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A B S T R A C T

Despite the many environmental benefits that a massive diffusion of electric vehicles (EVs) could bring to the
urban mobility and to society as a whole, numerous are the challenges that this could pose to the electricity
distribution grid, particularly to its operation and development. While uncoordinated management of EVs can
lead to load imbalances, current or voltage variation excess and steep power requests, properly designed and
well-coordinated integration approaches can in contrast provide flexibility, hence value, to the whole electrical
system. Such step can be achieved only if real data are available and real drivers’ behaviours are identified. This
paper is based on a real dataset of 400,000 EV charging transactions. It shows and analyses an important set of
key figures (charge time, idle time, connected time, power, and energy) depending on driver's behaviour in the
Netherlands. From these figures, it emerges a key role of the uncertainty of the relevant variables due to the
drivers’ behaviour. This requires a statistical characterisation of these variables, which generally leads to multi-
modal probability distributions. Thereby, this paper develops a Beta Mixture Model to represent these multi-
modal probability distributions. Based on the emerged statistical facts, a number of results and suggestions are
provided, in order to contribute to the important debate on the role of EVs to move to a fully decarbonised
society.

1. Introduction

Electric vehicles (EVs) are small distributed sources that can alter-
natively store or deliver electricity upon request. The classical EV op-
eration is in grid-to-vehicle (G2V) mode, in which the EVs are charged
in appropriate charging stations. EVs operating in vehicle-to-grid (V2G)
mode are a further option that can be deployed [1,2], discharging EVs’
battery in order to source electricity to the grid when needed, provided
that the technical aspects for the grid connection are solved and a
specific regulatory framework is in place in the relevant jurisdiction.

The increasing development of EVs can help societies to live in more
sustainable and less polluted cities. However, numerous challenges are
arising for the electricity distribution grid, its operation and design
from both technical and economic perspectives [3]. In particular, the
uncoordinated management of EVs can lead to load imbalances, ex-
cessive currents or voltage deviations, and steep power requests (steep
ramp-up of generation) [4]. Properly designed and well-coordinated EV
integration approaches can in contrast provide benefits to the whole

system. The added storage capacity, together with the fast ramping-up
and ramping-down capabilities, makes the EVs an excellent asset for the
electrical grid. For these features, EVs have been already highlighted as
future participants in the electricity market, particularly to offer an-
cillary services to the grid, such as frequency and voltage regulation,
and load balancing [5]. In this context, ad-hoc incentives and tariffs
need to be studied to engage users into these services while ensuring
their mileage needs and constraints are satisfied.

In particular, EVs may contribute to enhance the flexibility of the
overall demand. In particular, the point of interest is the operational
flexibility that can be defined as “the technical ability of a power system
unit to modulate electrical power feed-in to the grid and/or power out-
feed from the grid over time” [6]. EV flexibility has been addressed in
the literature in different ways:

a) Considering G2V only, the key aspect is the flexibility referring to
variable EV charging load.

b) In V2G applications, the number of grid services that EVs can
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provide increases, adding more options to modify the demand pat-
terns, as well as the provision of reserves [7].

The EV aggregations (in both G2V and V2G paradigms) are con-
sidered as possible source of operational flexibility. Another option is
Vehicle-to-building (V2B), in which the EV batteries can be used also as
electrical energy storage units for the local building (e.g., offices and in
general workplaces), without sending power to the external grid.
Workplace EV charging is addressed in Ref. [8] by taking into account
the uncertain EV charging demand, also considering different options of
G2V for general users and possible V2B only for the local employees.

An interesting classification of the flexibility sources is presented in
Ref. [6], by dividing them into different categories based on whether
they are used (actual flexibility) or not (potential flexibility) and how
they can be obtained (for example, within an ancillary service market).
Flexibility has also been defined in Ref. [9] for the collective EV
charging demand, adapting the model introduced in Ref. [10] for ag-
gregate residential users, based on the statistical properties of the de-
mand variations in time.

The most common option to provide EV charging flexibility is to use
automated charging management systems [11], also considering the
specific standards for limiting the EV charging rate [12]. The effect of
the EV charging is more important at the distribution system level, due
to the fact that the “dumb” charging strategy can lead the operation of
the system to be out of the acceptable range [13]. However, an in-
telligent management of the EV charging process would allow the ex-
ploitation of the potential EV flexibility [14]. In this framework, opti-
misation of the EV charging schedule is addressed in Ref. [15] by
adding a conditional value-at-risk term to the objective function. Fur-
thermore, the optimisation model presented in Ref. [16] handles both
the renewable energy sources (RES) curtailment and the EV charging in
such a way that the overall strategy becomes economically convenient;
one limitation in this contribution is the description of the departure
and arrival times by means of Gaussian distributions, not obtained di-
rectly from an analysis of EV information, but starting from data re-
garding Internal Combustion Engine (ICE) cars.

The Gaussian distribution is used in other contributions (e.g., [17]),
but is generally not suitable to model the statistical properties of the
relevant variables that characterise the EV mobility. The scarcity of
available real data regarding EVs and their charging stations has pushed
researchers to define ad-hoc probability distributions for a number of
variables used in the study of EV integration in the electrical networks,
in some cases starting from travel survey data on sets of individual
vehicles (not only EVs). Finding out suitable probability distributions
for these variables is an open challenge, and has to be driven by real
data. The lognormal distribution is adopted in Ref. [22] to represent
EV-related random variables (arrival time, departure time, and initial
state of charge).

Other approaches consider EV-related patterns taken from specific
databases without performing a detailed statistical characterisation.
The contribution presented in Ref. [18] studies 255 charging stations in
the UK, considering weather data, and the EV charging demand pat-
terns are clustered with a k-means algorithm. The work of Kara et al.
[19] identifies the benefits, for load aggregators and the distribution
grid, of applying smart charging driven by time-of-use pricing to 2000
non-residential EV charging stations. The ElaadNL database has been
analysed also in Ref. [20] to quantify the demand response potential of
consumers coordinated with EV charging, and in Ref. [21] by devel-
oping eight indicators to allow a comparison among EV public charging
infrastructures.

Concerning ancillary services, the EV contribution to the frequency
control (in particular to the inertial control) has been analysed in Ref.
[23], with the implementation of a proper EV battery control; however,
it is necessary to determine the “availability” of this flexibility, by in-
vestigating real data linked with the real behaviour of the drivers. The
paper [24] tries to cover this gap, by analysing 390k transactions, and,

thanks to clustering techniques, offers a categorisation of the arrival
time, departure time, idle time, by quantifying the available flexibility
obtained from the EVs.

From the literature, it emerges that some of the present basic issues
to be further addressed refer to the uncertain nature of the variables
used in the study of the EV mobility, including the charging modes, the
behaviour of the drivers, the number of charges during the day, and the
dependence on time of the moving EVs. For these variables the study of
their specific characteristics in a given context can provide valuable
conceptual inputs. This paper aims at following this line, by analysing a
large dataset of real charging transactions of EVs in the Netherlands
during one year.

The main contributions of this paper address the following aspects:

• The provision of real figures about drivers’ behaviour and EV pre-
sence in a charging station (in terms of connected, charge and idle
times);

• The identification of the probability distributions of a number of
relevant variables, with specific focus on the multi-modal nature of
these distributions – an issue that has not been consistently ad-
dressed yet in the literature on EVs;

• The development of a Beta Mixture Model (BMM) to represent the
multi-modal probability distributions of the relevant variables; and,

• The provision of hints/facts on the potential of EVs to provide V2G
services.

The next sections of this paper are organised as follows. Section 2
describes the structure of the database used, and provides an overview
on the electricity demand in the Netherlands and illustrates the EV
profile demand, plug-in and plug-out characteristics during working
days and weekends. Section 3 describes how to represent the multi-
modal probability distribution by developing a BMM approach custo-
mised to the analysis of the EV-related variables. Section 4 presents the
results for the charge, idle and connected times, and applies the BMM
approach to provide the statistical representation of these variables.
Section 5 illustrates a spatial analysis of the charging stations based on
their geographical coordinates. Section 6 focuses on the electrical
power and energy required at the charging stations under observation.
Section 7 presents a discussion on the usage of the information pre-
sented in the prospect of the interaction with the electrical grid, with
the possible deployment of V2G solutions. Section 8 summarises the
conclusions and provides a list of current and future research activities.

2. Electric vehicle database overview

The EV dataset has been obtained from ElaadNL, a Dutch research
centre, specialised in the field of smart charging infrastructure and in-
teroperability [25]. The ElaadNL database contains the records of the
charging stations’ utilisation. It includes historic transactions data, from
January 2012 until March 2016, of 1750 publicly accessible charging
stations (2900 charging points) installed over the entire geographical
area of the Netherlands. The charging stations are all 3-phase with a
maximum output power of 12 kW. The database represents around 16%
of all the publicly accessible charging stations available in 2015 in the
Netherlands [26], which were widely spread in the whole country. The
database has recorded approximately 1 million recharges over the 4
years, and for each transaction the parameters are updated every 15 s
(the database has around 32 million rows). From the transactions
identifier it has been possible to estimate that around 30,000 EV drivers
have used the ElaadNL charging stations during the 4 years of ob-
servation. At each recharge, in addition to the transaction identifier, the
parameters measured and recorded are:

1. Charge time: it represents the time, measured in seconds, during
which the EV has been actively supplied with power.

2. Idle time: it counts the time, measured in seconds, that occurs
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between the end of the recharge and the moment at which the EV
has been plugged-out from a user (note that no effective energy
transfer takes place in this period).

3. Connected time: it is the time difference, measured in seconds, be-
tween the start and the end of a transaction. It corresponds to the
sum of the charge and idle time.

4. Energy meter: it is the energy, measured in Wh, charged from the
beginning to the end of the transaction.

5. Power meter: it is the average power value, represented in W every
15 s while the EV is being recharged.

6. Geographical coordinates: they refer to the latitude and longitude of
each charging station.

This study focuses on the year 2015, being the most recent and
populated year available in the dataset. The total number of transac-
tions is about 400,000. The year 2015 alone contains 38.5% of the total
number of transactions in the whole dataset. Transactions with duration
of less than 10 min have been neglected because they have been con-
sidered not relevant (they refer to occasional partial charging of the EV
and represent only 0.5% of the database). For the analyses carried out
in this paper, the time resolution of the data used is 1 min.

Geographical information systems (GIS) can be a very powerful tool
when combined with real databases. The combined use of spatially
referenced data, databases, and possibly other information on the ter-
ritory and on the main activities carried out in different zones, can for
instance help understanding where to install future charging stations
across the Netherlands and to enhance the usage of the installed or
planned infrastructure. From the geographical coordinates of each
charging station, it is also possible to gain more information on their
position with respect to the road classification used in the
OpenStreetMap project (Openstreetmap.org).

Many studies on location and operation of the EV charging infra-
structures have been presented in the literature. In order to understand
the nature of these studies, it is important to contextualise the solution
used for EV charging. The main differences depend on the following
aspects:

• The presence of G2V and/or V2G (depending on the regulatory
framework in place in the jurisdiction).

• The solutions available for EV charging (and, in case, V2G), namely,
the location of the charging points at home, or in public spaces
outside home, or in charging stations close to the streets, or in
specific (public or private) parking lots.

• The entity that manages the charging points for each solution in-
dicated above, e.g., the network operator, or one or more ag-
gregators, or the single user (for home charging). A practical scheme
to represent the various possibilities is reported in Ref. [27].

• In case V2G is available, the way to manage the interactions be-
tween the EV user and the charging point/station, e.g., with a
transaction-based system at known prices (also with possible in-
centives), or with market-based solutions.

In this paper, the solution analysed depends on the existing frame-
work in the country where the data are available. In particular, V2G is
not allowed, and the charging points are located in public spaces close
to the roads. The road classification used in this paper is the standard
one, which divides the roads into five types, in descending order of their
importance (e.g., in terms of vehicle capacity) in the road network [28]:

1. Motorway;
2. Primary road (often linking large cities);
3. Secondary road (often linking towns);
4. Tertiary road (linking villages); and
5. Road in a residential area, that serves as an access to housing.

The majority of the studied charging stations, up to 72%, is located

in a residential area.

2.1. The Netherlands: electric vehicles and energy demand

The Netherlands is among the leading countries in terms of policies
aimed at building a more sustainable mobility sector. It has recently
been announced that by 2030 no ICE vehicle will be sold anymore on
the market [29]. In these years, the number of EVs, both Plug-in Hybrid
Electric Vehicles (PHEV) and Full Electric Vehicles (FEV), increased
from 2549 in 2012 to almost 110,000 in mid-2017 [26]. The same trend
can be observed from our dataset in terms of publicly accessible char-
ging points installation in the country (Fig. 1, in which the analysed
year 2015 is highlighted).

In 2012, the number of publicly accessible charging points in the
Netherlands was 2803 and reached 32,785 in 2017 [26]. Focusing on
the year 2015, 18,139 publicly accessible charging points were avail-
able and an interesting trend is reflected in our database (Fig. 2) in the
number of recharges for each week. By looking at the chart, it is evident
the increase in the number of transactions across the year. This fact
depends on the higher penetration of EVs in the country, and also to the
increasing number of installed charging stations.

It is particularly interesting to observe that the few drops identified
during the year correspond to national holidays such as King’s Day,
Christmas and the summer break. The energy demand supplied to all
the EVs per week during this year corresponds on average to 62 MWh,
with a maximum value of 80 MWh. The two most stable seasons are
winter and spring with no remarkable peaks and valleys, except for a
few cases. On the other hand, summer months have a remarkable

Fig. 1. Publicly accessible charging points in the Netherlands.

Fig. 2. Number of recharges per week in 2015.
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declining profile especially in August's central weeks: around 20% of
the energy demand in fact drops up to a reduction of 10 MWh. Then,
there is an almost constant increase of number of recharges, reaching
100,000 per week at the end of the year.

2.2. Electric vehicles profile: plug-in and plug-out

This section focuses on drivers’ behaviours, and particularly on
when EV users plug-in and out their vehicles. This information can be
extremely valuable for different actors. From a different perspective, we
can use it to check for instance whether the assumptions and distribu-
tion profiles taken from the literature can be validated through the real
users’ behaviour identified through the database. Only publicly acces-
sible charging stations are addressed in this paper. Home charging is
not considered. The charging points used are located in public charging
stations that could also be close to the households, but in any case lie
outside the private properties. Fig. 3 shows an example of average time
distribution (with a time step of 1 min) of plug-in and plug-out events
during a weekday. Figs. 4 and 5 show the same distributions for a Sa-
turday and a Sunday, respectively.

From Fig. 3, two main peaks appear during weekdays. No activity
occurs during the early morning until 4:30 am, while considerable plug-
in and plug-out events are registered in the morning between 6:00 am
and 8:00 am, when Dutch drivers reach their working place. The peak
number of vehicles plugged in (slightly above 500) is reached at 7:30
am, when 30% of the whole charging stations are in use (the highest

percentage along the day). This early plug-in can potentially be ex-
plained by the fact that the EV owners have an available charging
station close to their workplace. A secondary peak of plug-in and out is
noticeable between 4:00 pm and 6:00 pm. Giving a look at the cumu-
lative vertical axis on the right-hand side of Figs. 3–5 it can be seen that
85% of the activities occur before 7:00 pm during the week. This in-
formation can already help us discussing the validity of certain as-
sumptions, such as the reduced, or almost negligible, night impact of EV
charging.

The co-optimisation aimed at maximising the profits from energy
arbitrage and minimising the transformer aging provided by Sarker
et al. [30] has shown that, if EVs are mainly recharged during the night,
the transformer deterioration is considerably accelerated. By looking at
ElaadNL database, the low EV night charging indicates that the trans-
former ageing would not be relevant during the night because of the
low utilisation rate. Uncontrolled charging events during weekdays
show that users mainly recharge when they reach the charging points
located either close to their workplace or close to their homes. If
compared with weekends, several differences appear. For Saturday and
Sunday, from Figs. 4 and 5 the number of charging stations effectively
in use never reaches 100, which corresponds to only 6% of the whole
considered stations. It is worth mentioning the important number of
plugged-out EVs on Sunday morning, which reduces from 80 to 20.
Saturday and Sunday have a saddle shape with a peak of plug-in’s
around noon. As seen for weekdays, 85% of the activities occur before
7:00 pm.

In order to construct the probabilistic representations of the plugged
in and plugged out EVs, the data indicated in Figs. 3–5 are considered
as histograms to be used for determining the probability density func-
tions (PDFs) of the relevant variables. Each histogram refers to one-
minute data and thus contains 1440 points. Since the number of oc-
currences is relatively high, the empirical PDF (EPDF) is formed with
1440 classes, avoiding the further merging of these data into a lower
number of classes. Looking at the shape of the histograms, it is evident
that standard single-mode probability distributions would be poorly
representatives of the actual situation. Thereby, a multi-modal re-
presentation is formulated as shown in the next section.

3. Handling multi-modal probability distributions with the Beta
Mixture Model

The posterior PDFs found for many relevant variables are multi-
modal, and as such cannot directly fit into a standard (single-mode)
probability distribution. In order to deal with multi-modal PDFs, it is
possible to follow specific procedures. Let us assume to know the
numberM of modes existing in the posterior PDF. One possibility would

Fig. 3. Average weekday plug-in and plug-out of EVs in 2015.

Fig. 4. Average Saturday plug-in and plug-out of EVs in 2015.

Fig. 5. Average Sunday plug-in and plug-out.of EVs in 2015.
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be to approximate the posterior PDF by using a mixture of M multi-
variate normal distributions, each one characterised by its mode, var-
iance matrix and relative mass [31]. The relative mass is the weighting
factor used to combine the distributions, and appropriate weighting
schemes have to be defined to determine the most suitable combina-
tion. For example, comparisons among weighting schemes have been
addressed in Ref. [32] by using a weighted combination of multiple
Laplace approximations obtained from significant modes. The normal-
mixture approximation is suitable if the modes are relatively well se-
parated and for each mode the normal approximation is appropriate.
For the real transaction data considered in this paper, these hypotheses
are not generally satisfied. In fact, the PDFs for the data analysed are
not symmetric, nor defined on an unbounded support (−∞, +∞). In
this case, the analysis has to be extended to identify the probability
distributions of interest to create the mixture, and to formulate suitable
weighting schemes to establish the proportions of each probability
distribution in the mixture.

The possibility of formulating an algorithm to approximate the
multimodal probability density functions by mixtures of standard dis-
tributions is discussed in Ref. [33]. Among the various possibilities, the
BMM [34] is indicated to be appropriate to represent the probability
distributions found in the analysis of EV-related data [31].

Let us consider the Beta probability distribution, defined in the
following way, by considering the two shape parameters a > 0, b > 0
and the variable x ∈ [0,1]:

=
+

−− −x a b a b
a b

x xBeta( | , ) Γ( )
Γ( )Γ( )

(1 )a b1 1
(1)

where Γ(.) is the Gamma function. The Beta probability distribution is
appropriate to represent variables defined between a minimum value
xmin and a maximum value xmax, by rescaling the horizontal axis from
the support [0,1] to [xmin, xmax]. Moreover, by changing its parameters
it is possible to represent different PDF shapes, from left-skewed to
symmetric to right-skewed PDFs.

An interesting aspect is that the mode ξ of the Beta probability
distribution is calculated analytically starting from the parameters
a > 0 and b > 0:

=
−

+ −
ξ a

a b
1

2 (2)

Considering a multi-modal EPDF with M modes, it is possible to
construct its approximation based on the BMM, in which M Beta
probability distributions are combined together to form the final PDF.
In particular, starting from m = 1, …, M Beta probability distributions

x a bBeta( | , )m m , the BMM is constructed by considering the weighted
sum:

∑=
=

x w x a bBMM( ) ( Beta( | , ))
m

M

m m m
1 (3)

in which the weights are defined in such a way that

∑ =
=

w 1
m

M

m
1 (4)

If the empirical PDF is composed of N points, and by definition
x1 = xmin and xN = xmax, it is possible to calculate the distance between
a given BMM and the EPDF as

∑= −
=

d
N

x x(BMM, EPDF) 1 (BMM( ) EPDF( ))
n

N

n n
1

2

(5)

In this paper, the identification of the BMM is carried out by
minimizing the distance d (BMM, EPDF). The unknowns considered are
included in the vector = … … …−y w w b b ξ ξ[ , , , , , , , , ]T

M M M1 1 1 1 , where the
superscript T denotes vector transposition. In particular, the last weight
wM is not included among the unknowns because it is directly

implemented in (3) as ∑= −
=

−

w w1M
m

M

m
1

1

, thus reducing one unknown

and taking automatically into account the equality constraint (4). In
addition, the modes ξ1, …, ξM are preferred to the shape parameters a1,
…, aM as the problem unknowns, because in the initialisation phase of
the optimisation problem it is easier to set up an initial value of the
mode with respect to the initial value of the shape parameter. At the
end of the optimisation, the shape parameters am, for m= 1, …, M, will
be calculated from (2) as

=
−

−
+

−
a

ξ
ξ

ξ
ξ

b
1 2
1 1 (6)

On the basis of the above indications, the optimisation problem is
set up as follows:

dmin { (BMM, EPDF)}y (7)

subject to
bm > 1, for m= 1, …, M

≤ ≤w0 1m , for m = 1, …, M− 1
≤ ≤ξ0 1m , for m= 1, …, M.

The vector y is initialised in such a way that its entries satisfy the
inequality constraints. In particular, extensive testing carried out by the
authors suggests initialising the modes of the Beta probability dis-
tributions to values close to the modes of the EPDF; however, there is no
need to try and calculate these modes, also because the modes of the
EPDF do not correspond with the modes of the individual Beta prob-
ability distributions used in the BMM. Likewise, the parameters bm, for
m= 1, …, M, can be initialised to higher values if there are sharper
peaks around the corresponding modes, and to lower values otherwise.
Finally, the weights can be initialised in a uniform way, that is,
wm = 1/M, for m= 1, …, M− 1.

Different tools can be used to solve the optimisation problem.
However, when using the Beta distributions, a classical tool such as the
maximum likelihood parameter estimation is limited by possible singu-
larities in the log-likelihood function when the observations are close to
0 or 1 [36]. In this paper, the solver fmincon from Matlab® with the
interior point algorithm has been used. Due to the nature of the pro-
blem, the initial conditions affect the solution, and it cannot be guar-
anteed that the global optimum is found. However, it is possible to
carry out a goodness-of-fit test in order to check whether the BMM fits
the empirical data in a satisfactory way. In this paper, the Kolmogor-
ov–Smirnov (KS) test is used as the goodness-of-fit test. In the KS test,
the cumulative distribution function (CDF) is constructed for the BMM,
and the empirical cumulative distribution function (ECDF) is con-
structed for the empirical data (in this case, it is a stepwise curve with N
steps). Then, the KS test error εKS is calculated as the maximum vertical
difference between the CDF and the ECDF. The goodness-of-fit test is
successful if the error εKS is lower than the critical value εKS

crit that defines
the limit value for the KS test error. For a generic probability dis-
tribution, the value εKS

crit is found in a specific table provided in Ref. [37],
depending on the sample size N and on the level of significance. By
considering 5% as the level of significance, the resulting expression of
the critical value is =ε

NKS
crit 1.36 .

An example of application of the proposed procedure is shown here
with reference to the EVs plugged in and plugged out presented in
Figs. 3–5. Table 1 shows the number of modes resulting in the various
probability distributions, as well as the initial unknowns of the BMM,
the corresponding final values, and the outcomes of the KS test. Fig. 6
shows the graphical representation of the EPDFs and of the BMM. The
BMM support for the PDFs is defined in the interval (0, 1). Because of
the 1-min time resolution, this range corresponds to the time interval
(0, 1440) in minutes.

In the examples shown in Table 1, without loss of generality the
initial weights applied to the Beta probability distributions that form
the BMM are assumed to be the same, equal to 1/M. The initial values of
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the coefficients bm and modes ξm, for each mode m = 1, …, M, are
considered in a number of exemplificative cases. In general, the final
result of the optimisation depends on the initial values. However, from
the cases analysed it can be shown that it is not strictly necessary to use
initial values close to the final values. For example, in the Weekday
Plugged In case, the initial modes are 0.28, 0.50, 0.70 and 0.95, while
the final modes are 0.30, 0.70, 0.70, and 0.46. It can be noticed that the
repeated value of the mode 0.70 actually corresponds to the coexistence
in the BMM of two Beta probability distributions with the same mode,
but with different parameters (i.e., coefficients b equal to 33.40 and
2.34, and the corresponding coefficients a) and different weights (0.14
and 0.56). Concerning the weights, the initial values again can be lar-
gely changed in the final solution. An example is the Sunday Plugged In
case in which, starting from three equal weights (1/3 each), the final
weights are 0.02, 0.48, and 0.50. Large variations from the initial va-
lues to the final ones are generally found as well for the parameters b of
the individual distributions that form the BMM. Fig. 6 also shows the
ECDF and the CDFs used for the KS test; in all cases, the KS test error is
significantly lower than the limit value of the KS test. The zoom shown
in Fig. 7 represents the details containing the shape of the ECDF and the
entries used for the KS test.

4. Idle, charge and connected times

To provide a more comprehensive view, three variables deserve due
attention: the charge, idle and connected times. They can in fact pro-
vide more valuable facts as the average duration of recharges, and on
the ranges of time in which the vehicles are fully recharged but still
connected to the stations, thus potentially ‘on’ to offer V2G services to
the grid.

Table 2 reports the mean values and standard deviations for the
charge, idle and connected times for the year 2015. The connected time

is the sum of the charge and idle times, and is higher for the roads in
residential areas. In fact, if the EVs remain parked close to the houses,
for the EV owners it could be not so urgent to disconnect them. This is a
relevant point, and is due to the fact that currently there is no shortage
of locations to plug in the EVs, and there is no specific penalty for the
occupation of the charging stations without charging the EV. Further-
more, as it may be expected, there is a poor correlation between the
charge time and the idle time. This can be seen in the joint distribution
of the charge and idle times reported in Fig. 8, also showing the dis-
persion of the idle time, with standard deviation increasing when the
type of road passes from the primary to the residential.

In more detail, the transactions have a similar average charge time
independently of the position. Different outcomes emerge when we
look at the idle times. In this case, the position of the charging stations
has a clear impact on them. The smallest idle time, as expected, is re-
cognisable in the primary roads, where drivers do not stop for long
time. Longest times are instead registered for charging stations installed
at the residential level, with an average connected time of about 7 h.
This can be explained as follows. In many cases the charging has started
in the evening (e.g., after 6 pm) and has already been completed before
or just after midnight. After the charging is complete, the EV remains
plugged in during the rest of the night. However, in these conditions the
EV charging has little or no impact on the consumption during the night
hours and early morning.

By analysing the idle and connected times, it is possible to extra-
polate some interesting behaviour patterns. On the average, 75% of the
EVs connected at any time to the charging stations are already com-
pletely recharged. This trend could indicate that consumers are still not
aware about the required time to charge their vehicles. This informa-
tion can also be used to foresee some aspects of the EV availability to
V2G (Section 7).

The ElaadNL database shows that there are high values of charge

Table 1
Calculation of the BMM components for the number of plugged in and plugged out EVs in the various day types.

Weekday plugged in
(Fig. 3)

Weekday plugged out
(Fig. 3)

Saturday plugged in
(Fig. 4)

Saturday plugged out
(Fig. 4)

Sunday plugged in
(Fig. 5)

Sunday plugged out
(Fig. 5)

Number of points 1440 1440 1440 1440 1440 1440
Number of modes 4 4 3 3 3 3
Modes (initial) (example) 0.28 0.28 0.45 0.50 0.27 0.25

0.50 0.45 0.60 0.60 0.65 0.60
0.70 0.65 0.90 0.80 0.78 0.80
0.95 0.85

Modes (final) 0.30 0.27 0.39 0.45 0.67 0.26
0.70 0.47 0.56 0.62 0.49 0.61
0.70 0.65 0.85 0.77 0.72 0.84
0.46 0.81

Weights (initial) (example) 1/4 1/4 1/3 1/3 1/3 1/3
1/4 1/4 1/3 1/3 1/3 1/3
1/4 1/4 1/3 1/3 1/3 1/3
1/4 1/4

Weights (final) 0.23 0.22 0.17 0.43 0.02 0.24
0.14 0.31 0.62 0.14 0.48 0.63
0.56 0.18 0.20 0.43 0.50 0.13
0.08 0.29

Parameter b (initial)
(example)

100 80 50 50 150 150

30 50 20 70 10 10
100 50 40 50 20 20
40 30

Parameter b (final) 76.76 62.36 24.80 12.95 150.08 71.85
33.40 17.21 6.39 30.26 9.12 5.33
2.34 38.11 1.61 2.19 3.05 5.09
42.65 3.47

Parameter a (final) 32.80 23.60 16.05 10.69 300.71 26.47
76.42 15.44 7.81 47.81 8.69 7.65
4.13 69.92 4.49 5.05 6.22 21.84
36.12 11.66

KS test error 0.0041 0.0090 0.0083 0.0092 0.0100 0.0109
KS test limit 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358
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time, which reaches almost 22 h in a row. In the Netherlands, 5.44% of
the electric vehicles were Model Tesla S in 2015 [26], which is
equipped with a lithium-ion battery of up to 80–100 kWh. This explains
the 22 h charging at a power rate of 3.3 kW [38]. It is worth mentioning
that all the information ‘distilled' from the dataset can become very

useful to provide a sound base for programming and managing the
drivers’ recharging behaviour according to the system operator needs.

Fig. 6. Results of the PDFs of the plugged in and plugged out EVs with the Beta Mixture Model.
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4.1. BMM results for the charge time

Tables 3a and 3b reports the values obtained by applying the pro-
posed BMM approach to the charge time data synthesised by using a
specified number of points to represent the corresponding PDFs. Fig. 9
shows the empirical data and the BMM outcomes. The situation changes
from the primary and secondary roads, in which 4 modes are used to
provide better representations, to the tertiary and residential roads,
where a two-mode model is sufficient to identify the main charge time
behaviours.

Fig. 10 counts the occurrences, hour by hour, of the recharges
having a given duration for the different roads classified. As mentioned
in Section 2, the transactions lasting less than 10 min have been ne-
glected. The cumulative line in red indicates that for 80% of the time
the EVs are charging to a charging station for less than 8 h in-
dependently of the road classification. The remaining 20% can stay
charging for even longer time periods (up to 24 h). It is remarkable that

50% of the occurrences falls within the first 4 h. This does not mean
that the EVs are fully recharged in only 4 h, but that they have been
charging up to 4 h to satisfy users’ needs in that circumstance. The
highest number of recharges lasts for 4, 6 or 8 h depending on the road
type. The second peak observable at 8 h clearly suggests that these EVs
could have been charged very likely at work, or at home (with a smaller
probability). Based on this analysis, in the presence of local electrical
energy storage one could store part of the electricity coming from
photovoltaic systems to cover the EV demand during the night hours,
thus mitigating the possible curtailment of part of the production from
PV systems in clear sky conditions.

4.2. Characterisation and relevance of the idle time

From Fig. 8, it is easy to see that the idle time data contain a

Fig. 7. Zoom of the results for the weekday plugged in case.

Table 2
Charge and idle time statistics for the charging stations based on road classi-
fication (mean value μ and standard deviation σ).

Road type Charge time
μ ± σ
[h:min]

Idle time
μ ± σ
[h:min]

Connected time
μ ± σ
[h:min]

Correlation
between charge
time and idle time

Primary 2:06 ± 1:32 2.07 ± 4:10 4.13 ± 4:51 0.2955
Secondary 2:14 ± 1:27 2:27 ± 4:28 4:41 ± 5:12 0.3771
Tertiary 2:14 ± 1:32 2:40 ± 4:47 4:54 ± 5:26 0.2883
Residential 2:13 ± 1:30 3:19 ± 5:21 5:33 ± 6:00 0.3047

Fig. 8. Joint probability distribution of the charge and idle times.

Table 3a
BMM components of the charge time PDFs for the various road types.

Road type Primary Secondary Tertiary Residential

No. points 60 50 50 50
No. modes 4 4 2 2
Modes 0.11 0.09 0.07 0.06

0.05 0.14 0.17 0.17
0.18 0.22
0.25 0.04

Weights 0.24 0.29 0.88 0.86
0.57 0.18 0.12 0.14
0.12 0.36
0.08 0.17

Parameter b 149.76 145.30 25.52 24.62
42.78 571.90 999.79 999.89
999.88 124.42
59.37 120.06

Parameter a 20.04 14.46 2.71 2.55
3.17 92.44 203.13 202.97
221.57 34.82
20.75 5.74

KS test error 0.1179 0.1331 0.1509 0.1410
KS test limit 0.1756 0.1923 0.1923 0.1923

Table 3b
Percentage of null idle time values.

Type of road Primary Secondary Tertiary Residential

Percentage of null idle time values 45.1% 36.8% 32.3% 35.9%
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significant number of null values, as well as a high dispersion of the
other values. Thereby, the idle time is not addressed by calculating the
BMM with the whole set of data. The null idle times are extracted and
associated with a Dirac pulse in the origin of the PDF, whose amplitude
is equal to the posterior probability of the null idle time. Tables 3a and
3b indicates the percentage of null idle time values that contribute to
the Dirac pulse in the corresponding PDF. The remaining part of the

data exhibits an initial decreasing evolution when the idle time in-
creases, then there are some intermediate values for which the de-
creasing evolution does not appear any longer, and for the higher idle
times the values indicatively tend again to decrease. This evolution is
then addressed by a special version of the BMM, chosen after extensive
testing. Three Beta probability distributions are considered, two of
which have the mode equal to zero (the presence of two distributions

Fig. 9. BMM applied to the multi-modal probability distributions of the charge time.

Fig. 10. Time distribution during the day (cumulative values are indicated on the right-hand side of the vertical axis). (For interpretation of the references to color in
the text, the reader is referred to the web version of this article.)
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with different parameters provides more flexibility in the determination
of the first part of the distribution), and the third one has a mode in-
itialised at values higher than 0.5. The null modes are excluded from
the unknowns of the optimisation procedure (vector y), while the other
variables (two weights, three coefficients b, and one mode) remain in
the vector y.

Table 4 reports the results of the relevant coefficients and variables
obtained from the application of the modified BMM procedure. Fig. 11
shows the graphical view of the empirical data and of the PDFs hence
the overall area covered by the part of the PDF represented equals unity
minus the Dirac pulse amplitude (i.e., the area represented for the
primary roads is 1–0.549 = 0.451, while the area represented for the
secondary roads is lower, being 1–0.632 = 0.368).

Fig. 12 illustrates the average number of charging stations that are
really fuelling the EVs (in red) and the average number of EVs that are
connected to the stations (in blue). The difference between the blue and
the red curve gives the average number of connected vehicles already
fully charged but still plugged-in. A repeating pattern for weekdays is
easily identified for the active recharging which cannot be seen instead
for the connected vehicles. The peak of connected vehicles is reached
almost every day around 10:00 pm, which means that by the next early

morning almost all vehicles are supposed to be fully recharged. The
highest available capacity to be offered to the grid is thus reached in the
early morning, which can be offered by EVs to the electrical grid op-
erator if needed. From the dataset it is observed that, of the 1750
charging stations available at the EV peak time of use, only 250 are
actively used at most, which corresponds to slightly less than 15%, and
only about 400 charging stations (23%) are simultaneously connected.
This seems to suggest two different contrasting things: either the
charging infrastructure is more than adequate to cover the demand
coming from EVs, or that a relatively small part of the charging stations
is mostly used due to their location.

de Hoog et al. [13] optimise the charging strategy by taking into
account also the network constraints. The results of this research,
considering also price-based optimisation, indicate that the EV demand
is concentrated in the afternoon at 4:00 pm and during the night. This
conclusion partially agrees with the real Dutch drivers, but it does not
show the two-peaks shape that emerges from the ElaadNL dataset.

Fig. 13 reproduces three single days (Wednesday, Saturday, and
Sunday) that can be helpful for a comparison with the weekly results
shown in Fig. 12. Indeed, it is accentuated that the blue line can be
modelled and assumed to be almost horizontal in certain time periods.

Table 4
Dirac pulse amplitudes and BMM components of the idle time PDFs for the
various road types.

Road type Primary Secondary Tertiary Residential

Dirac pulse amplitude 0.549 0.632 0.677 0.641
No. BMM points 30 30 30 30
No. BMM modes 3 3 3 3
Modes 0. 0. 0. 0.

0. 0. 0. 0.
0.67 0.53 0.53 0.55

Weights 0.39 0.49 0.58 0.39
0.50 0.33 0.28 0.38
0.11 0.18 0.14 0.23

Parameter b 39.61 38.43 62.26 60.75
7.29 10.58 11.27 12.16
3.52 3.03 2.98 3.03

Parameter a 1. 1. 1. 1.
1. 1. 1. 1.
6.14 3.32 3.20 3.44

Fig. 11. BMM applied to the multi-modal probability distributions of the idle time (the Dirac pulse that completes each PDF is not represented).

Fig. 12. Average EVs simultaneously plugged in (connected and charged). (For
interpretation of the references to color in the text, the reader is referred to the
web version of this article.)
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The average value on Wednesday, of EVs connected to charging sta-
tions, is 360 with only a negligible drop at 3:00 pm, and a peak at 9:00
am. On Saturday and Sunday the two lines, except for the early
morning, seem to be shifted between each other. The average number
of charging stations in use is higher than on Wednesday and slightly
exceeds 400, and the number of charging stations used to recharge
exceeds 200 during the weekend at hours 7 am and 8 am, as well as
(slightly) at 4 pm.

The EV charging scenario used in [39] assumes that the peak hap-
pens in the early morning until 7 am, which is aligned with the real data
profile of ElaadNL database. Lopez et al. [36] assume different charging
and idling time for the nine EVs used. The charge time is mainly con-
centrated during the early morning, which does not seem in line with
Fig. 12. This difference might mainly be caused by the fact that many
EVs are already fully charged around 11:00 pm.

4.3. Other probabilistic information

From the point of view of the EV driver, further inputs have to be
provided, such as the probability distribution of percentage of EVs in-
tended to reach a charging point at each time moment [41], or the
synthetic information on need-for-charge and willingness-to-supply
formulated in the approach that considers vehicle originating signals
[42]. This information is not available in the ElaadNL database, as it
depends on last minute intentions of the drivers, which would need an
online information system to be collected in real time.

5. Latitude and longitude analysis

This section provides more information about the geographical
analysis performed. Fig. 14 helps us understand where further charging
stations could be installed by analysing the usage of those already in-
stalled.

The charging stations considered are distributed as follows (Fig. 14):
1213 are residential, 287 on tertiary roads, 187 on secondary roads, 57
on primary roads, and 2 on motorways (not visible in the figure, as
there is not enough information). At the same time, from the ElaadNL
database it is possible to see that the charging stations installed on the
motorway have been utilised few times, which clearly highlights the
fact that drivers prefer fast chargers in this specific location. In Fig. 15,
the red line indicates the percentage of charging stations on each ca-
tegory of road compared to the total number of ElaadNL charging sta-
tions. The blue bars represent the frequency of utilisation of that ca-
tegory of charging station. It can be concluded that the charging
stations at the residential level (that is, located close to households) are
the most used, followed by the ones close to the working places.

Fig. 13. Number of EVs connected or charging on Wednesday, Saturday, and Sunday. (For interpretation of the references to color in the text, the reader is referred to
the web version of this article.)

Fig. 14. Distribution of the charging stations based on the road categorisation.
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Moreover, apparently the charging stations installed on primary roads
are not used as expected. Primary roads can be considered as a sort of
motorways, which seems to explain why they have not been much
utilised. This could suggest to companies installing charging stations
that on motorways and primary roads it is necessary to install only
stations with fast chargers. At the residential level the utilisation is
higher, which means that the drivers prefer charging stations close to
their homes.

6. Energy and power analysis

The ElaadNL database allows us also to extract useful information
regarding the energy and power request from EVs and on how this
curve is related to the traditional household consumption. Fig. 16
presents the average weekly EV energy demand and in the same plot
highlights (below) the average profiles for Wednesday, Saturday and
Sunday. In line with Figs. 5–7, the early demand is almost negligible,

and relatively low in the late night (after 10:00 pm). The two-peaks
shape is still present for weekdays and shows a peaks of above 150 kW
per hour. The average daily energy demand is almost 950 kWh, with a
yearly demand that reached 3.3 GWh for the year 2015.

From Fig. 16, it can be perceived that the weekly EV electricity
demand profile during weekdays has some peaks anticipated with re-
spect to the morning ramp (occurring after 6 am) and the evening peak
(occurring around 6 pm) of the typical household demand in the
Netherlands [43]. This lack of coincidence among the peaks is not the
most critical case for the distribution network, however the non-neg-
ligible EV electricity demand occurring around 6 pm accentuates the
grid stress especially in peak hours. The weekend request accounts for
24.7% (0.8 GWh) of the yearly electricity demand, which is mainly
concentrated during the central part of the day, as it is visible in Fig. 16.
Loisel et al. assume in Ref. [44] that the cars, due to longer travel ac-
tivities in the weekend, consume more electricity than in the working
days; from the results of Fig. 16, this fact is not confirmed for the set of

Fig. 15. Utilisation of the charging stations based on the road categorisation. (For interpretation of the references to color in the text, the reader is referred to the web
version of this article.)

Fig. 16. Average EVs demand per week: weekly evolution (upper graph) and zoom for Wednesday, Saturday, and Sunday (lower graph).
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transactions studied. In Ref. [45] the authors optimise the charging
strategy by taking into account the battery degradation, as a result they
obtain that the best strategy is to charge only once per day at 8:00 pm.

Table 5 lists the mean energy supplied for each transaction for the
different street category. The primary road value is slightly lower if
compared with the other roads. As expected, the maximum energy re-
charged corresponds to the full recharge of Tesla vehicles.

Fig. 17 helps understand the electricity demand from a geographical
point of view. The figure represents, through the latitude and longitude
coordinates, the 1750 charging stations on the horizontal and vertical
axes, respectively.

In the representation shown in Fig. 17, the weekday demand is
990 kWh for the whole Netherlands. The demand is concentrated in the
central-east area, and more precisely in Utrecht, Rotterdam and Den
Haag. By analysing the chart, it becomes clear that the highest amount
of charging stations is located mainly in these cities. These results can
be extremely useful for the electrical network operators, because they
provide useful information on how to expand or improve the grid
system in this area. The costs of the infrastructure could be reduced by
tailoring investments where EVs provide more value to the system. It is
important to mention that 37.5% of these charging stations are
equipped with two connectors, which mean that they can recharge at
the same time two EVs with a maximum power rate of 12 kW each. By
analysing the ElaadNL database it is still interesting to identify three
main power output areas. Fig. 18 illustrates the partitioning into high,
medium and low power regions. The smallest percentage covers the
power supply around 2 kW. The majority of vehicles are instead
charged at a power rate of 3.3 kW, and a smaller percentage of charging
stations are using the maximum power rate (12 kW).

The partitioning into power regions is also helpful to interpret the
results indicated in Fig. 19, in which the charge time is shown together
with the energy for each transaction in the various types of road. From
the figure it is clear that the charge occurs along two main directions,
with a first direction having higher energy for the same charge time

(corresponding to the high power region in Fig. 18), and the second
direction, most frequently occurring, that indicatively corresponds to
the medium power region in Fig. 18.

7. Relevance of the statistical results for implementing vehicle-to-
grid

The results presented in this paper refer to G2V only. However, they
may offer some indications on the potential of V2G application, pro-
vided that the data shown are carefully discussed. In general, if V2G is
allowed, the charging behaviour changes depending on the grid con-
nection options and on the revenues for V2G service provision. As such,
there is no unique solution to handle V2G. The indications included
here refer to the application of V2G to a small extent, starting from an
initial situation in which V2G is not admitted. Massive deployment of
V2G requires a comprehensive approach that is outside the scope of this
paper.

In Ref. [46] a V2G concept is illustrated in which the EVs discharge
occurs few hours during the early morning. This behaviour is in
agreement with Figs. 3 and 5, where it is clear that the EVs are almost
all connected and fully charged. Furthermore, as shown in Section 4, at
any time of the day, 75% of the EVs connected to the charging stations
are already completely recharged. Looking at Fig. 11, the tail prob-
ability corresponding to relatively high idle time (e.g., more than 6 h,
corresponding to BMM support higher than 0.25) is relatively low, but
not negligible. In the future, consumers not subscribed to the V2G
service to the grid could be subject to penalties and fees to prevent
unnecessary occupation of the charging stations. Penalties of this kind
could be used to reduce the cost (and the number) of installed charging
stations to foster a more effective use.

Singh et al. [47] developed a multi-charging station (V2G) optimi-
sation for load management and grid support. The results show that at
9:00 am and 7:00 pm, EVs can provide support through discharging.
Even though these results are not directly comparable with the out-
comes of this paper, as in the presence of V2G the EV would be operated
in a different way, from Fig. 13 it can be seen that at 9 am the difference
between the connected and charged EV on Wednesday is the lowest one
appearing throughout the day. This fact limits the potential of V2G in
that time slot. From the same figure, the situation at 7 pm looks better.

The participation of EVs in energy and ancillary services has been
studied in Ref. [48], where the maximisation of the aggregator’s profit
has been considered. The results indicate that V2G services should be
provided in different time periods, e.g., at 5:00 am and from 8:00 am
until 1:00 pm. In contrast, Karfopoulos and Hatziargyriou [17]

Table 5
Energy statistics for the year 2015.

Charging station based
on road classification

Energy μ ± σ
[kWh]

Max
energy
[kWh]

Correlation between
energy and charge time

Primary 8.06 ± 9.61 66.7 0.6753
Secondary 8.34 ± 9.67 81.0 0.6938
Tertiary 8.50 ± 9.91 87.1 0.6743
Residential 7.85 ± 8.69 84.9 0.6616

Fig. 17. Electricity demand across the Netherlands during a weekday.

Fig. 18. Max power demand in 2015 across the Netherlands.
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determined that, on a 24 h profile, EVs only support the grid through
V2G for two hours per day (11:00 am–1:00 pm). From Fig. 13, the
period 11:00 am–1:00 pm appears with the lowest difference between
the connected and charged EV on Wednesday (thus leaving a relatively
low margin to use the EVs for V2G), while during Saturday this margin
is significantly higher.

8. Concluding remarks

In the changing electrification sector, the emerging role that fleets
of EVs will play in offering their services to the electrical grid, also to
balance the intermittent production of renewable energy sources, is still
not fully exploited. This paper analysed valuable real data on EVs
charging behaviour in the Netherlands for the year 2015 coming from
1750 three-phase charging stations with a maximum power output of
12 kW. The study analysed the current EV status in the Netherlands.
System operators and EV aggregators should take the growing im-
portance of EVs into account. The global EVs demand in 2015 reached
3.3 GWh with only a penetration of 3 EVs for every 1000 vehicles. By
looking at the energy demand, the data reveals that 25% of the total
energy is supplied in the weekend, and the mean energy supplied to
each EV is 8.5 kWh per transaction. Daily plug-in and plug-out dis-
tribution profiles highlighted remarkable differences among weekdays
and weekends. Multi-modal probability distributions were identified for
a number of relevant variables, and were handled through a Beta
Mixture Model approach. A statistical analysis of connected, idle and
charge times provided the following results: 50% of the recharges last
for less than 4 h; the idle time depends on the geographical location of
the charging station, and on average it lasts also for 4 h. These results
constitute a basis on which future research activities on EVs integration,
ancillary services, grid infrastructure impact, and EVs charging man-
agement, can be built by relying upon validated assumptions. Based on
these results, future activities will focus on the implications on ancillary
services, thus, on novel electricity market models, and on costs and
benefits of the EV integration into the electrical grid.

When the number of EVs will become higher, further issues will
likely appear, such as the possible unavailability of charging locations
in a charging station, taking into account the probability that the EV is
charged or queued at its arrival. On the operation side, the possible
queuing will have to be handled through appropriate communication
before the EV arrival. On the planning side, the risk of being not served
will be included in the planning problems aimed at determining the
location and sizing of new EV charging infrastructure.

Results of this kind can help policy makers, companies and network
operators devise better strategies, economic tariffs and ad-hoc

incentives and penalties to enhance the value of tomorrow’s EV fleet
and to minimise its impact on the grid infrastructure.
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