝜔 = 2(1 − 𝐹1)𝜌𝜔𝜔,2
1
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

, (3.88)

where 𝑆 is the strain rate, 𝐹𝑖 are blending functions and all the remaining terms are
constants of the model.
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Reynolds Stress model

This model is based on the idea of solving additional equations for the components
of the Reynolds stress tensor, the transport equation for the Reynolds stresses read as
follows (Andersson et al., 2011)

𝜕
𝜕𝑡

(𝜌𝑣′
𝑖 𝑣

′
𝑗)⏟⏟⏟⏟⏟

Time Derivative

+ 𝜕
𝜕𝑥𝑘

(𝜌𝑣𝑘𝑣′
𝑖 𝑣

′
𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Convective Term

= − 𝜕
𝜕𝑥𝑘

[𝜌𝑣′
𝑖 𝑣

′
𝑗𝑣

′
𝑘 + 𝑝(𝛿𝑘𝑗𝑢′

𝑖 + 𝛿𝑖𝑘𝑢′
𝑗)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Turb. Diffusion

+ 𝜕
𝜕𝑥𝑘 [𝜇 𝜕

𝑥𝑘
((𝑣′

𝑖 𝑣
′
𝑗)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Molecular Diffusion

− 𝜌 (𝑣′
𝑖 𝑣

′
𝑘

𝜕𝑣𝑗
𝜕𝑥𝑘

+ 𝑣′
𝑗𝑣

′
𝑘

𝜕𝑣𝑖
𝑥𝑘 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Stress Production

− 𝜌𝛽(𝑔𝑖𝑣′
𝑗𝜃 + 𝑔𝑗𝑣′

𝑖 𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Buoyancy Production

+ 𝑝 (
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+
𝜕𝑢′

𝑗
𝜕𝑥𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Pressure Strain

− 2𝜇 𝜕𝑣′
𝑖

𝜕𝑥𝑘

𝜕𝑣′
𝑗

𝜕𝑥𝑘⏟⏟⏟⏟⏟
Dissipation

− 2𝜌𝜔𝑘(𝑣′
𝑗𝑣

′
𝑚𝜖𝑖𝑘𝑚 + 𝑣′

𝑖 𝑣
′
𝑚𝜖𝑗𝑘𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Production by System Rotation

+ 𝑆𝑒𝑥𝑡⏟
Extra Sources

(3.89)
being the overline the Reynolds average.

3.3.4 Population Balance Equation
In TFM, interaction terms need the definition of the Sauter diameter (or 𝑑32 which

is the equivalent diameter of a sphere with the ratio between volume and surface equals
to the droplets’one). The population balance model (PBM) can be used to describe the
evolution of a population of elements of disperse phase (e.g. droplets) present within
one system (Marchisio and Fox, 2013), and in particular to track the evolution of 𝑑32.
It was originally formulated by Smoluchowski in 1916 (Smoluchowski, 1916), then
improved between 1985 and 2000 by Ramakrishna and Mahoney (Ramakrishna, 2000).
The simplest formulation of the model follows:

𝜕𝑛(𝜉; r, 𝑡)
𝜕𝑡

+ vdi
𝜕𝑛(𝜉;x, 𝑡)

𝜕𝑟𝑖
− 𝜕

𝜕𝑥𝑖
[(Γ + Γ𝑡)

𝜕𝑛(𝜉,x, 𝑡)
𝜕𝑥𝑖

] = − 𝜕
𝜕𝜉𝑗

[𝑛(𝜉; 𝑡)𝜁𝑗] + ℎ(𝜉; 𝑡), (3.90)

Where 𝜉 is a internal coordinate, r is an external coordinate of the system, vd is the
Reynolds-average velocity, 𝑛 is the number of discrete entities in a unitary volume,
Γ, Γ𝑡 are the diffusion and the turbulent diffusion coefficients, and ℎ describes the
introduction of new entities into the system. If we assume that only one coordinate
is tracked, for example an internal one-dimensional coordinate, the previous equation
may be simplified as follows:

𝜕𝑛(𝜉)
𝜕𝑡

+ ∇ ⋅ (vd𝑛(𝜉)) = 𝒮 (𝜉), (3.91)
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where 𝑛(𝜉) describes the droplet size distribution and 𝜉 is the droplet diameter.
The source terms contain all the information related to the phenomena that involve
the evolution of the droplets in time, such as coalescence, breakage, and nucleation.
Depending on the system of interest, these phenomena have to be included or removed
from the model. Droplets can coalesce and break up during the mixing because of
different aspects. In order to take into account all possible phenomena involved, the
source term present in the Equation 3.91, can be re-written as follows:

𝒮 (𝜉) =
𝜉2

2 ∫
𝜉

0

𝑎(𝜉3 − 𝜉′3, 𝜉′

(𝜉3 − 𝜉′3)2/3 𝑛((𝜉3 − 𝜉′3)1/3𝑛(𝜉′)d𝜉′

−𝑛(𝜉) ∫
∞

0
𝑎(𝜉, 𝜉′)𝑛(𝜉′)d𝜉′ + ∫

∞

𝜉
𝑔(𝜉′)𝛽(𝜉|𝜉′)𝑛(𝜉′)d𝜉′ − 𝑔(𝜉)𝑛(𝜉),

(3.92)

where 𝜉 and 𝜉′ and are two sizes (initial and final) of the droplet diameter, 𝑎(𝜉, 𝜉′) is
coalescence kernel, 𝑔(𝜉′) is the breakage kernel and 𝛽(𝜉|𝜉′) is the daughter distribution
function, that describes how many droplets form after every break up event. If we can
assume that in cases where the disperse phase is low but also surfactant is present, we
can ignore the coalescence term, and the Eq. 3.91, can be re-written as follows:

𝜕𝑛(𝑑)
𝜕𝑡

+ ∇ ⋅ (𝑛(𝑑)vd) = ∫
∞

𝑎
𝛽(𝑑, 𝑑′)𝑔(𝑑′)𝑑𝑑′ − 𝑔(𝑑)𝑛(𝑑), (3.93)

The ways in which PBE can be solved are many and one example is provided by the
Quadrature Method of Moments (QMOM).

3.3.5 Breakage Models
Breakage phenomenon has been described by many authors and it consists in the

rupture of a drop, suspended in a continuous phase, into smaller droplets, because of
instantaneous stresses overcoming the stabilizing effects of interfacial tension and drop
viscosity (Gao et al., 2016; D. Li et al., 2017). In mixing processes, where the final size of
the droplets generated in the mixture is important for stabilizing effects but also for the
prediction of the viscosity, it becomes fundamental to understand the link between the
turbulence induced by the impellers, locally surrounded by high shear regions, and the
frequency of breakage. Even if other relevant phenomena (such as coalescence) should
be taken into account when describing the evolution of the DSD, in cases of low volume
fraction and presence of surfactant, they can be neglected. The first studies regarding
the breakage phenomenon were started by Kolmogorov and Hinze in 1949 – 1955. In
the first models, where there were no fluctuations of the turbulent dissipation rate,
an expression to obtain the maximum stable drop that can be obtained by turbulent
fluctuations was obtained:
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𝑑0
𝑚𝑎𝑥 = 𝜎0.6

𝑡 𝐶𝑥 < 𝜖𝑡𝑢𝑟𝑏 >−0.4 𝜌−0.6
𝑐 (3.94)

Where the relevant parameters that affect the breakage phenomenon started to
appear, such as the interfacial tension, the turbulent dissipation rate and the density
of the continuous phase. This was the initial step through the development of new
and more sophisticated models, such the one proposed by Coulaloglou and Tavlarides
(CT) (Coulaloglou and Tavlarides, 1977), Alopaeus and Laakkonen(Laakkonen et al.,
2007), and Baldyga and Podgorska(Baldyga and Podgórska, 1998). Many models have
been proposed during the years but most of them lie on empirical observations. Models
for liquid-liquid, gas-liquid, solid-liquid systems depend on different parameters or are
finely tuned by playing with the values of the constants. A short description of the
models used in this work, related to liquid-liquid systems, is now reported.

Coulaloglou and Tavlarides Kernel

In CT kernel, the breakage is driven by the transmission of the turbulent kinetic
energy, coming from the eddies of the continuous phase, to the surface of the droplet.
When the transmitted energy is greater than the surface energy of the droplet, it breaks
up into daughter droplets. Two main assumptions must be satisfied in order to have
good predictions with CT kernel, the hypothesis of local isotropy and the diameter
must belong to the inertial sub-range.

𝑔𝐶𝑇(𝑑) = 𝐶1
𝜖1/3

𝑡𝑢𝑟𝑏

𝑑2/3 exp
(

−𝐶2
𝜎𝑡

𝜌𝑐𝜖2/3
𝑡𝑢𝑟𝑏𝑑5/3 )

, (3.95)

The terms𝐶1 and𝐶2 are experimental constants obtained by fitting, 𝜖𝑡𝑢𝑟𝑏 is the turbulent
kinetic energy, 𝜎𝑡 is the interfacial tensions between continuous and disperse phase, 𝑑 is
the droplet diameter, 𝜌 is the density of the continuous phase.The values of the constant
𝐶1 and 𝐶2 are derived from experiments and for this specific case they were set equal
to 0.00481 and 0.08.

Alopaeus and Laakkonen (LA) Kernel

LA kernel was derived from Narsimhan kernel that was introduced for liquid-liquid
dispersion. The original model proposed by Narshiman:

𝑔𝑁𝐴(𝑑) = 𝐶3𝑒𝑟𝑓𝑐
(

3.5 (
𝑑𝑝

𝑑𝑝∗)

−5/6

)
, (3.96)

It was corrected by Alopaeus first, by adding the dependence on the turbulence
dissipation rate to the eddy collision frequency, and then together with Laakkonen,
to include the effect of different viscosities for the disperse and continuous phases.
Indeed, the LA kernel includes stabilizing effects that are intrinsically produced by the
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viscosity of the disperse phase. In cases where the viscosities of the mixed components
are different, it becomes important to introduce this extra stabilizing contribute in the
calculation of the breakage frequency, that acts as an extra force that opposes to the
breakage. The Alopaeus-Laakkonen kernel still contains empirical constant that were
tuned on many different silicone-oil water emulsions. However, the value of these
constants was obtained when the viscosity of the disperse phase was not too high. The
kernel contains an error function complementary, that goes to zero, as the two groups
enclosed by the function become bigger (i.e. droplet size reduces with time). It depends
on the turbulent dissipation energy of the system, mostly generated in the area close
to the impeller, and on the equilibrium between interfacial force and viscous stress
generated inside the droplet.

𝑔𝐿𝐴(𝑑) = 𝐶5𝜖1/3
𝑡𝑢𝑟𝑏𝑒𝑟𝑓𝑐

⎛
⎜
⎜
⎝√

𝐶2
𝜎𝑡

𝜌𝑐𝜖2/3
𝑡𝑢𝑟𝑏𝑑5/3

+ 𝐶3
𝜇𝑑

√𝜌𝑐𝜌𝑑𝜖1/3
𝑡𝑢𝑟𝑏𝑑4/3

⎞
⎟
⎟
⎠
, (3.97)

where 𝐶5, 𝐶2, 𝐶3 are empirical constants, 𝜖𝑡𝑢𝑟𝑏 is the turbulence dissipation energy,
𝜎𝑡 is the interfacial tension, 𝜇𝑑 is the viscosity of the disperse phase, 𝜌𝑐, 𝜌𝑑 are the
densities of the continuous and the disperse phase, 𝑑 is the diameter of the droplet, 𝑒𝑟𝑓𝑐
is the complementary error function (𝑒𝑟𝑓𝑐 = 1 − 𝑒𝑟𝑓) that, as previously mentioned,
goes to zero when droplets become too small (dimensions drop into the viscous
subrange). One problem of the LA kernel is that the constant 𝐶5 is not dimensionless,
but it has the dimension of length to the minus-two-third, and a scaling value could be
necessary for describing different cases. Also, 𝐶3 and 𝐶2, in some specific cases may
need fine tuning, based on the simulated system.

Baldyga and Podgorska (BP) Kernel

The BP kernel is also known as multifractal kernel. It includes the intermittent
nature of the turbulence in the description of the breakage phenomenon, namely
short-lived velocity gradient are responsible for intermittent time evolution of
turbulent properties, such as turbulent dissipation energy. The large fluctuations on
the turbulent kinetic energy are considered as important phenomena especially in
scaling up and down the processes, meaning that they must be carefully taken into
account especially in problems related to the scaling from lab to industrial equipment
when describing liquid-liquid dispersion. The BP kernel is able to capture the fine scale
structure of turbulence, composed by areas where the velocity and the local shear is
high, surrounded by nearly irrotational fluid. The breakage frequency can be obtained
by:

𝑔𝐵𝑃(𝑑) = 𝐶𝑔√ln(
𝐿
𝑑 )

𝜖1/3
𝑡𝑢𝑟𝑏

𝑑2/3 ∫
𝛼𝑥

𝛼𝑚𝑖𝑛
(

𝑑
𝐿)

𝛼𝐵𝑃+2−3𝑓(𝛼𝐵𝑃)
3 d𝛼𝐵𝑃, (3.98)
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Where 𝐶𝑔 is an empirical constant set equal to 0.0035 calculated by Bałdyga and
Podgórska by fitting drop size distributions predicted using multifractal breakage
model to the experimental results proposed by Konno et al., 1983 and it represents
the rate of breakage in agitated tank with specific setups (dimensions, diameters…),
𝛼𝐵𝑃 is the multifractal exponent, 𝑑 is the diameter of the droplet, 𝑓(𝛼𝐵𝑃) describes the
multi-fractal spectrum with a universal form, which can be described by the following
polynomial function:

𝑓(𝛼𝐵𝑃) = 𝑎 + 𝑏𝛼𝐵𝑃 + 𝑐𝛼2
𝐵𝑃 + 𝑑𝛼3

𝐵𝑃 + 𝑒𝛼4
𝐵𝑃 + 𝑓𝛼5

𝐵𝑃 + 𝑔𝛼6
𝐵𝑃 + ℎ𝛼7

𝐵𝑃 + 𝑖𝛼8
𝐵𝑃 (3.99)

With a = -3.51, b = 18.721, c = -55.918, d = 120.9, e=-162.54, f=131.51, g = -62.572, h =
16.1, i = -1.7264; 𝐿 is the integral turbulent length scale and can be calculated obtained
by:

𝐿 =
2
3𝑘

3
2
𝑡𝑢𝑟𝑏

𝜖𝑡𝑢𝑟𝑏
(3.100)

Where 𝑘𝑡𝑢𝑟𝑏 is the turbulent kinetic energy. The introduction of 𝐿 links the
description of the breakage event to the scale of the system and in general, the kernel
predicts slow breakage for very small droplets. It is important to underline that the
BP kernel was developed for the inertial subrange, meaning that the droplet size must
be smaller than the macro-scale (L has typically values in the order of magnitude as
the impeller dimension) but greater than the Kolmogorov scale (𝜂𝑖 = 𝜈3/4

𝜖1/4
𝑡𝑢𝑟𝑏

). Below the

Kolmogorov scale, these kernels predict zero breakage velocity (that is predicted when
maximum stable diameter is reached) because the mechanisms in the viscous scale
are different from the ones described by these kernels. Baldyga, Bourne, et al., 1995
noticed that the break-up in inertial subrange is a short duration process, smaller than
the duration of a turbulent event. However, Baldyga and Podgorska also derived two
kernels for droplets smaller than the Kolmogorov scale.

Multifractal exponent 𝛼𝐵𝑃, represents the strength of the eddies. Eddies transfer
energy to the droplet and their activity can be labelled by different values of 𝛼𝐵𝑃. 𝛼𝑚𝑖𝑛
the lower bound equals to 0.12 proposed byMeneveau and Sreenivasan, 1991, represents
the spectrum of vigorous eddies that are able of breaking a droplet. while 𝛼𝑚𝑖𝑛 and
𝛼𝑥, the upper bound represents the most vigorous eddies that can cause breakage and
when a value of 𝛼𝑥 approaches the value of 𝛼𝑚𝑖𝑛, the integral goes to zero, meaning
that the emulsion is stable. When 𝛼𝐵𝑃 is smaller than 𝛼𝑚𝑖𝑛 , as it is in the bulk, no
breakage occurs. Values of 𝛼𝑥 smaller than 1, represents violent but less frequent bursts
events, meaning that quasi stable DSD are obtained after long agitation time. In the
description of the kernel, different mechanisms that act against the breakage are also
taken into account. In particular, high viscosity of the disperse adds extra stabilizing
stress to the droplet, namely internal flow inside the droplet cause viscous stresses
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that prevent deformation. This means that in computing the equilibrium between the
different phenomena acting on the surface of the droplet, pressure fluctuations, internal
viscous stress and interfacial stress must be considered:

𝛼𝑥 = 3 ⋅

ln
{

2
⌊

𝛽𝜇𝐶5/3
𝑥 𝜇𝑑

𝜌𝑐<𝜖𝑡𝑢𝑟𝑏>1/3𝐿1/3𝑑 + √( 𝛽𝜇𝐶5/3
𝑥 𝜇𝑑

𝜌𝑐<𝜖𝑡𝑢𝑟𝑏>1/3𝐿1/3𝑑 )2 + 4𝐶5/3
𝑥 𝜎

𝜌𝑐<𝜖𝑡𝑢𝑟𝑏>2/3𝐿2/3𝑑⌋

−1

}

ln(𝐿
𝑑 )

(3.101)

Where 𝐶𝑥 describes the maximum quasi stable droplet and its value, obtained by
Lagisetty et al., 1986, is equal to 0.23, 𝜇𝑑 is the viscosity of the disperse phase, and 𝛽𝜇
is calculated by:

𝛽𝜇 =
ln(

𝑥𝛽
𝑑 )𝑏

𝛽∗𝐶𝑃𝐶5/3
𝑥

, (3.102)

Where the ratio (
𝑥𝛽
𝑑 )𝑏

is equal to 2,𝐶𝑝 = 1.4, and 𝛽∗ is equal to 3.This is the complete
form of the multifractal exponent that is able to handle also stabilizing effect due to high
viscosity of the dispersed phase.
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Chapter 4

Solution Algorithms

4.1 Introduction
In this Chapter, the solution algorithms for the models described in Chapter 3 are

reported. In particular the first part is dedicated to algorithms for solving DPD and the
second part is mostly focused on CFD models and the quadrature method of moments
(QMOM) to solve the population balance equation.

4.2 Dissipative Particle Dynamics
In this part, the integration procedures used for solving DPD governing equations

are presented. Particular focus is given to the Euler, the Leap-Frog and the Verlet
Algorithm (Allen and Tildesley, 2017).

4.2.1 Euler Algorithm
The Euler integration scheme can be used to integrate the governing equations of

DPD as follows:

xi(𝑡 + Δ𝑡) = xi(𝑡) + viΔ𝑡, (4.1)

vi(𝑡 + Δ𝑡) = vi(𝑡) + aiΔ𝑡, (4.2)

Fi(𝑡 + Δ𝑡) = Fi(𝑥(𝑡 + Δ𝑡), v(𝑡 + Δ𝑡)), (4.3)

where positions and velocities belonging to the particle 𝑖, are updated starting from
their previous value in time. This algorithm is not commonly used because it does not
result in reversible trajectories.
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4.2.2 Leap Frog Algorithm
This integration method is also quite used in integrating MD and CG simulations.

It can be expressed according to its ’kick-drift-kick’ version:

vi+1/2 = vi + ai
Δ𝑡
2
, (4.4)

xi+1 = xi + vi+1/2Δ𝑡, (4.5)

vi+i = vi+1/2 + ai+1
Δ𝑡
2

(4.6)

Advantages of leap from algorithm are the time reversibility and the capability of
conserving energy of dynamical systems.

4.2.3 Verlet Algorithm
Beads move according to a modified version of the Verlet algorithm, in which an

extra stochastic term is introduced. The DPD version of the Verlet algorithm improves
the capability of choosing bigger timesteps and obtaining better results compared to
Euler algorithms. The modified Verlet algorithm reads as follows:

xi(𝑡 + Δ𝑡) = xi(t) + Δ𝑡vi(𝑡) + 1
2

(Δ𝑡)2ai(𝑡) (4.7)

v∗
i (𝑡 + Δ𝑡) = vi(𝑡) + 𝜆𝑉 𝑒𝑟𝑙𝑒𝑡Δ𝑡

Fi(𝑡)
𝑚

, (4.8)

Fi(𝑡 + Δ𝑡) = Fi(x(𝑡 + Δ𝑡), v∗
i (𝑡 + Δ𝑡), (4.9)

vi(𝑡 + Δ𝑡) = vi(𝑡) + 1
2

Δ𝑡(Fi(𝑡) + Fi(𝑡 + Δ𝑡)), (4.10)

where v∗
i is a first approximation value of the velocity, that is used to calculate the

forces, which also contain the velocity term acting between different beads. The extra
coefficient 𝜆 takes into account stochastic effects and random fluctuations. If 𝜆 is equal
to 0.65 an accurate thermal control can be obtained, instead when 𝜆 is equal to 0.5, the
original Verlet algorithm is retrieved. The mass of each particle is taken identical and
equal to one, meaning that the force is equal to the acceleration.

An example of the application of the Verlet-Algorithm can be found in the harmonic
oscillator which can be solved according to the following equations:

𝐹 = −𝑑𝑉 (x)
𝑑x

= − 𝑑
𝑑x (

1
2

𝑘x2
) = −𝑘x, (4.11)

𝑎 = −−𝑘
𝑚

x, (4.12)
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By using Verlet algorithm and a forward and backward Taylor expansion:

x(𝑡 + Δ𝑡) = x(𝑡) + vΔ𝑡 + 1
2
a(𝑡)Δ𝑡2 + 1

3!
⃛xΔ𝑡3 + 𝑂(Δ𝑡4) (4.13)

x(𝑡 − Δ𝑡) = x(𝑡) − vΔ𝑡 + 1
2
a(𝑡)Δ𝑡2 − 1

3!
⃛xΔ𝑡3 + 𝑂(Δ𝑡4) (4.14)

a term by term summation leads to:

x(𝑡 + Δ𝑡) + x(𝑡 − Δ𝑡) = 2x(𝑡) + a(𝑡)Δ𝑡2 + 𝑂(Δ𝑡4), (4.15)

which becomes:

x(𝑡 + Δ𝑡) = 2x(𝑡) − x(𝑡 − Δ𝑡) − 𝑘
𝑚

𝑥(𝑡)Δ𝑡2 (4.16)

that has an error of the order of Δ𝑡4.
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4.3 Computational Fluid Dynamics
The governing equations are solved with different methods , such as finite elements

and finite volumes methods (Andersson et al., 2011). In particular, in this work the
finite volume method (FVM) is presented. FVM is a discretization method to solve
partial differential equations. CFD domains are discretized into grid (mesh) composed
by elementary volumes and properties can be calculated for each element of the
grid. In FVM, the numerical flux is conserved across the cells. Local balances are
written for small control volumes, and by using the divergence theorem and integral
formulation of the fluxes across the edges of the elements is obtained. Compared to
easier methods (such as finite differences), FVM can be used on complex grids, because
most of the three-dimensional cases explored by CFD cannot be solved on orthogonal
grids (divergence approximated by values along a constant line). Also, the use of FVM
ensures that glabl properties are always conserved, because they are built on the
concept that properties are already conserved on small volumes. In other words, FVM
is inherently conservative.

The computational domain must be divided into a number of smaller flow domains
(control volumes or cells). In the center of these volumes, properties are stored, but also
boundary points are defined (on the edges of the domain, such as physical boundaries).
Once the division is completed and densely populated of elements in areas of interest,
transport equations may be integrated over each cell.

The integration process can be explained by the following general rule

𝜕𝑣𝑖𝜙
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖 (𝛾

𝜕𝜙
𝜕𝑥𝑖 ) + 𝑆𝜙 (4.17)

where 𝑆𝜙 is a generic source term. It is important to highlight that by chosing a set
of 𝜙, 𝛾,𝑆𝜙, different governing equations can be obtained. For example, if 𝜙 = 1, 𝛾 = 0
and 𝑆𝜙 = 0 continuity equation is obtained. Eq. 4.17 can be integrated over each cell
volume 𝑉:

∫𝑉

𝜕𝑣𝑖𝜙
𝜕𝑥𝑖

𝑑𝑉 = ∫𝑉

𝜕
𝜕𝑥𝑖 (𝛾

𝜕𝜙
𝜕𝑥𝑖 ) 𝑑𝑉 + ∫𝑉

𝑆𝜙𝑑𝑉 (4.18)

At this point, the divergence theorem ensures that a volume integral (i.e. the
divergence of convection and diffusion) can be transformed into a surface integral, and
the integration domain must be changed from V to 𝛿𝑉, the boundary of V:

∫𝛿𝑉
(v𝜙 − 𝛾 𝜕

𝜕𝑥𝑖
𝜙) ⋅ n𝑑𝑆 = ∫𝑉

𝑆𝜙𝑑𝑉 . (4.19)

In this way, it is possible to obtain the net fluxes in the volume of control of a generic
variable 𝜙. The procedure applies for all the elements of the computational domain.
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The surface integral can be discretized as follows:

∫𝛿𝑉
(v𝜙 − 𝛾 𝜕

𝜕𝑥𝑖
𝜙) ⋅ n𝑑𝑆 ≈ ∑

𝑘
(v𝜙 − 𝛾 𝜕

𝜕𝑥𝑖
𝜙)𝑘 ⋅ (n𝑑𝑆)𝑘), (4.20)

Fluxes are calculated between the boundary (𝑘) of the cell, while the product n𝑑𝑆
represents the area invested by the flux. This approximation is second order accurate.
If two dimensional grids are considered, the following example can be explained:

Figure 4.1. Cells defined by their position (N, S, E, W). The center of the cell is reported in
capital letter.

If we consider the momentum transport between neighbouring cells (i.e. N: North,
E: East, W: West, S: South - Centers of the volume of neighbouring cells; n - e -w - s,
centers of the faces of neibouring cells), the momentum equation can be integrated over
the volume. In what follows, a two-dimensional example is reported:

∫ ∫𝜎

𝜕
𝜕𝑥

(𝜌𝑣2
𝑥)+ 𝜕

𝜕𝑦
(𝜌𝑣𝑥𝑣𝑦)𝑑𝑥𝑑𝑦 = − ∫ ∫𝜎

𝜕𝑃
𝜕𝑥

𝑑𝑥𝑑𝑦+∫ ∫𝜎

𝜕
𝜕𝑥 (𝜇

𝜕𝑣𝑥
𝜕𝑥 )+ 𝜕

𝜕𝑦
(𝜇

𝜕𝑣𝑥
𝜕𝑦

)𝑑𝑥𝑑𝑦

(4.21)
that according to the fluxes of neighbouring cells becomes:

[∫ 𝜌𝑣2
𝑥𝑑𝑦]

𝑒

𝑤
+ [∫ 𝜌𝑣𝑥𝑣𝑦𝑑𝑥]

𝑛

𝑠
= [∫ 𝜇

𝜕𝑣𝑥
𝜕𝑥

𝑑𝑦]

𝑒

𝑤
+ [∫ 𝜇

𝜕𝑣𝑥
𝜕𝑦

𝑑𝑦]

𝑛

𝑠
− ∫ ∫𝜎

𝜕𝑃
𝜕𝑥

𝑑𝑥𝑑𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≈(
𝜕𝑃
𝜕𝑥 )𝑃

Δ𝑥Δ𝑦

,

(4.22)
and the pressure term is evaluated at the center of the cell, eventually interpolated

between neighbouring cells. An example of approximation of the convective term is
given by:

[∫ 𝜌𝑣2
𝑥𝑑𝑦]

𝑒

𝑤
+ [∫ 𝜌𝑣𝑥𝑣𝑦𝑑𝑥]

𝑛

𝑠
≈ [𝜌𝑣2

𝑥Δ𝑦]
𝑒
𝑤 + [𝜌𝑣𝑥𝑣𝑦Δ𝑥]

𝑛
𝑠 (4.23)

[𝜌𝑣2
𝑥Δ𝑦]

𝑒
𝑤 + [𝜌𝑣𝑥𝑣𝑦Δ𝑥]

𝑛
𝑠 = (𝜌𝑈Δ𝑦)𝑒vx𝑒 − (𝜌𝑈Δ𝑦)𝑤vx𝑤 + (𝜌𝑉 Δ𝑥)𝑛𝑣𝑥𝑛 − (𝜌𝑉 Δ𝑥)𝑠𝑣𝑥𝑠

(4.24)
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where values of the cells are obtained through interpolation. Different schemes can
be used to approximate cell face values, such as first-order and secord-order upwind,
centered schemes (Andersson et al., 2011)

4.4 Quadrature Method of Moments
Population Balance equation cannot be directly solved in the version formulated

in Chapter 3 because of closure problem. However, a possible solution can be obtained
by solving the quadrature method of moments (QMOM) (Marchisio and Fox, 2013). This
method has been initially developed for mono-dimensional integrals and then extended
to more complex cases. In the case of univariate distributions, Gaussian quadrature
theory applies. In the Gaussian theory, the moments of the number density function
must exist in the integration interval and they are given by:

𝑚𝑘 = ∫𝜎𝜉

𝑛(𝜉)𝜉𝑘𝑑𝜉, 𝑘 = 0,1,2..., (4.25)

Nodes and weights used to approximate the distributions are used to solve the
transport equations of the moments. This is a closure problem that can be synthethized
in the calculation of the integral:

𝐼 = ∫𝜎𝜉

𝑛(𝜉)𝑔(𝜉)𝑑𝜉) (4.26)

where the terms contained in the integral represent the number density function
𝑛(𝜉) and all the remainin terms grouped together in the function 𝑔(𝜉), while the integral
domain, in the case of the dimension of the particles ranges from [0,∞). Since the
number density function is not known, the numerical scheme is applied by using the
transported moments.

Also, orthogonal polynomials must be introduced. These polynomials are
respectively orthogonal and orthonormal in the integration interval if:

∫𝜎𝜉

𝑛(𝜉)𝑃𝛼(𝜉)𝑃𝛽(𝜉)𝑑𝜉 =
{

= 0 for𝛼 ≠ 𝛽
> 0 for𝛼 = 𝛽

(4.27)

∫𝜎𝜉

𝑛(𝜂)𝑃𝛼(𝜉)𝑃𝛽(𝜉)𝑑𝜉 =
{

= 0 for𝛼 ≠ 𝛽
= 1 for𝛼 = 𝛽

(4.28)

Integration of the weight function over the domain defines a family of polynomials
{𝑃𝛼(𝜉)}, and for any sets, three consecutive polynomials are related by following
recursive relationship:

𝑃𝛼+1(𝜉) = (𝜉 − 𝑎𝛼)𝑃𝛼(𝜉) − 𝑏𝛼𝑃𝛼−1(𝜉), (4.29)
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4.4 – Quadrature Method of Moments

and the 𝑎𝛼 and 𝑏𝛼 coefficients can be calculated according to formulas not reported
here for simplicity. By using Eq. 4.29 it is possible to calculate a sequence of orthogonal
polynomials to the weight function. The coefficients of the polynomials can be written
in terms of moments of the number density function, such that to obtain a polynomial of
order 𝑁, 2𝑁-1 moments are needed. For example, if one wants to obtain the polynomial
𝑃2(𝜉), the following coefficients can be calculated from the moments of order zero, one
and two:

𝑎0 =
𝑚1
𝑚0

, (4.30)

𝑎1 =
𝑚3𝑚2

0 + 𝑚3
1 − 2𝑚2𝑚1𝑚0

𝑚2𝑚0 + 𝑚2
1 − 2𝑚2

1𝑚0
, (4.31)

𝑏1 =
𝑚2𝑚0 + 𝑚2

1 − 2𝑚2
1𝑚0

𝑚2
0

, (4.32)

Gaussian quadrature uses the roots of polynomials orthogonal to the number
density function as nodes of the following approximation of the integral:

∫𝜎𝜉

𝑛(𝜉)𝑔(𝜉)𝑑𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (4.33)

where 𝑤𝛼 and 𝜉𝛼 are the weights and nodes of the quadrature. The degree of
accuracy of the Gaussian quadrature is equal to 2𝑁 − 1 where 𝑁 is the number of
nodes, almost two times the accuracy of interpolation using Newton-Cotes to obtain
the nodes.

By using the definition of degree of accuracy for a Gaussian quadrature of order 𝑁,
it is possible to calculate 2𝑁 − 1 moments of the number density function by solving:

𝑚0 =
𝑁

∑
𝛼=1

𝑤𝛼,𝑚1 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉𝛼, ...,𝑚2𝑁−1 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉2𝑁−1
𝛼 (4.34)

which can be solved in different ways, in particular PD used in Fluent User-Defined-
Function and Wheeler used in MATLAB, algorithms are reported in Appendix B.

By using the QMOM, the PBE introduced in Chapter 3, in the form of NDF can be
re-written by using this quadrature approximation for 𝜉 = 𝑑:

𝜕𝑚𝑘
𝜕𝑡

+ ∇ ⋅ (vi𝑚𝑘) =
𝑁

∑
𝑎=1

𝑤𝑎𝑔(𝑑𝑎)[ ∫
+∞

0
𝛽(𝑑, 𝑑𝑎)𝑑𝑘d𝑑 − 𝑑𝑘

𝑎 ], (4.35)

where breakage kernel and daughter distribution function can be expressed in
different ways.
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Daughter distribution function

Depending on the nature of the disperse phase, different distribution functions can
be used to describe the number of daughter droplets that originate from a mother
droplet. The most general description of daughter distribution function can be obtained
by summing delta functions:

𝛽(𝜉𝑝|𝜉′
𝑝) =

𝑣

∑
𝑖=1

𝛿 ⌊𝜉𝑝 − 𝜉𝑖(𝜉′
𝑝)⌋ , (4.36)

where 𝑣 is the total number of daughters, 𝜉𝑖 is an internal function to link the
internal coordinates between daughter and parent. Different daughter distribution may
be obtained, and in this specific problem, a binary distribution is used, namely from one
parent, two symmetrical daughters are created. An example of binary breakage can be
reproduced by using the following function:

∫
+∞

0
𝛽(𝑑, 𝑑𝛼)𝑑𝑘d𝑑 − 𝑑𝑘

𝛼 =
3240𝑑𝑘

𝛼
(𝑘 + 9)(𝑘 + 12)(𝑘 + 15)

− 𝑑𝑘
𝛼 , (4.37)

It is easy to see that when k is equal to zero, the fraction becomes two, meaning that
from one single breakage event, two identical droplets are created.
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Chapter 5

Computational Details

5.1 Introduction
The computational codes employed in this thesis are described in this chapter.

Different codes can be used to describe each scale, in particular LAMMPS, Gromacs,
DL_Meso (Seaton et al., 2013), are suitable to describe the molecular scale, while
OpenFOAM and Ansys Fluent, can be used to describe the equipment scale. Object-
oriented coding languages are extremely versatile in computer simulations. Different
objects, similar to big empty boxes, can be filled with different functions. Handling
objects can provide a more structured way of solving problems, where so many
different models have to be treated. Indeed, it is sufficient to provide a general
workflow of operations and call coded objects that contain pieces of information.

Particular attention is given to LAMMPS, Ansys Fluent and OpenFOAM. A short
description of these codes is given, together with all the information needed to
reproduce the simulations performed in this work.

LAMMPS

LAMMPS (Plimpton, 1995), a free open-source C++ code, originally developed in
F77 (Fortran) and F90, is used to simulate phenomena happening at the molecular
scale. In general, it integrates Newton’s equations of motion for different species
(atoms, particles, molecules, beads…) interacting via different forces. The code was
written in order to enhance parallel computing, reducing efficiently the computational
time as the number of processors is increased. Best performances can be obtained by
simulating rectangular boxes with uniformly distributed particles. Scaling and parallel
computing are extremely important factors in computer simulations. LAMMPS, as
many other codes, includes a Message Passing Interface (MPI) that is able to handle the
transfer of data between different cores. Also, its structure allows LAMMPS to be built
as a library, hence can be invoked by other codes by using wrappers. Entities that can
be handled by LAMMPS are: atoms, coarse-grained particles, proteins, DNA, metals,
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granular materials, finite-size spherical and ellipsoidal particles, rigid collections of
particles, point dipole particles, and combinations of these. Although is very simple
to install and provides good performances, LAMMPS does not have a graphical user
interface, build molecular systems, automatically assign coefficients, visualize and
output results. The code comes with no warranty and it is distributed under the GNU
Public Licence (GPL). This means that any user-defined model can be implemented by
directly coding into the source code.

OpenFOAM and Fluent

Continuummodelling has been assessed with two codes for two different purposes.
We used Ansys Fluent to perform CFD simulation of emulsions and OpenFOAM to
develop a new tool that is able to connect CFD and DPD together into a single code.The
two codes can be used alternatively to solve CFD problems. They use the finite volume
methods and include different mathematical models to solve the governing equations
behind mass, momentum and energy transport. Solutions are given by reproducing
average quantities, or fields, that are representative of specific properties of the assessed
system.Themain difference between the code lies in their commercial/non-commercial
nature. OpenFOAM is an open-source code, while Ansys Fluent is a commerical code.
Using a non-commercial code requires strong knowledge of programming languages
because the models implemented in the code, or ”solvers”, need to be modified or tuned
according to the problem that one wants to solve. Also, within OpenFOAM, it is possible
to include in-house developed routines and call libraries belonging to other softwares.
The power of the open-source feature is limited by a poor graphical interface, which is
reduced to text files that are called by themain routine. On the contrary, Fluent is a user-
friendly software that allows less skilled users to run simulations. This means that the
models already implemented cannot easilymodified, even if extra routines can be added.
Also, in Fluent many ”limitators” are implemented to avoid simulation divergences.The
final worth-mentioning aspect lies in the support. While Fluent has its own technical
assistance, OpenFOAM can rely on a huge community of users that share solvers and
tips.

5.2 Simulation setup

5.2.1 Coarse-Grained model: LAMMPS
In this part, the main steps to setup a LAMMPS simulation are reported in detail.

There are not so many DPD simulations reported in the literature by using LAMMPS,
hence, a clear description of a test case is necessary. LAMMPS inputs are read line by
line, meaning that it is important to follow a defined path in order to avoid errors. In
this specific example, guidelines will be given to simulate a system of DPD particles of

66



5.2 – Simulation setup

one specie (A) at equilibrium. A test case, in.water, can be downloaded in the Section
5.2.5 and in the Appendix A.

Pre-Processing

The set of rules that has to be defined in order to perform a LAMMPS simulation
is now described in detail. It is useful to create an identity for parameters that will not
change during the simulation and are defined by the user. These are called variables,
and can be defined as follows:

Listing 5.1: Code
1 v a r i a b l e myname equa l 10

it defines a variable named myname and puts its value equal to 10. To use this
variable in the code, the syntax $𝑚𝑦𝑛𝑎𝑚𝑒 must be adopted. The reference units can be
set to 𝑙𝑗 (Lennard – Jones), for our specific case, since DPD units are non-dimensional
and peculiar for this technique, but they are not implemented in LAMMPS. Moreover,
𝑙𝑗 will guarantee a normalized Boltzmann constant value equal to 1.

Listing 5.2: Code
1 u n i t s l j

Variables and units can be defined and modified at every line of the code, but it
is good practice to define all of them during this initial phase. Also, the integration
timestep can be defined at this point. The given value will have the units according to
the set previously chosen.

Listing 5.3: Code
1 t ime s t e p 0 . 0 1

Simulation Domain

Defining a computational domain is essential. A simulation box can be defined
in different ways, for example by defining regions and then merging them together.
Each region needs geometrical boundaries that can be defined by the initial and final
coordinate (units defined by the user via units command line). Simulation boxes can
have different shapes (cubes, spheres, …), and particles interact within these regions.
Different regions can also contain different species of particles. If specific geometrical
patterns need to be created, the command lattice can be used, otherwise the particles
will be positioned in random location across the simulation box.

Listing 5.4: Code
1 l a t t i c e none 1
2 r eg i on myRegionName pr ism 0 $ { x s i z e } 0 $ { y s i z e } 0 30 0 1 0
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3 c r e a t e _ box 1 myRegionName

In these lines, no lattice is given, one single region, originated in (𝑥,𝑦,𝑧) = (0,0,0)
and ending in (𝑥𝑠𝑖𝑧𝑒,𝑦𝑠𝑖𝑧𝑒,30), is defined. The shape is a prism and tilting factor can
be also defined (0,1,0 in this case). myRegionName is the name provided by the user.
Different regions can be defined in this way, merged through a specific command and
then converted into a real simulation box using the create_box command.

System settings

In this section, interaction style, boundaries and extra-info can be defined before
filling our simulation box with particles. We created an empty region using the previous
commands, but in many simulations, it is important to define the behaviour of particles
crossing the physical domain. It is quite common to use periodic boundary conditions,
as described in the Chapter 3, to assess bulk properties or non-physical boundaries. The
kind of interaction between particles can be also defined at this point. Different styles
can be selected from the models implemented in LAMMPS, and some of them can be
also combined to describe complex systems (e.g. DPD polymers).

Listing 5.5: Code
1 a t om_s t y l e dpd
2 boundary p p p
3 comm_modify v e l yes

In these lines, interaction style is set to DPD, meaning that DPD forces are acting
between particles (beads representing clusters of atoms). Each boundary (x,y,z) is
periodic and replaced by a replica of the box, hence, when a particle crosses one edge,
a replica of that particle enters from the opposite boundary. Positions of particles
must be stored and communicated between processors, but when DPD is used, it is
important also to store the velocity of each particle crossing the boundaries, because of
the presence of dissipative forces that depend on the relative velocity between beads.

Particle

At this point, an empty region and the style of interactions between beads are
defined. Now, it is possible to provide information related to the kind of each bead
and fill the simulation box, before running the testcase:

Listing 5.6: Code
1 c r e a t e \ _atoms 1 random 3000 123456 NULL
2 mass ∗ 1 . 0
3 ne ighbour 1 . 0 bin
4 ne igh_modi fy de l ay 0 every 1 check yes
5 p a i r _ s t y l e dpd $ { T } $ { c u t o f f } 123456
6 p a i r _ c o e f f 1 1 2 5 . 0 4 . 5
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𝑐𝑟𝑒𝑎𝑡𝑒_𝑎𝑡𝑜𝑚𝑠 command will create 3000 particles of type 1, located in random
positions within the box, they will fill all the regions, since no specific place is selected
(𝑁𝑈𝐿𝐿). A user-defined seed (e.g. 123456) must be provided to generate random
numbers. Each particle in the box (* is a wildcard, meaning all the types), will have
mass equal to 1. A list of 𝑗-particles that can interact with an 𝑖-particle is constructed
using a spherical skin (e.g. radius equal to 1.0 length unit) surrounding 𝑖. All the
particles that are outside this skin, are ignored in the computation of the forces.
Neighbouring list can be built at every time step (delay 0 every 1) or after several
timesteps, depending on the simulation setup. It is good practice to reconstruct the
list at every timestep if strong flow effects act on the system, because closer particles
can move away from their original positions in few timesteps. 𝑝𝑎𝑖𝑟_𝑠𝑡𝑦𝑙𝑒 can be used
to define the core parameters of DPD interactions, namely temperature and cut-off
distance (also a random number must be included). To conclude this session, each atom
of type 1 can interact with atoms of type 1 (2,3,… if more species are present) via DPD
potential. 𝑎𝑖𝑗, and are defined in 𝑝𝑎𝑖𝑟_𝑐𝑜𝑒𝑓𝑓, while 𝜎𝑗𝑗 is calculated via fluctuation
dissipation theorem.

Calculation

The simulation is ready to be started. Minimization of the energy can be performed
on the system before running the integrator. Different integration methods can be
selected in LAMMPS, together with fixes. Fix command is quite general and contains
many different options and operations that can be performed to tune the simulation.
Integrators, thermostats, calculations, averages, can be found in fix.

Listing 5.7: Code
1 thermo 1000
2 minimize 1e−5 1e−7 1000 10000
3 f i x 1 a l l nve
4 f i x . . . . . . . . .
5 . . . . . . . . .
6 f i x . . . . . . . .
7 dump . . . . . . .
8 run 1000
9 t ime s t e p 0 . 2
10 run 1000

thermo can be used to define the number of timesteps before printing an output line
on the screen.The type of integrator that is chosen for this simulation is NVE, hence, the
total number of particles, the volume of the simulation region and the internal energy
of the system are conserved, while properties such as pressure, are computed by the
code. A dump command can be used to generate videos and pictures of the system at
different timesteps. Run starts the simulation, after 1000 timesteps, its size is changed
to 0.2 and further 1000 timesteps are computed. Post-processing can be performed in
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different ways. VMD can be used to see the dumped images and videos, while all the
relevant values can be read on the simulation log that is produced and saved during the
run. A picture of the system can be observed in Figure 5.1, where it is clearly showed
that the molecular identity is lost using DPD coarse-graining:

(a) front view

(b) 3D view

Figure 5.1. Dissipative Particle Dynamics representation of a simulation box containing
water beads. Each bead (spherical particle) represents a cluster of molecules of water. In this
rapresentation, the molecular identity is completely lost and replaced by soft potentials.

5.2.2 Equilibrium Simulations: Pluronics in Water
Equlibrium and non-equilibrium simulations require a slighlty different sequence

of command lines. These extra commands and functions can be found in the tutorial
section (in.pluronic). One substantial change regards the description of the interacting
species. In fact, a molecule file must be provided to describe the bonded interactions
between particles belonging to one single polymeric chain. Most the previous steps
are repeated or slightly modified. Regarding the DPD parameters used to simulate
the polymer chains, they were obtained from the literature and compared against
experimental data.

Equilibrium simulations are needed to forecast phase diagrams that can be used
to understand the microstructures present when the recipe of a mixture is altered.
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Differences in microstructures that can be appreciated only at quasi-molecular level
of resolution, can cause differences in physical and transport properties. The way
in which phase diagrams can be simulated, using computational tools, consists in
equilibrium simulations. In this specific type of simulations, randomly positioned
beads, move and explore possible configurations, according to specific integrators,
until a minimum of energy is reached. The time in which these structures are formed
is called relaxation time. Microstructures usually relax in timescales that cannot be
accessed by traditional molecular dynamics. Here comes the necessity of introducing
coarse-graining procedure. By varying the number of beads, representing clusters of
atoms, it is possible to move along the concentration axis, while the temperature is
kept constant during the whole simulation. This work is focused on the reproduction
of three copolymers in water, namely Pluronics L64, P104 and P85.

Figure 5.2. Coarse grained models of the Pluronics L64, P104 and P85 according the
described level of coarse-graining.

The level of coarse-graining adopted to describe the Pluronics chains is 4.3 for
the EO repeated units and 3.3 for the PO repeated units. This means that one coarse-
grained bead of EO contains 4.3 atomistic EO monomers and the same conversion
procedure applies for PO. For example, using this set of parameters, Pluronics L64 chains
are composed by 15 beads and simulated as 𝐴3𝐵9𝐴3 DPD chains, Pluronics P104 is
simulated as 𝐴4𝐵18𝐴4, and P85 as 𝐴6𝐵12𝐴6 where A is the coarse-grained bead for
the EO unit and B is the coarse-grained bead for the PO one. Simulations of different
concentrations of Pluronics in water were performed by varying the number of beads
of the two components (i.e. water and Pluronics), keeping the total number of beads in
each box fixed (e.g. for a system composed by 81000 beads, if 50% is composed by water,
40500 spherical beads are water-type). Bonded and non-bonded interactions between
beads are accounted for in the DPD model (Prhashanna et al., 2016). The former was
described using both harmonic and FENE potentials, while the latter are reported in
Table 5.1. All values are reported in DPD units.

71



5 – Computational Details

Table 5.1: Interaction parameters for the three species, Water, PEO and PPO. All values
are reported in DPD units.

Water PEO PPO
Water 25.00 54.00 66.00
PEO 54.00 25.00 34.00
PPO 66.00 34.00 25.00

The dissipative parameter 𝛾 was set equal to 4.5 (in DPD units) for all the species,
while the stochastic parameter 𝜎 was set equal to 3 according to the fluctuation-
dissipation theorem, when the value of 𝑘𝐵𝑇 is equal to 1. Simulation boxes of different
sizes were tested, from 20 × 20 × 20 cut-off radii to 40 × 40 × 40 cut-off radii. The
simulation box of 30 × 30 × 30 cut-off radii was found to be a reasonable compromise
between reduction of simulation box artifacts and acceptable simulation times. The
initial configuration of the system is prepared by random positioning of water beads
and Pluronics L64 chains. The number density (i.e. number of beads per unit volume)
was set equal to 3 DPD units, meaning that the total number of beads was 81000.

The cut-off radius for non-bonded interactions was set equal to 1.00 with a timestep
of 0.01 DPD units. Equilibrium simulations were carried out for 2×106 timesteps, while
non-equilibrium simulations were carried out for 3 × 105 followed by 5 × 105 timesteps
applying different shear rates in different simulations. The range of concentrations
spans from 5% to 95% in weight percentage (w/w) of Pluronics and the range of non-
dimensional DPD shear rates varies from 0.005 to 2. The DPD energy was set equal
to 1 and its value was recorded every 500 timesteps. Moreover, the DPD property of
preserving hydrodynamic interactions ensures that momentum is conserved across the
box. The velocity Verlet algorithm was used as integration scheme. During the overall
simulation time, energy was stable at 1.0 ± 0.01 𝑘𝐵𝑇 .

5.2.3 Non-Equilibrium Simulations: Lees-Edwards Boundary
Conditions

A peculiar aspect of DPD is the conservation of momentum. All the species are
simulated together with the solvent in an explicit way, such that all the possible
interactions are computed. The concept of momentum being conserved perfectly
matches with the Lees-Edwards (LEBC) model to simulate flowing effects (Chatterjee,
2007; Fedosov, Karniadakis, et al., 2010). The original model is based on a simple
concept: to reproduce a fluid under extreme shear conditions, it is possible to replace
the whole system with a small sample of it. The simulation box contains particles
that undergo a velocity gradient in the vertical direction. The simulation box, A, is
surrounded by replicas of itself, B and C, but while A is fixed, the surrounding boxes
(B and C) slide in opposite directions, with a specific speed. A linear velocity profile
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can be obtained in this way, and the value of the velocity becomes zero in the middle
of the box. Periodic boundary conditions must be adapted to this model, because of the
streaming (sliding) effect that add an extra path when a particle crosses the boundary
as it proved in Fig. 5.3 (Lees and Edwards, 1972).

Figure 5.3. Lees-Edward boundary conditions are explained.The box A is main simulation
box and it contains P particles. On the top and bottom, replicas of the box move at the same
velocity but in the opposite direction, causing the development of a linear velocity profile
across the simulation box A. Modification of the periodic boundary condition can be also
appreciated. When P leaves the box, its replica does not re-enter as a P’ but as P” because
of the sliding velocity on the top of the box. In fact, the new position must consider the
distance covered by the particle during the new timestep due to the velocity at the top of
the box.

When a particle, 𝑃, leaves the simulation box and migrates into a replicas crossing
the boundaries, a clone of 𝑃 should be reintroduced in 𝑃 ’. However, the velocity of the
particle P, which left the box from the bottom part, is different from the velocity of the
particles that are in the top and this drift velocity must be summed to the original P
velocity. This results in a shift in the position from 𝑃 ’ to 𝑃 ’’.

This model is not directly implemented in 𝐿𝐴𝑀𝑀𝑃 𝑆. However, it is possible to
reproduce 𝐿𝐸𝐵𝐶 via fixes. Different values of shear stress can be obtained through
the application of different velocities on the beads that are close to the boundaries
(top and bottom) of the simulation box. The maximum value of the velocity at the top
of the box is equal to ̇𝛾 𝑙, where ̇𝛾 is the shear value imposed on the system and 𝑙 is
the length of the box. If the conservation of momentum is respected, a linear velocity
profile, across the simulation box, is obtained. The magnitude of the shear stress should
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generate velocities that are larger than the thermal velocity of the beads, leading to
meaningfully observable shear flows in computational studies.Theway inwhich LEBCs
are reproduced into LAMMPS follows:

Listing 5.8: Code
1 v e l o c i t y a l l ramp vx 0 $ { ve lramp } y 0 $ { y s i z e }
2 f i x shea r a l l deform 1 xy e r a t e $ { s r a t e } remap v f l i p yes un i t box

The system is initialized with a linear velocity profile (ramp), applied to all the
species (all) andmodifying the x-component of the velocity, vx, from 0 to a user-defined
value, along the 𝑦 direction. fix deform can be used to reproduce the streaming effect
by imposing the erate, engineering rate, that applies a constant shear on the simulation
box. This command can have many different inputs such as the velocity of the walls,
the strain rate, oscillation period and so on together with the possibility of ipping the
box if it becomes too skewed.

A triclinic box is used to perform non-equilibrium simulation. Triclinic boxes need
tilt factors to be defined. Tilt represents a displacement which is applied to a orthogonal
box in order to become a parallelepiped.They are expressed as 𝑥𝑦 𝑥z and 𝑦𝑧 in LAMMPS
and represent a limit in the skewing of the box (no more than half a distance on the
parallel direction, e.g 𝑥𝑦 - 𝑥 direction is the parallel). The approach used so far consists
in using an ”constant engineering shear strain rate” (erate) applied on the 𝑥𝑦 tilt factor
(volume is constant and such that the box is not deformed only in one direction). The
erate changes the tilt factor (i.e. displacement of the box in parallel direction) at a
constant rate and its units are 1/𝑡𝑖𝑚𝑒. Shear strain must be unitless and it usually takes
the dimension of an o set/length (perpendicular to shear direction). An example of
tilt equivalent boxes is given. If 𝑥 length is 10, the tilt distance is ±5, thus all the tilt
configuration −15, −5, 5, 15, 25 are equivalent. For higher shear rates, a ipping option
is possible in order to avoid skewness problems. Periodic BC must be used in at least
the parallel direction, otherwise atoms positions are not remapped. Remap is possible
either in position (adjusting the position for an atom which migrates to a replica) and
velocity (a delta of velocity is added to the crossing atoms).

5.2.4 Non-Equilibrium Simulations: Pluronics in Water
In non-equilibrium simulations, each system was initialized with a linear velocity

profile, with the maximum desired velocity at the top of the box and zero velocity at
the bottom. Shear was only applied on the xz plane, meaning that only 𝑃𝑥𝑦, one of the
three non-diagonal components of the stress tensor, was not null. The velocity on the
top slab was set equal to ̇𝛾 𝑙, where 𝛾 is the DPD shear rate value and 𝑙 is the length
of the box. In our range of investigation (i.e. from 0.005 to 2 DPD shear rate), a linear
velocity profile was obtained for both a system containing only water and a mixture of
water and Pluronics L64.
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In order to ensure the validity of the results in the operative range, two sets of
tests were performed for the upper and lower limits of the shear range. To set the
upper limit, we observed the behavior of water viscosity, which needs to be consistent
with its Newtonian nature. However, for shear rate values greater than 2 DPD units an
unphysical dependence of the viscosity on the shear rate is obtained. A shear rate of 1
DPD unit is therefore the maximum applicable in our simulation set up.

It must be highlighted that, the set of parameters used to describe the Pluronics
L64 chains is valid in equilibrium conditions and non-equilibrium parametrization
may differ such that the predictions of some equilibrium properties could results in
unrealistic values. The shear rate in DPD units can be different from the physical
shear rate at which an analogous situation is reached. When the value of the shear is
greater than 1 DPD unit, the system could be exposed to extreme deformation that lead
to non-physical results. To set the lower operating limit, velocity profiles across the
simulation box at different shear rates were analyzed. When the shear value imposed
on the system is around 10−3 DPD units, the thermal fluctuations due to the DPD
thermostat are masking shear effects and the velocity profile is affected by beads,
moving according to the temperature of the system. This effect was tested on both
water and water-Pluronics L64 mixtures, therefore shear rate values smaller than 10−3

DPD units cannot be explored. Concluding, by using a conservative approach we can
set the operating range of shear rates between 0.005 and 1.

Viscosity was obtained by averaging the value of the non zero component of the
stress tensor, 𝑃𝑥𝑦, every 100 timesteps. All the viscosity values are recorded after an
initial equilibration phase, such that initial fluctuations are filtered. The final value
was recorded when fluctuations were around ±0.01 by adjusting the simulation time
window. In particular, the trend of the viscositywas recorded during the simulation time
and the final value recorded only when fluctuations were in the order of magnitude of
0.01.

The harmonic potential was finely tuned in order to suppress the formation of over-
elongated chains, hence the coefficient was initially set equal to 4.0 (in DPD units) and
then modified. One concentration (i.e. 25% w/w of Pluronics L64 in water) was used as
a sample and 𝜅𝐻𝑎𝑟𝑚 was increased until variations in the viscosity were negligible. In
order to reduce potential errors due to extreme shear conditions and over-elongation,
the same set of parameters used for the harmonic potential was used in the FENE
potential simulations, this means that the value of the spring constant, was set equal
to 50 DPD units, while the equilibrium distance, 𝑟𝑒, was set equal to 1.00 DPD units.
Rheograms were obtained for different concentrations of Pluronics L64 at different
shear rates, recording the value of viscosity every 0.01 DPD shear units. The qualitative
variation of the trend of the viscosity was proven to be related to differences in the
microstructure.
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5.2.5 Code Download
A simulation setup file can be downloaded at:

Figure 5.4. QR code can be used to download Lammps simulation files.

The input scripts, in.water, in.pluronic and in.shear, can be found in /test/, also some
tutorials and manuals are provided in the parent folder. Instructions about how to run
a simulation are reported in the README file. Also see Appendix A for an example of
Lammps simulation setup file.
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5.3 Clustering Algorithm
A cluster algorithm was introduced in this work, in order to identify and

characterize the shape of the microstructures in equilibrium and non equilibrium
simulations. The cluster algorithm was in-house developed and coded using Python
(Python Software Foundation. Python Language Reference, version 2.7. Available at
http://www.python.org). Three main parts were written for the purpose: a general
code.py, where the main workflow and operations are executed, a fnc.py, where all
the functions were stored, and a gui.py, that could be used to enable a small graphical
interface.

code.py

The code takes as input a trajectory file (xyz output file from LAMMPS), where
all the coordinates of different particles are stored for each timestep. Coordinates and
the current timestep are stored into a Python object called times. Each time contains
a sub-structure, TimeStep, where the coordinates x, y, and z are stored together with
extra-values (e.g. an id number). Three different flags can be activated, hist, ave, and
pbc. The first flag generates histograms representing the distribution of the clusters at
each timestep, the second flag averages clusters and histograms during a certain amount
of timesteps, and the last flag is used to include periodic boundary conditions in cluster
identification.

The initial part of the code is used to read and store data. The file named
“namefile.xyz” is scanned and each line that does not contain a trajectory information
is excluded. The number of beads, hence the lines contained in each timestep, is known
a-priori, and a counter is increased after every accepted line. Once the loop all over
the beads is finished, the position i of the structure times[i] is updated. This operation
is repeated until the file is over, and then closed. At this point, the memory contains
all the coordinates of each bead at every single timestep. A frameskip value can be
selected before starting the second loop, meaning that not all the simulation timesteps
will be used for computing averaging and for the graphical outputs.

The second loop also requires an initial and a final timestep on which the cluster
algorithm run. Inside this second operation, for every single timestep which is not
skipped, all the columns contained in the list times, are separated and individual lists of
x-coordinates, y-coordinates and z-coordinates are obtained. Here, the pbc flag discerns
between two different options. If pbc is set equal to 1, the clustering operation is not
performed by using the coordinates of each particles but by calculating the relative
distance between all the particles, hence a distance_matrix, is used instead of the one
containing the positions.

One problem of this specific case is represented by the distance_matrix, which
can be extremely computational expensive, hence parallelising the calculation could
be necessary. If the pbc flag is set equal to 0, a density based algorithm (Ester et al.,
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1996), described in the next sub-section, takes all the coordinates contained in one
timestep and compute the number of different clusters. Each cluster is identified by a
different colour and the number of particles having the same colour is stored at each
calculation. Two important aspects have to be checked at this point, the value of the
minimum distance to distinguish one cluster from another, 𝜖𝑝𝑦 , and the total mass
balance. One line, recording the mass balance, namely the number of particles found by
the algorithm against the number of initial beads in the system, is outputted at every
clustering operation. Tuning on the 𝜖𝑝𝑦 parameter might be necessary to avoid losing
beads. In this work, we used a value 𝜖𝑝𝑦 equal to 2.0, and we verified that all the beads
are found at each timestep by the cluster algorithm. This ensures the conservation of
the mass into our simulation box.

In the second loop, three different outputs are obtained. The first is the number
of clusters against the simulation time. For each analyzed timestep, the number of
total clusters identified are stored and plotted against the simulation time, such that
it is possible to appreciate how the system evolves in time by modification of the
microstructures. If the histo flag is set equal to 1, the instantaneous cluster mass
distribution is plotted. In one single timestep, many clusters with different size can
be identified in this way. Also, snapshots where different colours identify different
structures (which in this case means stand-alone, non-connected aggregates) are
produced at this stage. If the system is composed by spherical or elongated micelles,
the gyration radius is also computed according to the following equation:

𝑅𝑔 = √
𝑘𝑝𝑦 ∑𝑛 ((𝑥𝑖 − 𝑥𝐶𝑀)2 + (𝑦𝑖 − 𝑦𝐶𝑀)2 + (𝑧𝑖 − 𝑧𝐶𝑀)2)

𝑛
(5.1)

where 𝑘 is equal to 3/5, 𝑥𝐶𝑀, 𝑦𝐶𝑀, 𝑧𝐶𝑀 are the oordinates of the centre of mass
for each single cluster, and 𝑛 is the number of beads contained in one cluster. The code
file ends with the averaging functions that are described in the func.py header. Such
functions are used to track the evolution of the cluster mass distribution over a certain
number of timesteps and can be repeated depending on the time windows that one
wants to investigate.

fnc.py

In this header, all the functions and objects are coded, implemented and called by the
main code.py script. One object is identified as a container of lists, TimeStep, where an
𝑖𝑑, 𝑥, 𝑦, 𝑧 coordinates, histogram value for beads and corrected histogram value for the
polymeric chains are stored. After its definition, an initialization procedure (constructor
rule) must be given. Following this part, six main functions were written to pre-process
and post-process data:

• add_atom: this function takes as an input an id value and the x, y, z coordinates
and appends all these coordinates to the lists (xCoord, yCoord, and zCoord). The

78



5.3 – Clustering Algorithm

output of this function is to create lists within an object to store coordinates for
one single line of the data file.

• AverageManager : this function takes as inputs the list containing all the cluster
sizes, the number of clusters and a storage matrix. This function counts the
number of times that an identity, namely one cluster composed by N beads, is
found. The output is an updated matrix, containing size of clusters and number
of times that they are identified on that single timestep, or also added to the
previous evidences if a storage matrix is passed as an input.

• sortingHistograms and rebuildingHistograms: these two functions are simply used
to improve the graphical output of the final histograms.They take as an input the
lists of clusters and the number of times each cluster is repeated and, in the first
case, put them in crescent order (based on their size), while on the second case,
they normalize the number of elements, in such a way that it is possible to have
bins of different sizes. The output of these functions is again a modified list.

• pbc_distance_matrix: this function takes as an input all the coordinates of one
timestep for all the beads and it calculates the distance between every 𝑖 − 𝑠𝑝𝑒𝑐𝑖𝑒
with all the 𝑗 − 𝑠𝑝𝑒𝑐𝑖𝑒𝑠. If the distance is greater than a certain value, a “replica”
of the particle is mirrored across the boundary of the box. The output of this
function is a matrix containing all the distances between all the particles for one
timestep.

• average_histograms_in_time; this function takes as inputs the object containing
both the lists of coordinates and the number of clusters identified at every single
timestep, the starting and ending averaging time, a frameskip if one wants to
avoid taking all the single timesteps and a frame_collection parameter, which
depends on the LAMMPS output file (after how many DPD timesteps, the xyz file
is written).This function outputs the final plot, where the histogram representing
the frequency of finding a cluster containing a certain number of particles in the
time windows selected.
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5.3.1 DBSCAN Algorithm and quantitative comparison
An implementation of density based algorithm, named DBSCAN (Ester et al.,

1996), is the core of the script. Different techniques can be used to identify cluster and
aggregates as reported in Figure 5.5:

Figure 5.5. From left to right, column represent clustering algorithm that can be
implemented into python. In each column can be appreciated the performances of the
clustering algorithm on clouds of points. Different colours represent different clusters
identified by the algorithm. In particular, the seventh column represents DBSCAN, which
can be used to identify structures such as micelles or distinct clouds of points, in the shortest
time and not knowing the number of clusters a-priori.

DBSCAN is a density-based algorithm for applications with noise. It was proposed
by Ester et al. for data clustering, and today is used in Machine Learning and Neural
nets. The main concept behind this algorithm is that given a certain cloud of points,
it recognizes those who are packed together from those who are “boundary” points
(located in low-density regions or at the edge of a cluster). Three different classes of
points (or particles or data) can be identified: core, which are surrounded by a pre-
defined number of reachable neighbors, reachable, that are located within a certain
distance from the core points and non-reachable, which stand on outside layers.

A sphere of radius 𝜖 is calculated around each point. Spheres containing a user
defined number of particles (including the particle itself), are marked as core-points.
One cluster is composed by core points, and each core point can be reached from core
point belonging to the same cluster. A reachable point, instead can be reached only by
one core point, but, in its surrounding, there are less than the user-defined number of
particles to be considered as a core. Non-reachable points cannot be reached by any
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other point and are isolated.

Figure 5.6. From left to right, three different scenarios where beads are identified as
”reachable” if they are closer than a certain distance, hence grouped into the core of one
cluster (blue), as boundary points (green) if they are within the distance but they can be
reached only from less beads, hence belongin to the same cluster, and ”non-reachable” (red)
if they are isolated from the remaining beads, hence not counted as belonging to the cluster.

The purpose of using DBSCAN lies in the high number of advantages obtained with
this technique: the number of expected clusters or structures is not necessary known
a-priori, meaning that clusters are effectively identified based on the distance between
structures and not forced to be clusters (i.e. a minimum/maximum number of clusters is
given a-priori); it is possible to recognize arbitrary shapes, even irregular or disordered
shapes can be identified by this algorithm; noise can be easily handled and filtered; it is
insensitive to the order of the points contained in the database, hence the points must
not be ordered before being scanned. The main disadvantage is related to the choice of
the 𝜖𝑝𝑦 and the minimum number of points to define a core. These two parameters must
be carefully tuned and, in cases where the number of confined particles is extremely
high, this cluster algorithm may fail, and assign all the points to a unique cluster (i.e.
all the points are core points).

In order to quantify the sphericity of the aggregates marked by DBSCAN, the data
collected during the cluster analysis was employed to calculate the micelles gyration
radius and was used to determine their sphericity. It must be highlighted that, for
complex structures, there is a correlation between the aggregation number, namely the
number of particles inside one cluster, and the gyration radius:

𝑁 = 𝐶𝑅𝑑
𝑔 (5.2)

where 𝑁 is the already introduced aggregation number, 𝐶 is a constant, 𝑅𝑔 is the
gyration radius of the micelle and 𝑑 is a scaling exponent, that tends to three in the
case of spherical structures and tends to two in the case of cylindrical or worm-like
structures. Plotting the aggregation number versus the radius of gyration (or vice versa)
in a log-log scale allows to identify the value of the exponent 𝑑.
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5.3.2 Code Download
The full version of the code can be download at:

Figure 5.7.QR code can be used to download the python version of the clustering algorithm

The folder contains all the files described above, one testcase and a README file
with the instructions to run the code. Also see Appendix A for the complete code.
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5.4 Continuum CFD Models: Fluent
Manufacturing devices to obtain complex fluids can be also simulated at the

equipment scale by CFD. The way in which we assessed the simulation of these
systems, was based on focusing on one property of the mixtures that can be measured
and at the same time modelled at a macroscale. By using the commercial code Ansys
Fluent, we simulated two complex geometries and validated power numbers and
droplet size distribution. ESCO 6L and Silverson mixer have been validated under
different conditions. Before doing that, we had to implement our own version of the
QMOM in Fluent, via User Defined Function (UDF).

5.5 Fluent UDF
A user defined function was used to implemenent and solve the PBE using the

QMOM and the kernel described in Chapter 3 and 4. UDF can be used to introduce lines
of code into Fluent such that the models already present can be modified and improved.
This was done because the implementation of the breakage kernels into Fluent is not
sufficient to reproduce our experimental setup. Our UDF used to implement and solve
QMOM in Fluent can be found in Appendix A. QMOM six moments of the droplet size
distribution (DSD), from zero to five, and it works within the two-fluid model of Fluent.
The six moments allow to reconstruct a quadrature approximation with three nodes
and weights that is in turn used to overcome the closure problem. This means that
one single node of the quadrature is a ”class” of droplet with a specific size. Together
with the governing equation of the flow, six more equations related to the transport
of the moments must be solved. The way in which nodes and weights are calculated
from the moments is the Product-Difference algorithm, already introduced in Chapter
4 and reported in Appendix B. Two kernels have been coded to model the breakage
of silicone-oil droplet in water. In particular Alopaeus - Laakkonen and Coulaloglou-
Tavlarides kernels were tested.

In order to run a simulation, an initial value for all the moments of the DSD must
be calculated. The initial shape of the distribution can be assumed to be log-normal,
and the correlation between the moment of order three and the volume fraction of the
disperse phase can be used to obtain the moment of order zero, representative of the
number of spherical aggregates in the initial disperse phase.

In the UDF, six scalars are used (moments from zero to five) and transport equations
are solved for all of them, including source terms. Also a total of thirty-four memories
(UDM) was used to monitor and check the moments during the simulation, together
with storing variables. In particular, memory UDM18 contains the mean value of the
Sauter diameter.

If the volume fraction of the disperse phase is small and does not affect the viscosity
of the mixture, such that the velocity field is not altered, it is strongly suggested to
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decouple the solution of the flow field from the solution of the population balance
equation.

When the velocity field of the two phases is fully developed, UDF can be compiled
and loaded. For this purpose it is necessary to have C compiler already installed
on Windows. To compile and load the UDF, type on the Fluent TUI: ”define/u-
d/functions/compile” and ”compile”. At this stage, it is important that the file.c is
present in the working folder. Type a name and wait for the function to be compile.
A new folder, named as the C file name, should have been created in the working
directory.

Load the function by repeating ”define/u-d/functions/compile” and ”load”. Select the
topmenu UDF, and indicates the number of memories that have been used. In particular
we used thirty-four UDM, and six UDS. For each of the UDS, define that they must be
only calculated in the disperse phase, and for ”flux function” click ”mass flow rate” in
the drop down menu.

In the menu ”define/materials” or in the materials icon in the left side menu of the
GUI, edit thematerial properties of the secondary phase, by introducing UDSDiffusivity
equal to 0.001 for all the UDS.

Now that the library is loaded, it is possible to change the diameter of the disperse
phase, in the ”properties” section of the ”phase” section in the GUI, from constant to
”User-Defined Functions” and ”bubble_diameter:..”

Moments need to be initialized and the correct values must be inserted in the
boundary conditions. If an inlet is present, it is possible to initialize all the UDS with
the correct value of the moments. If there is no inlet, the system must be patched, such
that the value of the moments is initialized to a uniform value for the disperse phase.

The last step before running a simulation is to ”hook” the subroutine adjust. In UDF
menu, click ”hook” and in the box ”adjust” click ”qmom_adj::...”. Now, select for all the
zones present in the simulation, where PBE must be solved, the source terms for all the
UDS. In ”define/Cell Zone Conditions” or ”Cell zone conditions” in the left side of the
GUI click on the ”fluid” zones and in the windowmenu, click on the label UDS. For each
of the UDS, define the corresponding ”p_source_mX::..” (X from 0 to 5).

Convergence criteria must be quite strict. It is suggested to select at least values of
the residuals for the moments equal to 10−5 - 10−6. Also, it is suggested to reduce the
Under-Relaxation Factors up to 0.01 when oscillating residuals are monitored.

5.5.1 ESCO 6L
Computational Domain

The mixing tank, ESCO 6L (EL-Hamouz et al., 2009), is composed by a sawtooth
impeller and a rotating anchor.The operating volume is six litres, the impeller is inclined
by a specific angle, while the anchor acts as baffles on the system. The geometrical
details are reported in Tab. 5.2.

84



5.5 – Fluent UDF

Table 5.2: Geometrical details of the mixing vessel and operating conditions

Name Value
Tank Diameter, cm 20.00
Tank Height, cm 30.00
Impeller Type Sawtooth
Impeller Diamter, cm 5.00
Operating Volume, l 6.00
Rotation Speed, RPM 3000

In Figs. 5.8 and 5.9 are reported the real system and all the 3D CAD models of the
mixing tank, impeller and anchor:

Figure 5.8. On the left: laboratory scale of the ESCO Mixer in Manchester University. The
mixer has a working capacity of 10 litres, an inclined sawtooth impeller and a rotating
anchor with scrapers. On the right: 3D CAD model of the ESCO Mixer reproduced with
Design Modeller, Ansys. The 3D model has the same dimension of the lab scale one (EL-
Hamouz et al., 2009).
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Figure 5.9. Detail of the sawtooth impeller of the ESCO mixer. Also, the sampling point
and the body of the anchor can be identified in the picture (EL-Hamouz et al., 2009).

In order to simulate the system, different meshes have been tested, from
tetrahedrons to hexahedrons dominant. Also, different levels of mesh resolution were
tested in order to obtain grid independence, based on the power number obtained. An
example of hexahedral mesh is reported below in Figure 5.10:

Figure 5.10. 3D CAD detail of the sawtooth impeller and rotating anchor of the ESCO
mixer obtained in Design Modelles, Ansys.

The coarsest mesh is composed by 800,000 cells, hexahedrons dominant, with
particular level of detail around the moving objects. Finer meshes containing up to
4,000,000 elements have been also tested and result reported in Chapter 6. Also, anchor
was removed in some cases to reduce the computational time, without influencing
the results. This approximation could be accepted because during the experiments
the anchor was first turned on to improve the mixing between the components and
then turned off in offset position, while impeller was rotating. In order to reproduce
the motion of the impeller, we created a rotating region around the blades. The solid
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part of the impeller and the shaft are static, and no motion is imposed on them. This
method is called Multi Reference Frame (MRF) and it is opposed to the sliding mesh
technique. In this framework, a rotating region of fluid is created around the impeller
and, while the rest of the tank is kept in a steady condition, only the cells belonging
to this volume are rotating around the impeller. The mesh is stationary and does not
change or slide during the whole simulation. The use of the MRF as already proven in
many similar works, is able to provide reliable results in less computational time. Even
if the geometries are frozen in space, the volume of fluid surrounding the impeller
has a velocity that is able to create the areas of turbulence needed for the modelling
of the system by using Population balance equation and breakage kernels. Clearly,
a sliding mesh could provide a better description of the system, however due to the
high complexity of the geometries, discontinuities caused by the matching between
sliding cells, could be cause crashes in the simulation. In our work, we focused on
improving the solution in the boundaries between the two references in order to avoid
flow field discontinuities that may false the results. Moreover, once the flow field is
fully developed, the system could be considered almost steady state, since no external
factors contribute to its perturbation. In this case, we have two specific reference
frames, the main reference that contains the tank and the anchor, located in the origin
of the axis, and the rotating frame, which has origin in the centre of the impeller and
the axis is inclined by 8 degrees with respect to the vertical axis.
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Figure 5.11. On the top: Example of mesh used in the CFD simulations. The mesh was
obtained with the cutcell method and it is composed by almost 800 000 hexahedrons. On
the bottom: section view of themesh, where it is possible to appreciate the level of refinement
closer to the impeller region (rotating zone)

Computational Details

In order to perform a full two-fluid simulation, we started by developing the
velocity field, slowly increasing the rotating speed of the impeller. The target for the
impeller speed was 3000 RPM, in fully turbulent regime.We started our simulation from
a laminar case at 100 RPM and increased after convergence was reached. We tested the
system at 100, 200, 400, 500, 1000, 2000 and 3000 RPM. At 1000 RPM, we introduced
different turbulence models and tested the performances or Reynolds Average Navier-
Stokes (RANS) models, with particular attention to the standard 𝜅 − 𝜖, 𝜅 − 𝜔-SST, and
Reynolds stress models. Once we had our single-phase setup, we introduced a disperse
phase by patching the flow field with a uniform initial concentration of oil. We updated
the velocity field and, in the meanwhile, we also tested different drag force models, in
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particular Schiller-Naumann (Shiller and Naumann, 1935) and Morsi-Alexander (Morsi
and Alexander, 1972) to highlight if differences were present.

Solver

The solver type was set to Pressure-Based, velocity formulation absolute and
transient simulations were performed. Gravity was added and set equal to -9.81 𝑚

𝑠2 on
the y-axis. Eulerian-Eulerian model was used to introduce the disperse phase, selecting
2 phases. The turbulence models used were: standard 𝜅 − 𝜖,- realizable, -rng, 𝜅 − 𝜔-SST
and Reynolds stress with 7 equations; we did not use any near-wall treatment and the
turbulence of the disperse phase was ignored.

Phases

Two phases were used to simulate water, as continuous phase, and silicone-oil, as
disperse phase. Water was selected from Fluent database, while silicone-oil was added
as an extra phase with the following properties:

Table 5.3: Physical properties of the different silicone oils tested in the ESCO Mixer. In
particular, different viscosities and initial diameter were studied.

Name Value
Density, 𝑘𝑔/𝑚3 759 (low viscosity), 964 (high viscosity)
Viscosity, mPas 0.005, 12.3, 32.2, 242
Surface Tension, mN 0.0114
Initial Diameter, m 1.2e-5, 2.2e-5, 3.2e-5 5.5e-5

Cell Zones and Boundary Conditions

Two zones have been identified. The first zone includes the edges of the tank, the
anchor and all the cells far from the impeller, while the second contains all the cells
around the impeller and its radius is 120% the radius of the impeller. This second zone,
named rotating region, has the origin of the axis in (0.0488, 0.043225, 0) and the rotation
axis vector coordinates are (0.165, 0.986,0). Regarding the boundary conditions, we
tested both fixed and moving shaft according to the rotating region reference, while
all the walls are considered as fixed wall, and the top of the tank is a fixed wall with
zero shear.

Numerical Schemes and Under Relaxation Factors

All the solution methods are then reported in Table 5.4:
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Table 5.4: Computational methods and numerical schemes adopted in the simulation of
ESCO Mixer for all the different viscosities.

Variable Method
Pressure-veocity coupling SIMPLE
Gradient LSQ
Momentum Second Order Upwing
Volume Fraction QUICK
Turbulent Kinetic Energy Second Order Upwind
Turbulent Dissipation Rate Second Order Upwind
User Scalar 0 First Order Upwind
User Scalar 1 First Order Upwind
User Scalar 2 First Order Upwind
User Scalar 3 First Order Upwind
User Scalar 4 First Order Upwind
User Scalar 5 First Order Upwind

While under relaxation factors are reported in Table 5.5:

Table 5.5: Under relaxation factors for all the quantities of ESCO Mixer testcase.

Variable Under-Relaxation Factor
Pressure 0.3
Density 0.3
Body Forces 0.5
Momentum 0.3
Turbulent Kinetic Energy 0.3
Turbulent Dissipation Rate 0.3
User Scalar 0 0.3
User Scalar 1 0.3
User Scalar 2 0.3
User Scalar 3 0.3
User Scalar 4 0.3
User Scalar 5 0.3

Initialization

In order to avoid divergences and problems with the solution of the population
balance equation, it is important to calculate a-priori the initial value of all themoments,
starting from the following definition:
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𝛼𝑝ℎ𝑎𝑠𝑒2 = 𝑘𝑣𝑀3 = 𝑘𝑣𝑀0 exp(3𝜇𝑙𝑜𝑔 + 4.5𝜎2
𝑙𝑜𝑔) (5.3)

Where 𝛼𝑝ℎ𝑎𝑠𝑒2 is the volume fraction of the disperse phase, 𝑘𝑣 is a shape factor and
for spherical particles its value is 𝜋/6, 𝑀0 and 𝑀3 are the moments of order zero and
three of the droplet size distribution, divided by the volume fraction of the disperse
phase (𝑀0 = 𝑚0

𝛼𝑝ℎ𝑎𝑠𝑒2
), while 𝜇𝑙𝑜𝑔 and 𝜎𝑙𝑜𝑔 are calculated together with the initial values

of the moments, assuming a log-normal distribution of the equilibrium diameter (𝑑32):

𝑀𝑛 = exp(𝑛𝜇𝑙𝑜𝑔 + 𝑛1
2

𝑛2𝜎2
𝑙𝑜𝑔) , (5.4)

𝜇𝑙𝑜𝑔 = log
⎛
⎜
⎜
⎝

𝑑2
32

√𝜈 + 𝑑2
32

⎞
⎟
⎟
⎠

, (5.5)

𝜎log = √log(
𝜈

𝑑32

2 + 1), (5.6)

Where 𝑛 is the order of the 𝑛-th momentum and it ranges from zero to five, 𝑑32 is
the Sauter diameter, and √𝜈 is the standard deviation that can be assumed as 15% of
the initial Sauter diameter of the droplets. In our specific case, for the low viscosity oil,
the initial volume fraction is equal to 0.0131 and the initial values of the moments are
reported in Table 5.6:

Table 5.6: Initial values of the moments according to a log-normal distribution for the
case of 1.31%𝑤𝑡 of silicone-oil (low viscosity) in water and 1% for the other viscosities.

Moments 0.5mPas 12mPas 34mPas 242mPas
𝑀0 1.03×1015 1.69×1014 5.46×1013 5.46×1013

𝑀1 1.24×1010 4.07×109 1.91×109 1.91×1009

𝑀2 1.52×105 9.98×104 6.84×104 6.84×104

𝑀3 1.91×100 2.50×100 2.50×100 2.50×100

𝑀4 2.45×10−5 6.42×10−5 9.37×10−5 9.37×10−5

𝑀5 3.22×10−10 1.68×10−9 3.58×10−9 3.58×10−9

It is important that during the whole simulation the value of 𝑀3 is kept constant.
This value is indeed related to the volume fraction of the system and it will be proved
in the reminder of this work. This means that, in order to ensure the conservation of
the mass along the run, the value of M3 can be monitored and reported. If this value
changes in time, this means that mass is lost, and boundary conditions or setup must
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be checked. Velocity field is loaded as previously developed and PBE can be solved in a
segregated way.

This means that the equations of moments are solved while the flow field is frozen.
This is possible only because the volume fraction of the disperse phase is low and the size
of the droplets does not influence the viscosity of the system. In cases where the volume
fraction is higher or the viscosity depends on the DSD, it is necessary to solve moments
together with the flow field, at every single timestep. The residuals were constantly
monitored, and the convergence value was set equal to 1 × 10−8 for all the moments.
For each simulation, more than four thousand physical seconds were simulated, and the
value of each timestep was set equal to 1. For each timestep, at least 250 iterations were
performed.

5.5.2 Silverson Mixer
Computational Domain

Silverson mixers belong to rotor-stator mixers. The specific 150/250 model is
composed by an impeller with two sets of blades (resp. 4 and 8 blades) and two screens
(stator), as it is possible to appreciate in figure 5.12:

Figure 5.12.Three models of Silverson mixer (from left to right: lab, pilot, plant scale) used
in personal/home care manufacturing as an ending part of the mixing process to furhter
reduce the size of the droplets. In particular, it is possible to observe how the number and
dimension of the holes of the screens change together with the number of blades of the
different impellers.

The three-dimensional representation of the pilot version of a Silverson mixer can
be appreciated in figure 5.13:

92



5.5 – Fluent UDF

Figure 5.13. 3D CAD of the Silverson Mixer, pilot plant scale, obtained with Design
Modeller. On the left: overview of the CAD model. On the right: detail of the impeller of the
Silverson Mixer. The impeller is composed by two series of blades that move together.

Some of the details, such as the springs that form the impeller shaft and the screws
have been replaced by simpler geometries, because they are not affecting the fluid
dynamics of the system but, on the contrary, are extremely difficult to mesh. The most
important part of our CAD geometry is represented by the impeller (corona and shaft)
and the two screens.
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Computational Details

Figure 5.14. Example of one Mesh of the Silverson Mixer, composed by almost 3 000 000
of tetrahedrons. An high number of elements is required to model the numerous holes
present in the two screens and the impeller which is located in their proximity. The mixer
is composed by an inlet and an outlet pipe.

Figure 5.15. Details of the Mesh. In particular, it is possible to observe the rotating zone
surrounding the two screens and the high number of holes that require most of the elements
composing the mesh.

Solver

The solver type was set to Pressure-Based, velocity formulation absolute and
transient simulations were performed. Gravity was added and set equal to -9.81 𝑚

𝑠2 on
the y-axis. Eulerian-Eulerian model was used to introduce the disperse phase, selecting
2 phases. The turbulence models used were: 𝜅 − 𝜖,- realizable, -rng, 𝜅 − 𝜔 SST; we did
not use any near-wall treatment and the turbulence of the disperse phase was ignored.

Phases

Two phases were used to simulate water, as continuous phase, and silicone-oil, as
disperse phase. Water was selected from Fluent database, while silicone-oil was added
as an extra phase with the following properties:
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Table 5.7: Physical properties of the different silicone oils tested in the Silverson in-line
rotor-stator Mixer.

Name Value
Density, 𝑘𝑔/𝑚3 964
Viscosity, mPas 9.90
Surface Tension, mN 0.0114
Initial Diameter, m 5.5e-5

Cell Zones and Boundary conditions

Two zones have been identified.The first zone includes the edges of the tank and the
cells surrounding from the screens, while the second contains the interior region from
the external screen to the internal chamber. This second zone, named rotating region,
has the origin of the axis in (0.0, 0.0, 0.0) and the rotation axis vector coordinates are (0.0,
0.0,1). Inlet boundarywas set tomass-flow rate and the % of disperse phasewas specified
as inlet condition, while the outlet is a pressure-outlet. Walls have been modelled with
no slip condition.

Numerical Schemes and Under-relaxation Factors

Numerical Schemes and URF are similar to those used for the simulation of ESCO
6l and can be found respectively in Table 5.4 and Table 5.5

Initialization

Inlet flow is composed by two fluids, water and 1% silicone-oil with viscosity equal
to 9mPas and initial size of the droplets equal to 5e-5m. Initial values of the moments
have been retrieved as in the ESCO 6L case.

Table 5.8: Initial values of the moments according to a log-normal distribution for the
case of 1%𝑤𝑡 of silicone-oil in water.

Moments Initial Value
𝑀0 1.17×1013

𝑀1 6.24×108

𝑀2 3.42×104

𝑀3 1.92×100

𝑀4 1.09×10−4

𝑀5 6.39×10−9

95



96



Chapter 6

Results

6.1 Introduction
In this chapter, the results concerning Copolymers and the mesoscale simulations

are presented in the first part. The second part contains all the findings regarding
emulsions and the simulations of the equipment scale. In the final part, the connection
between the two scales is discussed in details.

6.2 Copolymers

6.2.1 Equilibrium Simulations
Coarse grained simulations were performed to understand the behaviour of

complex fluids in equilibrium conditions. Different tests were made in this work, to
ensure correctness of the simulation setup and the adherence to the experiments.

Equilibrium and non-equilibrium simulations were performed in order to obtain
information regarding the microstructures that are formed within a complex fluid, but
also their evolution in time when a flow field is acting on the system. This information
becomes extremely important, for such systems, also at the industrial scale because
transport properties are affected by the microscopic behaviour of the system.

6.2.2 Phase Diagrams
The first step was to perform simulations on boxes containing only water, and then

on complex systems composed by Pluronics L64, P85, P104 a surfactant, and water
at different concentrations. Different boxes, timesteps, concentrations were tested in
order to reduce the number of possible artefacts related to the confined geometry. The
aim of this part of the work was to obtain reliable phase diagrams, where polymeric
chains interact between themselves and the surrounding water molecules, to track all
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the possible microphases and peculiar structures that are experimentally observable.
We performed simulations over all the spectrum of concentrations of Pluronics L64,
P85 and P104 in water (i.e. from 5% to 95%) within different simulation boxes and
we extracted quantitative and qualitative information regarding the equilibrium
phases. We identified a box size that is a good compromise between simulation time
and reduced number of artefacts to perform the following batches of simulations.
Experimental phase diagram for the water/Pluronics L64 system at equilibrium was
found in the literature and compared against the phases obtained from the simulations,
performed in LAMMPS. In Figure 6.1, snapshots of water/Pluronics L64 mixture at
different concentrations are reported.

Figure 6.1. Experimental phase diagram (Zhou et al., 1996) for the mixture of Pluronics
L64/Water mixture showing the different phases that are obtained by varying the
temperature and the concentration of the Pluronics L64.
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Figure 6.2. From left to right, top to bottom: Graphical outputs of the simulation results
of Pluronic L64 in Water at increasing concentrations (5%, 15%, 25%, 45%, 75%, and 90%
wt) where all the experimental phases can be recognized. In particular, micelles, worm-
like, lamellae, and reversed micelles can be observed at different concentrations. In each
snapshot, different colours represent different beads (PPO beads: green, PEO beads: red)
and in many cases water was faded for the sake of clarity (Droghetti et al., 2018).

The reference temperature for this system was assumed to be 298𝐾, which
corresponds to 1𝑘𝐵𝑇 in DPD units. For the sake of brevity, only the results obtained
by using the 30 × 𝑟𝑐 box are reported in this case, but similar results were obtained
with bigger box. The simulation time, composed by around 1 million timesteps, lies
between 4 and 9 hours (30 × 𝑟𝑐 box), 20 and 30 hours ( 40 × 𝑟𝑐 box), based on the
number of interactions that have to be computed. The density of the DPD system was
set equal to 3, meaning that there are 3 beads per unit volume (e.g. for a box size equals
to 30 × 30 × 30, there are 81000 beads). Different concentrations have been obtained
by varying the number of water and Pluronics L64 particles. Pluronics L64 beads
are described as molecules, hence the number of chains representative of the desired
concentration, was used instead of the number of beads. A similar approach was tested
with other types of Pluronics, i.e. Pluronics P104 (Álvarez-Ramírez et al., 2009) and
P85, in order to validate the previous setup. In Figure 6.4, we reported the different
microphases that have been identified for this system, while in Figure 6.3, these phases
are matched with the experimental phase-diagram. In particular, several phases were
found in our simulations that matches with the experimental evidences. In Figure 6.4
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it is possible to appreciate micelles (a), elongated micelles (b), hexagons (d), lamellae(f)
and mixed phases(g). These results were obtained by varying the concentration of
Pluronics P104 into the same simulation box and running equilibrium simulations.
Similar results were obtained for the Pluronics P85 (Figures 6.5 and 6.6), where the
simulation parameters were kept constant but the length of the polymeric chain. Again
the phase diagram has been explored.
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Figure 6.3. Experimental phase diagram (Álvarez-Ramírez et al., 2009) for the mixture of
Pluronics P104/Water mixture showing the different phases that are obtained by varying
the temperature and the concentration of the Pluronics P104. Dots represent the simulations
that have been performed. Colors represent the different phases that have been identified
in our simulations: blue - isotropic, light blue - elongated micelles, green - cylinders, yellow
- hexagonal, red - lamellar, grey - two phases.
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Figure 6.4. From left to right, top to bottom: Graphical outputs of the simulation results of
Pluronics P104 in Water at increasing concentrations (5%, 15%, 25%, 40%, 60%, 75%, and
90%wt) where all the experimental phases can be recognized. In particular, micelles, worm-
like, hexagons, lamellae, and reversed micelles can be observed at different concentrations.
In each snapshot, different colours represent different beads (PPO beads: purple, PEO beads:
cyan, Water: pink) and in many cases water was faded for the sake of clarity.
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Figure 6.5. Experimental phase diagram (Hammouda, 2010) for the mixture of Pluronic
P85/Water mixture showing the different phases that are obtained by varying the
temperature and the concentration of the Pluronic P85. Dots represent the simulations that
have been performed.
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Figure 6.6. From left to right, top to bottom: Graphical outputs of the simulation results of
Pluronic P85 in Water at increasing concentrations (10%, 25%, 50% 70% 90% wt) where all
the experimental phases can be recognized. In particular, micelles, worm-like, and lamellae,
can be observed at different concentrations. In each snapshot, different colours represent
different beads (PPO beads: grey, PEO beads: pink, Water: cyan) and in many cases water
was faded for the sake of clarity.

They can be compared with their experimental diagrams (Álvarez-Ramírez et al.,
2009; Hammouda, 2010; Zhou et al., 1996). The set of parameters used to simulate
P104 and P85 was equal to the parameters used for L64, while the equilibrium phase
diagram was obtained via SANS. Difficulties in finding the cubic phase were related to
the confined phase and the impossibility of the model of describing such interacting
systems. Only repulsive forces may not be enough to represent ordered structure the
cubic system. Also, bi-phases were difficult to obtain due to the uncertainty of labelling
their structure from a qualitative point of view. Different temperatures were obtained,
in this specific case, by varying the 𝑘𝐵𝑇 parameter in each LAMMPS simulation. For
the P104, the obtained phase diagram, corresponding to 𝑘𝐵𝑇 = 1 (around 330 K),
shows a clear match between simulated and experimental phase boundaries. A small
deviation of the lamellar phase to lower concentrations can be also appreciated (i.e.
lamellae are found at lower concentrations than expected).

After having assessed which phases we were able to simulate, we wanted to
quantify, as an additional element for comparison, the sphericity of the micelles, that
were obtained in the simulation and compare those results with the predicted phase
in the experimental phase diagram. As it was described in the previous section, we
tested different boxes first. A qualitative overview is reported in Figures 6.7, 6.8 and
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6.9, where similar concentrations are reported for different box sizes. A total of 300
simulations were performed at this stage, to validate the entire phase diagram.
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Figure 6.7. From left to right: Pluronic L64/water mixtures at different concentrations (5%,
10% 15%, and 25% wt) in a simulation box of 20 × 𝑟𝑐. Spherical micellar structures can be
identified.

Figure 6.8. From left to right: Pluronic L64/water mixtures at different concentrations (5%,
10% 15%, and 25% wt) in a simulation box of 30 × 𝑟𝑐. Spherical micellar structures can be
identified.

Figure 6.9. From left to right: Pluronic L64/water mixtures at different concentrations (5%,
10% 15%, and 25% wt) in a simulation box of 40 × 𝑟𝑐. Spherical micellar structures can be
identified.
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6.2.3 Cluster Analysis
We chose a set of simulation parameters (e.g. box size, timestep, end time…) inwhich

the number of micelles formed by Pluronics L64, P85 and P104 was enough to have
statistical results but also reduce computational time either for the clustering algorithm
and the simulation code. Regarding the clustering algorithm, already introduced in the
previous Chapter, we collected coordinates of each PPO bead for every timestep and
checked whether or not a bead was part of a cluster. The information we obtained
from such algorithm was both the number of clusters at every timestep, then averaged
through all the simulation time, and the size of each cluster. Having these number, it
is possible to calculate a scaling exponent that is related to the shape of the clusters.
This analysis was performed at low concentrations, where the number of clusters can be
clearly defined, while for higher concentrations, the algorithm fails at finding separated
structures, due to the interconnections between the polymeric chains. Also, periodic
boundary conditions were used for low concentrations, when the number of particles
was reasonable, to limit the effects of boundaries.

This was done because when a cluster crosses a boundary, if PBC is not properly
set up, it is counted two times as two halves of the initial cluster. Also, the boundary
crossing of few beads during one single timestep, can create noise for similar reason.

We knew that nine beads of PPO form a chain, so we recorded the number of
chains contained in each cluster and stored that value. The cluster analysis was
performed on the 30 × 𝑟𝑐 , without filtering any timestep, by reporting the calculated
gyration radius against the aggregation number, meaning that each dot in Figure 6.10,
represents a single cluster containing N chains and with a gyration radius equals to
𝑅𝑔. The calculation of the gyration radius can be used as indicator to understand the
shape of the clusters and this aspect will be discussed in the reminder of this work.
However, it is already possible to appreciate how the size of the clusters increases
with the concentration, hence a shift in the phase diagram from spherical to elongated
micelles. It must be highlighted that coordinates from LAMMPS are not saved every
timestep. We collected coordinates every 200 timesteps, otherwise both the dimension
of the log file and the clustering time would have been too difficult to handle. Also, a
tuning on the skin parameters, illustrated in the description of the Python algorithm,
was performed for all cases in order to ensure that all the beads that were present
at the beginning of the simulation are found (i.e. conservation of mass is respected).
Skin parameter ensures that all the interactions are taken into account. This means
that if this value is too small some of the particle-particle interactions are lost. The
tuning of this parameter was done in an empirical way, meaning that it was ensured
mass conservation by reducing the skin value. It is possible to observe that at low
conentration, most of the aggregates have spherical shape (trend is similar to the red
line) while they become elongated structures at higher concentrations (e.g. 25%) where
bigger aggregates appear in the simulation box.
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Figure 6.10. Gyration radius, 𝑅𝑔, is reported against the aggregation number, 𝑁, for four
concentration of Pluronic L64 in water (from left to right, top to bottom: 5%, 10%, 15% and
25%). The red line indicates a slope of 0.3 while the yellow line a slope of 0.5. Clusters have
been identified by using the cluster algorithm developed in this work.

In this part, the results of the cluster analysis are reported. In Figure 6.11 and
6.12 it is possible to appreciate how the number of clusters is reported against their
aggregation number. This approach can be used to estimate the shape of the aggregates
that are present into the simulation box. We performed cluster analysis by varying the
concentration and type of Pluronics into the simulation box. The result of this analysis
was the calculation of the ration between the gyration radius and the aggregation
number. When this parameter is equal to 0.3, aggregates are spherical. We proved
that at low concentrations for both the Pluronics, aggregates are spherical micelles.
However, when the concentration of the Pluronics becomes higher and higher, this
number varies and the aggregates undergo a phase transition. Table 6.1 and Table 6.2
report for each concentration the ratio between the gyration radius and the aggregation
number for Pluronics P64 and P104.

108



 



6 – Results

Figure 6.11. L64 Cluster analysis - From left to right, top to bottom: Gyration radius is
plotted against the number of chains contained into a single cluster. The concentrations are:
3%, 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% of Pluronic in water. Red line is
the slope of the trend of the structures, while the blue line indicates the limit of the cloud
of points

Table 6.1: 𝑑 coefficient of Eq. 5.2 calculated for the main lines (red lines in Fig 6.10 and
similar) and boundary lines (blue-green) for L64

Concentration 𝑅𝐺/𝑁
0.03 0.231
0.05 0.254
0.08 0.284
0.10 0.260
0.15 0.317
0.20 0.329
0.25 0.316
0.30 0.350
0.35 0.403
0.40 0.400
0.45 0.353
0.50 0.361
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Figure 6.12. P104 Cluster analysis - From left to right, top to bottom: Gyration radius is
plotted against the number of chains contained into a single cluster. The concentrations are:
3%, 5%, 6%, 8%, 9%, 10%, 12%, 15%, 18%, 20%, 25%, 30%, 35%, 40%, 45%, 50% of Pluronic in
water. Red line is the slope of the trend of the structures, while the blue line indicates the
limit of the cloud of points

Table 6.2: 𝑑 coefficient of Eq. 5.2 calculated for the main lines (red lines in Fig. 6.10 and
similar) and boundary lines (blue-green) for P104

Concentration 𝑅𝐺/𝑁
0.03 0.267
0.05 0.293
0.06 0.287
0.08 0.281
0.09 0.314
0.10 0.295
0.12 0.308
0.15 0.322
0.18 0.372
0.20 0.361
0.25 0.394
0.30 0.392
0.35 0.415
0.40 0.410
0.45 0.402
0.50 0.422

6.2.4 Chemical Potentials
The relationship between chemical potential and cluster mass distribution that is

reported in section 6.2.7 (Figures 6.29 - 6.31) reads as follows

𝜇1 − 𝜇𝑁
𝑘𝑇

= log
(

1
𝑋1 (

𝑋𝑁
𝑁 )

1
𝑁

)
(6.1)

where 𝑋𝑁/𝑁 is the concentration of the aggregates or molecular structures
containing 𝑁 copolymer molecules obtained from the clustering algorithm. Eq. 6.1
allows therefore to calculate the chemical potential of a cluster (𝜇𝑁) from the cluster
mass distribution (𝑋𝑁). For cylindrical structures the following equation for the
standard chemical potential can be assumed:
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𝜇0
𝑁 = 𝜇0

∞ + 𝛼𝑘𝑇
𝑁𝑝 (6.2)

where 𝛼 is a positive constant which depends on the molecular interactions and 𝑝 is
a parameter which depends on the shape of the aggregates and it varies from 1 (linear
clusters) to 0.5 (cylindrical clusters) to 0.33 (spherical clusters). Tests on Pluronic P104
and L64 have been performerd and results are reported in Figure 6.13:

Figure 6.13. Theoretical value of the chemical potential (red line) is plotted against the
simulation results (dots) for Pluronics L64 (left) and Pluronics P104 (right).

and the value of the parameter 𝛼 and 𝑝 can be obtained by least square optimization:

(a) Value of the 𝛼 parameter is reported
against the concentration of Pluronics L64

(b) Value of the 𝑝 parameter is reported
against the concentration of Pluronics L64
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(a) Value of the 𝛼 parameter is reported
against the concentration of Pluronics P104

(b) Value of the 𝛼 parameter is reported
against the concentration of Pluronics P104

The two parameters 𝑝 and 𝛼 are an indicator of the shape of the aggregates. The
𝑝 parameter decreases while the concentration increases, because the shape of the
aggregates moves towards more complex and elongated structures. The 𝛼 parameter
is constant and related to the concept of CMC of the copolymers in water.

6.2.5 Non-Equilibrium Simulations
It is important to understand what happens when equilibrium configurations

undergo strong flow field effects (Boek et al., 1997; Gentile et al., 2014). This is a very
common example in mixing processes. Microstructures can be deformed, re-oriented
or simply transported by high shear regions. When an equilibrium structure is affected
by shear stresses, its fate is unknown and difficult to predict even at experimental scale.
It becomes fundamental to have tools that are able to predict how they evolve in time
and if a new quasi-stable configuration can be found. The way in which this analysis
is done is via Non-Equilibrium simulations. In particular it is important to reproduce
the physics of the system and to stick to a realistic representation, trying to keep all
the relevant parameters of interest in bounded ranges. In MD, it is quite common to
apply huge gradients of a desired property to investigate the response of the system.
Similar approach is used in CG simulations, even though scalability of CG variables
into real, physical quantities is still unclear. We run different testcases to understand
the set of parameters that was able to reproduce the physics of the system composed
by a mixture of water and Pluronic L64 under shear stresses.

6.2.6 Range of applicability
The first step was to identify the range of applicability of the shear in DPD units.

In DPD, everything is represented in DPD units, meaning that a conversion standard
for the units is missing. We started investigating different thermostats (Soddemann
et al., 2003) and rheological response (Fedosov, Caswell, et al., 2008; Moshfegh and
Jabbarzadeh, 2015; Townsend et al., 2017) for a system composed only by water-like
DPD beads. As it is reported in Figure 6.16, temperature was found to be bounded for
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different thermostats, using a very small timestep, filtering the streaming effect on the
particle, that add extra energy to the system.

Figure 6.16. Values of the viscosity (top graph) and temperature (bottom graph) in DPD
units, obtained with LEBC in a box of 30×𝑟𝑐, a simulation time of 1 000 000 timesteps after
500 000 equilibration steps, with a 0.01 𝜏𝐷𝑃 𝐷 using different thermostats (black: Berendsen,
red: SLLOD, green: Langevine, blue: SLLOD + velocity ramp, cyan: Nose-Hoover)

Anomalous patterns were identified for a system composed only by water-like
beads, in the estimation of the rheological behaviour. In particular, we focused our
attention only on the DPD thermostat, and evaluated the evolution of the viscosity in
DPD units. We obtained an increased value of the viscosity when the shear range was
greater than the unit, coupled with an increased temperature. This non-Newtonian
behavior for the water, suggested us to limit the range of investigation to shear rates
around the unity also for more complex systems.
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Figure 6.17. Viscosity of a system containing water beads at different shear rates. The
viscosity is constant in all the shear range explored, which indicates that the fluid behaves
as a Newtonian fluid.

In order to calculate the average viscosity, it is important that momentum is
conserved across the simulation box. To validate this assumption, we computed the
𝑥-velocity profile along the y axis for different velocities, boxes and systems, as
reported in Figure 6.18. Linear velocity profile, corresponding to a constant shear rate,
can be reproduced in all our simulations, also thanks to the intrinsic nature of DPD that
conserves momentum because all the hydrodynamic interactions are explicitly solved.
This is a key element in our analysis that has been tested for all the following cases.
From our analysis was also clear that a lower limit of investigation could have been
identified. Low values of the velocities applied on the box, are not able to reproduce
linear shear across the box, because they are masked by the temperature imposed on
the particles, that is responsible for the thermal velocities of the beads. When thermal
velocity competes with the shear velocity, the profile is not linear, meaning that
momentum is not correctly transported across the box and the viscosity, and different
bins have different shear rate. Also, the dissipative coefficient,𝛾 , was equal for all the
beads for all the cases. This is an important approximation because this coefficient can
be seen as an artificial drag acting between the beads. We tested systems composed by
two different species and different values of 𝛾, and as expected, we found that velocity
profile exhibits bending effects, meaning that a discontinuity is present.
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Figure 6.18. Velocity profiles obtained acros the simulation box when LEBC are applied.
The simulation box has a side length of 30𝑟𝑐 and it contains mainly water beads. Colors
refer to different velocities obtained by varying the shear rate imposed on the system (black:
0.005, blue = 0.02, red = 0.2, green = 2.0). The axis have been normalized to the maximum
dimension of the box and the velocity.

After performing single type simulations, we moved to more complex systems
under shear. We tested initially if the same conditions that we found acceptable for
the single type, were still valid in the multicomponent system. As it is possible to
see in Figure 6.19, we tested the velocity profile (e.g. 30 × 𝑟𝑐) at different timesteps,
to have a clear understanding about how this value could have had an effect on the
overall simulation. We also verified that the particles were uniformly distributed
across the whole domain, by computing the density of particles across the vertical
axis. This is a very important test, because it allows the detection of problems related
to wrong boundary conditions. After these checks, we ensured that all the tested
boxes, at different concentration of Pluronic L64 in water, have the same DPD density
(beads per unit volume) and the velocity profile is completely developed along y-axis,
even by varying the timestep. The timestep that we took from this analysis was 0.01
DPD units, below the limit proposed by Groot and Warren of 0.04, that is able to
ensure good performances of the modified velocity Verlet Algorithm. This choice
was related to the high shear stresses imposed on different systems, together with
the neighbouring list that was updated and reconstructed after every single timestep.
This was increasing the computational time for each simulation, but it was necessary
because in cases of extreme shear, two close beads could move away from each other
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of a distance greater than the cut-off length, in one time unit. With this test, we also
ensured that the introduction, in the simulation box, of different chained beads does
not interfere with the propagation of the momentum, since the dissipative coefficient
was kept constant for all the interactions. One consideration, at this stage, could be
represented by the fact that more equilibration steps are required in order to obtain
a fully developed linear profile in mixed systems. Averages have been performed
dividing the simulation box in bins. For every bin, the velocities of the beads have
been averaged over 100 timesteps. A fully developed velocity profile was obtained
after around 100 000 timestep for almost all the cases. Small deviations in the linearity
of the velocity profile can be attributed to low values of the shear rate. This can be
explained because the streaming effect is masked by the thermal motion of the beads
(i.e. the temperature of the system is the expression of this motion). A remark must
be done on the evaluation of the temperature of such systems. The application of the
LEBC in LAMMPS is not directly implemented, but it has to be reproduced by using
a combination of fixes. If the thermal velocity is computed as it is, results highlight
an increased value of this parameter. This is due to the artificial streaming effect that
can be seen as an introduction of energy into the system. Since this streaming effect is
artificial and not natural, it has to be filtered. This means that the temperature should
not be computed by using the real velocity of the beads, but the streaming velocity
must be subtracted.
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Figure 6.19. On the top: velocity profiles developed across the simulation box in a system
composed by Water and Pluronics L64. The shear rate imposed on the system is equal to
0.01 DPD units. On the bottom: density profile, i.e. number of beads per unit volume, along
the 𝑦-axis. Similarly we found this profile on 𝑥-axis and 𝑧-axis. The uniform distribution
of the beads in the box ensures no border effects. Colors refer to different timesteps (black
= 0.001, red = 0.005, green = 0.01).

6.2.7 DPD Viscosity
When performing coarse-grained simulation, it is important to avoid effects related

to the limited dimension of the box. In fact, artefacts can be produced when dimensions
are not big enough. Beads interact in confined spaces and boundaries effect can create
anomalous structures that may be confused for real meso-phases. We tested three boxes
in Non-Equilibrium simulations, and compared the obtained viscosity at different shear
rates, as it can be observed in Figure 6.20.
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Figure 6.20. Viscosity of 25%wt (top) and 35% (bottom) wtmixture of Plurnics L64 in water
for different box sizes (black: 20× 𝑟𝑐, red: 30× 𝑟𝑐, green: 40× 𝑟𝑐) against the DPD shear rate.
30× and 40× curves are overlapping while small differences are obtained with the 20× box
due to confinement effects.

We observed that small differences can be appreciated between 20× and 30× 𝑟𝑐
length, especially at higher concentrations of Pluronics L64, because polymer particles
are forced to stay closer and even the phase-diagram results in not clear phases.
However, for low concentrations, the difference between these three boxes can be
neglected. In particular, no differences were found between 30× and 40× boxes. The
first was selected as preferred testcase, because it provides a good compromise between
validity of the results and reduced simulation time. We extended our simulations to
all the range of concentrations of Pluronics L64 in water and computed the different
viscosities, using the harmonic potential to connect beads in one polymer. We ensured
for all different cases (shear and concentrations) that the velocities obtained in the
simulation box were linear for all the systems, viscosities were extracted after plateau
were reached at all the different shear rates. Figure 6.21 is an example of validation
test for one specific concentration at different shear rates. It is possible to observe
that after an initial phase in which the system orient itself because of the streaming
effect, a constant viscosity can be recorded after 3 × 105 timesteps. Each final value
for the viscosity was obtained by averaging every hundred timesteps, the value of the
viscosity in the last thousands timesteps. Viscosity curves obtained in this way are in
most cases flat and warning messages in LAMMPS started to highlight that extreme
elongation was taking place between beads in polymeric chains.
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Figure 6.21.Velocity profile (top) at different shear rates (black: 0.005, blue: 0.007, red: 0.01,
green: 0.02, cyan: 0.05, magenta: 0.1, yellow: 1.0); value of the viscosity (middle) recorded
over the simulation time until a plateau has been reached in all the cases for different shear
rates (similar to top). Final value of the viscosity (bottom) reported against the DPD shear
rate. All the cases refer to a box containing 25% wt of Pluronics L64 in water in a box with
side length equals to 30× 𝑟𝑐

So we focused our attention on solving the problem of over-elongated chains.
We started our simulation by varying the harmonic constant in order to make the
chains stiffer. We tuned the value of the 𝜅𝑖𝑗ℎ𝑎𝑟𝑚 in order to reduce the variation in
the calculated viscosity. When the chains undergo extreme shear, a weak constant
could cause problems because beads overextend. In this way, we ensured that there
is a minimum value of the harmonic constant such that further increasing does not
change the profile of the viscosity curve. We tuned and tested this parameter on
different concentrations, and in Figure 6.22 is reported the variation of the viscosity
as a function of the shear rate for different harmonic constant. The cut-off radius for
these forces was left equal to 1.0, even if further tests were performed also on this
value. No differences were found when the cut-off value was in the range of 0.5 – 1.5
DPD length units. We kept the value of the cut-off equals to 1.0 DPD units. We focused
our attention only on one box size, and the a timestep of 0.01 DPD units was used for
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all the simulations.

Figure 6.22. Viscosity, in DPD units, of a mixture of Pluronics L64 in water (25% wt)
against shear rate (in DPD units) obtained by varying the harmonic constant (black: 4,0,
green: 50.0, blue: 100.0, red: 200.0) in a box with length equals to 30x 𝑟𝑐

The tuning parameters, obtained from the previous analysis, were transferred to the
FENE potential, that reduces the probability of over-extended bonds, due to the presence
of a logarithmic term, which produces an infinite energy if particles move too far from
each other. Stiffer chains were obtained in this way, and the distance between beads
was kept bounded. No significant modifications were observed in the phase diagrams,
even if longer equilibration phases were required, due to the reduced mobility of the
chains.We also compared the viscosity curves for different concentrations using the two
potentials, FENE and Harmonic. We observed, as it is possible to appreciate in Figure
6.23, that a small difference in the numerical value is present, but the shape of the curve
is similar.
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Figure 6.23. Comparison between the obtained viscosity, in DPD units, against the shear
rate, again in DPD units, by using Harmonic (circles) and FENE (diamonds) bonds in the
polymeric chains. Colors refer to different concentrations (black: 25% wt, red: 45% wt, and
blue: 75% wt) of Pluronics L64 in Water. 𝜅ℎ𝑎𝑟𝑚 and 𝜅𝐹 𝐸𝑁𝐸 are equal to 50 DPD units.

Higher differences can be observed at higher concentrations, even if the behaviour
of the curve, hence the non-Newtonian behaviour can be appreciated for both the cases.
It is important to highlight that at this stage, since a numerical conversion between
DPD and physical units is not unique, both results cannot be matched to real examples
to validate which case is closer to the reality.

The choice of three different concentrations is related to the different phases that
were obtained in the phase diagram. The black curve refers to the micellar region, the
red curve to the bi-continuous phase and the blue curve to the lamellar phase. Lamellar
phase needed more time to reach equilibrium in case of high shear, because the initially
oriented lamellae, destroy their structure to align the sheets to the flow.

Once the system is completely defined, and tuning parameters are selected,
we started our analysis to understand how streaming effects were affecting
the microstructures that are created at equilibrium, and understanding if these
modifications were related to the non-Newtonian behaviour of these complex fluids.
The first part of our analysis was performed by re-adopting the clustering algorithm, in
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order to evaluate any difference between the equilibrium and non-equilibrium counted
structures. We focused our attention on three different concentrations. We selected
spherical micelles, gel and lamellae as equilibrium references. The cluster algorithm
counted the number of individual structures

Figure 6.24. Number of clusters identified in each simulation box as a function of the
timesteps: three different concentration of Pluronics L64 (black: 25% wt, blue: 45% wt, green:
75% wt), in equilibrium and non-equilibrium (red-dashed interval) simulations.

Different aspects can be evinced already at this stage of the analysis. In the micellar
region, after an initial equilibration phase, in which the number of spherical aggregates
becomes constant, when shear is applied, they start flowing and when colliding, they
could end up merging into bigger aggregates. During the shear phase, the number of
aggregates and their size is affected by a bit of noise related to small elongation of the
spherical aggregates that cause the identification of slightly bigger or smaller clusters
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(that are considered as new identities). However, it is possible to appreciate that when
shear is removed, few bigger aggregates remain into the system. At slightly higher
concentration, the number of PPO beads is too high for the clustering algorithm to
discern between different structures. Also, it seems that a unique structure composed by
all the beads in the system is present at equilibrium. Shear effects promote the formation
of new microstructures, clearly distinguished by each other and their number is almost
stable during all the shear phase. After the shear is removed, structures are stable for
the following timesteps. Finally, at very high concentration, the situation is similar to
the intermediate one. The number of structures cannot be identified, but during the
shear phase, varies usually between 5 and 10 structures. In this last case, the system
explores the lamellar phase, that can be recognized from the previous analysis in the
equilibrium structure, but amore accurate analysis in the interior structure, showed that
interconnections between lamellae are present.These interconnections do not allow the
cluster algorithm to recognize separate lamellae during the equilibrium phase. Instead,
the application of shear rate on the system, destroy these connections, by aligning
lamellae to the flow and clearly separates the single sheets.

An interesting aspect can be appreciated at intermediate concentrations. For
example, if we look at the case where the concentration of Pluronic L64 is around
60%. We can observe in Figure 6.25 (left), that an interconnected gel is formed
at equilibrium. Interconnected elongated structures come in contact, creating a
disordered solid structure. However, the application of the shear on the system
destroys the network to create an hexagonal phase in which cylinders, aligned to the
flow field, are separated by fixed distance. This aspect has been also highlighted in
the cluster analysis, for intermediate concentrations. This specific case can be used
as proof that streaming effect can modify equilibrium configurations and produce
modifications in the microstructure of a complex fluid. In Figure 6.25 (right), it is
possible to appreciate the interconnected network, composed by disordered linked
structures, is deformed when shear is applied. Hexagonal microphase can be observed
in a frontal plane, perpendicular to the flow plane. These cylindrical structures,
composed by PPO beads in the core, and PEO (removed from the picture for sake of
clarity) in the exterior part, extend along the direction of the flow. Cylinders can be
easily counted by using the clustering algorithm. Similar structures can be also found
if the shear rate is slightly increased or decreased. However, when it crosses certain
limit value, i.e. more than 2 DPD units, these structures are mostly flushed away by the
streaming effect.
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Figure 6.25.Morphological transition, obtained at 60% wt of Pluronics L64 in water, from
a disordered interconnected structure into a more ordered hexagonal phase when a uniform
shear of 0.01 DPD units is applied on the simulation box. Hexagons that are formed can be
easily counted.

Similar tests were performed at this stage by using another simulation code. To
validate this modification of the microstructure due to the flow effects and the deviation
from the equilibrium configuration, we run similar cases on 𝐷𝐿_𝑀𝐸𝑆𝑂. We kept the
same concentration, shear, and LEBC since already implemented into DL_MESO.There
is a slight difference between 𝐷𝐿_𝑀𝐸𝑆𝑂 and LAMMPS in reproducing LEBC. While
in LAMMPS, the velocity is zero at the bottom of the box and maximum at the top of
box, in 𝐷𝐿_𝑀𝐸𝑆𝑂 the velocity is zero at the center of the box and the velocity is half
of the maximum value at the top and half at the bottom but in the opposite direction.
A linear velocity profile, hence a constant shear stress can be obtained in both cases.
As it is possible to observe in Figure 6.26, in the top part, equilibrium configuration is
represented by an interconnected network and again only the PPO beads are showed. In
the bottom part, a shear rate of 0.1 DPD units was applied on the box and the cylindrical
structures, oriented in an hexagonal pattern were found. For the sake of clarity, the
structures are less dense, because at this stage we tested a smaller box on 𝐷𝐿_𝑀𝐸𝑆𝑂
only to prove that similar patterns were recognized. The box reported in Figure 6.27 has
a length size of 20 × 𝑟𝑐 and a DPD density equals to 3.0.
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Figure 6.26. Equilibrium configuration of a mixture of Pluronics L64 in water obtained
with DLMeso, by using the interaction coefficients already used for LAMMPS simulations.
The two snapshots represent two different views of the same system

Figure 6.27. Non-Equilibrium configuration of a mixture of Pluronics L64 in water
obtained with DLMeso, by using the interaction coefficients already used for LAMMPS
simulations. Again, the morphological transition from a disordered into hexagonal phase
can be appreciated with this simulation software.

The final part of our analysis using DPD, after the validation of the phase-diagrams
of two different systems, is focused on the rheological response of these system to shear
stress. We have already discussed and validated the clustering algorithm and in Figure
6.28, it is possible to appreciate how the main structures highlighted in the previous
analysis for the system composed by Pluronic L64 into water, change when shear is
applied. It is possible to observe that in the cases of middle and high concentration (mid
and right), the cluster algorithm is not capable of distinguishing single structures at
equilibrium, which translates into a unique red blob. It must be highlighted that in the
case of high concentrtion, microstructure is lamellar, before and after the application
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of the shear rate. However, the interconnections between lamellae do not allow the
algorithm to separate the lamellae. When shear is applied, the separation is neat and
structures can be easily counted.

Figure 6.28. Snapshots of three different concentrations (left: 25% wt, middle: 45% wt, and
right: 75% wt) of Pluronics L64 in water analyzed with the clustering algorithm. Colors
refer to single structures identified by the algorithm.

For example, spherical and elongated micelles, move under streaming flow but
they do not significantly change their shape. During the shear event, micelles may
coalesce because they come closer, but they can also be destroyed. Differences can be
appreciated in the intermediate case, where the transition from a soft-gel to oriented
hexagonal structures. Cylinders are oriented in the direction of the flow and in a
frontal plane they appear to be located in a fixed pattern as previously showed. The
same concepts apply to the highest concentration. Actually, the continuous structure,
that has been identified as a unique red blob in the equilibrium configuration by the
cluster algorithm, is composed by lamellae but interconnections between the single
sheets, do not allow the single structures to be identified. The separation becomes clear
when shear is applied. Lamellae are destroyed and re-oriented to follow the streaming
effect and the single sheets become easier to identify. Since this analysis was only
qualitative, we also tried to quantify how the shear was affecting the equilibrium
structure from a quantitative point of view. Thanks to the clustering algorithm, we
were able to obtain an averaged cluster mass distribution for all these cases, before and
after the shear. Three different concentrations have been tested and the average cluster
mass distributions (CMD) are reported in Figs 6.29-6.31
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Figure 6.29. Cluster mass distribution (CMD), i.e. the probability of finding a cluster of
dimension N (number of chains in one structure) in the simulation box, plotted against
N, for a concetration of 25% Pluronics L64 in water at Equilibrium (blue) and Non-
Equilibrium (red). Shear rate is equal to 0.01 DPD units. White histograms are a graphical
artifact to show close values overlapping.

Figure 6.30. Cluster mass distribution (CMD), i.e. the probability of finding a cluster of
dimension N (number of chains in one structure) in the simulation box, plotted against N,
for a concetration of 45% Pluronics L64 in water at Equilibrium (blue) and Non-Equilibrium
(red). Shear rate is equal to 0.01 DPD units- White histograms are a graphical artifact to
show close values overlapping.

129



6 – Results

Figure 6.31. Cluster mass distribution (CMD), i.e. the probability of finding a cluster of
dimension N (number of chains in one structure) in the simulation box, plotted against N,
for a concetration of 75% Pluronics L64 in water at Equilibrium (blue) and Non-Equilibrium
(red). Shear rate is equal to 0.01 DPD units. White histograms are a graphical artifact to
show close values overlapping.

It is possible that in the case of low concentration of Pluronic L64, the distribution
slightly changes, because of aggregation phenomena that may happen, through the
creation of few new clusters bigger than the original structures. Even if these structures
are bigger, their shape does not change as it can be observed in Figure 6.32, where
the analysis of the gyration radius is reported. It is possible to see for two different
concentrations, 5% w/w and 25% w/w that when shear is applied, the gyration radius
and the number of chains per aggregate increase, but the exponent previously discussed
does not change. This ensures that micelles move because of the streaming effect, they
could coalesce, but never deform.
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Figure 6.32. Comparison between the gyration radius reported for two concentrations (5%
(black) and 25%(red) wt) in equilibrium (top) and Non-Equilibrum (bottom) configurations.
It is possible to appreciate that all the points lie on a line with the same slope, except for
few bigger aggregates that result from the coalescence of smaller ones. This explains that
the shear has no effect on the morphology of such systems that keep their spherical shape.

If we look now at the intermediate concentration, we can see that the uniform
blob that mainly contains all the PPO beads, breaks into smaller aggregates. These new
aggregates can have different size. Mostly, they are cylindrical structures with at least
200 beads, but also elongated micelles, with fewer elements outnumber the cylinders.
Even if the overall structure is ordered, the dimension of each cylinder is variable also
because of the confined bulk system and the periodic boundary conditions, that may
cause a unique cylinder to be counted as two different elements. Finally, in the last
case, the blob splits into lamellae. In this case, less structures are identified for each
timestep, so the distribution is quite scattered. However, it is clear that the system is
composed by elongated sheets, fewer in number compared to the cylindrical structures,
that contain more elements. In this last case, periodic boundary conditions were not
adopted, because of the high number of PPO beads, too many to be handled without
parallelization.

A final validation can be used to validate the modification of the microstructures
obtained in complex fluids. Thanks to experimental data for the system composed by
Pluronic L64 and water on the viscosity curves, we were able to verify the behaviour
of such fluids. In fluids composed by different components, distinct structures can
produce peculiar rheological behaviour. Non-Newtonian phenomena, for example,
can be observed when the viscosity of a system drops or increases when the fluid
undergoes shear stresses. When the viscosity of a fluid increases with the shear
(shear-thickening behaviour) we talk about dilatant fluid, while when the shear has
the opposite effect (shear-thinning behaviour) we call it pseudo-plastic. Even if a direct
comparison cannot be made in terms of units, it is possible to compare the behaviour of
these systems. In Figure 6.33 and Figure 6.34 are reported simulation and experimental
results of Pluronic L64/water mixture. The two curves are obtained with two different
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experimental techniques that are able to reproduce a steady shear condition that can
be compared with DPD equilibrium simulations, and a dynamic condition that can be
compared with DPD non-equilibrium simulations. It is possible to observe from these
curves that in the range of low concentration the two curves match, meaning that
shear is not affecting the structures, as it is also possible to observe in DPD simulations.
However, when the concentration is increased the two curves diverge. This is a clear
signal of differences in the microstructures that are contained in the system. In DPD
simulations this effect can be appreciated by a drop in the viscosity due to flowing,
merging and aligning effects of the microstructures

Figure 6.33. Viscosity, in DPD units, reported against the shear rate, again in DPD units,
for different concentrations (amaranth: 0%, black: 25%, yellow: 35%, red: 45%, green: 55%,
dark blue: 65%, light blue: 75%, purple: 85% wt) of Pluronics L64 in water with FENE
potential.
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Figure 6.34. Experimental steady shear and dynamic viscosity of a mixture
water/Pluronics L64 at different concentration.(Pasquino et al., 2019)

Curves, representative of increasing concentration of Pluronic L64, are compared
with pure water (amaranth). We omitted low concentration curves (i.e. less than 25%)
because they were all flat curves.The first curve, which is still in the Newtonian regime,
is the 25% of concentration. In order to appreciate a drop of the viscosity, we must move
to intermediate concentrations (i.e. more than 45%), where elongated and spherical
micelles are replaced by interconnected network. In this case, the initial viscosity drops
while shear is increasing, meaning that microstructure of the system is changing, and
disordered structures are becoming more ordered and following the streaming.

A final remark is necessary. DPD models have been used so far to obtain qualitative
and quantitative analysis at equilibrium, and mostly qualitative predictions in non-
equilibrium. A standardized conversion rule between DPD and real units has not
been provided yet. This operation can be easily obtained at equilibrium, because
the conversion is based on the number of beads clustered into one bead and on
their thermal velocity. This approximation may lead to erroneous results if the same
conversion set is used for non-equilibrium simulations. Using an approach that is
similar to the one proposed by Groot and Rabone, the shear values in real units
obtained in the range of analysis are extremely high. The order of magnitude of the
shear obtained in this way, falls between 1010 and 1011𝑠−1 , which is not comparable
with the shear rate obtained by experiments.
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6.3 Emulsions
In this section, a system composed by water and silicone-oil emulsion, used in

personal care product manufacturing is investigated. The formula is kept unknown and
the different silicone-oils are identified by their different viscosities. Two geometries are
explored, a lab scale mixer and a pilot plant mixer that are used for similar purposes.

6.3.1 ESCO 6L
ESCO 6Lmixer has been simulated using Ansys Fluent. In the specific case, different

mixtures of water and silicone oil were tested. The differences between silicone oils
are related to the viscosity of such systems. The analysis was initially focused on the
prediction of the fluid dynamics of the system. Two main batches of simulation have
been initially tested, including and removing the anchor. In the experimental setup, this
element is fixed and it acts only as a baffle by modifying the flow field developed. We
tested both the system with and without the anchor. According to the experimental
setup, all the relevant fixed parameters are reported in Table 6.3.
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Table 6.3: ESCO 6L parameters of the laboratory equipment.

Parameters Value
Anchor, fix/rot fix
Impeller Diameter, m 0.05
Velocity, RPM 3000
Velocity, rev/sec 50.0
Phases Water/Silicone oil
Density 1000𝑘𝑔/𝑚3

Constructor Power Number 0.30
Tank Radius, m 0.10
Tank Height, m 0.30
Tank Volume, l 9.40
Tank Operating Volume, l 6.00
Power Draw, W 12.90
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CFD models were validated against given value of the constructor power number
(Gao et al., 2016; D. Li et al., 2017). The power number (𝑃 𝑂) of an impeller can be
calculated according to two different equations, based on the torque (𝑇𝑞) acting on the
rotating and fixed parts of the system, or on the dissipation rate (𝜖) of the turbulent
kinetic energy, which is an indicator of the dissipated power:

𝑃 𝑂𝐶𝐹 𝐷 =
2𝜋 𝑁

60𝑇𝑞

𝜌𝑓 (
𝑁
60)

3
𝐷5

, (6.3)

𝑃 𝑂𝐶𝐹 𝐷,𝑑𝑖𝑠𝑠 =
< 𝜖 > 𝑉𝑓

(
𝑁
60)

3
𝐷5

, (6.4)

where 𝑁 is the rotation speed of the impeller, 𝑉𝑓 is the volume of the tank, 𝜌𝑓 is
the density of the fluid and 𝐷 is the diameter of the impeller. In many cases, these two
numbers are not equal in CFD calculation. We initially tested the effect of different
meshes on the power number, in order to obtain mesh independence results, as it is
possible to observe in Table 6.4:

136



6.3 – Emulsions

Table 6.4: Meshes and operating conditions tested for the ESCO 6L in Ansys Fluent.
Power number obtained from the torque and the turbulent dissipation rate is compared
against the constructor power number.

Testcase 𝑃 𝑂𝐶𝐹 𝐷 𝑃 𝑂𝑑𝑖𝑠𝑠
Experimental 3000RPM (Target) 0.32 0.00
Experimental 2000RPM (Target) 0.32 0.00
Tetrahedrons, 2000RPM 0.90 0.91
Tetrahedrons, 2000RPM, Refined 1.25 1.12
Tetrahedrons, 2000RPM, Refined x2 1.08 1.03
Tetrahedrons, 3000RPM 1.09 0.78
Hexahedrons, 2000RPM 1.30 1.00
Hexahedrons, 2000RPM, Refined x2 1.27 0.95
Hexahedrons, 2000RPM, 6L 1.09 0.36
Hexahedrons, 2000RPM, 6L, Refined 1.09 0.33
Hexahedrons, 2000RPM, 6L, 2Phases 1.45 1.42
Hexahedrons, 2000RPM, 6L, 2Phases, Refined x2 1.20 0.88
Hexahedrons, 3000RPM, 6L, 2Phases 1.27 0.91
Hexahedrons, 3000RPM, Reynolds Stress 1.27 0.41
Hexahedrons, 3000RPM, Reynolds Stress, Refined 0.99 0.41
Hexahedrons, 3000RPM, Reynolds Stress, Refined x2 0.99 0.41
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Two topologies of mesh were tested, tetrahedrons and hexahedrons dominant
patterns. The geometry of the experimental mixer has a working capacity of around ten
liters, but simulation and experiments were performed in the half-filled test case. Initial
validation was aimed at finding the minimum number of cells, hence the minimum
resolution, that provides grid independence. We used the constructor power number
as reference, even if small deviations may be caused by the operative condition. If the
constructor power number is obtained with the impeller in straight position and in a
tank with no obstacles, we computed the simulations in the experimental setup. In this
particular case, the impeller is inclined by a certain angle and an anchor is present.
Differences may be related to this aspect, but we noticed that there was no big variation
by increasing the resolution of the mesh. In particular, we saw that regular hexahedrons
were better performing in all the cases, and in both cases the region around the inclined
impeller had to be refined. The number of elements was increased close to impeller
and anchor zones, but also in the interfaces between rotating and static region. If the
resolution of the mesh is insufficient in these areas, discontinuities in the velocity field
are obtained, due to defects in the interpolation between communicating cells. The
effect of motion of the impeller is caused by applying rotating cell conditions in the
volume surrounding the impeller, which instead is fixed in its system of reference. For
the hexagonal case, when the mesh was composed by more than 1 000 000 elements, no
improvement were noticed. We tested meshes up to 4 000 000 elements, in steady state
simulations, for the development of the velocity field. We fully developed the velocity
field starting with 100 RPM, and increasing to respectively 200, 400, 800, 1600, 3000
RPM. In the first batch of simulations, turbulence model was off, while we switched
it on when we crossed the 1000 RPM. Between 2000 and 3000 RPM, the turbulence is
fully developed. At this stage, we also tested different turbulence model. in particular
we focused our attention on RANS (Reynolds Averaged Navier-Stokes) models and
avoided Large Eddies Simulations (LES). 𝜅 −𝜖 (e.g. standard, RNG, realizable),𝜅 −𝜔-SST,
and Reynolds stress models were tested and compared for both the systems (i.e. with
and without anchor), and a summary of the most relevant results is reported in Table
6.5:
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Table 6.5: Turbulence models and drag-forces tested for the ESCO 6L in Ansys Fluent,
for the same mesh (Hexahedrons, 3000 RPM, Refined). Power number obtained from
torque and turbulent dissipation rate are compared between them.

Testcase Tr, Nm 𝑃 𝑂𝐶𝐹 𝐷,𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 𝑃 𝑂𝐶𝐹 𝐷,𝑤𝑎𝑙𝑙 𝜖,𝑊 \𝑘𝑔 𝑃 𝑂𝐶𝐹 𝐷,𝑑𝑖𝑠𝑠
𝜅 − 𝜖 0.072 1.28 1.30 1.89 0.930
𝜅 − 𝜖 − 𝑅𝑁𝐺 0.076 1.34 1.38 0.76 0.372
𝜅 − 𝜖 − 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 0.071 1.32 1.28 1.81 0.892
𝜅 − 𝜔 0.071 1.34 1.28 1.45 0.715
Schiller-Naumann 0.073 1.43 1.32 0.90 0.440
Morsi-Alexander 0.073 1.43 1.32 0.90 0.440

In Tab 6.5, it is also possible to find the results obtained by introducing the disperse
phase, i.e. low viscosity silicone-oil. We tested different drag models, since this force
has to be properly modeled. No differences were found between Schiller-Naumann and
Morsi – Alexander, while we avoided other models implemented in Fluent, since they
are more suitable for gas-liquid or solid-liquid systems. Schiller-Naumann was selected
for all the remaining simulations. After identifying the models needed to describe the
fluid dynamics of the mixer, we obtained the fully developed velocity field for the
system containing both continuous and disperse phase (1% of silicone-oil in water).
In Figures 6.35 and 6.36, it is possible to appreciate, for two different impeller speeds
(2000 and 3000 RPM), velocity vectors representing the flow around the impellers.
Highest velocity is obtained at the tips of the impeller, slowly decreasing while moving
apart from the rotating region. In general, the impeller causes turbulent flow, mostly
in its surroundings, while other regions of the tank do not experience such flow. It
is important to underline and figure out this aspect, because the region closer to the
impeller is the one where the value of the turbulent dissipation energy is higher and
also in the experimental setup, a sampling pipe is located in this region.
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Figure 6.35. Snapshots of the velocity vectors and contours obtained around the inclined
impeller for a speed of rotation of 3000 RPM. Different snapshots refer to different planes.
It is possible to appreciate the evolution of the velocity field around the impeller and the
modification due to the presence of the anchor.

Figure 6.36. Snapshot reporting the velocity vectors obtained around the inclined impeller
for a speed of rotation of 2000RPM. The pattern is similar to 3000RPM because we are in
fully turbulent regime in both cases.

A summary of this analysis can be found in Figure 6.37 and Figure 6.38, where
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for two different turbulence models, a total of 12 meshes hexahedral and tetrahedral
dominant, with increasing refinement, were tested. The value of the power number
obtained by the torque is an average between the torque applied on the rotating part
and the one applied on the fixedwalls.These two valueswere, inmost of the cases, equal.
This means that the same force that is exerted by the impeller on the surrounding fluid,
is used to keep fixed the walls of the tank.

Figure 6.37. Mesh independence study validated by comparing the power numbers
calculated from the torque acting on the impeller (circle) and the turbulent dissipation
rate (diamond) for hexahedrons dominant (red) and tetrahedrons dominant (black) grids
with 𝜅 − 𝜖 turbulence model.

Figure 6.38. Mesh independence study validated by comparing the power numbers
calculated from the torque acting on the impeller (circle) and the turbulent dissipation
rate (diamond) for hexahedrons dominant (red) and tetrahedrons dominant (black) grids
with Reynolds stress turbulence model.
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From these figures, it is possible to appreciate that the power number obtained
from the torque is comparable with both the turbulence models, and it does not change
significantly with the number of mesh elements. Instead, the power number obtained
through the turbulent dissipation energy is slightly different and Reynolds-stresses
model, where all the component of the stress tensor are solved, are in better agreement
with the constructor power number. Errors of around 5% were obtained in this last case,
while three times higher power number was obtained using the standard 𝜅 − 𝜖 model.
At this stage, we had a complete overview on mesh, models and numerical details to
run simulation with population balance equation. In Figure 6.39 and Figure 6.40, are
reported the fully developed velocity fields for two case, with and without anchor, with
𝜅 − 𝜖 and Reynolds stress model. It is evident that turbulent dissipation rate is higher
in the region closer to the impeller. In general, a velocity field is developed in all the
volume and vortices can be identified. However, in some areas, the velocity of the fluid
is almost zero, meaning that stagnant zone are also present, mostly in the areas far from
the impeller and anchor or on the top of the tank.

Figure 6.39. Countour plot of the velocity field obtained including the fixed anchor, with
𝜅 − 𝜖 turbulence model, at 3000 RPM. The grid is composed by 2 000 000 hexahedrons,
refined around the rotating region and the anchor.
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Figure 6.40. Countour plot of the velocity field obtained including the fixed anchor,
with Reynolds stress turbulence model, at 3000 RPM. The grid is composed by 800 000
hexahedrons, refined only around the rotating region.

After we obtained a fully developed velocity field, for a system composed by water,
1% of silicone-oil, and surfactant (SLES), we tested if by using the population balance
equation and the QMOM to solve the equations, by varying the kernels, we were
able to track the evolution of the droplet size distribution within the mixing tank.
We tested different kernels (i.e. Laakkonen-Alopaeus, and Coulaloglu-Tavlarides),
with four silicone-oils (from 0.5mPas to 242 mPas) at different viscosities, using
two computational codes (i.e. MATLAB and fluent). We compared these results with
experimental data obtained by El Hamouz (EL-Hamouz et al., 2009) in the ESCO
6L mixer. Experimental data describing the droplet size distribution were obtained
for different silicone-oil in water mixtures with increasing viscosities. The addition
of small amount of SLES and the reduced size of the droplets prevent coalescence
phenomena. In the experiment, the oil is introduced while the anchor is rotating. When
the concentration can be considered uniformly distributed in the mixing tank, the
anchor is stopped while only the impeller is turned on. We simulated this second part
of the experiment, where we assumed that the secondary phase (silicone-oil) is already
introduced and homogeneously dispersed into the system, by patching the value of the
disperse phase on the whole domain in Fluent. In Figure 6.41, the experimental values
are reported. It is possible to see that the mixing is stopped after 200 min even if stable
mixtures end after around 50 minutes. This was done to guarantee the absence of any
coalescence phenomena and the stability of the mixtures. Also, the final products were
collected and put to rest, and the measurements were repeated after few days, but no
changes were recorded in the equilibrium droplet diameters.
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Figure 6.41. Example of the Sauter diameters distribution on the plane of the impeller,
using Tavlarides kernel, after 600s and starting with an initial diameter of 5.5e-5 m, at
3000 RPM for a low viscosity oil. Droplets are smaller in the region closer to the impeller
where the turbulent dissipation rate is higher compared to the remaining volume.

In Figure 6.41, an example of contour plot of the Sauter diameter on a plane above
the impeller can be observed.
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Figure 6.42. Experimental values of the Sauter diameter for different viscosities (black:
0.5 mPas, red: 12 mPas, green: 30mPas, blue: 242 mPas) of silicone oil in water reported
against the stirring time (EL-Hamouz et al., 2009).

It is clear that smaller droplets are generated in the area where the turbulent
dissipation energy is greater, while bigger stable droplets can be observed where the
flow is stagnant. The breakup process was simulated for at least 60 minutes, using
a timestep of 1 second, and in this time span, the breakage rate dropped to zero
for all the cases. This happens because when the droplets become too small, they
enter in the viscous sub-range while all the tested kernels are non-zero only in the
inertial subrange. The limit between inertial and viscous sub-range can be identified
by calculating the Kolmogorov length:

𝐿𝑘 =
𝜈𝑐

𝜖𝑡𝑢𝑟𝑏
(6.5)

Where 𝜈𝑘 is the kinematic viscosity of the continuous phase, and 𝜖 is the turbulent
dissipation rate, and this value can be very different in the cells of the mixer, because
of the wide distribution of the values of epsilon. Using the developed velocity fields
for the different oils as starting point, we tested the different kernels. Since the volume
fraction of the disperse phase is low, we decoupled the resolution of the flow field
from the PBE. This means that PBE was solved without updating the velocity field at
every timesteps. However, we updated the velocity field after 150 seconds in every
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simulations.We proved that almost no differences were reported if fully coupled
solution is compared to the segregated one, but results were omitted for the sake of
brevity. The decoupling was possible for this specific case, because the volume fraction
of the disperse phase is too low to influence the velocity field in the mixer. When the
concentration of the disperse phase is higher, and the viscosity of the system is affected
by the DSD, it is necessary to use a fully coupled approach, that will provide more
accurate results, but it will cost more computational time.

Lakkonen Kernel

We started our analysis with our own implementation of both kernels and QMOM
in Fluent. We tested Laakkonen kernel using constants that we found in the literature,
already tested on silicone-oil in water mixtures, but in different mixers. At this stage,
we tested two different approaches. Since the volume fraction of the disperse phase was
small, and the decoupling possible, we extracted the distribution of turbulent dissipation
rate from each cell in Fluent, and run MATLAB simulations of a single cell in time, as
proposed by Buffo et al., 2016.The results of this analysis was the evolution of the mean
diameter by using the volume average of the turbulent dissipation energy, obtained as:

𝜖𝑎𝑣 =
∑𝑖 𝜖𝑖𝑉𝑖

∑𝑖 𝑉𝑖
, (6.6)

where 𝜖𝑖 is the value of the turbulent dissipation energy in one cell 𝑖, 𝑉𝑖 and is
the volume of the cell. Thanks to this analysis we had preliminary results that were
compared to the experimental data. As it is reported in Figure 6.43, we had to test
different values of the constant 𝐶3, for the Laakkonen kernel. In fact, the problem
we observed was that the proposed constants, were failing in the prediction of the
high viscosity curve. This result is reasonable because the constants obtained from
the literature were mostly tested on low viscosity systems, and as we can se from our
MATLAB simulations, the match between the original constants and the low viscosity
oil is almost perfect. If we change the value of the 𝐶3 constant, we can observe that all
the curves are shifted down when the value of this constant is reduced. A smaller value
of this constant is reflected into a reduced resistance to breakage because of viscous
effects that have to be overcome.
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Figure 6.43. Experimental Sauter diameters (full dots) are compared against the full
3D simulations with Ansys Fluent (solid lines). The evolution of the Sauter diameter for
different viscosities (blue: 0.5 mPas, red: 12 mPas, green: 30mPas, magenta: 242 mPas)
is reported against the physical (and simulation) time for 4000s. In black is reported the
evolution of the Sauter diameter calculated with the Laakkonen kernel by varying the value
of one the constants (𝐶3) from 0.2 to 0.15.

A perfect match was found when the value of the constant was equal to 0.15, but
when the value of the constant 𝐶3 is varied, all the curves are affected. Small values of
this constant (half of the original value), shift all the curve through smaller values of
the diameter, because the resistance to the breakage is reduced because of the viscosity,
meaning that the only parameter which is affecting this phenomenon is the difference
in the interfacial tension between the phases (equals for the different oils). In this case,
it is possible to see that the three curves at low viscosity almost collapse on a single
curve, while the high viscosity curve underestimates value. A value of the constant of
0.15, perfectly matches the experimental data, even if also in this case, the low viscosity
curves are underestimated. For higher values of the constant, the high viscosity curve
is lost, while the low viscosities are easily matched. With these preliminary results, we
tested our findings on MATLAB, running all the cases for different viscosities. Results
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are reported in Figure 6.44.

Figure 6.44. Experimental Sauter diameters (full dots) are compared against the full 0D
simulations with MATLAB (dashed lines). The evolution of the sauter diameter for different
viscosities (blue: 0.5 mPas, orange: 12 mPas, gray: 30mPas, green: 242 mPas) is reported
against the physical (and simulation) time for 4000s. In black is reported the evolution of
the Sauter diameter calculated with the Laakkonen kernel by varying the value of one the
constants (𝐶3) from 0.1 to 0.3.

Three models can be used to face these problems. The first one is a full CFD-PBE
approach, where CFD is solved together with the PBE at every timestep. The second
and the third are an average and a lumped model. In the last two approaches, PBE is not
solved for every cell at every moment, but the behaviour of a single cell representative
of the whole system is looped through time. In the second method, the flow field is fully
developed and since the disperse phase does not influence it (e.g. disperse phase has low
viscosity), the field is frozen and only the PBE is solved in time. The first and second
method gave us similar results. From these results, we can observe that the results are in
better agreement with the simulations, using the Laakkonen kernel.The replacement of
the epsilon value with its average can be used as an approximation but it is convenient
to run full three-dimensional simulations. Discrepancies between low viscosity curves
(using 𝐶3 = 0.2) and the experimental data are below 5% or errors. In few points, we
found an error of around 10%, but uncertainties are also present in the experimental
data. The initial value of the populations that we used in the simulation was obtained
assuming a log-normal distribution, with a variance of 15% of the initial diameter.
Solid curves are representative of the equilibrium or Sauter diameter, obtained from
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the ratio between the moments of order three and two of the droplet size distribution.
For each physical timestep, equal to one second, we performed 300 internal iterations,
ensuring that residuals were below 10−7 for all the moments. In particular we used as
term of comparisons the value of the fifth moment, that is the slowest in convergence.
Moments, that are representative of physical quantities related to the disperse phase,
evolve during the simulation. As an example, we reported in Figs 6.45-6.46, moments of
order zero and three in time. Moment of order zero represents the number of particles
in the mixer, while the moment of order three represents the volume fraction. It is
possible to appreciate that 𝑀0 increases over time because it represents the number of
droplets that are generated due to the breakage phenomenon. Breakage is induced by
the turbulence (high shear region) developed by the impeller:

Figure 6.45. Evolution of the moment of order 0, representing the number of droplets
originated into the system, during the simulation time obtained with the Laakkonen kernel.

The volume fraction, or 𝑀3, of the disperse phase should not change during the
whole simulation because no mass is added to the system. By observing the evolution
of the moment three of the distribution it is possible to observe that no mass is lost
during the resolution of the equations.
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Figure 6.46. Evolution of the moment of order 3, representing the volume fraction of
disperse phase, during the simulation time obtained with the Laakkonen kernel. The
conservation of moment of order 3 ensures that mass is always conserved along the
simulation time.
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Coulaloglou and Tavlarides Kernel

We tested Coulaloglou and Tavlarides (CT) kernel, starting from the same
initial conditions we used for the Laakkonen kernel, i.e. developed velocity field,
uniform concentration of the disperse phase, and initial log-normal distribution of
the population by assuming a variance of 15% of the initial diameter. Simulations run
for at least 4000 seconds and moments were recorded every 30 seconds. The velocity
field was decoupled from the PBE as it was done previously with the Laakkonen
kernel. From our analysis, we could immediately see that CT kernel provides a higher
breakage frequency, as demonstrated in Figure 6.47 and Figure 6.48. The number of
particles in the system, increases much faster compared to Laakkonen kernel.

Figure 6.47. Comparison between the moments of order 0 obtained with Laakkonen
(black) and Tavlarides (red) kernel for a mid viscosity silicone oil in water. It is possible to
appreciate how the two kernels produce a completely different dynamics.

The breakage frequency is higher at the beginning and it decreases while the
dimension of the particles decreased because of the breakage. The value of the
frequency approaches zero when droplets are close to the Kolmogorov length. For
such value, the frequency becomes too small, and the droplets do not break anymore.
This asymptotic value can be already observed before 1000 seconds. The moment of
order three is constant also for this case, meaning that the mass is conversed during
the simulation.

For all the viscosities we performed simulations on Fluent and compared the results
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Figure 6.48. Breakage frequency for the Tavlarides kernel plotted against the simulation
time. It is possible to observe how the frequency rapidly goes to zero after few hundreds
seconds of simulations, meaning that no breakup occurs after that limit.

with the experimental data by El Hamouz. Now, we report the evolution of the Sauter
diameter in time for different values of viscosity, Fig 6.49.
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Figure 6.49. Experimental Sauter diameters (full dots) are compared against the full 3D
simulations with Ansys Fluent (solid lines) using Coulaloglou and Tavlarides kernel. The
evolution of the Sauter diameter for different viscosities (blue: 0.5 mPas, red: 12mPas, green:
30mPas, magenta: 242 mPas) is reported against the physical (and simulation) time for
4000s.

The results obtained with CT kernel are now explained. Starting from different
viscosities and diameters, all the curves collapse on one single line, in different times,
because there is no contribution of the viscosity in the breakage frequency. This
means that only the interfacial tension is playing an active role in the breakage
phenomenon, but since all the silicone-oil/water mixtures have the same interfacial
tension, no difference in the final diameters of the droplets can be reproduced. As it
was demonstrated in the previous part, after 800 seconds, the breakage frequency goes
almost to zero for all the cases and a stable mixture is obtained. More specifically, the
dimension of the droplet is so small that we are almost at the Kolmogorov length (i.e.
5.5 × 10−6𝑚, close to the impeller region). We stopped these simulations after 3000
seconds because the breakage frequency was found to be negligible. We implemented
and tested CT kernel in MATLAB and repeated the protocol we used for the Laakkonen
kernel. In Fig 6.50, it is possible to observe that the simulation obtained in MATLAB
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are exactly matching Fluent results for what concern the behavior of the kernel and
the final value of the equilibrium droplet diameter. However, curves approach the zero
value of the breakage way faster than Fluent simulations. This could be caused by an
overestimation of the turbulent dissipation energy, introduced in the model in the
form of average turbulent dissipation energy. The asymptotic value is reached after
around 100 seconds for all the viscosities and all the curves collapse on a single one,
representative of the Kolmogorov length scale. No tuning was performed at this stage,
because of the different way in which kernels are formulated. By tuning the constants,
it would be possible to capture the final value of the diameter while the dynamics could
remain wrong for all the cases. Moreover, we did not want to tune constants for every
specific situation but more finding fixed parameters to describe the mixing process as
generally as possible.

Figure 6.50. 0D simulations with MATLAB (dashed lines) using Coulaloglou and
Tavlarides kernel. The evolution of the Sauter diameter for different viscosities (blue: 0.5
mPas, red: 12 mPas, green: 30mPas, orange: 242 mPas) is reported against the simulation
time for 500s.

A final comparison that highlight the difference between CT and LA kernel can be
based on the different droplet distributions that can be reconstructed using the method
proposed by Marchisio and Fox, 2013, where the log normal distribution parameters
can be obtained by using the moments:

𝜇 =
𝑗

𝑖𝑗 − 𝑖2 𝑙𝑛 (
𝑚1
𝑚0 ) + 𝑖

𝑖𝑗 − 𝑗2 𝑙𝑛 (
𝑚𝑗

𝑚0 ) , (6.7)

𝜎2 = 1
1 − 𝑖

𝑗
[

2
𝑗2 𝑙𝑛 (

𝑚𝑗

𝑚0 ) − 2
𝑖𝑗

𝑙𝑛 (
𝑚𝑖
𝑚0 )] , (6.8)

where i=2 and j=3.
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In particular, we selected the moments of order zero, two and three, since any of the
moments can be used for this purpose. We compared the distributions for Laakkonen
and CT kernels after 300 and 1200 seconds, for the low viscosity silicone-oil/water
mixture, as reported in the following:

Figure 6.51. Comparison between reconstructed droplet size distributions calculated from
the moments, using CT (blue) and LA (black) kernels after 300s (dashed) and 1200s (solid)
for a mid viscosity silicone oil in water.

From these results it is possible to highlight how the effect of the viscosity term
in the Laakkonen kernel is acting to reduce the breakage frequency, also slowing the
overall process. CT kernel predicts the final value of the Sauter diameter after 800s as it
was shown before, while the Laakkonen kernel reproduces slower breakage because of
the presence of the viscosity term in the kernel. Since this term seems to be driving the
overall process, we performed a sensitivity analysis on the two groups that are present
in the Laakkonen kernel (and are omitted in CT). The aim of this analysis was to record
the values of the two groups (reported below for clarity) for different values of viscosity,
diameter and turbulent dissipation rate:

𝐺1 = 𝐶4
𝜎𝑖

𝜌𝑐𝜖2/3
𝑡𝑢𝑟𝑏𝑑5/3

, (6.9)

𝐺2 = 𝐶3
𝜇𝑑

√𝜌𝑐𝜌𝑑𝜖1/3
𝑡𝑢𝑟𝑏𝑑4/3

, (6.10)
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Figure 6.52. Sensitivity analysis on the value of the two groups present in the Laakkonen
kernel. The group containing the interfacial tension (dashed) is compared with the group
containing the viscosity (solid) at different values of the viscosity (red: 0.1mPas, green:
0.5mPas, blue: 1mPas, light blue: 5mPas, pink: 10mPas, yellow: 20mPas, grey: 40mPas, dark
red: 100mPas, dark green: 200mPas, dark blue: 400mPas, dark cyan: 500mPas, dark purple:
700mPas with 𝜖 = 4.5𝑘𝑔𝑚2𝑠−3

Figure 6.53. Sensitivity analysis on the value of the two groups present in the Laakkonen
kernel. The group containing the intefacial tension (dashed) is compared with the group
containing the viscosity (solid) at different values of the viscosity (red: 0.1mPas, green:
0.5mPas, blue: 1mPas, light blue: 5mPas, pink: 10mPas, yellow: 20mPas, grey: 40mPas, dark
red: 100mPas, dark green: 200mPas, dark blue: 400mPas, dark cyan: 500mPas, dark purple:
700mPas with 𝜖 = 115𝑘𝑔𝑚2𝑠−3

We can infer that the contribution of the group 1, containing the interfacial tension,
is always less important than the term containing the viscosity. These values are part
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of an error function complementary, meaning that higher values of the groups push
the frequency to zero. Group 1 is only comparable in the case of low viscosity, while
for all the others, this term becomes negligible in the range of diameters explored.
We found that for the high viscosity case Group 2 is four orders of magnitude bigger
than Group 1. This also helped us in reducing the number of constants that had to be
tuned in our model, because no action was taken on C4 but also CT kernel, that has
no term containing the viscosity of the disperse phase. It has to be remarked that the
range of analysis where we performed our simulations is borderline with the viscous
subrange.These kernels perform betterwhen there is a clear segregation between scales.
In particular, droplets should be smaller than the macroscale of the system, defined by
the size of the biggest eddies that are generated from the impeller (usually macroscale
length is in the order of magnitude of the diameter of the impeller), but bigger than the
Kolmogorov length scale, that depends on the viscosity and turbulent dissipation rate.
In our simulations we were extremely close to the Kolmogorov scale. If we cross this
limit, phenomena involved in the breakage process are not captured anymore by CT
and AL kernels, but more complex mechanism must be introduced.

6.3.2 Silverson Mixer
Silverson mixer is a rotor-stator mixer that is commonly used in industries to

homogenize and further reduce the size of the droplets obtained by traditional stirring.
It was extensively characterized from the experimental point of view by Kowalski et
al (James, Cooke, A. Kowalski, et al., 2017; James, Cooke, Trinh, et al., 2017), such that
accurate expressions for the power number were derived. These systems are extremely
complex to simulate, especially in 3D cases, because of the high number of details that
form the two screens. The power draw, i.e. the measured power, of a Silverson mixer
reads as follow:

𝑃 = 𝑃 𝑂𝑧𝜌𝑁3𝐷5 + 𝑘1𝑀𝑁2𝐷2 + 𝑃𝐿 (6.11)

Where 𝑃, in Watt, is the power draw, 𝑃 𝑂𝑍 is the calculated power number with
zero flow-rate, 𝜌 is the density, 𝑁 is the speed or rotation, 𝐷 is the diameter of the
impeller, 𝑘1 is a constant that is obtained experimentally, 𝑀 is the mass flow rate and
𝑃𝐿 contains the loss of power due to the efficiency of the mixer. If one can exclude
losses, it is possible to re-organize Eq 6.11 in a more engineering version, based on
non-dimensional quantities, in terms of Power Number (PO):

𝑃 𝑂 = 𝑃 𝑂𝑧 +
𝑘1𝑀

𝜌𝑁𝐷3 = 𝑃 𝑂𝑧 + 𝑘1𝑁𝑄𝑣 (6.12)

where 𝑁𝑄𝑣 is the non-dimensional flow rate, or discharge number. In this way, the
equation is a straight line, with slope equals to 𝑘1 and intercept equals to 𝑃 𝑂𝑧, and
these two values can be used to as a term of comparison between experiments and

157



6 – Results

simulations. We report in Fig 6.56 the velocity fields obtained for different velocities of
the impeller and mass flow rate:

Figure 6.54. Countour plots of the velocity fields obtained for the Silverson mixer at
different velocities of the impeller and mass flow rate.

In the specific case, it is possible to appreciate how the pattern of velocity field,
in fully turbulent regime, does not change much in the different cases but in the case
where the inlet velocity is at least comparable with the velocity of the impeller in the
central part. Different meshes and turbulence models have been tested on the system
and results are reported in Figs 6.55 and 6.56:

158



6.3 – Emulsions

Figure 6.55. Comparison between the power number obtained from the Torque and the
turbulent dissipation rate, with 𝜅 − 𝜖 turbulence model for two different meshes (different
level of refinement) compared against the experimental results obtained by Hall, Cooke,
Pacek, et al., 2011; A. J. Kowalski et al., 2011. The black line is the experimental Power
Number, while the red line represents the best simulation fitting curve. Slope and intercept
of experimental line can be compared against the simulation ones. Blue symbols represent
the PO obtained by torque, yellow dots represent the PO obtained by the turbulence.

Figure 6.56. Comparison between the power number obtained from the Torque and the
turbulent dissipation rate, with 𝜅 − 𝜔 turbulence model for two different meshes (different
level of refinement) compared against the experimental results obtained by Hall, Cooke,
Pacek, et al., 2011; A. J. Kowalski et al., 2011. The black line is the experimental Power
Number, while the red line represents the best simulation fitting curve. Slope and intercept
of experimental line can be compared against the simulation ones. Blue symbols represent
the PO obtained by torque, yellow dots represent the PO obtained by the turbulence.

We compared the results obtained from different turbulence models, trying to
reproduce the experimental curve of the pilot scale Silverson Mixer. The curves
obtained in the four cases, with 2 different meshes with a number of elements which
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goes up to 14 000 000 in the most refined case, reported an error between 10% and 15%,
which can be considered reasonable if we assume that experimental curves for such
systems may already have errors with them. The power number, obtained from the
torque acting on the impeller in all the cases, matches with the experimental data even
if the 𝜅 − 𝜔 model seems to provide better results due to the strong swirl effects that
are reflected also in the velocity fields. It must be highlighted that when power number
is obtained from the turbulent dissipation rate, the values are consistently wrong and
they are extremely mesh dependent (this is not true in the case of the torque). All the
curves obtained from the simulations lie on a straight line and this is in line with the
experimental observations. We obtained our own equations for the different meshes
and turbulence models (slope and intercept are reported in Table 6.6) and validated the
power draw, the value of the dissipated power that can be read from the experimental
setup, against the simulation results, as it is possible to appreciate in Fig 6.57:
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Table 6.6: Slopes and intercepts obtained from the fitting of the experimental results of
the Silverson 150/250 Mixer compared against the experimental curve

Case 𝑃 𝑂𝑧 𝑘1 𝑅2

Experimental 6.9000 0.25 0.96(verif.)
Case 1 6.677 0.123 0.979
Case 2 6.108 0.183 0.993
Case 3 6.022 0.212 0.988
Case 4 6.010 0.220 0.989

Figure 6.57. Power draw obtained at different flowrates and speed of rotation of the
impeller (blue: 11000 RPM, orange: 6000 RPM) obtained by experiments (solid line) and
simulations (dots). Dashed lines represent an interval of confidence of 20% which is related
to experimental uncertainties.

And for the Laakkonen kernel, the Sauter diameter of the droplets, assuming a
constant inlet of emulsion in the central part of the mixer can be appreciated in Fig.
6.58:
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Figure 6.58. Simulation results of the Laakkonen kernel for the silverson mixer. Sauter
diameter is reported on a horizontal section plane of the mixer. Smallest reported diameter
is in the order of magnitude of 3 × 10−5𝑚.

These results are in agreementwith the experimental setup that can be found inHall,
Cooke, El-Hamouz, et al., 2011 where a similar setup is proposed. The droplet diameter
is assumed to be constant at the inlet region and decreasing by almost 50% in the outer
regions.

6.4 Coupled Solver: CFD-DPD
In the final part of this work, a possible approach on the coupling between the

two simulation scales is assessed. Before rushing into the description of the code, it is
important to highlight why and how coupling is important and must be made. In many
industrial cases, when one tries to describe the evolution of a system, microscopical
phenomena might be avoided during the macroscopical simulation. However, those
phenomena are fundamental in describing in the best possible way the outcome of a
process, hence they must be addressed in our simulations. Our attempt tries to extract
information from a microscopical level (i.e. mesoscale by using LAMMPS) and send
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it to a macroscopical level (i.e. OpenFOAM), such that the evolution of the transport
coefficient that is directly coupled to the microscopical state of the system can be
appreciated and correctly taken into account rather than being approximated by
empirical ad-hoc models. In this way, it is possible to overcome fine-tuned models and
move to a complete description of a system. Attention must be paid to the increased
number of calculations that have to be performed. If one runs a DPD simulation for
each of the cells of the CFD domain, the computational cost will be huge (approx 4
hours per cell for our specific case). Moreover, the dimension of the cell must be small
enough in order to be representative of the geometrical domain. One possible solution
could be to simulate different conditions and store similar results in libraries, such
that when one cell is identical to another, microscopical simulation could be avoided
and results are simply recalled. In this way, an online (1 simulation for completely
different scenarios) - offline (results are stored and can be recovered) tool can be used to
improve multiscale simulations. With this idea in our mind, we developed an 𝛼-version
of coupled DPD - CFD solver, starting from two open source codes, OpenFOAM and
LAMMPS. Due to the differences between temporal and geometrical scales, the code
works in a decoupled way, meaning that variables that are obtained at CFD scales
are sent to the DPD scales while the CFD time is frozen, results are computed at the
microscale and fed back to the CFD code, so that the macroscopical timescale can be
updated. A schematic cycle of operation is given in the following:

Figure 6.59. Working flow of the coupled DPD/CFD code. In the first step, the DPD
simulations are run and variables are computed for each cell of the CFD domain. DPD
values are converted into physical units and loaded into the mesh. CFD time is updated
together with the related fields. Time is stopped and DPD calculations are repeated.

163



6 – Results

The choice of these two codes was related to the fact that both are written in
C++, which made easier the practical linking, but any other code and language can be
wrapped. OpenFOAM is a computational fluid dynamics code that has been widely
used and validated against several cases in literature, while LAMMPS is a particle
based code that contains a DPD package within it. We started from choosing the
version 5.0 of OpenFOAM and a Non-Newtonian solver. In particular, we selected
nonNewtonianicoFoam as a starting point, and for LAMMPS, we took the version of
16-Feb-2017, compiled with user DPD Package and as a dynamic library. To wrap the
two codes into a single running one, we used a Message Passing Interface, and, in
particular, MPICH was selected. The use of an MPI routine allowed us to run the code
in parallel, using the same number of processors for both OpenFOAM and LAMMPS.
LAMMPS was compiled as a dynamic library and called before any update of the
velocity field within the OpenFOAM solver. The workflow can be observed:

Figure 6.60. Coupled solver overview. LAMMPS is linked to OpenFOAM. The cycle of
operations previously illustrated is now given in a simpler way.

MPI procedure must be initialized by defining the number of partitions on which
OpenFOAM, and consecutively LAMMPS, have to be run. The CFD domain is divided
into the desired number of bins, and the same number of procs will be used to run
LAMMPS faster by re-organizing the use of the processors. An example of CFD-DPD
simulation is now described in detail. A timer ensures that in the first N (a number
defined by the user in a separate dictionary) timesteps, only the OpenFOAM routines
are solved. The N indicator is increased after every timesteps and when it matches with
the starting values, the DPD routine can be started.

We focused our attention on the calculation of the shear rate in each CFD cell. For
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all the cells present in the domain, the shear value is rounded, according to a minimum
level of precision defined by the user. All the rounded shear values are checked to avoid
repeated values and are ordered and stored into a storage matrix, which is used as a
library during the whole run. The number of independent shear is calculated and used
as number of loops that must be performed by LAMMPS. For example, if in our cells
we have 6 different values of the shear rate, we will perform 6 LAMMPS simulations. In
this specific case, we ignore differences in concentration of the components and only
shear is passed from the CFD domain to LAMMPS.

At this stage, the CFD time is stopped, and the LAMMPS simulations are run in
series. The simulation time at this stage is driven by DPD simulations that must be
performed until a pseudo-equilibrium (non-oscillating) value of the average viscosity
is obtained. The code reads a standard input until the shear has to be indicated. At
this stage, a string that is not contained into the LAMMPS setup file, is written by
substituting the original DPD value with the OF shear, and passed to LAMMPS. The
batch of simulations run, and at the end of every run, the viscosity of one box is
extracted and stored, eventually the operation is repeated for all the values indicated
into the initial loop. For all the shear values, the corresponding viscosities in DPD units
are computed and stored into a library containing this value and the corresponding
shear, so that if a matching shear is found in the future, no simulation will be run. The
values of DPD shear must be converted into real physical units but at this stage we do
not have a way to convert the units. If this step can be performed somehow, the CFD
code can update the velocity field, by using the calculated viscosities for the different
shear that have been identified into the system. When the velocity field is updated,
the solver can proceed with the remaining OpenFOAM routines. In the next loop, if a
new set of shear value is found, new LAMMPS simulations are run to obtain the new
viscosities.

In this specific case we focused our attention on the shear rate, but any other
variables can be passed between the codes and just some tweaks are needed to adapt
the code. There is no direct connection between OpenFOAM and LAMMPS apart
from the MPI routines that allowed us to share the processors for two different
purposes. In fact, the LAMMPS routine can be extracted from nonNewtonianicoFoam
and exported to any other solver. The alpha version of the code can be found at:
https://github.com/hermessc/DPDCFD/tree/new_algo/src

6.5 Coupled Solver: 3D CFD - 0D CFD
In Fluent, it is possible to solve the PBE in different ways. Mathematical models

are already available and ready to use, but they cannot be completely customized.
However, in this specific problem, where it is important to have a clear understanding
of the physics behind the phenomena that occur into the system, new kernels must
be implemented in order to have reliable results. To run all the case, we used our
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in-house implementation of the quadrature method of moments (QMOM), and we used
6 moments of the distribution, meaning that three nodes and weights were used to
approximate the DSD. The Product Difference Algorithm was also implemented. The
most important aspect in implementing our own solver for the PBE, is the possibility
of including (or excluding) in a consistent way, the main phenomena involving the
droplets, expressed as coalescence and breakage kernels. Three different models of
breakage were coded and tested, and coalescence was set equal to zero, because of the
presence of small amount of surfactant in the system (PPM of SLES).

Another important part of this work was related to the implementation of the
same models into a MATLAB 0D code. According to Buffo (Buffo et al., 2016). it is
possible to evaluate the evolution of the DSD with a much leaner implementation in
MATLAB. All the previously discussed kernels and models were implemented into a
zero 0D code, that simulates the evolution of DSD through time, once the distribution
of the turbulent dissipation rate in the tank is given. For such model, it is important to
underline that it can be used only in cases of small volume fractions, hence a strong
separation between the droplet and the flow field scale is consistent (the velocity
field is completely unrelated to the DSD, viscosity not affected by droplet diameter).
The values of the turbulent dissipation rate were extracted from the fully turbulent
developed flow field and a volume average was performed. Using this approximation,
we reduce the simulation time and evaluated the final value of the droplets by varying
the kernels, then also tested on Fluent. We also used this technique to perform tuning
on some empirical constants that are present in the breakage kernels. The complete
workflow is reported in Fig 6.61:
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Figure 6.61.Workflow of the procedure followed in the current work in order to reduce the
number of full 3D simulations, without affecting the accuracy of the solution by coupling
MATLAB 0D simulations and full 3D Fluent Simulations. In this case, the low fraction of
the disperse phase allowed the simulation of a single cell by using the velocity field obtained
from Fluent and test the different kernels to forecast the behavior of the DSD in time. This
also allowed the tuning of the kernel constants without running full 3D simulations.

In the proposed model to couple the codes, a CFD 3D simulation can be preliminary
performed to develop the velocity field and extract the values of the turbulent
dissipation energy. Local high shear values obtained around the impeller are the
main contributors to the breakage phenomenon, which results dominant due to the
composition of the mixture. The necessity of tuning variables that appear in the kernels
are related to the high difference in the viscosities that were tested. A good performing
kernel should include the dependence on the viscosity of the disperse phase, but the
constant that are used have to be properly tuned in specific cases. Here comes the
necessity of using the MATLAB code that speeds up the simulations and can be used
as a benchmark tool to reduce the number of tests. Once the values of the constant are
finely tuned through MATLAB, a full 3D model can be simulated and validated against
the experimental data.
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Chapter 7

Conclusions

This thesis is focused on the modelling and simulation of complex fluids on different
scales. In particular, surfactants and emulsions have been investigated by using two
approaches, mesoscale simulations (DPD) andmacroscale simulations (CFD).These two
approaches and the two systems can be switched between them (i.e. DPD can be used
to simulate emulsions and CFD can be used to simulate surfactants). We also identified
a path to link the two scales together in a single solver. In this final chapter, we want to
summarize our findings but also highlight the limits we have discovered, the problems
faced and the alternative solutions that may be used in future works.

7.1 Copolymers
Here we report our findings, strategies and limitations related to copolymers

simulated with DPD:

On the simulation setup

Simulations of three different species were performed using the same set of
parameters obtained from the literature. We were able to explore for three different
systems (Pluronics L64, P84 and P104 in water), the complete spectrum of microphases,
hence their phase diagrams. This means that DPD can represent a powerful tool that
can be adopted in industries were different chemical formulations have to be tested.
DPD simulations can be used to reduce the number of experiments, because it is
possible to predict which microphase will be obtained by mixing different components.
As demonstrated in this thesis, with DPD, by tuning only few specific parameters, it is
possible to reproduce an incredible spectrum of mixtures.

However, the lengths of the investigated polymeric chains were different and
this aspect has an important drawback in coarse-grained simulations. The tuned
parameters could not work properly for extremely long polymeric chains since
solubility parameters may differ from the selected one. In fact, repulsive coefficients
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are calculated starting from the solubility of one single group into another single
group, representing the molecules present into each cluster. However, when it comes
to longer polymeric chains the behavior may differ from that of each single group. As
an example, the Pluronics F127, which has a longer chain have to be properly tuned in
order to reproduce its phase diagram.

Regarding the number of beads and chains necessary to reproduce one system,
bigger boxes or higher DPD densities may also be required. A sufficient number of
different structures is necessary in order to have statistical evidence and avoid artifacts
due to the confined boundaries. A drawback of DPD simulations lies in the definition of
the repulsive potential used between beads. Affinity between different species is only
defined by tuning the repulsive coefficient of different species.This is a strong limitation
that has to be coupled to the possibility of bead of interpenetrating and crossing bonds.
Chains may cross each other because of the nature of the interactions. This is a strong
limitation of the model that have to be overcome by the introduction of more complex
models, that are able to describe cross-linking of polymeric chains.

On the microphases

If the attention is focused on the determination of the microphases, it was possible
to define and characterize micelles both from a quantitative and qualitative point of
view. This opens new possible scenarios, because the results given by this analysis can
be translated into physical quantities, population balance equation can be extended
to these problems and fully coupled with structural information obtained from DPD.
A clustering algorithm must be used in order to assess a quantitative match with
the experiments. We were able to define and verify the sphericity of the micelles
in a certain area of the phase diagram, defined by the concentration of the disperse
phase, by using information obtained from the gyration radius and the cluster mass
distribution. Density based algorithm cannot be used at high concentrations of
surfactant in water, because it recognizes all the structures as lumped in a unique blob.
This aspect represents the main disadvantage of the algorithm but since the number of
structures is not know a-priori, it was used to discern between many structures that
may exhibit unclear shape. Only when a clear separation between the structures was
present we were able to count the single microphases.

The use of such tool allowed us also to identify the hexagonal microphase. This
structure was not obtained at equilibrium, but when shear was applied on the system,
the disordered network aligns because of the streaming effect and reorientation
becomes possible. The same concept applies to lamellae that could have been counted
only when separation was neat. All these findings are fundamental in overcoming
the actual macroscale modelling. In many cases, empirical evidences are still the
main driver in obtaining tuned models. The possibility of exploring new scales, both
in time and space, allows a better understanding of the relevant physics that rules
those phenomena. In this way, it is possible to have a more general approach to
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many different systems, without boundaries related to the experimental range of
investigations. Also, very small scales, where relevant phenomena take place, are
difficult to explore by using only experimental evidences and this is why simulation
becomes a fundamental tool in predicting behavior of such complex fluids.

On the non-equilibrium limitations

We obtained viscosity curves that do not depend on the value of the spring constant
and equilibrium distance. Potential was then switched to the FENE model. With such
model, we ensured that any over-elongation was removed because of the formulation of
this potential. The logarithmic term, present in the formulation of the potential, ensures
that when particles move further than the accepted distance, the value of the recalling
force goes to infinite. With these stiffer chains, we had to increase the simulation time,
because of the relaxation time which was higher even for the equilibrium simulations.
The viscosity curves however, behave similarly to those obtained using the Harmonic
potential, even though small differences in the numerical values were found have to be
investigated in detail. Artifacts introduced by shear effect were reduced by monitoring
relevant variables.

The temperature of the system was kept bound to the original value and different
thermostats have been tested in order to exclude any possible anomalous increment.
A remark must be done at this point, in fact, not all the thermostats can be used in
our problem. Berendsen thermostat, for example, implies that velocities of the beads
into the system have to be rescaled in order to keep the temperature bounded to the
thermostat values. If this is the case, the velocity profile, previously imposed on the
box and developed by using LEBC, is lost because of the effect of the thermostat that
rescales the velocities at every timestep. If a linear velocity profile is not achieved in
the simulation box, it is not possible to extract information regarding the non-zero off-
diagonal stress tensor component that we used to compute the viscosity of the DPD
system.

On the shear effects

An important aspect that we were able to better understand was the fate of
the microstructures when shear affects the system. Mixing is an important part in
the manufacturing process of structured fluids. Mainly, all the different compounds
are mixed together, by using different operating conditions, impeller and anchors, at
different stirring rates and sufficient stirring time. Each small region in the mixing tank,
experiences different shear rates due to the proximity of the impellers or the anchor.
Complex flow fields can be translated into microscopic effects that can be assessed by
using coarse-grained models. These models help identifying and predict how different
microstructures react to different stirring intensity. Some structures or mesophases can
be desired and obtained only under certain conditions. In our testcases, we were able to
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assess the whole spectrum of concentrations and obtain relevant information regarding
the modification of such microstructures. For example, spherical micellar structures do
not modify their shape, keeping their original conformation and eventually coalesce if
two of them come closer or break if they become to big. These effects, however do not
change transport properties such as the viscosity of the system, which results constant.
When higher concentrations of surfactant in water were investigated, simulations
showed more complex phenomena. Disordered and complex microstructures that are
present in equilibrium configurations, reorient themselves into more ordered patterns.

However, springs that connect different beads were tuned in order to avoid
excessive elongation. In fact, beads that are contained in one single polymeric
chain, are linked using specific form of potentials. One example can be provided
by the harmonic potential, where only the strength and the cut-off distance for the
interactions must be defined. In equilibrium simulations, these springs ensure that
beads, that are part of a single chain do not move too far from each other, but when the
system is affected by shear, since the value of these stresses can be extremely high, the
spring imposed by the potential results too weak to keep beads close. If particles move
away from their bounded neighbor, the identity of the chain is lost and the interactions
between closer beads are lost if the neighbour moves further than the cut-off distance.
Different potentials may be used, and in our work, we tuned the constant to reduce
this over-elongation phenomenon. We tested a range of spring constants and cut-off
distances and verified that these values do not alter equilibrium configurations. These
new structures may exhibit a different rheological behavior compared to their initial
microstate, and while shear is increased, properties, such as viscosity, may drop. This
is a peculiar feature of Non-Newtonian fluids that have a viscosity that depends on
the shear rate. Drops are not experienced for the system containing only water or low
concentration of Pluronic L64 (up to 30%), while the Non-Newtonian behavior was
observed at higher concentration. Experimental evidences of the system also confirmed
these findings. The possibility of counting these structures gave also us the chance to
find specific patterns. In particular we were able to identify the regions where micelles
become elongated and their shape relax into oriented cylindrical type.

On the future work

No protocol has been identified to convert DPD units into real physical quantities
in non-equilibrium. This means that at this stage, we were able to reproduce and
understand from a qualitative point of view the transition between microphases, and
the corresponding Non-Newtonian behaviour. However, the possibility of exploring
such scales and retrieve these particular capabilities of structured fluids allow a
possible interaction between data that is obtained at this level and models that are used
to explore different time scales (e.g. the macroscale by computational fluid dynamics).
It is clear that many possible parameters can be obtained and monitored regarding
micelles in both equilibrium and non-equilibrium. Micelles can act as a population of
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different objects that grow, coalesce, break and interact between them.
The capability of predicting and coupling these phenomena observed by DPD

with real units, paves the way to new and more sophisticated models that are already
present to describe populations from a macroscopic point of view. Empirical models
could be replaced by more sophisticated models that take into account the real
physics of underlying phenomena that are happening at microscale and that are
truly considering both chemistry and physics of the system. A possible approach
could be related to the use of non-dimensional numbers (e.g. based on the relaxation
time of the microstructures), that should help the conversion between real and DPD
units, at a more general and universal point of view. New DPD models have been
released in these last years to overcome the problems previously illustrated, such
as Smooth-DPD, by Espanol (Español and Revenga, 2003) that seems to be suitable
for the direct comparison with real system. Computational models to describe the
evolution of populations, without taking into account any information related to the
microstructures were also included into this work and explored by CFD.

7.2 Emulsions
Here we report our findings, strategies and limitations related to emulsions

simulated with CFD:

On the simulation setup

The aim of CFD simulations was to conclude and give a complete overview on the
possibility of simulating complex fluids at different levels in order to obtain as much
information as possible that can help and improve the design of mixing equipment.
Stirring caused by impellers and anchors is the core aspect in manufacturing complex
fluids that are used in food, personal care and home care industries. Thanks to CFD,
it becomes possible to explore flow fields and specific patterns that are useful in
identifying dead mixing zones. Mixing time is an extremely important parameter that
tracks the rate at which a secondary phase is homogeneously mixed into the primary
phase. By varying layouts (anchor, impellers, baffles…), mixing can be extremely
different. Also, when a secondary phase is introduced into a continuous phase, the
dimension of the droplets that are generated by mixing becomes a fundamental
information because it drives many important phenomena, such as mass and heat
transfer, viscosity, stability of the mixture. We simulated a system composed by water
and an immiscible oil phase together with surfactant in order to derive the setup and
verify those models used to describe the modification of the droplet size distribution.
The system that we tested is a laboratory scale mixer, with a working capacity of 6
litres, and containing an anchor and an inclined sawtooth impeller. We tested small
fractions of silicone oil with different viscosities and densities into water with the
presence of parts per million of surfactant (SLES). In order to perform these simulations

173



7 – Conclusions

using population balance approach, we started by reproducing the flow field of the
mixer.

On the validation of the model

The given constructor power number was compared to different sets of simulations.
In particular we tested many different approaches to validate the flow field developed
by the rotation of the impeller. Different turbulence models have been validated on
different meshes with increasing resolutions. MRF was used to reproduce the rotation
of the fluid region surrounding the impeller. Another possible approach would have
been the direct rotation of the mesh where there is contact between impeller and
fluid regions. However, we kept a good refinement of the elements in the boundaries
between rotating and fixed region, and imposed rotation of the fluid elements contained
in a small region surrounding the impeller to reproduce this motion. The flow was
slowly developed starting from lower rotation speed, up to fully turbulent region.
This helped the convergence of the parameters, since starting at 3000 RPM caused
crashes in the simulation. The convergence of the residuals continuity, velocity and
turbulence parameters was kept below 1 × 10−6, and sub relaxation factors have been
used. Refining the mesh over a certain limit, by doubling the number of elements,
was not worth the increased simulation time. It was observed that the power number
obtained by the evaluation of the torque acting on the system and the power dissipated
by the impeller was not changing if more elements were added. It was clear that
fully hexagonal meshes gave more accurate results and reduced computational time,
compared to the fully tetrahedral meshes. Ordered elements gave faster convergence
and we decided to switch to fully hexahedral meshes for all the simulations. Results
provided small differences between the computed power number and the constructor
power numbers. Those differences can be attributed to a simple aspect that has to
be considered. The calculation of the constructor power number is done by putting
the impeller in vertical position in an empty tank. This is not the case of our mixer,
where the impeller is inclined by eight degrees on the 𝑧-axis and anchor with baffles
is present. However, all the simulations with different meshes and turbulence models
gave us similar results regarding the computed power number, also varying the
rotation speed of the impeller. We also tested the system by removing the anchor, and
very small deviations from the original testcase were recorded.

When the disperse phase was introduced, we repeated the tests previously done on
the single-phase system, by using the setup we identified to be the better performing.
With the introduction of the disperse phase, turbulence was dumped by a small amount,
but the general behaviour of the flowwas not changed, and the power numberwas again
found to be constant and similar to the previous cases. Disperse phase was patched
into the system, assuming a uniform distribution of the oil, due to the previous effect
of the stirring of the anchor. We re-computed the calculation of the flow field for all
the different silicone oils (different viscosity and density). Again, residuals were taken
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below 1 × 10−6 for all the relevant constants, and after that, PBE was solved. In our
first attempt, we verified if the PBE could have been decoupled from the flow field.
Due to the low volume fraction of the disperse phase and no effect of the droplet
size on the viscosity of the mixture, the two testcases (fully coupled and decoupled)
gave very similar results. We decided that the saving computational time (almost two
minutes for each timestep. Simulation time of one timestep fully decoupled was three
minutes and thirty seconds) was a priority due to the number of timesteps that had
been simulated. Also, no advantage was found in running a fully coupled solver. Even
if the coupling was not necessary, we updated every 50 simulated seconds the velocity
field by assuming the correct DSD in fully decoupled solver. It has to be remarked that,
when the volume fraction of the disperse phase is higher (e.g. vol. frac. > 1%, usually
up to 10%), solving PBE and velocity field in a decoupled way is not possible, because
the size of the droplets may affect the viscosity of the mixture, hence the velocity field
developed by the impeller can have a different pattern and a drawback on the evolution
of the DSD.

On the model tuning

By assuming the decoupling between scales, we were also able to run simulations
by using the MATLAB code, as an example of the evolution of the DSD in one single
cell. Each MATLAB simulation was almost hundred times faster than the full CFD
simulation. This gave us the possibility to implement, explore and tune, if needed,
different kernels to describe the breakage. In all the cases, we removed any coalescence
effect, because the presence of SLES in the system, which is a very common surfactant
used in many products, inhibit this phenomenon. In our simulations, we implemented
and tested mainly three different kernels, in order to predict the evolution of the droplet
size distribution. The three kernels, Laakkonen-Alopaeus, Coulaloglou-Tavlarides and
Podgorska-Baldyga, are able to predict relevant phenomena only in the inertial
subrange. If the droplets are too small (i.e. their dimension is below the Kolmogorov
length scale), new models, that are able to describe the viscous sub-regime, have to be
implemented and tested. In our testcases, experiments reported equilibrium droplet
size that was always above the Kolmogorov length scale, hence we were able to use
the previously discussed kernels.

On the model limitations

A comment on the use of the Laakkonen kernel must be done. In this kernel, the
term preceding the error function, contains the turbulence dissipation energy and a
constant. If we perform a dimensional analysis and compare Laakkonen and Tavlarides,
we can see that in CT kernel, there is a diameter at denominator, such that the pre-
exponential term has the dimension of a frequency. This does not apply to LA, where
instead the empirical tuning constant is dimensional. This element has raised many
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arguments among the experts of the area, and here comes the necessity of finding more
universal forms of the kernels. LA kernel, even though gives better results, lack of some
physics. Its final equation was indeed obtained by modelling many different empirical
tests.This does not mean that the kernel is wrong, and actually the predictions of LA are
able to detect phenomena that are ignored by the other kernels, that are obtained only
thanks to these empirical secondary effects. This comment can be also used to explain
why the kernel does not predict accurate resultswhen the viscosity of the disperse phase
is higher that a certain value. The system and the solution of the PBE model that has
been used, ensures that when a particle breaks, two identical daughters are generated
(similar volume and shape, mass is conserved). Also, we always assumed a log-normal
distribution for the droplets that are obtained in our system, even at high viscosity. The
kernel and the PBE is then able to reproduce the evolution of the DSD, for structured
fluids if these hypotheses are valid. However, this is not the case of structured fluids
with high viscosities.

First of all, we should carefully analyze how droplets break in the case of high
viscosity fluids. Experimental evidences prove that the breakage is not binary, but
instead from each droplet, due to extreme elongation and deformation resisted by the
high viscosity, an high number of droplets can be formed. In general two or three
bigger droplets may be obtained and surrounded by hundreds of smaller ones.

This behavior is however lost when the concentration of the disperse phase becomes
higher, and binary breakage can be assumed if the concentration of the disperse phase
is high (50% or more). The differences in the breakage event, may also cause the DSD to
not follow the log-normal distribution but to become bimodal or even more complex.
In cases of extremely high viscosity the distribution becomes extremely wide, and it
spans over orders of magnitude. For these reasons the way in which PBE has been used
in this work, may be able to capture only one peak of these anomalous distributions,
which is, indeed, quite far from the 𝑑32 diameter predicted in the experiments. So if one
wants to use the kernels to describe such complicated systems, fine tuning are required
on the empirical constants, in order to reproduce and include those extra phenomena
that are not explicitly accounted for in the original form of the kernel. This is not the
case of the low-viscosity oil, where the distributions may be described as log-normal
and the breakage event can be assumed binary without committing any particular error.
For those cases, LA kernel that has been extensively tested on similar mixtures but on
different testcases, is able to perfectly reproduce the evolution of the DSD in time for all
the mixtures. In future works, the use of the BP kernel could overcome the limitations
related to the empirical nature of LA kernel.
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Codes

A.1 LAMMPS file
In this appendix, a simulation setup file is reported. Tests can be performed with

LAMMPS 17_Feb_2016.

pluronic.lmp

Listing A.1: pluronic.lmp
1 u n i t s l j
2 v a r i a b l e ndim equa l 3
3
4 v a r i a b l e x s i z e equa l 30
5 v a r i a b l e y s i z e equa l 30
6 v a r i a b l e z s i z e equa l 30
7
8 v a r i a b l e rhop equa l 3
9 v a r i a b l e p l u r c h a i n equa l 15
10 v a r i a b l e npa r t equa l ( $ { x s i z e } ∗ $ { y s i z e } ∗ $ { z s i z e } ) ∗ $ { rhop }
11 v a r i a b l e percn equa l 0 . 5 5
12 v a r i a b l e wBea equa l (1−$ { percn } ) ∗ $ { npa r t }
13 v a r i a b l e p lBeads equa l $ { percn } ∗ $ { npa r t } / $ { p l u r c h a i n }
14
15 v a r i a b l e kb equa l 1 . 0
16 v a r i a b l e T equa l 1 . 0
17 v a r i a b l e c u t o f f equa l 1 . 0
18 v a r i a b l e gamma equa l 4 . 5
19
20 t ime s t e p 0 . 0 1
21 d imens ion 3
22
23 a t om_s t y l e hybr i d bond dpd
24 boundary p p p
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25 comm_modify v e l yes c u t o f f 1
26
27 l a t t i c e none 1
28 r eg i on mybox pr ism 0 $ { x s i z e } 0 $ { y s i z e } 0 $ { z s i z e } 0 0 0
29 c r e a t e _ box 3 mybox bond / t ype s 3 e x t r a / bond / per / atom 1
30 molecu l e polymer mo lecu l e . t x t
31
32 c r e a t e _ a t oms 1 random $ { wBeads } 123445 NULL
33 c r e a t e _ a t oms 1 random $ { p lBeads } 14567 NULL mol polymer 100766
34
35 group water type 1
36 group polymer type 3
37
38 mass ∗ 1 . 0
39
40 ne ighbor 1 . 0 bin
41 ne igh_modi fy de l ay 0 every 6 check no
42
43 bond_ s t y l e harmonic
44 bond_coe f f 1 4 0 . 0 1 . 0
45 bond_coe f f 2 4 0 . 0 1 . 0
46 bond_coe f f 3 4 0 . 0 1 . 0
47 p a i r _ s t y l e dpd $ { T } $ { c u t o f f } 928948
48
49 p a i r _ c o e f f 1 1 2 5 . 0 $ { gamma }
50 p a i r _ c o e f f 1 2 2 6 . 0 5 $ { gamma }
51 p a i r _ c o e f f 2 2 2 5 . 0 $ { gamma }
52 p a i r _ c o e f f 1 3 3 8 . 4 $ { gamma }
53 p a i r _ c o e f f 2 3 4 8 . 9 $ { gamma }
54 p a i r _ c o e f f 3 3 2 5 . 0 $ { gamma }
55
56 thermo 1000
57 minimize 1 . 0 e−5 1 . 0 e−7 1000 10000
58
59 v a r i a b l e s r a t e equa l 0 . 0 1
60 v a r i a b l e ve lramp equa l $ { s r a t e } ∗ $ { y s i z e }
61
62 dump f i r s t polymer xyz 5000 v ideo . xyz
63
64 f i x 1 a l l nve
65 run 200000
66 v e l o c i t y a l l ramp vx 0 $ { ve lramp } y 0 $ { y s i z e }
67 f i x shea r a l l deform 1 xy e r a t e $ { s r a t e } remap v f l i p yes u n i t s box
68 v a r i a b l e v i s c equa l −pxy / ( v _ s r a t e )
69 f i x vave a l l ave / t ime 10 100 1000 v _v i s c ave running s t a r t 000
70 dump dumpnew polymer xyz 5000 v ideo2 . xyz
71 t h e rmo_ s t y l e custom s t e p temp p r e s s pxy v_v i s c f _vave
72
73 run 1000000
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molecule.txt

Listing A.2: molecule.txt
1
2 # T r i b l o c k Copolymer : P l u r o n i c 64 ABA 3−9−3
3 15 atoms
4 14 bonds
5 0 ang l e s
6 0 d i h e d r a l s
7 0 improper s
8
9 Coords
10 1 0 0 0
11 2 1 . 0 0 0
12 3 2 . 0 0 0
13 4 3 . 0 0 0
14 5 4 . 0 0 0
15 6 5 . 0 0 0
16 7 6 . 0 0 0
17 8 7 . 0 0 0
18 9 8 . 0 0 0
19 10 9 . 0 0 0
20 11 1 0 . 0 0 0
21 12 1 1 . 0 0 0
22 13 1 2 . 0 0 0
23 14 1 3 . 0 0 0
24 15 1 4 . 0 0 0
25
26 Types
27
28 1 1
29 2 1
30 3 1
31 4 2
32 5 2
33 6 2
34 7 2
35 8 2
36 9 2
37 10 2
38 11 2
39 12 2
40 13 1
41 14 1
42 15 1
43
44 Bonds
45
46 1 1 1 2
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47 2 1 2 3
48 3 2 3 4
49 4 3 4 5
50 5 3 5 6
51 6 3 6 7
52 7 3 7 8
53 8 3 8 9
54 9 3 9 10
55 10 3 10 11
56 11 3 11 12
57 12 2 12 13
58 13 1 13 14
59 14 1 14 15

A.2 Python Clustering Algorithm
fnc.py

1 # C l a s s : T imeS t ep
2 #Comment : I t c o n t a i n s p o s i t i o n s f o r d i f f e r e n t PPO atoms a t d i f f e r e n t

t i m e s t e p s )
3 # Param :
4 # @number : t h e ” l a b e l o f t h e atoms ”
5 # @xCoord : x p o s i t i o n o f one atom
6 # @yCoord : y p o s i t i o n o f one atom
7 # @zCoord : z p o s i t i o n o f one atom
8 # @beadHis to : number o f b ead s p e r c l u s t e r
9 # @cha inH i s t o : number o f c h a i n s p e r c l u s t e r
10 c l a s s TimeStep ( objec t ) :
11 number = [ ]
12 xCoord = [ ]
13 yCoord = [ ]
14 zCoord = [ ]
15 beadHi s to = [ ]
16 cha i nH i s t o = [ ]
17
18 # F u n c t i o n :
19 #Comment : I n i t i a l i z e t h e o b j e c t . I t a s s i g n s t h e l i s t s t o t h e o b j e c t
20 def _ _ i n i t _ _ ( s e l f , number , xCoord , yCoord , zCoord , beadHis to , c h a i nH i s t o ) :
21 s e l f . number = number
22 s e l f . xCoord = xCoord
23 s e l f . yCoord = yCoord
24 s e l f . zCoord = zCoord
25 s e l f . b eadHi s to = beadHi s to
26 s e l f . c h a i nH i s t o = cha i nH i s t o
27
28
29 # F u n c t i o n :
30 #Comment : # F u n c t i o n t o a s s i g n t h e v a l u e s r e ad from th e f i l e t o t h e

o b j e c t s
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31 # Param :
32 # @s e l f : r e f e r e n c e o b j e c t
33 # @atoms : l a b e l o f t h e atom
34 # @xCoord : x c o o r d i n a t e
35 # @yCoord : y c o o r d i n a t e
36 # @zCoord : z c o o r d i n a t e
37 def add_atom ( s e l f , atoms , mxCoord , myCoord , mzCoord ) :
38 s e l f . number . append ( atoms )
39 s e l f . xCoord . append ( f l o a t ( mxCoord ) )
40 s e l f . yCoord . append ( f l o a t ( myCoord ) )
41 s e l f . zCoord . append ( f l o a t ( mzCoord ) )
42
43 # F u n c t i o n :
44 #Comment : I t t a k e s a l i s t and t h e number o f c l u s t e r s and c r e a t e a

sma l l ma t r i x which c o u n t s a l l t h e o c c u r r e n c i e s o f a v a l u e i n t o t h e
l i s t

45 # Param :
46 # @hi s t o : l i s t c o n t a i n i n g a l l t h e c l u s t e r s i z e s
47 # @s ize : number o f c l u s t e r s
48 # Re tu rn :
49 #@matrix : t h e ma t r i x c o u n t i n g t h e o c c u r r e n c i e s
50 def AverageManager ( h i s t o , s i z e , ma t r i x ) :
51 columns = 2
52 for c l u s t e r _ s i z e in h i s t o :
53 for mini_row in range ( 0 , 5 0 0 0 ) :
54 i f ( ma t r i x [ mini_row ] [ 0 ] != c l u s t e r _ s i z e ) and ( ma t r i x [ mini_row ] [ 0 ]

== 0 ) and ( ma t r i x [ mini_row ] [ 1 ] != 1 ) :
55 ma t r i x [ mini_row ] [ 0 ] = c l u s t e r _ s i z e
56 ma t r i x [ mini_row ] [ 1 ] += 1
57 break
58 e l i f ( ma t r i x [ mini_row ] [ 0 ] == c l u s t e r _ s i z e ) :
59 ma t r i x [ mini_row ] [ 1 ] += 1 ;
60 break
61 return ( ma t r i x )
62
63
64 def s o r t i n gH i s t o g r ams ( norma l i z ed_h i s tog ram_x , no rma l i z ed_h i s t og ram_y ) :
65 o rde r ed_no rma l i z ed_h i s t og r am_y = [ ]
66 o rde r ed_no rma l i z ed_h i s t og r am_x = sorted ( no rma l i z ed_h i s t og r am_x )
67 for x in range ( 0 , len ( o r d e r ed_no rma l i z ed_h i s t og r am_x ) , 1 ) :
68 for y in range ( 0 , len ( no rma l i z ed_h i s t og r am_x ) , 1 ) :
69 i f ( no rma l i z ed_h i s t og r am_x [ y ] == o rde r ed_no rma l i z ed_h i s t og r am_x [ x

] ) :
70 o rde r ed_no rma l i z ed_h i s t og r am_y . append ( no rma l i z ed_h i s t og ram_y [ y ] )
71 return o rde r ed_no rma l i z ed_h i s t og r am_y
72
73 def r eBu i l d i n gH i s t o g r ams ( o rde r ed_norma l i z ed_h i s t og ram_x ,

o rde r ed_no rma l i z ed_h i s t og r am_y ) :
74 r e B u i l t H i s t o = [ ]
75 for x_e lement in range ( 0 , len ( o r d e r ed_no rma l i z ed_h i s t og r am_x ) , 1 ) :
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76 b i n _ s i z e = in t ( round ( o r d e r ed_no rma l i z ed_h i s t og r am_y [ x_e lement ] ∗ 1 0 )
)

77 for y_e lement in range ( 0 , b i n _ s i z e , 1 ) :
78 r e B u i l t H i s t o . append ( o rde r ed_no rma l i z ed_h i s t og r am_x [ x_e lement ] )
79 return r e B u i l t H i s t o
80
81
82 def pb c _d i s t a n c e _ma t r i x ( c o o r d i n a t e s , box ) :
83 import numpy as np
84 x d i s t a n c e = 0 . 0
85 y d i s t a n c e = 0 . 0
86 z d i s t a n c e = 0 . 0
87 d i s t a n c e = 0 . 0
88 mat r i x_d imens ion = len ( c o o r d i n a t e s )−1
89 s q _ d i s t = 0 . 0
90 j =0
91 d i s t a n c e _ma t r i x = [ [ 0 for x in range ( ma t r i x_d imens ion ) ] for y in range

( ma t r i x_d imens ion ) ]
92 for i in range ( 0 , mat r ix_d imens ion , 1 ) :
93 j =0
94 i f i != j :
95 while j < i :
96 x d i s t a n c e = c o o r d i n a t e s [ i ] [ 0 ] − c o o r d i n a t e s [ j ] [ 0 ]
97 i f x d i s t a n c e > 0 . 5 ∗ box :
98 x d i s t a n c e −=box
99 y d i s t a n c e = c o o r d i n a t e s [ i ] [ 1 ] − c o o r d i n a t e s [ j ] [ 1 ]
100 i f x d i s t a n c e > 0 . 5 ∗ box :
101 y d i s t a n c e −=box
102 z d i s t a n c e = c o o r d i n a t e s [ i ] [ 2 ] − c o o r d i n a t e s [ j ] [ 2 ]
103 i f x d i s t a n c e > 0 . 5 ∗ box :
104 z d i s t a n c e −=box
105 s q _ d i s t = x d i s t a n c e ∗ ∗ 2 + y d i s t a n c e ∗ ∗ 2 + z d i s t a n c e ∗ ∗ 2
106 d i s t a n c e = np . s q r t ( s q _ d i s t )
107 d i s t a n c e _ma t r i x [ i ] [ j ] = d i s t a n c e
108 d i s t a n c e _ma t r i x [ j ] [ i ] = d i s t a n c e
109 j +=1
110 return d i s t a n c e _ma t r i x
111 def av e r ag e_h i s t o g r ams_ i n_ t ime ( t imes , s t a r t i n g _ i n t e r v a l ,

e n d i n g _ i n t e r v a l , f r amesk ip , f r am e _ c o l l e c t i o n ) :
112 AverageMatr ix = [ [ 0 for x in range ( 2 ) ] for y in range ( 5 0 0 0 ) ]
113 # p r i n t ( ” i n s i d e and o u t s i d e ” )
114 import ma t p l o t l i b . pyp l o t as p l t
115 import ma t p l o t l i b . mlab as mlab
116 c lusterRowOne = [ ]
117 clusterRowTwo = [ ]
118 ave r age_h i s t og r am = [ ]
119 ave rage_h i s t og ram_x = [ ]
120 ave rage_h i s t og ram_y = [ ]
121 c omp a t i b i l i t y _ h i s t o g r am = [ ]
122 e n d i n g _ i n t e r v a l = in t ( e n d i n g _ i n t e r v a l / f r am e _ c o l l e c t i o n )
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123 c o r r e c t e d _ i n t e r v a l = in t ( s t a r t i n g _ i n t e r v a l / f r am e _ c o l l e c t i o n )
124 print ( e n d i n g _ i n t e r v a l )
125 print ( c o r r e c t e d _ i n t e r v a l )
126 print ( ( e n d i n g _ i n t e r v a l −( c o r r e c t e d _ i n t e r v a l ) ) )
127 for coun t e r in range ( c o r r e c t e d _ i n t e r v a l , e n d i n g _ i n t e r v a l + 1 , 1 ) :
128 h i s tog ram = t imes [ coun t e r ] . c h a i nH i s t o
129 s i z e = len ( h i s t og ram )
130 tempMatr ix = AverageManager ( h i s togram , s i z e , AverageMatr ix )
131 # p r i n t ( c o u n t e r )
132 for x in range ( 0 , s i z e , 1 ) :
133 i f ( AverageMatr ix [ x ] [ 0 ] != 0 ) :
134 c lusterRowOne . append ( AverageMatr ix [ x ] [ 0 ] )
135 clusterRowTwo . append ( AverageMatr ix [ x ] [ 1 ] )
136 for x in range ( 0 , len ( c lusterRowTwo ) , 1 ) :
137 ave rage_h i s t og ram_y . append ( c lusterRowOne [ x ] ∗ clusterRowTwo [ x ] )
138 ave rage_h i s t og ram_x . append ( c lusterRowOne [ x ] )
139 for x in range ( 0 , len ( c lusterRowTwo ) , 1 ) :
140 for y in range ( 0 , in t ( c lusterRowTwo [ x ] ) , 1 ) :
141 ave r age_h i s t og r am . append ( c lusterRowOne [ x ] )
142 # p r i n t ( Ave rag eMa t r i x )
143 print ( ” End ” )
144 f i g _ 3 = p l t . f i g u r e ( )
145 dx = f i g _ 3 . a dd_ subp l o t ( 1 1 1 )
146 min_h i s t = 0
147 max_hi s t = 0
148 h i s t _ b i n = 0
149 min_h i s t = min ( a v e r age_h i s t og r am )
150 max_hi s t = max ( a v e r age_h i s t og r am )
151 h i s t _ b i n = max ( 1 0 , in t ( max_h i s t − min_h i s t ) )
152 from s c i p y . s t a t s import norm
153 import ma t p l o t l i b
154 (mu , sigma ) = norm . f i t ( a v e r age_h i s t og r am )
155 n , b ins , p a t ch e s = dx . h i s t ( ave rage_h i s tog ram , normed =1 , f a c e c o l o r = ’

green ’ , a l pha = 0 . 7 5 , b i n s = ’ au to ’ )
156 y = mlab . normpdf ( b ins , mu , s igma )
157 l = dx . p l o t ( b ins , y , ’ r−− ’ , l i n ew i d t h =2 )
158 p l t . t i t l e ( ’ His togram : c l u s t e r s i z e ’ )
159 p l t . x l a b e l ( ’ Dimension ’ )
160 dx . s e t _ x l im ( xmin =0 )
161 p l t . y l a b e l ( ’ Frequency ’ )
162 p l t . g r i d ( True )
163 p l t . s a v e f i g ( ’ a v e r a g e _ d i s t _ ’ + s t r ( e n d i n g _ i n t e r v a l ∗ f r am e _ c o l l e c t i o n ) + ’ .

png ’ )
164 p l t . c l o s e ( )
165 f i g _ 4 = p l t . f i g u r e ( )
166 ex = f i g _ 4 . a dd_ subp l o t ( 1 1 1 )
167 o rde r ed_no rma l i z ed_h i s t og r am_x = [ ]
168 o rde r ed_no rma l i z ed_h i s t og r am_y = [ ]
169 max_y = max ( ave r age_h i s t og ram_y )
170 no rma l i z ed_h i s t og ram_x = ave r age_h i s t og ram_x
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171 norma l i z ed_h i s t og ram_y = [ y / max_y for y in ave rage_h i s t og ram_y ]
172 o rde r ed_no rma l i z ed_h i s t og r am_x = sorted ( no rma l i z ed_h i s t og r am_x )
173 o rde r ed_no rma l i z ed_h i s t og r am_y = so r t i n gH i s t o g r ams (

norma l i z ed_h i s tog ram_x , no rma l i z ed_h i s t og ram_y )
174 c omp a t i b i l i t y _ h i s t o g r am = r eBu i l d i n gH i s t o g r ams (

o rde r ed_norma l i z ed_h i s t og ram_x , o rde r ed_no rma l i z ed_h i s t og r am_y )
175 ex . p l o t ( o rde r ed_norma l i z ed_h i s t og ram_x , o rde r ed_norma l i z ed_h i s t og ram_y

, c o l o r = ’ r ’ , marker = ’ o ’ , a l pha = 0 . 7 5 )
176 p l t . t i t l e ( ’ Normal i zed P l o t ’ )
177 p l t . x l a b e l ( ’ S i z e ’ )
178 p l t . y l a b e l ( ’ Frequency ’ )
179 p l t . g r i d ( True )
180 p l t . s a v e f i g ( ’ n o rma l i z e d _p l o t _ ’ + s t r ( e n d i n g _ i n t e r v a l ∗ f r am e _ c o l l e c t i o n ) +

’ . png ’ )
181 p l t . c l o s e ( )
182 f i g _ 5 = p l t . f i g u r e ( )
183 f x = f i g _ 5 . a dd_ subp l o t ( 1 1 1 )
184 min_comp_hist = 0
185 min_comp_hist = min ( c omp a t i b i l i t y _ h i s t o g r am )
186 max_comp_hist = max ( c omp a t i b i l i t y _ h i s t o g r am )
187 b in_comp_h i s t = max ( 1 0 , in t ( max_comp_hist − min_comp_hist ) )
188 f x . h i s t ( c ompa t i b i l i t y _ h i s t o g r am , b i n s = ’ auto ’ , f a c e c o l o r = ’ green ’ , a l pha

= 0 . 7 5 )
189 p l t . t i t l e ( ’ Normal i zed Hisrogram ’ )
190 p l t . x l a b e l ( ’Mimmo ’ )
191 p l t . y l a b e l ( ’ A l e s s i o Domenico Lav ino ’ )
192 p l t . g r i d ( True )
193 p l t . s a v e f i g ( ’ n o rma l i z e d _ d i s t _ ’ + s t r ( e n d i n g _ i n t e r v a l ∗ f r am e _ c o l l e c t i o n ) +

’ . png ’ )
194 p l t . c l o s e ( )
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cluster.py

1 # ! / u s r / b i n / env py thon3
2 # ! / u s r / b i n / py thon3
3 # E v a l u a t i o n o f number o f c l u s t e r s f o r d i f f e r e n t t i m e s t e p s i n a xyz

f i l e .
4
5 from f n c import ∗
6 # from gu i impo r t ∗
7 ppo = 9
8 box = 30
9 conc = 0 . 0 5
10 f r amesk ip = 2
11 f l a g _ h i s t = 0
12 f l a g _ a v e = 0
13 f l a g _ p b c = 0
14 i n t e r v a l = 250000
15 RHO = 3
16 FRAME_COLLECTION = 500
17 PLURCHAIN = 15
18 t imecoun t e r = [ ]
19 CheckC lus t e r = [ ]
20 c h e c k _ s t a t u s = 0
21
22 import s k l e a r n
23 import numpy as np
24 from s k l e a r n import c l u s t e r
25 from s k l e a r n . c l u s t e r import DBSCAN
26 from s k l e a r n import me t r i c s
27 from s k l e a r n . d a t a s e t s . s amp l e s _g ene r a t o r import make_blobs
28 from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
29 import warnings
30 warnings . f i l t e r w a r n i n g s ( ” i gno r e ” )
31 import ma t p l o t l i b . pyp l o t as p l t
32 from mp l _ t o o l k i t s . mplot3d import Axes3D
33 import e r rno
34 import s ubp ro c e s s
35 import os
36 import math as mth
37 from math import s q r t
38 import t r a c e b a c k
39 import sys
40 import py lab as p l
41 from s c i p y . s p a t i a l . d i s t a n c e import pd i s t , square form
42 import s c i p y
43 from c o l l e c t i o n s import Counter
44 sys . t r a c e b a c k l i m i t = None
45 f i l e n ame = ” v ideo . xyz ”
46 t imes = [ TimeStep ( [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ) for _ in range ( 5 0 0 0 ) ]
47 print ( ” I am c o l l e c t i n g c o o r d i n a t e s ” )
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48 xBeads = box ∗ box ∗ box ∗RHO∗ conc /PLURCHAIN
49 Beads = xBeads ∗ ppo
50 c o o r d i n a t e s = [ ]
51
52 xyz = open ( f i l ename , ” r ” )
53 c o o r d i n a t e _ c oun t e r = 0
54 for l i n e in xyz :
55 try :
56 atom , x , y , z = l i n e . s p l i t ( )
57 index = in t ( c o o r d i n a t e _ c oun t e r / in t ( Beads ) )
58 t imes [ index ] . add_atom ( atom , x , y , z )
59 c o o r d i n a t e _ c oun t e r += 1
60 except Va lueE r ro r :
61 pass
62 xyz . c l o s e ( )
63 box_norm = 0
64 c l u s t e r S i z e = [ ]
65 c l u s t e rGy rRad = [ ]
66 print ( ” I am c r e a t i n g c l u s t e r s and p l o t t i n g . . . ” )
67 for j in range ( 0 , index +1 , f r amesk ip ) :
68
69 c o o r d i n a t e s = np . co lumn_s tack ( ( t imes [ j ] . xCoord , t imes [ j ] . yCoord ,

t imes [ j ] . zCoord ) )
70 coord ina t e s_norm = c o o r d i n a t e s / box
71 d i s t a n c e _ma t r i x = [ [ 0 for x in range ( len ( c o o r d i n a t e s [ 0 ] ) ) ] for y in

range ( len ( c o o r d i n a t e s [ 0 ] ) ) ]
72 i f f l a g _ p b c == 1 :
73 box_norm = box / box
74 d i s t a n c e _ma t r i x = pb c _d i s t a n c e _ma t r i x ( c o o r d i n a t e s , box )
75 db = DBSCAN( eps = 2 . 2 , me t r i c = ’ precomputed ’ ) . f i t ( d i s t a n c e _ma t r i x )
76 core_samples_mask = np . z e r o s _ l i k e ( db . l a b e l s _ , d type=bool )
77 core_samples_mask [ db . c o r e _ s amp l e _ i n d i c e s _ ] = True
78 l a b e l s = db . l a b e l s _
79
80 e l se :
81 box_norm = box / box
82 db = DBSCAN( eps = 2 . 0 , me t r i c = ’ e u c l i d e a n ’ , a l g o r i t hm= ’ auto ’ , p=None ) .

f i t ( c o o r d i n a t e s )
83 core_samples_mask = np . z e r o s _ l i k e ( db . l a b e l s _ , d type=bool )
84 core_samples_mask [ db . c o r e _ s amp l e _ i n d i c e s _ ] = True
85 l a b e l s = db . l a b e l s _
86 c u r r e n t _ c l u s t e r s = len ( se t ( l a b e l s ) )
87 n _ c l u s t e r s _ = len ( se t ( l a b e l s ) ) − ( 1 i f −1 in l a b e l s e l se 0 )
88 import ma t p l o t l i b . pyp l o t as p l t
89 f i g = p l t . f i g u r e ( )
90
91 i f f l a g _ h i s t == 1 :
92 ax = f i g . a dd_ subp l o t ( 1 2 1 , p r o j e c t i o n = ’ 3d ’ )
93 bx = f i g . a dd_ subp l o t ( 1 2 2 )
94 e l se :
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95 ax = f i g . a dd_ subp l o t ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )
96 u n i q u e _ l a b e l s = se t ( l a b e l s )
97 c o l o r s = p l t . cm . S p e c t r a l ( np . l i n s p a c e ( 0 , 1 , len ( u n i q u e _ l a b e l s ) ) )
98 for k , c o l in zip ( u n i qu e _ l a b e l s , c o l o r s ) :
99 i f k == −1:
100
101 c o l = ’ k ’
102
103 class_member_mask = ( l a b e l s == k )
104 xy = c o o r d i n a t e s [ c lass_member_mask & core_samples_mask ]
105
106 ax . p l o t ( xy [ : , 0 ] , xy [ : , 1 ] , xy [ : , 2 ] , ’ o ’ , ma r k e r f a c e c o l o r = co l ,
107 marke r edgeco lo r = ’ k ’ , ma rke r s i z e =14 )
108 # p r i n t ( ” # # # # # # # # # # # # # # # # I n i z i o Gy ra t i o n

# # # # # # # # # # # # # # # # # # # # # ” )
109 # p r i n t ( ” XCoord : ” )
110 # p r i n t ( xy [ : , 0 ] )
111 i f ( len ( xy [ : , 0 ] ) != 0 ) and ( j >1000000 /FRAME_COLLECTION ) :
112 xCm = (sum ( xy [ : , 0 ] ) / len ( xy [ : , 0 ] ) )
113 xDistCm = [ x − xCm for x in xy [ : , 0 ] ]
114 xDistCmSquared = [ i ∗ ∗ 2 for i in xDistCm ]
115
116 # p r i n t ( X_d i s t_cm )
117 # p r i n t ( X_d i s t _ cm_ squa r ed )
118 # p r i n t ( ” X_cm : ” )
119 # p r i n t ( X_cm )
120 # p r i n t ( ” YCoord : ” )
121 # p r i n t ( xy [ : , 1 ] )
122 yCm = (sum ( xy [ : , 1 ] ) / len ( xy [ : , 1 ] ) )
123 yDistCm = [ y − yCm for y in xy [ : , 1 ] ]
124 yDistCmSquared = [ i ∗ ∗ 2 for i in yDistCm ]
125 # p r i n t ( ” Y_cm : ” )
126 # p r i n t ( Y_cm )
127 # p r i n t ( ” ZCoord : ” )
128 # p r i n t ( xy [ : , 2 ] )
129 zCm = (sum ( xy [ : , 2 ] ) / len ( xy [ : , 2 ] ) )
130 zDistCm = [ z − zCm for z in xy [ : , 2 ] ]
131 zDistCmSquared = [ i ∗ ∗ 2 for i in zDistCm ]
132 xyzDistCmSquared = [ x+y+z for x , y , z in zip ( xDistCmSquared ,

yDistCmSquared , zDistCmSquared ) ]
133 # xy zD i s tCmSqua r e dCo r r e c t e d = [ x ∗ 3 / 5 f o r x i n xyzDi s tCmSquared ]
134 xyzDistCmSquaredAv = (sum ( xyzDistCmSquared [ : ] ) / len (

xyzDistCmSquared [ : ] ) )
135 gy r a t i o nRad i u s = s q r t ( xyzDistCmSquaredAv )
136 # xyzDi s tCmRoo t ed = [ s q r t ( x ) f o r x i n xyzDi s tCmSquared ]
137 # g y r a t i o n R a d i u s = ( sum ( xyzDi s tCmRoo t ed ) / l e n ( xyzDi s tCmRoo t ed ) )
138 i f ( len ( xy [ : , 0 ] ) != 0 ) and ( g y r a t i o nRad i u s > 1 ) :
139 c l u s t e r S i z e . append ( round ( ( len ( xy [ : , 0 ] ) / ppo ) ) )
140 c l u s t e rGy rRad . append ( g y r a t i o nRad i u s )
141
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142 # p r i n t ( c l u s t e r S i z e )
143 # p r i n t ( c l u s t e rG y r R a d )
144 print ( g y r a t i o nRad i u s )
145 # p r i n t ( X_d i s t _ cm_ squa r ed )
146 # p r i n t ( Y_d i s t _ cm_ squa r e d )
147 # p r i n t ( Z_d i s t _ cm_ squa r e d )
148 # p r i n t ( XYZ_d i s t _ cm_squar ed )
149 # p r i n t ( ” Y_cm : ” )
150 # p r i n t ( Y_cm )
151 # p r i n t ( ” # # # # # # # # # # # # # # # # F i n e Gy ra t i o n # # # # # # # # # # # # # # # # # # # # # ” )
152 t imes [ j ] . b eadHi s to . append ( len ( xy [ : , 0 ] ) )
153 i f t imes [ j ] . b eadHi s to != 0 :
154 t imes [ j ] . c h a i nH i s t o . append ( round ( ( len ( xy [ : , 0 ] ) / ppo ) ) )
155 ax . p l o t ( xy [ : , 0 ] , xy [ : , 1 ] , xy [ : , 2 ] , ’ o ’ , ma r k e r f a c e c o l o r = co l ,
156 marke r edgeco lo r = ’ k ’ , ma rke r s i z e =6 )
157 c h e c k _ s t a t u s = c h e c k _ s t a t u s + ( len ( xy [ : , 0 ] ) )
158 i f f l a g _ h i s t == 1 :
159 no rma l i z ed_b in = len ( t imes [ j ] . c h a i nH i s t o )
160 bx . h i s t ( t imes [ j ] . cha inH i s to , h i s t t y p e = ’ s t e p f i l l e d ’ )
161 CheckC lus t e r . append ( n _ c l u s t e r s _ )
162 t imecoun t e r . append ( j ∗ FRAME_COLLECTION )
163 p l t . y l im ( ( 0 , 3 0 ) )
164 p l t . x l im ( ( 0 , 3 0 ) )
165 # p l t . z l im ( ( 0 , 3 0 ) )
166 p l t . t i t l e ( ’ E s t ima t ed number o f c l u s t e r s : %d ’ % n _ c l u s t e r s _ )
167 p l t . s a v e f i g ( ’ t ime s t e p_ ’+ s t r ( ( 1 + j ) ∗ FRAME_COLLECTION ) + ’ . png ’ )
168 p l t . c l o s e ( )
169 i f ( j >= ( index−f r amesk ip ) ) :
170 f i g _ 2 = p l t . f i g u r e ( )
171 cx = f i g _ 2 . a dd_ subp l o t ( 1 1 1 )
172 cx . p l o t ( t imecounte r , CheckClus te r , ’ o ’ , ma rk e r s i z e =6 , l s = ’−− ’ )
173 p l t . t i t l e ( ’ # C l u s t e r Vs Time ’ )
174 p l t . x l a b e l ( ’ T imestep ’ )
175 p l t . y l a b e l ( ’ # C l u s t e r ’ )
176 p l t . s a v e f i g ( ’ c l u s t e r _ ’ + s t r ( j ∗ 5 0 0 ) + ’ . png ’ )
177 p l t . c l o s e ( )
178 f i g _ 3 = p l t . f i g u r e ( )
179 gx = f i g _ 3 . a dd_ subp l o t ( 1 1 1 )
180 gx . p l o t ( c l u s t e r S i z e , c l u s t e rGyrRad , ’ o ’ , ma rk e r s i z e =5 )
181 p l t . t i t l e ( ’ Gyr Rad ’ )
182 p l t . x l a b e l ( ’ S i z e ’ )
183 p l t . y l a b e l ( ’ GyrRad ’ )
184 p l t . s a v e f i g ( ’ gy rRadC lu s t e r _ ’ + s t r ( j ∗ 5 0 0 ) + ’ . png ’ )
185 p l t . c l o s e ( )
186 from s c i p y . op t im i z e import c u r v e _ f i t
187 from py lab import ∗
188 c l u s t e r S i z e = np . a s a r r a y ( [ ( n ) for n in c l u s t e r S i z e ] )
189
190 c l u s t e rGy rRad = np . a s a r r a y ( [ ( t ) for t in c l u s t e rGy rRad ] )
191 m, b = p o l y f i t ( c l u s t e r S i z e , c l u s t e rGyrRad , 1 )
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192 print (m)
193 print ( b )
194 f i g _ 5 = p l t . f i g u r e ( )
195 p l t . p l o t ( c l u s t e r S i z e ,m∗ c l u s t e r S i z e +b , ’−−k ’ )
196 p l t . p l o t ( c l u s t e r S i z e , c l u s t e rGyrRad , ’ o ’ , ma rk e r s i z e =5 )
197 p l t . t i t l e ( ’ Rad Log ’ )
198 p l t . x l a b e l ( ’ S i z e ’ )
199 p l t . y l a b e l ( ’ GyrRad ’ )
200 p l t . s a v e f i g ( ’ GyrRad . png ’ )
201 p l t . c l o s e ( )
202
203 c l u s t e r S i z e = np . a s a r r a y ( [ mth . l og ( n ) for n in c l u s t e r S i z e ] )
204
205 c l u s t e rGy rRad = np . a s a r r a y ( [ mth . l og ( t ) for t in c l u s t e rGy rRad ] )
206
207 from py lab import ∗
208
209 m, b = p o l y f i t ( c l u s t e r S i z e , c l u s t e rGyrRad , 1 )
210
211
212 # p r i n t ( l e n ( c l u s t e r S i z e ) )
213 # p r i n t ( l e n ( c l u s t e rG y r R a d ) )
214 print (m)
215 print ( b )
216 f i g _ 4 = p l t . f i g u r e ( )
217 p l t . p l o t ( c l u s t e r S i z e ,m∗ c l u s t e r S i z e +b , ’−−k ’ )
218 p l t . p l o t ( c l u s t e r S i z e , c l u s t e rGyrRad , ’ o ’ , ma rk e r s i z e =5 )
219 p l t . t i t l e ( ’ Gyr Rad Log ’ )
220 p l t . x l a b e l ( ’ S i z e ’ )
221 p l t . y l a b e l ( ’ GyrRad ’ )
222 p l t . s a v e f i g ( ’ LogGyrRad . png ’ )
223 p l t . c l o s e ( )
224 print ( ” End o f the C l u s t e r Ana l y s i s ” )
225 print ( ” S t a r t i n g Histogram Averag ing ” )
226 i f ( f l a g _ a v e == 1 ) :
227 av e r a g e_h i s t o g r ams_ i n_ t ime ( t imes , 1 000000 , 1 200000 , f r amesk ip ,

FRAME_COLLECTION )
228 # a v e r a g e _ h i s t o g r am s _ i n _ t im e ( t ime s , 5 0 0 0 0 0 , 7 0 0 0 0 0 , f r ame sk i p ,

FRAME_COLLECTION )
229 # a v e r a g e _ h i s t o g r am s _ i n _ t im e ( t ime s , 8 5 0 0 0 0 , 1 0 5 0 0 0 0 , f r ame sk i p ,

FRAME_COLLECTION )
230 print ( ” Check Your R e s u l t s in the ’ R e s u l t s ’ F o l d e r ” )
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A.3 Fluent UDF - Laakkonen kernel

1 / ∗ Sub rou t i n e for the s o l u t i o n o f the Popu l a t i on Ba l ance Equa t ion with
the ∗ /

2 / ∗ Quadra ture Method o f Moments by us ing t h r e e nodes (N=3 ) and s i x
moments ∗ /

3 / ∗ from the moment o f o rde r z e ro to the moment o f o rde r f i v e
∗ /

4
5 / ∗ The s ub r ou t i n e use s SIX user−d e f i n e d s c a l a r s

∗ /
6 / ∗ S0 − moment o f o rde r z e ro

∗ /
7 / ∗ S1 − moment o f o rde r one

∗ /
8 / ∗ S2 − moment o f o rde r two

∗ /
9 / ∗ S3 − moment o f o rde r t h r e e

∗ /
10 / ∗ S4 − moment o f o rde r f ou r

∗ /
11 / ∗ S5 − moment o f o rde r f i v e

∗ /
12
13 / ∗ The s ub r ou t i n e use s 34 user−d e f i n e d memories

∗ /
14 / ∗ M00 − s i z e o f bubb l e c l a s s 1 ( a b s c i s s a 1 )

∗ /
15 / ∗ M01 − s i z e o f bubb l e c l a s s 2 ( a b s c i s s a 2 )

∗ /
16 / ∗ M02 − s i z e o f bubb l e c l a s s 3 ( a b s c i s s a 3 )

∗ /
17 / ∗ M03 − number d e n s i t y o f bubb l e c l a s s 1 ( weight 1 )

∗ /
18 / ∗ M04 − number d e n s i t y o f bubb l e c l a s s 2 ( weight 2 )

∗ /
19 / ∗ M05 − number d e n s i t y o f bubb l e c l a s s 3 ( weight 3 )

∗ /
20 / ∗ M06 − sou r c e term for moment o f o rde r z e ro

∗ /
21 / ∗ M07 − sou r c e term for moment o f o rde r one

∗ /
22 / ∗ M08 − sou r c e term for moment o f o rde r two

∗ /
23 / ∗ M09 − sou r c e term for moment o f o rde r t h r e e

∗ /
24 / ∗ M10 − sou r c e term for moment o f o rde r f ou r

∗ /
25 / ∗ M11 − sou r c e term for moment o f o rde r f i v e

∗ /
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26 / ∗ M12 − REAL moment o f o rde r z e ro
∗ /

27 / ∗ M13 − REAL moment o f o rde r one
∗ /

28 / ∗ M14 − REAL moment o f o rde r two
∗ /

29 / ∗ M15 − REAL moment o f o rde r t h r e e
∗ /

30 / ∗ M16 − REAL moment o f o rde r f ou r
∗ /

31 / ∗ M17 − REAL moment o f o rde r f i v e
∗ /

32 / ∗ M18 − ave rage bubb l e d i ame t e r
∗ /

33 / ∗ M19 − ave rage bubb l e d i ame t e r
∗ /

34 / ∗ M20 − debugging v a r i a b l e
∗ /

35 / ∗ M21 − debugging v a r i a b l e
∗ /

36 / ∗ M22 − debugging v a r i a b l e
∗ /

37 / ∗ M23 − debugging v a r i a b l e
∗ /

38 / ∗ M24 − debugging v a r i a b l e
∗ /

39 / ∗ M25 − debugging v a r i a b l e
∗ /

40 / ∗ M26 − debugging v a r i a b l e
∗ /

41 / ∗ M27 − debugging v a r i a b l e
∗ /

42 / ∗ M28 − debugging v a r i a b l e
∗ /

43 / ∗ M29 − debugging v a r i a b l e
∗ /

44 / ∗ M30 − debugging v a r i a b l e
∗ /

45 / ∗ M31 − check v a r i a b l e to t r a c k where moments a r e c o r r e c t e d
∗ /

46 / ∗ M32 − debugging v a r i a b l e
∗ /

47 / ∗ M33 − debugging v a r i a b l e
∗ /

48 / ∗ M34 − Turbu lence i n t e g r a l Length s c a l e ∗ /
49 / ∗ M35 − a l p h a _ x _v i s c ∗ /
50 # i n c l u d e ” ud f . h ”
51 # i n c l u d e ”mem . h ”
52 # i n c l u d e ” sg . h ”
53 # i n c l u d e ” sg_mem . h ”
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54 # i n c l u d e ” sg_mphase . h ”
55
56
57 / ∗ Dens i ty o f the gas ( d i s p e r s e d ) phase , kg /m3 ∗ /
58 # d e f i n e rho_g 946
59
60 / ∗ Desn i ty o f the l i q u i d ( con t inuous ) phase , kg /m3 ∗ /
61 # d e f i n e rho_ c 9 9 8 . 2
62
63 / ∗ V i s c o s i t y o f the l i q u i d ( con t inuous ) phase , kg /ms ∗ /
64 # d e f i n e mu_c 0 . 0 3 2
65
66 / ∗ I n t e r f a c i a l energy between con t inuous and d i s p e r s e phases , N/m ∗ /
67 # d e f i n e s igma 0 . 0 1 1 6 0
68
69 / ∗ I n i t i a l bubb l e d iameter , m ∗ /
70 # d e f i n e db0 3 e−5
71
72 / ∗ Co s t an t s appea r ing in the break−up k e rn e l ∗ /
73 # d e f i n e Cg 0 . 0 0 3 5
74 # d e f i n e Cx 0 . 2 3
75 # d e f i n e Cp 1 . 4
76 # d e f i n e b e t a _ s t a r 3
77 # d e f i n e C1 3 . 6 8
78 # d e f i n e C2 0 . 0 7 7 5
79 # d e f i n e C3 0 . 2
80 / ∗
81 # d e f i n e C1 0 . 0 0 4 8 1
82 # d e f i n e C2 0 . 0 8
83 # d e f i n e C3 0 . 0
84 ∗ /
85 / ∗ Cos t an t appea r ing in the daug the r d i s t r i b u t i o n f u n c t i o n ∗ /
86 / ∗ When C4 = 2 . 0 b i na ry breakage i s assumed to be the ∗ /
87 / ∗ dominant phenomenon ∗ /
88 # d e f i n e C4 2 . 0
89
90 / ∗ Co s t an t s appea r ing in the c o a l e s c e n c e k e r n e l ∗ /
91
92 # d e f i n e C7 0
93 # d e f i n e C8 0
94 / ∗
95 # d e f i n e C7 0 . 8 8
96 # d e f i n e C8 9 e15
97 ∗ /
98 / ∗ d e f i n i t i o n o f p i ∗ /
99 # d e f i n e p i g r e c o 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9
100
101 / ∗ D e f i n i t i o n o f the averaged d i ame t e r o f the gas bubb l e s ∗ /
102
103
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104 DEFINE_PROPERTY ( bubb l e_d i ame te r , c , t )
105 {
106
107 r e a l d i ame t e r ;
108
109
110 d i ame t e r = C_UDMI ( c , t , 1 8 ) ;
111
112
113 return d i ame t e r ;
114
115 }
116
117
118
119 / ∗ D e f i n i t i o n o f the moments sou r c e terms = rho ( k ) ∗ S ( k ) ∗ /
120
121
122
123 DEFINE_SOURCE ( p_source_m0 , c , t , dS , eqn )
124 {
125
126 r e a l source_m0 ;
127
128
129 source_m0 = rho_g ∗C_UDMI ( c , t , 6 ) ;
130
131
132 return source_m0 ;
133
134 }
135
136
137
138 DEFINE_SOURCE ( p_source_m1 , c , t , dS , eqn )
139 {
140
141 r e a l source_m1 ;
142
143
144 source_m1 = rho_g ∗C_UDMI ( c , t , 7 ) ;
145
146
147 return source_m1 ;
148
149 }
150
151
152 DEFINE_SOURCE ( p_source_m2 , c , t , dS , eqn )
153 {
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154
155 r e a l source_m2 ;
156
157
158 source_m2 = rho_g ∗C_UDMI ( c , t , 8 ) ;
159
160
161 return source_m2 ;
162
163 }
164
165
166
167 DEFINE_SOURCE ( p_source_m3 , c , t , dS , eqn )
168 {
169
170 r e a l source_m3 ;
171
172
173 source_m3 = rho_g ∗C_UDMI ( c , t , 9 ) ;
174
175
176 return source_m3 ;
177
178 }
179
180
181
182 DEFINE_SOURCE ( p_source_m4 , c , t , dS , eqn )
183 {
184
185 r e a l source_m4 ;
186
187
188 source_m4 = rho_g ∗C_UDMI ( c , t , 1 0 ) ;
189
190
191 return source_m4 ;
192
193 }
194
195
196
197 DEFINE_SOURCE ( p_source_m5 , c , t , dS , eqn )
198 {
199
200 r e a l source_m5 ;
201
202
203 source_m5 = rho_g ∗C_UDMI ( c , t , 1 1 ) ;
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204
205
206 return source_m5 ;
207
208 }
209
210
211 / ∗ D e f i n i t i o n o f the d e f i n e a d j u s t s u b r ou t i n e ∗ /
212
213 DEFINE_ADJUST ( qmom_adj , domain )
214 {
215
216 c e l l _ t c ;
217
218 Thread ∗ t ;
219
220 in t nt ;
221
222
223 r e a l mom[ 7 ] ;
224
225 r e a l p1 [ 8 ] , p2 [ 7 ] , p3 [ 6 ] , p4 [ 5 ] , p5 [ 4 ] , p6 [ 3 ] , p7 [ 2 ] ;
226
227 r e a l a l f a [ 7 ] , d [ 4 ] , e [ 4 ] ;
228
229 r e a l b i r t h [ 7 ] , dea th [ 7 ] , a [ 4 ] ,w[ 4 ] ;
230
231 r e a l b i [ 4 ] , a_b , E , A ;
232
233 r e a l b e t a ;
234
235
236
237 / ∗ Added v a r i a b l e s for moments c onvex i t y check and c o r r e c t i o n ∗ /
238
239
240 r e a l d0 [ 6 ] , d1 [ 5 ] , d2 [ 4 ] , d3 [ 3 ] , d4 [ 2 ] , d5 [ 1 ] ;
241
242 r e a l bk [ 6 ] [ 3 ] ;
243
244 r e a l c o s _ quad_ a l f a [ 6 ] ;
245
246 in t convex i ty_check , mom45_check , v a l i d _ s e t ;
247
248 in t k_s t a r , conv_count1 , conv_count2 ;
249
250 r e a l lnck , min_mom_4 , min_mom_5 , min_mom_0 , min_mom_1 , min_mom_2 , min_mom_3

, det_n , det_n1 , det_n2 , det_n3 , det_n4 , de t_n5 ;
251
252 r e a l old_mom [ 7 ] ,mom_a [ 7 ] ,mom_b [ 7 ] , s o g l i a _ d 2 ;
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253
254 r e a l s igma_var , log_mean , s igma_var_min ;
255
256
257 in t i , j ;
258
259 in t k ;
260
261
262
263 / ∗ Added v a r i a b l e s for imp l emen ta t i on o f Lakkonen breakage and

c o a l e s c e n c e ∗ /
264
265 r e a l a j , b jb , d jb , Bbb , Dbb , Bbc , Dbc , a rg ;
266
267 r e a l a r g _ e r f , a _ e r f , e r f_app , e p s i l o n ;
268 r e a l kappa , group_A , group_B , group_C , g roup_sqr t , group_sqrt_sum , L ,

a l pha_x_v i s co , beta_mu ;
269 r e a l e f f _ c o a l , f r e q _ c o a l , b j c , d j c ;
270
271 r e a l x_g l [ 8 ] , w_gl [ 8 ] , t _ g l , p r e _ i n t ;
272
273
274 r e a l breakage_1 , b reakage_2 ;
275
276
277 / ∗ Added v a r i a b l e s for e i g env a l u e e i g e n v e c t o r problem ∗ /
278
279
280 in t m, l , i t e r ;
281
282
283 r e a l absa , absb ;
284
285 r e a l dd , g , r , SIGN , s , c1 , p , f , b ;
286
287 r e a l z1 [ 4 ] , z2 [ 4 ] , z3 [ 4 ] ;
288
289
290 t h r e ad_ l oop_ c ( t , domain )
291 {
292
293
294 Thread ∗ ∗ p t = THREAD_SUB_THREADS ( t ) ;
295
296
297 beg in_c_ l oop ( c , t )
298 {
299
300 C_UDMI ( c , t , 3 3 ) = sigma ;
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301
302 / ∗ C_UDSI : user−d e f i n e d s c a l a r vec to r , c e l l v a l u e ∗ /
303 / ∗ C_VOF : c e l l volume f r a c t i o n o f p t ( i ) phase ∗ /
304 / ∗ mom: v e c t o r used for the PD a l go r i t hm ∗ /
305
306 i f ( C_UDSI ( c , t , 0 ) >0) mom[ 1 ] = C_UDSI ( c , t , 0 ) ∗C_VOF ( c , p t [ 1 ] ) ;
307
308 e l se mom[ 1 ] = 0 . 0 ;
309
310 i f ( C_UDSI ( c , t , 1 ) >0) mom[ 2 ] = C_UDSI ( c , t , 1 ) ∗C_VOF ( c , p t

[ 1 ] ) ;
311
312 e l se mom[ 2 ] = 0 . 0 ;
313
314 i f ( C_UDSI ( c , t , 2 ) >0) mom[ 3 ] = C_UDSI ( c , t , 2 ) ∗C_VOF ( c , p t [ 1 ] ) ;
315
316 e l se mom[ 3 ] = 0 . 0 ;
317
318 i f ( C_UDSI ( c , t , 3 ) >0) mom[ 4 ] = C_UDSI ( c , t , 3 ) ∗C_VOF ( c , p t [ 1 ] ) ;
319
320 e l se mom[ 4 ] = 0 . 0 ;
321
322 i f ( C_UDSI ( c , t , 4 ) >0) mom[ 5 ] = C_UDSI ( c , t , 4 ) ∗C_VOF ( c ,

p t [ 1 ] ) ;
323
324 e l se mom[ 5 ] = 0 . 0 ;
325
326 i f ( C_UDSI ( c , t , 5 ) >0) mom[ 6 ] = C_UDSI ( c , t , 5 ) ∗C_VOF ( c ,

p t [ 1 ] ) ;
327
328 e l se mom[ 6 ] = 0 . 0 ;
329
330 / ∗ Algor i thm for moment check and c o r r e c t i o n ∗ /
331
332 for ( i = 1 ; i <=6 ; i ++)
333 {
334
335 old_mom [ i ]=mom[ i ] ;
336 }
337 C_UDMI ( c , t , 3 1 ) =0 ;
338
339 i f ( (mom[ 1 ] <= 0 . 0 ) | | (mom[ 2 ] <= 0 . 0 ) | | (mom[ 3 ] <= 0 . 0 ) | | (mom[ 4 ] <= 0 . 0 ) )
340 / ∗ i f mom[ 1 ] n e g a t i v e then a narrow d i s t r i b u t i o n around the i n i t i a l

bubb l e s i z e i s assumed ∗ /
341 {
342 s igma_var = 0 . 0 0 0 1 ;
343 log_mean= log ( db0 ) ;
344
345 mom[1 ]= exp ( 0 . ) ;
346
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347 mom[2 ]=mom[ 1 ] ∗ exp ( log_mean+ s igma_var / 2 . ) ;
348
349 mom[3 ]=mom[ 1 ] ∗ exp ( 2 . ∗ log_mean + 4 . ∗ s igma_var / 2 . ) ;
350
351 mom[4 ]=mom[ 1 ] ∗ exp ( 3 . ∗ log_mean + 9 . ∗ s igma_var / 2 . ) ;
352
353 mom[5 ]=mom[ 1 ] ∗ exp ( 4 . ∗ log_mean + 1 6 . ∗ s igma_var

/ 2 . ) ;
354
355 mom[6 ]=mom[ 1 ] ∗ exp ( 5 . ∗ log_mean + 2 5 . ∗ s igma_var / 2 . ) ;
356
357 C_UDMI ( c , t , 3 1 ) =1 ;
358
359 }
360
361
362 s o g l i a _ d 2 = 0 . 0 ;
363
364 s igma_var_min = 0 . 0 ;
365
366
367 / ∗ Check 1 convexty ∗ /
368
369 d0 [ 0 ]= l og (mom[ 1 ] ) ;
370 d0 [ 1 ]= l og (mom[ 2 ] ) ;
371 d0 [ 2 ]= l og (mom[ 3 ] ) ;
372 d0 [ 3 ]= l og (mom[ 4 ] ) ;
373 d0 [ 4 ]= l og (mom[ 5 ] ) ;
374 d0 [ 5 ]= l og (mom[ 6 ] ) ;
375 d1 [ 0 ]= d0 [1]− d0 [ 0 ] ;
376 d1 [ 1 ]= d0 [2]− d0 [ 1 ] ;
377 d1 [ 2 ]= d0 [3]− d0 [ 2 ] ;
378 d1 [ 3 ]= d0 [4]− d0 [ 3 ] ;
379 d1 [ 4 ]= d0 [5]− d0 [ 4 ] ;
380 d2 [ 0 ]= d1 [1]− d1 [ 0 ] ;
381 d2 [ 1 ]= d1 [2]− d1 [ 1 ] ;
382 d2 [ 2 ]= d1 [3]− d1 [ 2 ] ;
383 d2 [ 3 ]= d1 [4]− d1 [ 3 ] ;
384 d3 [ 0 ]= d2 [1]− d2 [ 0 ] ;
385 d3 [ 1 ]= d2 [2]− d2 [ 1 ] ;
386 d3 [ 2 ]= d2 [3]− d2 [ 2 ] ;
387 d4 [ 0 ]= d3 [1]− d3 [ 0 ] ;
388 d4 [ 1 ]= d3 [2]− d3 [ 1 ] ;
389 d5 [ 0 ]= d4 [1]− d4 [ 0 ] ;
390 convex i t y_ che ck =1 ;
391 conv_count1 =0 ;
392 conv_count2 =0 ;
393 for ( i = 0 ; i <=3 ; i ++) {
394 i f ( ( d2 [ i ] ) < s o g l i a _ d 2 ) convex i t y_ che ck =0 ;
395 }
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396
397 / ∗ End o f t e s t 1 ∗ /
398
399 / ∗ D e f i n i t i o n o f bk ∗ /
400
401
402
403 bk [ 0 ] [ 0 ] = − 1 . ;
404
405 bk [ 0 ] [ 1 ] = 0 . ;
406
407 bk [ 0 ] [ 2 ] = 0 . ;
408
409
410 bk [ 1 ] [ 0 ] = 3 . ;
411
412 bk [ 1 ] [ 1 ] = − 1 . ;
413
414 bk [ 1 ] [ 2 ] = 0 . ;
415
416
417 bk [ 2 ] [ 0 ] = − 3 . ;
418
419 bk [ 2 ] [ 1 ] = 3 . ;
420
421 bk [ 2 ] [ 2 ] = − 1 . ;
422
423
424 bk [ 3 ] [ 0 ] = 1 . ;
425
426 bk [ 3 ] [ 1 ] = − 3 . ;
427
428 bk [ 3 ] [ 2 ] = 3 . ;
429
430
431 bk [ 4 ] [ 0 ] = 0 . ;
432
433 bk [ 4 ] [ 1 ] = 1 . ;
434
435 bk [ 4 ] [ 2 ] = − 3 . ;
436
437
438 bk [ 5 ] [ 0 ] = 0 . ;
439
440 bk [ 5 ] [ 1 ] = 0 . ;
441
442 bk [ 5 ] [ 2 ] = 1 . ;
443
444
445 / ∗ Te s t 2 for moments o f o rde r f ou r and f i v e ∗ /
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446
447 i f ( (mom[ 1 ] ∗mom[ 3 ] ) != (mom[ 2 ] ∗mom[ 2 ] ) )
448 min_mom_4=(mom[ 1 ] ∗mom[ 4 ] ∗mom[4] −2∗mom[ 3 ] ∗mom[ 2 ] ∗mom[4 ]+mom[ 3 ] ∗mom

[ 3 ] ∗mom[ 3 ] ) / (mom[ 1 ] ∗mom[3]−mom[ 2 ] ∗mom[ 2 ] ) ;
449
450 e l se
451 min_mom_4=mom[ 5 ] ;
452
453 i f ( (mom[ 2 ] ∗mom[ 4 ] ) != (mom[ 3 ] ∗mom[ 3 ] ) )
454 min_mom_5=(mom[ 4 ] ∗ (mom[ 4 ] ∗mom[4] −2∗mom[ 3 ] ∗mom[ 5 ] ) +mom[ 2 ] ∗mom[ 5 ] ∗

mom[ 5 ] ) / (mom[ 2 ] ∗mom[4]−mom[ 3 ] ∗mom[ 3 ] ) ;
455
456 e l se
457 min_mom_5=mom[ 6 ] ;
458
459
460 mom45_check =1 ;
461
462
463 i f ( ( (mom[5] <min_mom_4 ) ) | | ( (mom[6] <min_mom_5 ) ) )
464 mom45_check =0 ;
465
466 / ∗ End t e s t 2 ∗ /
467
468
469 while ( ( c onvex i t y_ check ==0) | | ( mom45_check ==0) ) {
470
471
472
473 / ∗ S t a r t c o r r e c t i o n a f t e r t e s t 1 c onvex i t y ∗ /
474
475 k _ s t a r =0 ;
476
477
478 for ( k =0 ; k <=5 ; k++) {
479
480 c o s _quad_ a l f a [ k ]=pow ( ( ( d3 [ 0 ] ∗ bk [ k ] [ 0 ] + d3 [ 1 ] ∗ bk [ k ] [ 1 ] + d3 [ 2 ] ∗ bk

[ k ] [ 2 ] ) / (pow ( d3 [ 0 ] ∗ d3 [ 0 ]+ d3 [ 1 ] ∗ d3 [ 1 ]+ d3 [ 2 ] ∗ d3 [ 2 ] , 0 . 5 ) ∗pow (
bk [ k ] [ 0 ] ∗ bk [ k ] [ 0 ] + bk [ k ] [ 1 ] ∗ bk [ k ] [ 1 ] + bk [ k ] [ 2 ] ∗ bk [ k ] [ 2 ] , 0 . 5 )
) ) , 2 . ) ;

481 i f ( c o s _ quad_ a l f a [ k ] >= co s _ quad_ a l f a [ k _ s t a r ] )
482 k _ s t a r =k ;
483 }
484
485 lnck =−( d3 [ 0 ] ∗ bk [ k _ s t a r ] [ 0 ] + d3 [ 1 ] ∗ bk [ k _ s t a r ] [ 1 ] + d3 [ 2 ] ∗ bk [ k _ s t a r

] [ 2 ] ) / ( bk [ k _ s t a r ] [ 0 ] ∗ bk [ k _ s t a r ] [ 0 ] + bk [ k _ s t a r ] [ 1 ] ∗ bk [ k _ s t a r
] [ 1 ] + bk [ k _ s t a r ] [ 2 ] ∗ bk [ k _ s t a r ] [ 2 ] ) ;

486
487
488 mom[ k _ s t a r +1]= exp ( l n ck ) ∗mom[ k _ s t a r + 1 ] ;
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489
490
491 d0 [ 0 ]= l og (mom[ 1 ] ) ;
492 d0 [ 1 ]= l og (mom[ 2 ] ) ;
493 d0 [ 2 ]= l og (mom[ 3 ] ) ;
494 d0 [ 3 ]= l og (mom[ 4 ] ) ;
495 d0 [ 4 ]= l og (mom[ 5 ] ) ;
496 d0 [ 5 ]= l og (mom[ 6 ] ) ;
497 d1 [ 0 ]= d0 [1]− d0 [ 0 ] ;
498 d1 [ 1 ]= d0 [2]− d0 [ 1 ] ;
499 d1 [ 2 ]= d0 [3]− d0 [ 2 ] ;
500 d1 [ 3 ]= d0 [4]− d0 [ 3 ] ;
501 d1 [ 4 ]= d0 [5]− d0 [ 4 ] ;
502 d2 [ 0 ]= d1 [1]− d1 [ 0 ] ;
503 d2 [ 1 ]= d1 [2]− d1 [ 1 ] ;
504 d2 [ 2 ]= d1 [3]− d1 [ 2 ] ;
505 d2 [ 3 ]= d1 [4]− d1 [ 3 ] ;
506 d3 [ 0 ]= d2 [1]− d2 [ 0 ] ;
507 d3 [ 1 ]= d2 [2]− d2 [ 1 ] ;
508 d3 [ 2 ]= d2 [3]− d2 [ 2 ] ;
509 d4 [ 0 ]= d3 [1]− d3 [ 0 ] ;
510 d4 [ 1 ]= d3 [2]− d3 [ 1 ] ;
511 d5 [ 0 ]= d4 [1]− d4 [ 0 ] ;
512 convex i t y_ che ck =1 ;
513
514 / ∗ End c o r r e c t i o n a f t e r t e s t 1 c onvex i t y ∗ /
515
516 for ( i = 0 ; i <=3 ; i ++) {
517 i f ( ( d2 [ i ] ) < s o g l i a _ d 2 )
518 convex i t y_ che ck =0 ;
519 }
520
521 / ∗ S t a r t c o r r e c t i o n a f t e r check 2 o f moments 4 and 5 ∗ /
522
523 i f ( (mom[ 1 ] ∗mom[ 3 ] ) != (mom[ 2 ] ∗mom[ 2 ] ) )
524 min_mom_4=(mom[ 1 ] ∗mom[ 4 ] ∗mom[4] −2∗mom[ 3 ] ∗mom[ 2 ] ∗mom[4 ]+mom[ 3 ] ∗mom

[ 3 ] ∗mom[ 3 ] ) / (mom[ 1 ] ∗mom[3]−mom[ 2 ] ∗mom[ 2 ] ) ;
525
526 e l se
527 min_mom_4=mom[ 5 ] ;
528
529 i f ( (mom[ 2 ] ∗mom[ 4 ] ) != (mom[ 3 ] ∗mom[ 3 ] ) )
530 min_mom_5=(mom[ 4 ] ∗ (mom[ 4 ] ∗mom[4] −2∗mom[ 3 ] ∗mom[ 5 ] ) +mom[ 2 ] ∗

mom[ 5 ] ∗mom[ 5 ] ) / (mom[ 2 ] ∗mom[4]−mom[ 3 ] ∗mom[ 3 ] ) ;
531
532 e l se
533 min_mom_5=mom[ 6 ] ;
534
535
536 mom45_check =1 ;
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537
538 i f ( ( (mom[5] <min_mom_4 ) ) | | ( (mom[6] <min_mom_5 ) ) )
539 mom45_check =0 ;
540
541 / ∗ End c o r r e c t i o n a f t e r check 2 ∗ /
542
543 i f ( c onvex i t y_ che ck == 0 ) {
544 conv_count1=conv_count1 +1 ;
545 i f ( conv_count1 >=10) {
546
547
548 / ∗ Recover the i n i t i a l moment v a l u e s b e f o r e convex i t y t e s t ∗ /
549 for ( i = 1 ; i <=6 ; i ++) {
550 mom[ i ]=old_mom [ i ] ;
551 }
552
553 / ∗ C a l c u l a t i o n o f log−normal pa ramte r s s t a r t i n g from m0 , m3 , m2 ∗ /
554
555 i =2 ;
556
557 j =3 ;
558
559 s igma_var = ( ( 2 . / ( j ∗ j ) ) ∗ l og (mom[ j + 1 ] /mom[ 1 ] ) − ( 2 . / ( i ∗ j ) ) ∗ l og (mom[ i

+ 1 ] /mom[ 1 ] ) ) / ( 1 . − ( ( r e a l ) i / ( r e a l ) j ) ) ;
560
561 i f ( s igma_var <0 )
562 s igma_var=s igma_var_min ;
563 log_mean =( l og (mom[ i + 1 ] /mom[ 1 ] ) −( i ∗ i ∗ s igma_var / 2 . ) ) / i ;
564
565 mom_a[1 ]=mom[ 1 ] ;
566
567 mom_a[2 ]=mom[ 1 ] ∗ exp ( log_mean+ s igma_var / 2 . ) ;
568
569 mom_a[3 ]=mom[ 1 ] ∗ exp ( 2 . ∗ log_mean + 4 . ∗ s igma_var / 2 . ) ;
570
571 mom_a[4 ]=mom[ 1 ] ∗ exp ( 3 . ∗ log_mean + 9 . ∗ s igma_var / 2 . ) ;
572
573 mom_a[5 ]=mom[ 1 ] ∗ exp ( 4 . ∗ log_mean + 1 6 . ∗ s igma_var / 2 . )

;
574
575 mom_a[6 ]=mom[ 1 ] ∗ exp ( 5 . ∗ log_mean + 2 5 . ∗ s igma_var / 2 . ) ;
576
577
578 / ∗ C a l c u l a t i o n o f log−normal pa ramte r s s t a r t i n g from m0 , m3 , m1 ∗ /
579
580 i =1 ;
581
582 j =3 ;
583 s igma_var = ( ( 2 . / ( j ∗ j ) ) ∗ l og (mom[ j + 1 ] /mom[ 1 ] ) − ( 2 . / ( i ∗ j ) ) ∗

l og (mom[ i + 1 ] /mom[ 1 ] ) ) / ( 1 . − ( ( r e a l ) i / ( r e a l ) j ) ) ;
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584
585 i f ( s igma_var <0 )
586 s igma_var=s igma_var_min ;
587
588 log_mean =( l og (mom[ i + 1 ] /mom[ 1 ] ) −( i ∗ i ∗ s igma_var / 2 . ) ) / i ;
589
590 mom_b[1 ]=mom[ 1 ] ;
591
592 mom_b[2 ]=mom[ 1 ] ∗ exp ( log_mean+ s igma_var / 2 . ) ;
593
594 mom_b[3 ]=mom[ 1 ] ∗ exp ( 2 . ∗ log_mean + 4 . ∗ s igma_var / 2 . ) ;
595
596 mom_b[4 ]=mom[ 1 ] ∗ exp ( 3 . ∗ log_mean + 9 . ∗ s igma_var / 2 . ) ;
597
598 mom_b[5 ]=mom[ 1 ] ∗ exp ( 4 . ∗ log_mean + 1 6 . ∗ s igma_var / 2 . ) ;
599
600 mom_b[6 ]=mom[ 1 ] ∗ exp ( 5 . ∗ log_mean + 2 5 . ∗ s igma_var

/ 2 . ) ;
601
602
603 / ∗ Assume the s i x moments equa l to the ave rage o f tho s e o f the two

d i s t r i b u t i o n s ∗ /
604
605 mom[1 ]=mom[ 1 ] ;
606
607 mom[ 2 ] = (mom_a[2 ]+mom_b [ 2 ] ) / 2 . ;
608
609 mom[ 3 ] = (mom_a[3 ]+mom_b [ 3 ] ) / 2 . ;
610
611 mom[ 4 ] = (mom_a[4 ]+mom_b [ 4 ] ) / 2 . ;
612
613 mom[ 5 ] = (mom_a[5 ]+mom_b [ 5 ] ) / 2 . ;
614
615 mom[ 6 ] = (mom_a[6 ]+mom_b [ 6 ] ) / 2 . ;
616
617
618 convex i t y_ che ck =1 ;
619
620 mom45_check =1 ;
621 }
622 / ∗ end i f conv_count > s o g l i a ∗ /
623 }
624
625 / ∗ end i f convex i t y_ check =0 ∗ /
626 e l se {
627 i f ( mom45_check ==0) {
628 conv_count2=conv_count2 +1 ;
629 i f ( conv_count2 >=10) {
630 / ∗ C a l c u l a t i o n o f log−normal pa ramte r s s t a r t i n g from m0 , m3 , m2 ∗ /
631 i =2 ;
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632
633 j =3 ;
634
635 s igma_var = ( ( 2 . / ( j ∗ j ) ) ∗ l og (mom[ j + 1 ] /mom[ 1 ] ) − ( 2 . / ( i ∗ j ) ) ∗ l og (mom[ i

+ 1 ] /mom[ 1 ] ) ) / ( 1 . − ( ( r e a l ) i / ( r e a l ) j ) ) ;
636
637 i f ( s igma_var <0 )
638 s igma_var=s igma_var_min ;
639
640 log_mean =( l og (mom[ i + 1 ] /mom[ 1 ] ) −( i ∗ i ∗ s igma_var / 2 . ) ) / i ;
641
642 mom_a[1 ]=mom[ 1 ] ;
643
644 mom_a[2 ]=mom[ 1 ] ∗ exp ( log_mean+ s igma_var / 2 . ) ;
645
646 mom_a[3 ]=mom[ 1 ] ∗ exp ( 2 . ∗ log_mean + 4 . ∗ s igma_var / 2 . ) ;
647
648 mom_a[4 ]=mom[ 1 ] ∗ exp ( 3 . ∗ log_mean + 9 . ∗ s igma_var / 2 . ) ;
649
650 mom_a[5 ]=mom[ 1 ] ∗ exp ( 4 . ∗ log_mean + 1 6 . ∗ s igma_var / 2 . ) ;
651
652 mom_a[6 ]=mom[ 1 ] ∗ exp ( 5 . ∗ log_mean + 2 5 . ∗ s igma_var / 2 . ) ;
653
654 / ∗ C a l c u l a t i o n o f log−normal pa ramte r s s t a r t i n g from m0 , m3 , m1 ∗ /
655
656 i =1 ;
657
658 j =3 ;
659
660 s igma_var = ( ( 2 . / ( j ∗ j ) ) ∗ l og (mom[ j + 1 ] /mom[ 1 ] ) − ( 2 . / ( i ∗ j ) ) ∗ l og (mom[ i

+ 1 ] /mom[ 1 ] ) ) / ( 1 . − ( ( r e a l ) i / ( r e a l ) j ) ) ;
661
662 i f ( s igma_var <0 )
663 s igma_var=s igma_var_min ;
664
665 log_mean =( l og (mom[ i + 1 ] /mom[ 1 ] ) −( i ∗ i ∗ s igma_var / 2 . ) ) / i ;
666
667 mom_b[1 ]=mom[ 1 ] ;
668
669 mom_b[2 ]=mom[ 1 ] ∗ exp ( log_mean+ s igma_var / 2 . ) ;
670
671 mom_b[3 ]=mom[ 1 ] ∗ exp ( 2 . ∗ log_mean + 4 . ∗ s igma_var / 2 . ) ;
672
673 mom_b[4 ]=mom[ 1 ] ∗ exp ( 3 . ∗ log_mean + 9 . ∗ s igma_var / 2 . ) ;
674
675 mom_b[5 ]=mom[ 1 ] ∗ exp ( 4 . ∗ log_mean + 1 6 . ∗ s igma_var / 2 . ) ;
676
677 mom_b[6 ]=mom[ 1 ] ∗ exp ( 5 . ∗ log_mean + 2 5 . ∗ s igma_var / 2 . ) ;
678
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679 / ∗ Assume the s i x moments equa l to the ave rage o f tho s e o f the two
d i s t r i b u t i o n s ∗ /

680
681
682 mom[1 ]=mom[ 1 ] ;
683
684 mom[ 2 ] = (mom_a[2 ]+mom_b [ 2 ] ) / 2 . ;
685
686 mom[ 3 ] = (mom_a[3 ]+mom_b [ 3 ] ) / 2 . ;
687
688 mom[ 4 ] = (mom_a[4 ]+mom_b [ 4 ] ) / 2 . ;
689
690 mom[ 5 ] = (mom_a[5 ]+mom_b [ 5 ] ) / 2 . ;
691
692 mom[ 6 ] = (mom_a[6 ]+mom_b [ 6 ] ) / 2 . ;
693
694
695 mom45_check =1 ;
696
697 }
698 / ∗ end i f conv_count >= 50 ∗ /
699
700 } / ∗ end mom45_check ∗ /
701
702 } / ∗ end e l se convex i t y_ check =0 ∗ /
703
704 } / ∗ end while ∗ /
705
706 / ∗ Gramian d e t e rm in a t s
707
708 det_n=mom[ 1 ] ∗mom[ 3 ] ∗mom[5]−mom[ 1 ] ∗mom[ 4 ] ∗mom[4]−mom[ 2 ] ∗mom[ 2 ] ∗mom

[5 ]+mom[ 2 ] ∗mom[ 3 ] ∗mom[4 ]+mom[ 2 ] ∗mom[ 3 ] ∗mom[4]−mom[ 3 ] ∗mom[ 3 ] ∗mom
[ 3 ] ;

709 de t_n1=mom[ 2 ] ∗mom[ 4 ] ∗mom[6]−mom[ 2 ] ∗mom[ 5 ] ∗mom[5]−mom[ 3 ] ∗mom[ 3 ] ∗mom
[6 ]+mom[ 3 ] ∗mom[ 4 ] ∗mom[5 ]+mom[ 3 ] ∗mom[ 4 ] ∗mom[5]−mom[ 4 ] ∗mom[ 4 ] ∗mom
[ 4 ] ;

710 de t_n2=mom[ 1 ] ∗mom[3]−mom[ 2 ] ∗mom[ 2 ] ;
711 de t_n3=mom[ 2 ] ∗mom[4]−mom[ 3 ] ∗mom[ 3 ] ;
712 de t_n4=mom[ 2 ] ;
713 de t_n5=mom[ 1 ] ;
714
715 v a l i d _ s e t =1 ;
716 i f ( ( det_n <−1E−6) | | ( det_n1 <−1E−6) | | ( det_n2 <−1E−6) | | ( det_n3

<−1E−6) | | ( det_n4 <−1E−6) | | ( det_n5 <−1E−6) ) v a l i d _ s e t =0 ;
717
718 / ∗ end ∗ /
719
720
721
722 C_UDMI ( c , t , 2 9 ) = 1 . ;
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723
724
725 i f ( c onvex i t y_ che ck ==0)
726 C_UDMI ( c , t , 2 9 ) = −1 . ;
727
728
729
730 C_UDMI ( c , t , 3 0 ) = conv_count1 ;
731
732
733 C_UDMI ( c , t , 3 2 ) = conv_count2 ;
734
735
736 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
737 C_UDSI ( c , t , 0 ) =mom[ 1 ] / C_VOF ( c , p t [ 1 ] ) ;
738
739 e l se
740 C_UDSI ( c , t , 0 ) = 0 . ;
741
742 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
743 C_UDSI ( c , t , 1 ) =mom[ 2 ] / C_VOF ( c , p t [ 1 ] ) ;
744
745 e l se
746 C_UDSI ( c , t , 1 ) = 0 . ;
747
748
749 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
750 C_UDSI ( c , t , 2 ) =mom[ 3 ] / C_VOF ( c , p t [ 1 ] ) ;
751
752 e l se
753 C_UDSI ( c , t , 2 ) = 0 . ;
754
755 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
756 C_UDSI ( c , t , 3 ) =mom[ 4 ] / C_VOF ( c , p t [ 1 ] ) ;
757
758 e l se
759 C_UDSI ( c , t , 3 ) = 0 . ;
760
761 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
762 C_UDSI ( c , t , 4 ) =mom[ 5 ] / C_VOF ( c , p t [ 1 ] ) ;
763
764 e l se
765 C_UDSI ( c , t , 4 ) = 0 . ;
766
767
768 i f ( ( C_VOF ( c , p t [ 1 ] ) >1e −10) )
769 C_UDSI ( c , t , 5 ) =mom[ 6 ] / C_VOF ( c , p t [ 1 ] ) ;
770
771 e l se
772 C_UDSI ( c , t , 5 ) = 0 . ;
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773
774
775
776 / ∗ P roduc t D i f f e r e n c e a l go r i t hm ∗ /
777
778 p1 [ 1 ] = 1 . 0 ;
779 p1 [ 2 ] = 0 . 0 ;
780 p1 [ 3 ] = 0 . 0 ;
781 p1 [ 4 ] = 0 . 0 ;
782 p1 [ 5 ] = 0 . 0 ;
783 p1 [ 6 ] = 0 . 0 ;
784 p1 [ 7 ] = 0 . 0 ;
785
786 for ( i = 1 ; i <=6 ; i ++)
787 {
788
789 p2 [ i ]=pow( −1 , i −1) ∗mom[ i ] ;
790
791 }
792
793
794 for ( i = 1 ; i <=5 ; i ++)
795 {
796
797 p3 [ i ]= p2 [ 1 ] ∗ p1 [ i +1]−p1 [ 1 ] ∗ p2 [ i + 1 ] ;
798
799 }
800
801
802 for ( i = 1 ; i <=4 ; i ++)
803 {
804
805 p4 [ i ]= p3 [ 1 ] ∗ p2 [ i +1]−p2 [ 1 ] ∗ p3 [ i + 1 ] ;
806
807 }
808
809
810 for ( i = 1 ; i <=3 ; i ++)
811 {
812
813 p5 [ i ]= p4 [ 1 ] ∗ p3 [ i +1]−p3 [ 1 ] ∗ p4 [ i + 1 ] ;
814
815 }
816
817
818 for ( i = 1 ; i <=2 ; i ++)
819 {
820
821 p6 [ i ]= p5 [ 1 ] ∗ p4 [ i +1]−p4 [ 1 ] ∗ p5 [ i + 1 ] ;
822
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823 }
824
825
826 p7 [ 1 ]= p6 [ 1 ] ∗ p5 [2]− p5 [ 1 ] ∗ p6 [ 2 ] ;
827
828
829
830 a l f a [ 1 ] = 0 . ;
831
832
833 i f ( p2 [ 1 ] ∗ p1 [ 1 ] ! = 0 . )
834
835 a l f a [ 2 ]= p3 [ 1 ] / ( p2 [ 1 ] ∗ p1 [ 1 ] ) ;
836
837
838 i f ( p3 [ 1 ] ∗ p2 [ 1 ] ! = 0 . )
839
840 a l f a [ 3 ]= p4 [ 1 ] / ( p3 [ 1 ] ∗ p2 [ 1 ] ) ;
841
842
843 i f ( p4 [ 1 ] ∗ p3 [ 1 ] ! = 0 . )
844
845 a l f a [ 4 ]= p5 [ 1 ] / ( p4 [ 1 ] ∗ p3 [ 1 ] ) ;
846
847
848 i f ( p5 [ 1 ] ∗ p4 [ 1 ] ! = 0 . )
849
850 a l f a [ 5 ]= p6 [ 1 ] / ( p5 [ 1 ] ∗ p4 [ 1 ] ) ;
851
852
853 i f ( p6 [ 1 ] ∗ p5 [ 1 ] ! = 0 . )
854
855 a l f a [ 6 ]= p7 [ 1 ] / ( p6 [ 1 ] ∗ p5 [ 1 ] ) ;
856
857
858 for ( i = 1 ; i <=3 ; i ++)
859 {
860
861 d [ i ] = a l f a [ 2 ∗ i ]+ a l f a [ 2 ∗ i −1 ] ;
862
863 }
864
865
866 for ( i = 1 ; i <=2 ; i ++)
867 {
868
869 e [ i ] = pow ( f a b s ( a l f a [ 2 ∗ i + 1 ] ∗ a l f a [ 2 ∗ i ] ) , 0 . 5 ) ;
870
871 }
872
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873
874 e [ 3 ] = 0 . 0 ;
875
876
877 z1 [ 2 ]= z1 [ 3 ] = 0 . 0 ;
878
879 z2 [ 1 ]= z2 [ 3 ] = 0 . 0 ;
880
881 z3 [ 1 ]= z3 [ 2 ] = 0 . 0 ;
882
883 z1 [ 1 ]= z2 [ 2 ]= z3 [ 3 ] = 1 . 0 ;
884
885
886
887 / ∗ Begin c a l c u l a t i o n e i g e n v a l u e s and e i g e n v e c t o r s ∗ /
888
889
890 for ( l = 1 ; l <=3 ; l ++) {
891
892 i t e r =0 ;
893
894 do {
895
896 for (m= l ;m<=2 ;m++) {
897
898 dd= f a b s ( d [m] ) + f a b s ( d [m+1 ] ) ;
899
900 i f ( f a b s ( e [m] ) +dd == dd )
901 break ;
902 }
903
904
905 i f (m != l ) {
906
907
908 i f ( i t e r == 30 )
909 break ;
910 i t e r ++;
911
912
913 g =( d [ l +1]−d [ l ] ) / ( 2 . 0 ∗ e [ l ] ) ;
914
915
916 absa= f a b s ( g ) ;
917
918 absb= f a b s ( 1 . 0 ) ;
919
920 i f ( absa > absb )
921 r= absa ∗ s q r t ( 1 . 0 +pow ( absb / absa , 2 ) ) ;
922
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923 e l se {
924
925 i f ( absb ==0)
926 r =0 ;
927
928 e l se
929 r=absb ∗ s q r t ( 1 . 0 +pow ( absa / absb , 2 ) ) ;
930
931 }
932
933
934 i f
935 ( g <0 ) SIGN=− f a b s ( r ) ;
936
937 e l se
938
939 SIGN = f a b s ( r ) ;
940
941
942 g=d [m]−d [ l ]+ e [ l ] / ( g+SIGN ) ;
943
944 s=c1 = 1 . 0 ;
945
946 p = 0 . 0 ;
947
948
949 for ( i =m−1; i >= l ; i −−) {
950
951 f = s ∗ e [ i ] ;
952
953 b=c1 ∗ e [ i ] ;
954
955 absa= f a b s ( f ) ;
956
957 absb= f a b s ( g ) ;
958
959 i f ( absa > absb )
960 r= absa ∗ s q r t ( 1 . 0 +pow ( absb / absa , 2 ) ) ;
961
962 e l se {
963
964 i f ( absb ==0)
965 r =0 ;
966
967 e l se
968 r=absb ∗ s q r t ( 1 . 0 +pow ( absa / absb , 2 ) ) ;
969
970 }
971
972 e [ i +1]= r ;
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973
974 i f ( r == 0 . 0 ) {
975
976 d [ i +1] −= p ;
977
978 e [m] = 0 . 0 ;
979
980 break ;
981
982 }
983
984
985 s= f / r ;
986
987 c1=g / r ;
988
989 g=d [ i +1]−p ;
990
991 r =( d [ i ]−g ) ∗ s + 2 . 0 ∗ c1 ∗ b ;
992
993 d [ i +1]=g +( p=s ∗ r ) ;
994
995 g=c1 ∗ r−b ;
996
997
998 f =z1 [ i + 1 ] ;
999
1000 z1 [ i +1]= s ∗ z1 [ i ]+ c1 ∗ f ;
1001
1002 z1 [ i ]= c1 ∗ z1 [ i ]− s ∗ f ;
1003
1004
1005 f =z2 [ i + 1 ] ;
1006
1007 z2 [ i +1]= s ∗ z2 [ i ]+ c1 ∗ f ;
1008
1009 z2 [ i ]= c1 ∗ z2 [ i ]− s ∗ f ;
1010
1011
1012 f =z3 [ i + 1 ] ;
1013
1014 z3 [ i +1]= s ∗ z3 [ i ]+ c1 ∗ f ;
1015
1016 z3 [ i ]= c1 ∗ z3 [ i ]− s ∗ f ;
1017
1018
1019 }
1020
1021 i f ( r == 0 . 0 && i >= l )
1022 continue ;
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1023
1024 d [ l ] −= p ;
1025
1026 e [ l ]= g ;
1027
1028 e [m] = 0 . 0 ;
1029
1030
1031 }
1032
1033 }
1034 while (m != l ) ;
1035
1036 }
1037
1038
1039 i f ( f a b s ( d [ 1 ] ) > 0 . ) {
1040
1041 i f ( f a b s ( d [ 2 ] ) / f a b s ( d [ 1 ] ) >1 .0 e3 )
1042 d [ 2 ] = d [ 1 ] ;
1043
1044 i f ( f a b s ( d [ 3 ] ) / f a b s ( d [ 1 ] ) >1 .0 e3 ) d [ 3 ] = d [ 1 ] ;
1045
1046 }
1047
1048
1049 / ∗ End c a l c u l a t i o n e i g e n v a l u e s and e i g e n v e c t o r s ∗ /
1050 / ∗ Ass ign nodes a ( i ) and weigh t s w( i ) t o M0 − M5 ∗ /
1051
1052
1053
1054 C_UDMI ( c , t , 0 ) = a [ 1 ] = f a b s ( d [ 1 ] ) ;
1055 C_UDMI ( c , t , 1 ) = a [ 2 ] = f a b s ( d [ 2 ] ) ;
1056 C_UDMI ( c , t , 2 ) = a [ 3 ] = f a b s ( d [ 3 ] ) ;
1057 C_UDMI ( c , t , 3 ) = w[ 1 ] = pow ( z1 [ 1 ] , 2 ) ∗mom[ 1 ] ;
1058 C_UDMI ( c , t , 4 ) = w[ 2 ] = pow ( z1 [ 2 ] , 2 ) ∗mom[ 1 ] ;
1059 C_UDMI ( c , t , 5 ) = w[ 3 ] = pow ( z1 [ 3 ] , 2 ) ∗mom[ 1 ] ;
1060 a _ e r f = ( 8 . / ( 3 . ∗ p i g r e c o ) ) ∗ ( p i g r e co − 3 . ) / ( 4 . − p i g r e c o ) ;
1061 p r e _ i n t = ( 9 . + 1 6 . 5 ∗ C4 + 9 . ∗pow ( C4 , 2 . ) + 1 . 5 ∗pow ( C4 , 3 . ) ) ;
1062
1063 e p s i l o n =C_D ( c , t ) ;
1064 kappa=C_K ( c , t ) ;
1065
1066 / ∗ Nodes and weight for i n t e g r a t i o n o f the daug the r d i s t r i b u t i o n

f u n c t i o n with Gauss−Legendre ∗ /
1067
1068
1069 x_g l [ 1 ] = −0 . 9 4 9107912342759 ;
1070
1071 x_g l [ 2 ] = −0 . 7 4 1531185599394 ;
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1072
1073 x_g l [ 3 ] = −0 . 4 0 5845151377397 ;
1074
1075 x_g l [ 4 ] = 0 . 0 ;
1076
1077 x_g l [ 5 ] = −x_g l [ 3 ] ;
1078
1079 x_g l [ 6 ] = −x_g l [ 2 ] ;
1080
1081 x_g l [ 7 ] = −x_g l [ 1 ] ;
1082
1083 w_gl [ 1 ] = 0 . 1 2 9 4 8 4 9 6 6 1 6 8 8 6 9 ;
1084
1085 w_gl [ 2 ] = 0 . 2 7 9 7 0 5 3 9 1 4 8 9 2 7 6 ;
1086
1087 w_gl [ 3 ] = 0 . 3 8 1 8 3 0 0 5 0 5 0 5 1 1 8 ;
1088
1089 w_gl [ 4 ] = 0 . 4 1 7 9 5 9 1 8 3 6 7 3 4 6 9 ;
1090
1091 w_gl [ 5 ] = w_gl [ 3 ] ;
1092
1093 w_gl [ 6 ] = w_gl [ 2 ] ;
1094
1095 w_gl [ 7 ] = w_gl [ 1 ] ;
1096
1097
1098
1099 / ∗ C a l c u l a t i o n o f a lpha ( i ) with nodes and weigh t s ∗ /
1100
1101
1102
1103 C_UDMI ( c , t , 2 5 ) = p i g r e c o / 6 . ∗w[ 1 ] ∗ a [ 1 ] ∗ a [ 1 ] ∗ a [ 1 ] ;
1104 C_UDMI ( c , t , 2 6 ) = p i g r e c o / 6 . ∗w[ 2 ] ∗ a [ 2 ] ∗ a [ 2 ] ∗ a [ 2 ] ;
1105 C_UDMI ( c , t , 2 7 ) = p i g r e c o / 6 . ∗w[ 3 ] ∗ a [ 3 ] ∗ a [ 3 ] ∗ a [ 3 ] ;
1106 C_UDMI ( c , t , 2 8 ) = C_UDMI ( c , t , 2 5 ) +C_UDMI ( c , t , 2 6 ) +C_UDMI ( c , t , 2 7 ) +1.−

C_VOF ( c , p t [ 1 ] ) ;
1107
1108
1109 for ( k =1 ; k <=6 ; k++)
1110 {
1111
1112 b i r t h [ k ] = 0 . ;
1113
1114 dea th [ k ] = 0 . ;
1115
1116
1117 Bbb = 0 . ;
1118
1119 Dbb = 0 . ;
1120
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1121 Bbc = 0 . ;
1122
1123 Dbc = 0 . ;
1124
1125
1126 for ( i = 1 ; i <=3 ; i ++)
1127 {
1128
1129
1130 / ∗ c o n t r o l l a che a lpha−p ( i ) s i a >1E−3
1131
1132 i f ( C_UDMI ( c , t , ( 2 4 + i ) ) < 0 . 0 0 1 ) {
1133
1134 a [ i ] = 0 . ;
1135
1136 w[ i ] = 0 . ;
1137
1138 }
1139
1140 / ∗ V e r i f y t h a t a [ i ] e x i s t s ∗ /
1141
1142 i f ( a [ i ] > 0 . 0 ) {
1143
1144 / ∗ Breakage with k e r n e l from Laakkonen ∗ /
1145 b j b = 0 . ;
1146
1147 / ∗ I n t e g r a t i o n Gauss−Legendre 6 nodes ∗ /
1148
1149
1150 / ∗
1151 for ( j = 1 ; j <=7 ; j ++) {
1152
1153 a j = ( x_g l [ j ] + 1 . ) / 2 . ∗ a [ i ] ;
1154
1155 t _ g l = a j / a [ i ] ;
1156
1157 b j b = b j b + p r e _ i n t ∗ a [ i ] ∗pow ( ( t _ g l ∗ a [ i ] ) , ( k−1) ) ∗ ( ( pow ( t _ g l , 2 . ) ) / ( a [ i ] )

) ∗ (pow ( t _ g l , 6 . ) ) ∗pow( (1 −pow ( t _ g l , 3 . ) ) , C4 ) ∗ w_gl [ j ] ;
1158
1159 }
1160
1161 ∗ /
1162 b j b = ( 3 2 4 0 ∗pow ( a [ i ] , ( k−1) ) ) / ( ( k+9−1) ∗ ( k+12−1) ∗ ( k+15−1) ) ;
1163
1164 / ∗ Approx o f e r r o r f u n c t i o n ∗ /
1165
1166
1167
1168 / ∗ Laakkonen Kerne l ∗ /
1169
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1170 arg = ( ( C2 ∗ ( s igma / ( rho_c ∗pow ( e p s i l on , 2 . / 3 . ) ∗pow ( a [ i ] , 5 . / 3 . ) ) ) ) + (C3 ∗ (
mu_c / (pow ( ( rho_c ∗ rho_g ) , 0 . 5 ) ∗pow ( e p s i l on , 1 . / 3 . ) ∗pow ( a [ i ] , 4 . / 3 . )
) ) ) ) ;

1171
1172 a r g _ e r f =pow ( arg , 0 . 5 ) ;
1173
1174 e r f _ app =pow ( ( 1 . − exp (−pow ( a r g _ e r f , 2 . ) ∗ ( ( 4 . / p i g r e c o + a _ e r f ∗pow (

a r g _ e r f , 2 . ) ) / ( 1 . + a _ e r f ∗pow ( a r g _ e r f , 2 . ) ) ) ) ) , 0 . 5 ) ;
1175
1176 L = pow ( ( 2 ∗ kappa / 3 ) , 3 / 2 ) / e p s i l o n ;
1177
1178 beta_mu = log ( 2 ) ∗pow ( Cx , − 5 / 3 ) / ( b e t a _ s t a r ∗Cp ) ;
1179 group_A = ( beta_mu ∗pow ( Cx , 5 / 3 ) ∗mu_c ) / ( rho_c ∗pow ( e p s i l on , 1 / 3 ) ∗

pow ( L , ( 1 / 3 ) ) ∗ a [ i ] ) ;
1180 group_B = ( beta_mu ∗pow ( Cx , 5 / 3 ) ∗mu_c ) / ( rho_c ∗pow ( e p s i l on , 1 / 3 ) ∗

pow ( L , ( 1 / 3 ) ) ∗ a [ i ] ) ;
1181 group_C = ( 4 ∗pow ( Cx , 5 / 3 ) ∗ s igma ) / ( rho_c ∗pow ( L , 2 / 3 ) ∗ a [ i ] ∗pow (

e p s i l on , 2 / 3 ) ) ;
1182 g roup_ sq r t = pow ( ( pow ( group_B , 2 ) +group_C ) , 0 . 5 ) ;
1183 group_sqr t_sum = 2 ∗pow ( ( group_A + g roup_ sq r t ) , −1) ;
1184 a l ph a _x_v i s c o = 3 ∗ l og ( group_sqr t_sum ) / l og ( L / a [ i ] ) ;
1185
1186 Bbb=Bbb +(C1 ∗pow ( e p s i l on , 1 . / 3 . ) ∗ (1 − e r f _ app ) ) ∗w[ i ] ∗ b j b ;
1187 Dbb=Dbb+(C1 ∗pow ( e p s i l on , 1 . / 3 . ) ∗ (1 − e r f _ app ) ) ∗w[ i ] ∗pow ( a [ i ] , ( k−1) ) ;
1188
1189
1190 / ∗ Source terms ∗ /
1191
1192
1193
1194 / ∗ T a v l a r i d e s Kerne l ∗ /
1195 / ∗ b reakage_1 = −C2 ∗ sigma / ( rho_c ∗pow ( e p s i l on , 2 . / 3 . ) ∗pow ( a [ i

] , 5 . / 3 . ) ) ;
1196 breakage_2 = C1 ∗pow ( e p s i l on , 1 . / 3 ) / (pow ( a [ i ] , 2 . / 3 . ) ) ;
1197
1198 Bbb=Bbb+breakage_2 ∗ exp ( b reakage_1 ) ∗w[ i ] ∗ b j b ;
1199
1200 Dbb=Dbb+breakage_2 ∗ exp ( b reakage_1 ) ∗w[ i ] ∗pow ( a [ i ] , ( k−1) ) ;
1201
1202 ∗ /
1203 / ∗ Coa l e s c ence with k e r n e l from Laakkonen ∗ /
1204
1205
1206 b j c = 0 . ;
1207
1208 d j c = 0 . ;
1209
1210
1211 for ( j = 1 ; j <=3 ; j ++) {
1212
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1213 i f ( a [ i ] ∗ a [ j ] != 0 . ) {
1214
1215 e f f _ c o a l =exp (( −C8 ) ∗ ( mu_c ∗ rho_c ∗ e p s i l o n ) / ( s igma ∗ sigma ) ∗pow ( ( a [ i ] ∗

a [ j ] / ( a [ i ]+ a [ j ] ) ) , 4 . ) ) ;
1216
1217 f r e q _ c o a l =C7 ∗pow ( e p s i l on , ( 1 . / 3 . ) ) ∗pow ( ( a [ i ]+ a [ j ] ) , 2 . ) ∗pow ( ( pow ( a

[ i ] , ( 2 . / 3 . ) ) +pow ( a [ j ] , ( 2 . / 3 . ) ) ) , 0 . 5 ) ∗ e f f _ c o a l ;
1218
1219 b j c = b j c +w[ j ] ∗pow ( ( pow ( a [ i ] , 3 . ) +pow ( a [ j ] , 3 . ) ) , ( k−1) / 3 . ) ∗ f r e q _ c o a l

;
1220
1221 d j c = d j c + f r e q _ c o a l ∗w[ j ] ;
1222
1223 }
1224
1225 }
1226
1227
1228 Bbc=Bbc+ b j c ∗w[ i ] ;
1229
1230 Dbc=Dbc+ d j c ∗pow ( a [ i ] , ( k−1) ) ∗w[ i ] ;
1231
1232 }
1233
1234 }
1235 b i r t h [ k ] = b i r t h [ k ] + Bbb + Bbc ∗ 0 . 5 ;
1236 dea th [ k ] = dea th [ k ] + Dbb + Dbc ;
1237
1238 }
1239
1240
1241 / ∗ C a l c u l a t e moments sou r c e terms and a s s i g n to M6 − M11 ∗ /
1242 C_UDMI ( c , t , 3 5 ) = a l ph a_x_v i s c o ;
1243
1244 C_UDMI ( c , t , 3 4 ) = pow ( ( 2 ∗ kappa / 3 ) , 3 / 2 ) / e p s i l o n ;
1245 C_UDMI ( c , t , 6 ) = b i r t h [1]− dea th [ 1 ] ;
1246 C_UDMI ( c , t , 7 ) = b i r t h [2]− dea th [ 2 ] ;
1247 C_UDMI ( c , t , 8 ) = b i r t h [3]− dea th [ 3 ] ;
1248 C_UDMI ( c , t , 9 ) = b i r t h [4]− dea th [ 4 ] ;
1249 C_UDMI ( c , t , 1 0 ) = b i r t h [5]− dea th [ 5 ] ;
1250 C_UDMI ( c , t , 1 1 ) = b i r t h [6]− dea th [ 6 ] ;
1251 / ∗ C a l c u l a t e r e a l moments m( k ) = phi ( k ) ∗ a l f a ( d ) and a s s i g n to M12 −

M18 ∗ /
1252
1253 C_UDMI ( c , t , 1 2 ) = C_UDSI ( c , t , 0 ) ∗C_VOF ( c , p t [ 1 ] ) ;
1254 C_UDMI ( c , t , 1 3 ) = C_UDSI ( c , t , 1 ) ∗C_VOF ( c , p t [ 1 ] ) ;
1255 C_UDMI ( c , t , 1 4 ) = C_UDSI ( c , t , 2 ) ∗C_VOF ( c , p t [ 1 ] ) ;
1256 C_UDMI ( c , t , 1 5 ) = C_UDSI ( c , t , 3 ) ∗C_VOF ( c , p t [ 1 ] ) ;
1257 C_UDMI ( c , t , 1 6 ) = C_UDSI ( c , t , 4 ) ∗C_VOF ( c , p t [ 1 ] ) ;
1258 C_UDMI ( c , t , 1 7 ) = C_UDSI ( c , t , 5 ) ∗C_VOF ( c , p t [ 1 ] ) ;
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1259
1260 / ∗ C a l c u l a t i o n o f S au t e r d i ame t e r ∗ /
1261
1262 i f (mom[ 3 ] > 1 . 0 e −3)
1263 C_UDMI ( c , t , 1 8 ) = mom[ 4 ] /mom[ 3 ] ;
1264
1265 e l se
1266 C_UDMI ( c , t , 1 8 ) = db0 ;
1267
1268 i f ( C_UDMI ( c , t , 1 8 ) >2 .0 e −3)
1269 C_UDMI ( c , t , 2 0 ) = E = 0 . 7 7 ∗pow ( C_UDMI ( c , t , 1 8 ) ∗ 1 0 0 0 , − 0 . 3 1 6 ) ;
1270
1271 e l se
1272 C_UDMI ( c , t , 2 0 ) = E = 0 . 7 7 ∗pow ( 2 . 0 , − 0 . 3 1 6 ) ;
1273
1274 C_UDMI ( c , t , 2 1 ) = A = 1 . 0 / 2 . 0 / pow ( E , 2 . / 3 . ) ∗ ( 1 + pow ( E , 2 ) / 2 . 0 / pow

(1−pow ( E , 2 ) , 0 . 5 ) ∗ l og ( ( 1 +pow(1−pow ( E , 2 ) , 0 . 5 ) ) / (1 −pow(1−pow ( E , 2 )
, 0 . 5 ) ) ) ) ;

1275 }
1276 end_c_ loop ( c , t )
1277 }
1278
1279 }
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Appendix B

PBE Algorithm

The roots of the system presented in Chapter 3 can obtained by solving the following
system:

𝜉

|
|
|
|
|
|
|
|

𝑃0(𝜉)
𝑃1(𝜉)
𝑃2(𝜉)

⋮
𝑃𝑁−2(𝜉)
𝑃𝑁−1(𝜉)

|
|
|
|
|
|
|
|

=

|
|
|
|
|
|
|
|

𝑎0 1
𝑏1 𝑎1 1

𝑏2 𝑎2 1
⋱ ⋱ ⋱

⋱ 𝑎2𝑁−2 1
𝑏𝑁−1 𝑎𝑁−1

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

𝑃0(𝜉)
𝑃1(𝜉)
𝑃2(𝜉)

⋮
𝑃𝑁−2(𝜉)
𝑃𝑁−1(𝜉)

|
|
|
|
|
|
|
|

+

|
|
|
|
|
|
|
|

0
0
0
⋮
0

𝑃𝑁𝜉

|
|
|
|
|
|
|
|

(B.1)

Where the roots of 𝑃𝑁(𝜉) are the eigenvalues of the tridiagonal matrix, that must
be made symmetric to transform the ill-conditioned problem into well-conditioned.
Weights can be obtained as follows:

𝑤𝛼 = 𝑚0𝜙2
𝛼1 (B.2)

where 𝜙𝛼1 is the first component of the 𝛼𝑡ℎ of the eigenvector 𝜙𝛼 of the Jacobi matrix:

J =

|
|
|
|
|
|
|

𝑎0 √𝑏1
√𝑏1 𝑎1 √𝑏2

⋱ ⋱
𝑎𝑁−2 √𝑏𝑁−1

√𝑏𝑁−1 𝑎𝑁−1

|
|
|
|
|
|
|

(B.3)

B.1 Product Difference Algorithm
One way to calculate the coefficients introduced in Chapter 3 is the Product

Difference Algorithm (PD), introduced by Gordon. A 𝑃 matrix is constructed (N = 2):
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𝑃 =

|
|
|
|
|
||

1 𝑚0 𝑚1 𝑚0𝑚2 − (𝑚1)2 𝑚0(𝑚3𝑚1 − (𝑚2)2)
0 −𝑚1 −𝑚2 −(𝑚0𝑚3 − 𝑚2𝑚1)
0 𝑚2 𝑚3
0 −𝑚3
0

|
|
|
|
|
||

(B.4)

where each of the terms of the matrix can be obtained in the following way:

𝑃𝛼,1 = 𝛿𝛼,1, (B.5)

𝑃𝛼,2 = (−1)𝛼−1𝑚𝛼−1, (B.6)
𝑃𝛼,𝛽 = 𝑃1,𝛽−1𝑃𝛼+1,𝛽−2 − 𝑃1,𝛽−2𝑃𝛼+1,𝛽−1 (B.7)

B.2 Wheeler Algorithm
The Wheeler algorithm can be used as an alternative to the PD algorithm. A new

set of basis functions is used to represent the orthogonal polynomials. Coefficients are
obtained from modified moments:

𝑣𝑘 = ∫𝜎𝜉

𝜋𝑘(𝜉)𝑛(𝜉)𝑑(𝜉) (B.8)

with 𝑘 = 0,1, ..,2𝑁 − 1.. Jacobi matrix coefficients can be obtained through
intermediate quantities:

𝜎𝛼,𝛽 = ∫𝜎𝜉

𝑛(𝜉)𝜋𝛼(𝜉)𝜋𝛽(𝜉)𝑑(𝜉) (B.9)

and the coefficients result:

𝑎𝛼 = 𝑎′
𝛼 −

𝜎𝛼−1,𝛼

𝜎𝛼−1,𝛼−1
+

𝜎𝛼,𝛼+1

𝜎𝛼,𝛼
(B.10)

𝑏𝛼 =
𝜎𝛼,𝛼

𝜎𝛼−1,𝛼−1
, (B.11)

and more details can be found in Marchisio D. and Fox. R. (Marchisio and Fox, 2013).
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