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Summary  

Occupant behaviour (OB) has been acknowledged to be one of the key factors 
of uncertainty in prediction of energy consumption in buildings. Building occupants 
affect building energy use directly and indirectly by interacting with building 
energy systems such as adjusting temperature set-points, switching lights on/off, 
using electrical devices and opening/closing windows. Indeed, within the energy 
and building research community, occupant-centred approaches and analysis are 
gaining continuously more attention and significant research effort is put on gaining 
a deeper knowledge on the human interaction with the building systems and 
envelope. These efforts are mainly focused on reducing estimation uncertainties 
related to the human factor in building energy analysis and design, as well as the 
active engagement for a more aware behaviour of the occupants in view of reaching 
energy efficiency goals.  

The introductory chapter (Chapter 1) outlines key aspects of the state-of-art in 
current behavioural research and highlights research gaps and shortcomings in 
the current research body that have stirred the focus of this dissertation, such as: 

(i) Lack of understanding to which extent OB can impact building energy 
use and thermal comfort in high performing buildings; 

(ii) Gap between real and predicted building energy use due to an 
oversimplification (e.g. fixed schedules) of the human factor in 
simulation programs; 

(iii) Absence of qualitative data and individual characteristics and 
preferences of building occupants in existing models; 

(iv) Lack of reliable and affordable ways to collect large-scale occupant 
behaviour data; 

(v) Lack of innovative solutions for motivating and assessing behavioural 
change towards energy efficiency goals. 

Given these current limitations in existing literature, this doctoral research is 
aimed at addressing the following research questions: 

(i) How significant is the impact that OB might have on building energy 
use and thermal comfort conditions of the occupants, especially in the 
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context of high performing and technologically optimized buildings, in 
which the human factor might play an even more significant role than 
in buildings whose envelope-driven loads dominate the consumption 
profile? 

(ii) Is there an innovative approach to model the stochastic nature of the 
human-building interaction influenced by key environmental and time-
related drivers towards bridging the gap between real and predicted 
building energy use?  

(iii) Which role do qualitative data and individual characteristics of the 
occupants play (e.g. thermal comfort attitudes) and how can they be 
introduced in the modelling process? 

(iv) Is there a reliable way for profiling OB on a large scale to provide 
enhanced building simulation input? 

(v) How to engage and assess behavioural change to optimise building 
operation and well-being of the occupants?  

In this context, the methodological framework of this dissertation is aimed at 
contributing to new knowledge in occupant behavioural research through the 
development and implementation of methods for 

(i) estimating the impact of OB on building energy use and thermal 
comfort in low energy buildings (Chapter 2); 

(ii) exploring the Bayesian Network framework for developing advanced 
stochastic OB models (Chapter 3); 

(iii) introducing qualitative data and individual characteristics of the 
occupants in these models through tailored OB surveys (Chapter 4); 

(iv) profiling OB (daily activities and occupancy) on a large scale based on 
Time Use Survey data (Chapter 5); 

(v) developing and evaluating energy engagement campaigns in different 
environments to improve OB and raise user awareness (Chapter 6).  

A first step (Chapter 2) consisted in presenting a methodology for investigating 
to which extent different occupant behaviour lifestyles (low, standard, and high 
energy consuming) and different household compositions might affect building 
energy use in high performing buildings. The analysis was based on simulation 
results of a case study located in Northern Italy whose energy consumption varied 
significantly when considering high or low consumer profiles. The outcomes also 
stressed the urgent need for the development of occupant behaviour models that 
allow for more reliably capturing the stochastic nature of human behaviour inside 
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buildings. In line with this, the next step (Chapter 3) was to demonstrate the 
applicability of the Bayesian Network (BN) framework for OB analysis, and in 
particular for predicting window opening/closing behaviour of building occupants 
based on the measurements in a residential apartment located in Copenhagen, 
Denmark. This study showed the high predictive power of BN models and 
identified environmental and time-related factors as key drivers for window control 
behaviour, but highlighted that next to traditional field measurements of 
environmental parameters and information on building characteristics, survey-
based information can be introduced in the modelling process to obtain a more 
accurate picture of behavioural patterns. In a next step, these additional factors were 
investigated by means of a tailored interdisciplinary survey framework for Danish 
dwellings (Chapter 4) and some of them were included in the modelling process, 
which highlighted that thermal comfort attitudes and preferences of the occupants 
have a significant influence on the human-building interaction. Then, the focus was 
put on enlarging the scale of OB analysis by identifying Time Use Survey data as 
an essential source for profiling energy-related daily activities of occupants during 
different seasons and weekdays/weekends and profiling occupancy patterns for 
different household types. The Danish Time Use Survey served as main data source 
for this investigation (Chapter 5). A final step consisted in investigating how 
occupant behaviour can be changed through user awareness and behavioural change 
programs and how OB can be leveraged towards reducing its impact on energy use 
and the environment through an interdisciplinary approach – this closes the loop of 
the methodological framework of this doctoral research (Figure I-1.1).  
 

 
Figure I-1.1 Summary of the methodological framework of the PhD thesis. 
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Chapter 1 
 

Introduction 

1.1 The big picture  

 
“Climate change is the challenge of our generation” – this statement has found 

numerous voices in wide-ranging organizations across the world and its meaning 
gives the lead to an increasing number of innovative research activities in different 
fields, to tackle a challenge that requires being addressed strategically and with 
combined strength. A challenge that is focused on mitigating and reducing a 
significant increase of greenhouse gas (GHG) emissions due to human-induced 
activities that has been observed over the past 150 years, and whose harmful 
consequences have been broadly documented (World Health Organization 2016).  

The EU has set itself a long-term goal of reducing GHG emissions by 80-95%, 
when compared to 1990 levels, by 2050 (European Commission 2012). To achieve 
this target, it is necessary to tackle main energy consumers and move towards a 
low-carbon economy. With a large share of total primary energy consumptions 
(40%) in most developed countries (IEA and UNDP 2013), one of the major 
consumers of energy – and contributors to global GHG emissions – is the building 
sector, which therefore has become a main focus for energy consumption efforts. 

These efforts oftentimes rely on the technological optimization of building 
envelope and systems towards reaching the nearly zero energy target. However, 
nowadays, the building energy research community is aware of the pivotal role of 
occupant behaviour in having a crucial impact on building energy demand as well 
as the indoor environment (Masoso and Grobler 2010; Yan et al. 2017; Mahdavi 
2011) (Figure 1.1-1). Indeed, the building occupants cannot be seen as merely 
passive recipients of the built environment, but they interact with the latter in search 
of a personally comfortable condition (Langevin et al. 2016). To meet individual 
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comfort criteria or other necessities, the occupants perform two different categories 
of actions. The first category are adaptive actions (De Dear and Brager 2002), which 
means that occupants either adapt the environment to their current needs (e.g. 
regulate heating/cooling set points, lighting levels, windows and sunscreens, or 
other installed HVAC systems and building envelope features) – and/or the 
occupants adapt themselves to the environment (e.g. adjusting clothes, moving 
through spaces). The second category are non-adaptive actions and refer for 
example to behavioural patterns related to occupancy or the usage of plug-in 
devices. It is not difficult to envision the stochastic nature of the human-building 
interaction, since individuals might perceive the indoor environment in different 
ways, or have different preferences, priorities, habits or even constraints (e.g. social 
or economic barriers) when regulating the indoor environment. The following 
subsections are aimed at providing an introductory overview on the challenges and 
key research limitations that were addressed in the 5 core chapters of this doctoral 
thesis.  

 

 

Figure 1.1-1. Influencing factors on building energy use, inspired by El Bakkush et al. (2015). 

 

1.1.1 OB and its impacts: buildings don’t use energy, people do!  

“Buildings don’t use energy, people do!” (Janda 2011) – this might be one of 
the most emblematic headlines in energy-related behavioural research. As already 
outlined by Janda et al. (2011), a large number of existing studies in the field argue 
that building occupants play a critical, but often still poorly understood and 
overlooked role in the built environment. Understanding energy use in buildings is 
not only a technological challenge, but requires to carefully address aspects related 
to the human-building interaction. A first step of investigation that has been and is 
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being addressed by an always increasing number of researchers is trying to 
understand to which extent occupant behaviour can impact energy use in 
buildings. Investigations on the impact of occupant behaviour on building energy 
use has been done through direct demonstration in field studies as well as 
estimations based on simulation results.  

Previous field studies measured the impact of occupant-driven parameters on 
energy consumptions in residential buildings means to data gathering setups and 
monitoring campaigns. Sidler et al. (2002), for instance, reported a detailed dataset 
related to the electricity consumption of major end uses in 100 households of four 
European countries (Denmark, Italy, Portugal, and Greece). The study of  
Stoecklein et al. (2000) conducted a long-term nationwide investigation into 
household energy consumption patterns in New Zealand. The outcomes of these 
studies showed large discrepancies in the effect of occupant behaviour among 
houses in a community and across communities, with corresponding large impacts 
on energy use. Other studies have shown that the behaviour of occupants in houses 
with similar layout and climatic boundary conditions may lead to differences in 
energy consumptions of over 300% (Andersen et al. 2007; Chen and Taylor 2013; 
Mahdavi 2011)(Figure 1.1-2). In particular, the performance gaps can be due to 
differences in occupancy patterns, household characteristics, lifestyle, cognitive 
variables and perception of comfort, physiological characteristics of the occupants, 
as well as household motivation, attitudes and values (Guerra Santin 2013). 

As regards the office environment, Hong and Lin (2013) deployed building 
energy simulations to show that for a typical single-occupancy office room, 
compared to the standard or reference workstyle, an austerity workstyle consumes 
up to 50% less energy, while the wasteful workstyle consumes up to 90% more 
energy.  

 

 

Figure 1.1-2. OB and its impacts: Energy consumption gaps between households with similar layout 
and climatic conditions, adapted from Andersen et al. (2007) 

Additionally, in the last two decades, more stringent energy codes and 
environmental standards have required the implementation of innovative energy 
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efficiency strategies with the aim of optimizing technical solutions for the building 
features and reaching nearly zero energy targets in the existing and upcoming 
building stock (EPBD 2010/31/EC 2010). It seems clear that the success of these 
strategies is now heavily dependent on how occupants interact with the building 
system and envelope (Owens and Driffill 2008; Stazi and Naspi 2018). Indeed, in 
high performing buildings, the unpredictable loads generated by the occupants 
might even have a bigger impact on building energy use than in buildings, in 
which envelope-driven loads dominate the consumption profile (Brandemuehl 
and Field 2011). As an example, Bucking et al. (2011) demonstrated that occupant 
behaviour can significantly deteriorate the overall performance of energy 
consumption and production in a net-zero energy community and high performing 
buildings in Montreal, Canada.  

However, at the time being, there is still only a small number of studies that 
thoroughly investigated the impact of occupant behaviour in residential nearly zero 
energy buildings (Brandemuehl and Field 2011; Gill et al. 2010; Lenoir et al. 2011).  

 
In this context, Chapter 2 is aimed at contributing to this research 
gap by investigating potential impacts of occupant behaviour 
lifestyles on the energy uses and thermal comfort conditions in 
nearly Zero Energy Buildings.   

 

1.1.2 OB as a key factor of uncertainty: the human dimension in 
modelling environments 

“Bridging the gap” – is the well-known motto of the IEA-EBC Annex 66 
“Definition and Simulation of Occupant Behavior in Buildings” (Yan et al. 2017). 
The gap refers to the significant discrepancies that can be found between real and 
simulated energy consumption. Building Energy Simulations (BES) are a useful 
and cost-effective tool to support energy efficient design and operation of buildings. 
However, when predicting the absolute energy performance of buildings, such tools 
are still subjected to great uncertainty (Gaetani et al. 2016). Indeed, a major 
challenge in simulation tools is how to deal with difficulties through large variety 
of parameters and complexity of factors such as non-linearity, discreteness, and 
uncertainty (Hopfe and Hensen 2011). ASHRAE (2007) stated that neither the 
proposed building performance nor the baseline building performance represent 
actual energy consumption after construction, but that the key items from the listed 
sources of uncertainty are strictly related to occupancy and building operation. 
Indeed, international research effort is put on numerically describing the 
relationship between occupants and buildings in order to eliminate current 
inconsistencies in building energy simulation (Yan and Hong 2018). Extended 
literature reviews and state-of-the-art analyses confirm that an accurate modelling 
of occupant behaviour is a key factor to bridging the gap between predicted 
and actual energy performance of buildings (Marcel Schweiker 2017)(Mahdavi 
2011). 
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Figure 1.1-3. Measured vs. simulated energy consumption in buildings, adapted from Turner and 
Frankel (2008) . 

Frequently, simulation-based design analysis relies on standard use and 
operation conditions such as fixed schedules for occupancy levels, light switching, 
ventilation rates and temperature setting. These assumptions often lead to an 
oversimplification of the human-related variables creating discrepancies between 
predicted and real energy use of the building. Thus, in recent years, probabilistic 
modelling approaches have been applied to capture the stochastic nature of energy-
related human behaviour when predicting building energy consumptions in 
dynamic simulation programs (Gaetani et al. 2016). Probabilistic modelling 
approaches have been developed to include uncertainty factors into building energy 
analysis by modelling human-related factors such as occupancy patterns (Wang 
et al. 2005; Page et al. 2008; Erickson et al. 2009; Aerts et al. 2014; Mahdavi and 
Tahmasebi 2015), occupants’ activities (Wilke 2013; Tanimoto et al. 2008;Widén 
et al. 2009), lighting control (Hunt 1979; Stokes et al. 2004; Bourgeois et al.  2006; 
Zhou et al. 2015), window action control (Fritsch et al. 1990; Andersen et al. 2013; 
Yun and Steemers 2008; Haldi and Robinson 2009; Schweiker et al. 2012), 
regulation of window blinds/shades (Reinhart 2004; Haldi and Robinson 2010), 
adjustment of the thermostat settings (D’Oca et al. 2014), internal heat gains 
(Tanimoto et al. 2008), and usage of plug-in appliances (Bourgeois et al. 2006).  

The majority of these existing studies rely on logit analysis (Andersen et al. 
2013; Yun and Steemers 2008; D’Oca et al. 2014), probit analysis (Hunt 1979), 
Markov chain processes (Page et al. 2008; Haldi and Robinson 2010; Schweiker 
et al. 2012), Poisson processes (Zhou et al. 2015), and survival analysis (Haldi 
and Robinson 2009). More complex modelling frameworks have introduced –often 
very time-consuming- agent-based and object-oriented models (Erickson et al. 
2009; Tanimoto et al. 2008) to model single individuals or objects and their 
interaction with the building. However, (Yan et al. 2015a) described the current 
state and future challenges in occupant behaviour modelling and emphasized that 
there are still many gaps in knowledge and limitations to current methodologies, 
including model development together with the need for greater rigor in 
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experimental methodologies next to a detailed, honest and candid reporting of 
methods and results. Furthermore, the authors highlight the importance of moving 
towards modelling procedures of occupant behaviour, knowing that the latter might 
be influenced by multiple contextual factors, incorporating qualitative model 
inputs. This aspect is currently not accurately covered by the above-mentioned 
existing models. Therefore, it seems crucial to explore further modelling 
environments that are characterised by a transparent semantic and that are able to 
include and combine at the same time a number of different types of variables from 
different sources (quantitative and qualitative data) in the same model. 

 
In this context, Chapter 3 is aimed at contributing to this research 
gap by exploring the Bayesian Network framework for 
stochastically modelling occupant behaviour and to gain a first 
insight on exploiting this methodology for the creation of more 
comprehensive OB models.    

 

1.1.3 OB as a challenge for multidisciplinary investigation: 
occupant vs. human   

“Every individual is essentially unique and different from everyone else” – is 
the principle of the uniqueness theorem of the human being (Varki et al. 2008). 
Indeed, every human might perceive the indoor environment in different ways due 
to a multiple set of factors (Figure 1.1-4), have different motivations and habits or 
can even be conditioned by a series of barriers (e.g. social or economic factors) that 
restrain them from performing a certain action, even though they feel the need to 
change the conditions of the indoor environment. Fabi et al. (2012) highlight that 
much is still unknown about the motivation of building occupants to interact with 
the building envelope and systems.  

Hence, the authors highlight that, next to environmental and time-related 
factors, it is necessary to take into account “individual” factors of occupants, such 
as the personal background, energy-related attitudes, perception or personal 
preferences related to the indoor environment. Also the physiological condition of 
the occupant plays an important role, such as age, gender or health conditions. Fabi 
et al. (2012) also stress the importance of social driving forces depending on 
household composition and the interaction between household members (e.g. which 
household member determines the thermostat set-point or the opening/closing of 
windows). Social norms in office environments were investigated by D’Oca et al. 
(2017) through an extensive survey framework. 
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Figure 1.1-4. Drivers influencing occupant behaviour. 

 
Wei et al. (2014) identified 27 drivers that have been evaluated in previous 

studies on space heating behaviour and showed that at present none of them can be 
identified confidently as having no influence. Next to physical and time-related 
drivers, the authors list occupant age, gender, culture/race, educational level, social 
grade, household size, family income, thermal sensation, perceived IAQ and noise, 
health, heating price, and energy use awareness as potential driving factors.  
Schweiker et al. (2016) analysed the influence of (the big-five) personality traits 
(neuroticism, extraversion, openness, and concepts of general and thermos-specific 
self-efficacy) on four types of behavioural patterns (clothing adjustment, window 
opening, blind closing, and interactions with ceiling fan). The authors highlighted 
that all personality traits led to significant differences between behavioural patterns 
confirming the need to investigate individual characteristics of the occupants. 
However, from an interdisciplinary point of view, much is still unknown about 
occupant behaviour and further exploration is required to gain a deeper knowledge 
on a comprehensive set of factors that drive the occupants to perform a certain 
action and how to introduce the latter in modelling environments. 

 
In this context, Chapter 4 is aimed at developing a theoretical 
model of OB and exploring a more extensive set of drivers means 
to the combination of field measurements (quantitative) and 
survey-based information (qualitative) that were implemented in 
the same BN-based model environment.  

 

1.1.4 OB on a large scale: Profiling behavioural patterns with 
Time Use Survey data 

“Measuring how people spend their time” (Stinson 1999) on a large scale is 
the key objective of Time Use Surveys (TUS). National time use surveys (TUS) 
have been carried out at national level since the early 1970s. The first TUS were 
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conducted in developing countries in Europe. They were designed to understand 
and assess progress in lifestyles, focusing mainly on time spent for leisure, 
transport, and work (Figure 1.1-5). The first TUS in developing and transitional 
countries were conducted in the late 1990s, with the main objective being to 
measure the gender gap in paid and unpaid work. By 2015, nearly a hundred surveys 
for 65 countries were available for in-depth analyses (Charmes 2015; Eurostat 
2009).  

Although TUS data have been used predominantly for answering research 
questions related to social aspects, work, and economics, they are becoming an 
essential data source for energy-related occupant behaviour modelling as well 
(Figure 1.1-6).  

Indeed, occupants’ activities evidently shape the timing of building energy use 
throughout the day. Diary-based surveys on how occupants spend their time during 
the day can help to shape occupancy profiles and energy-related activities. As  
Schipper et al. (1989) first stated, to gain a deeper understanding about the impact 
of different lifestyles on energy use it is necessary to understand interdependencies 
between time use and energy consumption. Wilke et al. (2013), for instance, 
developed stochastic models based on the French TUS to predict time-dependent 
residential occupancy and activities, relating the use of electrical appliances to the 
activities performed. Yu et al. (2013) used data collected in a household TUS in 
Beijing to develop a household time-use and energy-consumption model, which 
incorporates multiple behavioural interactions. Torriti (2017) used the British TUS 
to assess how dependent energy-related social practices in the household are in 
relation to the time of the day. They analysed the 2005 UK TUS and made use of 
statistically derived time dependence metrics for six social practices, including 
preparing food, washing, cleaning, washing clothes, watching TV and computer 
usage. Other studies modelled TUS data to explore the temporal change in laundry 
practices and related implications on the flexibility of energy demand (Anderson 
2016) or to  generate myriad schedule data of each inhabitant’s behaviour at a fine 
time resolution for time-series cooling load calculation (Tanimoto et al. 2005; 
Tanimoto et al. 2008).  

Indeed, next to the exploration of TUS data for establishing a link between 
occupants’ activities and energy consumption, time use data have been used most 
frequently in the development of high resolution occupancy profiles for different 
countries. Richardson et al. (2008) presented a thorough and detailed method for 
generating realistic occupancy data for UK households, based upon surveyed time-
use data describing what people do and when. The approach presented generates 
statistical occupancy time-series data with a ten-minute resolution and takes 
account of differences between weekdays and weekends. The model also indicates 
the number of occupants that were active within a house at a given time. Aerts et 
al. (2014) developed a methodology for modelling domestic occupancy patterns 
based on the Belgian TUS (2005). Buttitta et al. (2017) used the UK 2000 TUS for 
demonstrating a methodology that permits to generate occupancy patterns that can 
be representative for different archetype building models.  
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Figure 1.1-5. Time Use Survey data as source for occupant behaviour modelling. 

 
 
 

 

Figure 1.1-6. Time User Survey data as source for enhanced building energy simulation input. 

 
Some of the existing studies show that TUS data represents a significant 

resource by validating their TUS-based approaches against field measurements.  
Widén et al. (2009), for instance, modelled time-use data for constructing load 
profiles for household electricity and domestic hot water based on Swedish TUS 
data. They also provided validation against detailed, end-use specific electricity 
measurements in a small sample of households and revealed that the model for 
household electricity reproduces hourly load patterns with preservation of 
important qualitative features. Fischer et al. (2015) modelled electric load profiles 
with high time resolution based on the German TUS and validated their model 
against field data from 430 households; the results showed an accuracy of 91%.  

The range of above-mentioned studies clearly shows how TUS data can be used 
to model and analyse occupant behaviour on a large scale in the field of building 
energy use. In countries with growing electricity generation from renewable energy 
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sources, gaining better knowledge of occupants’ time use in households and related 
energy use at a national scale becomes a crucial task in order to respond to 
challenges related to demand-response modelling.  

However, in some nations (e.g. Denmark, Italy), TUS data have not been 
analysed from the perspective of energy usage. Its potential usability for modelling 
energy- and behavioural-related processes in this context needs still to be 
thoroughly explored.  

 
In this context, Chapter 5 is aimed at profiling occupant behaviour 
(activities, occupancy) on a large scale based on the Danish Time 
Use Survey data 2008/2009.  

 

1.1.5 OB within the energy efficiency framework: occupant 
engagement as a key for reaching energy saving targets 

“Achieving energy efficiency through behaviour change: what does it take?” is 
the title of the EEA Technical report (European Environment Agency 2013) that 
expresses together with a growing body of evidence in academic literature that there 
is significant potential for energy savings due to measures targeting the human 
factor and behavioural change (Clarity Sustainability 2015). Indeed, a large number 
of energy efficiency strategies implemented involve technological interventions, 
but should equally rely on raising user awareness and adjusting their energy 
consumption behaviour (Figure 1.1-7). Behavioural change strategies have been 
recognized as a low-cost and highly efficient measure to reduce building energy 
consumption, and consequently related environmental impacts and operational 
costs. Building occupants oftentimes are not truly aware of how their behaviour and 
interactions with the built environment (negatively or positively) affect energy uses 
and their own environmental comfort (Judd et al. 2013). The role of occupants in 
reaching the net-zero target and the importance of institutional behavioural change 
to enhance building performance is crucial since frequently passive building 
strategies developed for high performing buildings require that occupants are 
engaged to actively and smartly interact with the proposed solutions.  

Promoting and achieving energy-conscious behaviour among householders is a 
key issue for reducing energy consumptions in the residential sector (Wood and 
Newborough 2003). Results from domestic energy awareness campaigns in Italy 
(D’Oca et al. 2014) and worldwide (Pothitou et al. 2016) verified the energy saving 
potential (on average among 15 to 20%) of improving occupant behaviour at home. 
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Figure 1.1-7. Energy Savings: Technological interventions vs. behavioural change, adapted by (Clarity 
Sustainability 2015) . 

Engaging behavioural change in commercial buildings and offices is more 
critical, since the effects of energy (and cost) saving is often not “paid back” to the 
employees in monetary terms (savings on energy bill). Motivation for employees 
to engage in energy efficiency behaviours is therefore very different and must rely 
on corporate and social responsibility objectives and reinforcing societal norms. 
Moreover, the nature of competition between individual colleagues or different 
offices can be a more powerful driver than financial gain. Studies focusing on 
energy engagement in office settings report energy savings ranging from 4 to 10% 
(Gulbinas et al. 2014; Orland et al. 2014). Most likely for this reason – at the time-
being -  a larger amount of studies have focused on residential buildings (Ueno et 
al. 2006; Ueno et al. 2005; Ouyang and Hokao 2009), while fewer investigations 
have been done for the non-residential sector (Matthies et al. 2011). Efforts related 
to behavioural change incentives have been done also in the higher education sector 
(Macarulla et al. 2015) in order to reach the keystone for sustainable development 
also in university campuses.  

Existing literature highlights that most of the user awareness campaigns 
stimulate behavioural change by providing feedback on the electricity usage and 
related costs (Brounen et al. 2012). These approaches oftentimes do not consider or 
leverage on psychological, anthropological, physiological needs or health aspects 
of the occupants (Darby 2006; Herring 2006). Indeed, motivating occupants to 
change their behaviour can become a challenging task, especially if they are 
expected to internalize and adopt the new behaviour on a long term. This means 
that information and feedback provided to the occupants must be stimulating, easy 
to understand, and easy to adopt in the daily routine. Further research is necessary 
to explore the effectiveness of motivational triggers (health and well-being of the 
occupants) in leading to a behavioural change on a long term (behavioural 
persistence), also after the conclusion of the engagement campaign. Next to the 
feedback content itself, it is also crucial to deploy a successful communication 
strategy with the engaged users. In the field of persuasive technology, various 
innovative solutions have been realized for leveraging behavioural change, such as 
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ambient displays that show real-time energy consumption (Wood and Newborough 
2007), mobile or web applications with the most variate functions, or even serious 
games that are aimed at changing behaviour with an added pedagogical value of 
fun and competition (Orland et al. 2014). To address the above-mentioned 
shortcomings, the European Union introduced several measures to ensure better 
engagement of the citizens and in which the awareness of the building occupant is 
a key to achieving the remaining tasks (European Commission 2017). Among other 
initiatives, the European Commission funded several projects under Horizon 2020 
programme aiming to achieve a behavioral change towards energy efficiency 
through ICT-based solutions. In 2014, the European Commission funded the 
following projects: EnerGAware, ENTROPY, OrbEEt, GreenPlay, Tribe. In 2015 
further projects kicked off, such as PeakAPP, GAIA, and ChArGED, whereas the 
most recent projects (2016) within this scope are enCOMPASS and MOBISTYLE 
(European Commission 2018). 

In the context of the Intelligent Energy Europe Programme from the European 
Commission, Dahlbom et al. (2009) developed guidelines for Behavioural Change 
Programmes and provided an overview of lessons learnt in 41 cases in Europe over 
the past years. The authors highlight that interventions aimed at changing the 
behaviour of the occupants are only effective if they are set up in a systematic way 
and according to a planning and evaluation model. The exploration of 
methodological frameworks to set up and evaluate effective engagements is 
therefore a key aspect to reach desired outcomes in terms of energy saving and long-
term behavioural change and still needs to be thoroughly explored.  

 
In this context, Chapter 6 is aimed at demonstrating the 
development of energy engagement programs that have been part 
of this doctoral research. Focus is put on (i) innovative approaches 
that involve new triggers such as health-related aspects and well-
being of the occupants (ii) the development of methods for setting 
up and evaluating an effective engagement campaign.  

 

1.2 Roadmap and methodological framework  

This doctoral thesis is divided into five core chapters aimed at contributing to 
the open research questions highlighted in the previous section. All the chapters 
present a schematic overview, a description of the developed methodology, key 
findings, discussion and further investigations as well as perspectives and 
challenges. Each chapter is aimed at addressing to some extent the challenges 
highlighted in the previous chapters and therefore this work should be seen as 
“interactive” framework to address the human factor in buildings (Figure 1.2-1).   
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Figure 1.2-1. Methodological framework of the Ph.D. dissertation. 

Chapter 2 is aimed at evaluating the impact of different occupant behaviour 
lifestyles and patterns on the energy use and thermal comfort of a residential nearly-
zero energy building. The outcomes of this chapter highlight that there is an urgent 
need for developing sophisticated models able to capture the stochastic nature of 
the human-building interaction. Chapter 3 provides an innovative methodology to 
provide such a model based on the Bayesian Network framework. The outcomes of 
Chapter 3 lead to the conclusion that in order to build a more comprehensive model, 
it is necessary to include a larger set of motivational drivers (qualitative and 
quantitative data). Chapter 4 is indeed aimed at extending the proposed 
methodological framework by investigating individual characteristics of the 
occupants through survey-based information (e.g. thermal comfort attitudes, 
personal preferences) and introducing them into the Bayesian Network model. 
Chapter 4 also highlights that sophisticated models oftentimes are based on small 
samples and for some research purposes it is necessary to profile occupant 
behaviour on a large scale. This challenge is addressed in Chapter 5 by profiling 
occupants’ daily activities and occupancy patterns using national Time Use Survey 
data. Finally, Chapter 6 is aimed at showing how occupant behaviour can be 
changed through user awareness and behavioural change programs – this responds 
to how occupant behaviour lifestyles introduced in Chapter 2 can be driven towards 
a low consumer behaviour.  
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Figure 1.2-2. Roadmap. 
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This dissertation is structured as a monograph, however, it is important to 
highlight that most of the Ph.D research outcomes were also object of international 
scientific journal publications or conference proceedings, which trace the same 
research path. The latter are cited at the end of each chapter. Table 1.2-1 gives an 
overview on the papers relevant to this dissertation. In particular, key publications 
are marked with an “*” and will be digitally added as Annexes.  

Table 1.2-1. List of research papers relevant to the Ph.D dissertation. 

Chapter  PAPER ID TITLE 

CHAPTER 2 

 

PAPER I* 

Barthelmes, V.M., Becchio, C., Corgnati, S.P. (2016), 
Occupant behavior lifestyles in a residential nearly zero energy 
building: Effect on energy use and thermal comfort, Science 
and Technology for the Built Environment 22, pp. 960-975.  

PAPER II 

Barthelmes, V.M., Becchio, C., Corgnati, S.P. (2018). Il peso 
del comportamento dell’occupante in edifici ad energia quasi-
zero: il caso studio della CorTau House, Ingenio Informazione 
tecnica e progettuale 68, pp. 1-5.  

PAPER III 

Barthelmes, V.M.; Fabi, V.; Corgnati, S.P. (2016) Impact of 
behavioural patterns on the energy use of a residential nearly-
zero energy building. In: Proceeding of Behave 2016, 
Coimbra, Portugal, 8-9 September. pp. 1-2. 

PAPER IV* 

Barthelmes, V.M., Becchio, C., Fabi, V., Corgnati, S.P. 
(2017). Occupant behaviour lifestyles and effects on building 
energy use: Investigation on high and low performing building 
features, Energy Procedia 140, pp. 93-101. 

PAPER V* 

Fabi, V., Barthelmes, V.M., Schweiker, M., Corgnati, S.P. 
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Chapter 2  
 

Occupant behaviour lifestyles: 
Impacts on building energy use and 
thermal comfort  

2.1 Overview  

Chapter 1 introduced occupant behaviour as a key driving factor of uncertainty 
when predicting energy use in buildings. The way building occupants interact with 
the building and set their comfort criteria can be extremely different from case to 
case and therefore impact building energy use to enormously varying extents 
(Andersen et al. 2007; Mahdavi 2011). Hence, it seems to be a crucial task to gain 
a better understanding on how different energy-related attitudes and associated 
occupant behaviour lifestyles can affect building energy use, especially in high 
performing buildings. Indeed, as technological solutions for building systems and 
envelopes are optimized, the impact of occupant behaviour gains even more 
importance.  

In line with this, this chapter proposes a methodology for investigating to which 
extent different occupant behaviour lifestyles (low, standard, and high energy 
consuming) and different household compositions might affect building energy use 
and thermal comfort (Figure 2.1-1) in high performing buildings. On the other hand, 
the outcomes stress the urgent need for the development of occupant behaviour 
models that allow for more reliably capturing the stochastic nature of human 
behaviour inside buildings. In particular, based on simulation results of a real case 
study, this chapter is aimed at contributing to answer the following research 
questions: 
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 What impacts can different occupant behaviour lifestyles and household 
arrangements have on the energy performance of a nearly zero energy 
building?  

 What impacts can different occupant behaviour lifestyles and household 
arrangements have on the thermal comfort conditions of a nearly zero 
energy building?  

 Which are the key behavioural patterns that should be addressed by 
decision-makers of behavioural change programs in high performing 
buildings?  

 Do these key behavioural patterns differ in high and low performing 
buildings? 

 

 

Figure 2.1-1. Overview Chapter 1. 
 

 

2.2 Methodology    

For exploring and describing the potential impact of different occupant 
behaviour lifestyles on energy use and thermal comfort conditions in the building, 
this investigation deploys dynamic energy simulations in Energy Plus (version 
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8.4)(DOE 2017). In line with the geographical context of the chosen case study 
described in section 2.2.1, climatic data of Turin (Italy) was used for all simulations. 
The core idea behind the methodological approach is to investigate the effect of 
different occupant behaviour lifestyles described through specific occupant-driven 
variables on (i) building energy use and (ii) thermal comfort conditions inside the 
building. Since (i) and (ii) can also be heavily dependent on the number of people 
that occupy the building, a further investigation describes the potential impact of 
different types of household compositions (PAPER I, II, III).  

2.2.1 Case study 

The methodological approach presented in this chapter has been tested on a 
nearly zero-energy building (the so-called “CorTau House”) located in Northern 
Italy (Figure 2.2-1). The 147-m2 family home is considered an innovative design 
experience in which the refurbishment of a traditional building is combined with 
high-performing energy solutions for envelope and systems. Next to a design based 
on bioclimatic principles, the building performance benefits from a strongly 
insulated building envelope (Uwall,ceiling =0.15 W/m2K, Uslab =0.19 W/m2K, Uwindow 
=0.96 W/m2K) and a high performing building primary system. A water-to-water 
heat pump (COP =4.4, EER=4.2) is combined with radiant floors in all rooms and 
provides for space heating/cooling and the production of domestic hot water 
(DHW). Other features are a controlled mechanical ventilation system with heat 
recovery and dehumidifier, and a 7kWpeak grid-connected photovoltaic (PV) system 
that covers electricity needs for space heating/cooling, ventilation, lighting, electric 
equipment, and DHW. Detailed information on the envelope characteristics and 
HVAC systems can be found in (Barthelmes et al. 2014)(Barthelmes et al. 2015).  

 

         

Figure 2.2-1. CorTau House: Project design and Energy Plus model. 

2.2.2 Occupant Behaviour Lifestyles  

For comprehending how different attitudes and associated lifestyles of the 
occupants can affect the energy performance of the building, three categories of 
energy-related occupant behaviour lifestyles were defined: a low consumer (LC), a 
standard consumer (SC), and a high consumer (HC). These lifestyles are described 
by a series of key variables shown in Table 2.2-1. Hong and Lin (Hong and Lin 
2013) used a similar method to analyse the effects of different workstyles of 
employees on the energy use in office environments.  
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The values for heating/cooling set-points and ventilation rates refer to the 
European Standard EN 15251 (where HC refers to Category I, SC to Category II, 
and LC to Category III) (Cen 2007). The temperature set-point was assumed to be 
constant throughout the day in the HC scenario, while the low and standard 
consumer were assumed to set back the set-point by 2°C during the evening and 
night hours. According to Italian regulation for Climatic Zone E (in which Turin is 
located), the heating system was considered to be active from October 15th to April 
15th, while the cooling system was set to operate from April 30th to September 30th. 
The number of occupants per zone floor area was calculated according to the Italian 
Standard UNI 10339 (0.04 occupants/m2)(UNI 1995). Lighting and electric 
equipment power densities refer to ASHRAE Standard 90 (ASHRAE 2013) and 
mount to 3.88 and 5.89 W/m2, respectively. The lighting and electric equipment 
schedules for the standard scenario refer to reference schedules available on the 
Department of Energy dataset for residential reference buildings (DOE 2018). For 
assessing the operational levels in the low and high consumer scenario, these 
standard schedules were increased (HC) or decreased (LC) by 10% (Figure 2.2-2). 
The lighting use in the low consumer scenario was furthermore optimized through 
daylight control (continuous/off dimming). The windows blinds were assumed to 
be always kept open by the high consumer, while the standard and low consumer 
would close them when a relevant solar radiation engraved on the fenestration 
surface or through optimized daylight control. The domestic hot water usage 
differed from 40 l/pers.day (LC) up to 80 l/pers.day (HC).  

Table 2.2-1. Key variables describing OB lifetyles 

Type of behaviour  Low consumer (LC) Standard consumer (SC) High consumer (HC) 

Heating operation 
and set-point (°C) 

5am-11pm 18°C 7am-8pm 20°C 
0am-12pm 21°C 

11pm-5am 16°C 8pm-7am 18°C 

Cooling operation 
and set-point (°C) 

5am-11pm 27°C 7am-8pm 26°C 
0am-12pm 25.5°C 

11pm-5am 28°C 8pm-7am 27°C 

Ventilation rate 
(ACH) 

0.5 0.6 0.7 

Electric equipment 
(schedule – see Figure 

2.2-2) 

-10% referred to average 
operational level for electric 

equipment 

Average operational level 
for electric equipment 

+10% referred to average 
operational level for electric  

equipment  

Lighting (schedule– 
see Figure 2.2-2) 

-10% referred to average 
operational level for lighting 

+ optimization through 
daylight control 

(continuous/off dimming) 

Average operational level 
for lighting  

+10% referred to average 
operational level for lighting  

Blinds  
Optimization through daylight 
control (only if glare index is 

higher than 22) 

Only if solar radiation 
(higher than 300W/m2) 

engraves on fenestration 
surface, in summer  

Always open 

DHW (l/pers.day) 40 60 80 
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(a) 

 

 
(b) 

Figure 2.2-2. Schedule variations for (a) lighting and (b) electric equipment. 

2.2.3 Household compositions  

As mentioned in the previous section, up to this point the number of occupants 
per zone floor area was calculated according to the crowding index provided by the 
the UNI EN 10339 (0.04 occupants/m2), which meant that, considering a net 
conditioned building floor area of 147 m2, nearly six users occupy the building. 
This standard therefore clearly might lead to an overestimation of occupants and, 
consequently, of the energy consumptions in buildings with a large floor area. For 
this reason, an additional analysis was performed for capturing potential variations 
of the building energy performance due to different household arrangements. Next 
to the scenario that considered the standardized number of occupants (REF), 
additional three types of more “realistic” household compositions were defined 
based on their high representativeness in the wider population: Family (FAM): 4 
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persons – 0.027 pers./m2); Old couple (OC): 2 persons (0.014 pers./m2); Young 
couple (YC): 2 persons (0.014 pers./m2). Tailored schedules for occupancy, lighting 
and electric equipment were defined for each household arrangement during 
weekdays and weekends (Figure 2.2-3). The occupancy schedule for the family 
profile is still based on the reference schedule, but was modified for considering 
exact fractions for four occupants (e.g. 1 occupant = 0.25, 2 occupants = 0.5). The 
old couple was assumed to spend more time at home and to leave home only a few 
hours during the morning and the afternoon. The young couple was expected to 
work and therefore stay out most time of the day. Also the schedules for lighting 
and electric equipment were redefined for the different household compositions. 
The schedules for the family household were based on typical Italian operation 
profiles extracted from collected data within the MICENE project (eERG 2004). 
With respect to the schedule defined for the family scenario, the young couple was 
expected to have higher power densities in the evening, while the old couple was 
assumed to have peak operation levels during lunch and the early evening hours.  

        

(a) 

 
(b) 
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(c) 

Figure 2.2-3. Schedule variations for household arrangements: (a) occupancy, (b) lighting, and (c) 
electric equipment. 

2.3 Key findings    

2.3.1 Effect on energy performance   

The key findings presented in this paragraph highlight how different occupant 
behaviour lifestyles and household compositions can affect the energy performance 
of the building. Annual electric energy consumption related to different occupant 
behaviour lifestyles divided by end uses (space heating/cooling, lighting, electric 
equipment, pumps and fans, and DHW production) is shown in Figure 2.3-1. The 
simulation results clearly show that different occupant behaviour lifestyles affect 
the building performance and eventually lead to an amount of energy use that 
cannot be covered by the installed renewable energy sources. As an example, the 
electricity production on site from the PV system (blue dot dashed line) allows for 
covering a large amount of the total electricity consumption in the low consumer 
scenario (95%), while it can cover only 73% and 61% in the standard and high 
consumer scenario, respectively. This analysis also shows that the highest 
incidences on the total building energy consumptions in all consumer profiles are 
related to the use of electric equipment (50-58%) and lighting (13-20%). Minor 
incidences on the total energy consumptions are linked to energy used for space 
heating (6-8%), space cooling (4%), domestic hot water production (8-10%), fans 
(9-10%), and pumps (0.3-0.5%).  

As a next step, the variation of the total energy performance was analysed by 
considering three additional types of household compositions described in section 
2.2.3. As shown in Figure 2.3-2, the simulation outcomes confirm significant 
variations of the building energy performance when different household 
arrangements are considered. The graph depicts percentages of variation of energy 
uses with respect to the standard consumer scenario (REF-SC). As expected, the 
results show that the basic scenario (REF) presents the highest energy 
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consumptions, while the latter gradually reduce in correspondence with the 
assumed (reducing) number of occupants in the building (FAM: -45%; OC:-94%; 
YC:-102%). Furthermore, significant discrepancies can also be found when 
comparing different occupant behaviour lifestyles within the same household type 
category.  

 

Figure 2.3-1. Electricity consumptions for occupant behaviour lifestyles (LC=Low consumer, 
SC=Standard consumer, HC=High consumer). 

 

 

Figure 2.3-2. Total electricity use/production for type of household composition (LC=Low consumer, 
SC=Standard consumer, HC=High consumer, REF=number of occupants according to standard UNI 10339, 

FAM=4-person family, OC=old couple, YC= young couple). 

The impact of individual behavioural patterns on the total energy consumptions 
are presented as percentage changes of annual electricity consumptions of the low 
and high consumer scenario compared to the standard consumer scenario (vertical 
dashed blue line (Figure 2.3-3). The outcomes of this analysis show that electric 
equipment and lighting usage have the most important impact on the total energy 
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use. According to these results, a low consumer might save around 28 and 26% of 
the annual electricity consumptions by operating more responsibly electric devices 
and lighting appliances in the building. On contrary, an unaware or wasteful user 
might increase electricity consumption by 25 and 18% for electric equipment and 
lighting usage, respectively. Behavioural patterns related to the regulation of the 
heating/cooling set-point are shown to have a less significant impact on the energy 
consumptions in the low consumer profile (-9%) as well as in the high consumer 
scenario (+15%). Low and high consumer scenarios related to the regulation of the 
ventilation rate are accountable for the smallest variation of electricity 
consumptions (LC: -6%; HC: +6%). The adjustments of blinds has a noticeable 
impact only in the low consumer scenario (-14%), while it is negligible in the high 
consumer profile. If all behavioural attitudes are combined for the low and high 
consumer scenario, respectively, the total performance gap with respect to the 
standard consumer scenario is -86% for a complete low consumer profile and +73% 
for a complete high consumer profile.  

Additionally, Figure 2.3-4 depicts a similar analysis considering the impact the 
single occupant-driven variables on the total energy use for different types of 
household types. In this analysis, the amount of electric energy production by the 
PC system was not subtracted from the total consumptions in order to obtain 
reasonable percentage values when highlighting the variation of nearly zero 
scenarios. The outcomes show that in all scenarios the most influencing patterns are 
still linked to the electric equipment and lighting use. The adjustment of 
temperature set-points gain a bigger importance in high consumer profiles of two-
persons households (HC-OC: +7%; HC-YC: +8%). The impact of DHW use 
decreases in two-persons households with respect to the FAM and REF scenarios. 
If the combined low and high consumer scenarios are considered, the first might 
allow for saving 21-23% of the total electricity consumptions, while the second 
might increase them from 20% (REF) up to 27-28% (two-person households).  
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Figure 2.3-3. Impact of single occupant-driven variables on the total energy use (REF). 

 

 

Figure 2.3-4. Impact of single occupant-driven variables on the total energy use for type of household 
composition. 

2.3.2 Effect on thermal comfort conditions    

The key findings presented in this paragraph highlight how different occupant 
behaviour lifestyles and household compositions can affect the thermal comfort 
conditions of the building occupants inside the building. Comfort classes used in 
this analysis refer to the European Standard EN15251 (Cen 2007). The threshold 
values for indoor operative temperature ranges that describe the three comfort 
categories are shown in Table 2.3-1 and refer to the recommended criteria for the 
thermal environment in residential buildings. In detail, the outcomes describe the 
distribution of the hourly indoor operative temperature values were distributed 
between the abovementioned comfort classes. If no comfort class is achieved, the 
values were classified as “non-defined” (N.D.). Only hours in which the building 
was occupied were considered for the analysis. Figure 2.3-5 shows the effects on 
thermal conditions by different household composition in the living room during 
the heating period. In all scenarios, the high consumer profile has the highest 
percentage of values falling within Comfort Class I (76-83%). On the other hand, 
it does not present the lowest percentage of values that do not fall within any of the 
defined comfort classes (N.D.). Indeed, the low consumer profiles in all scenarios 
allow for the highest percentage of values within Comfort Classes I, II and III. This 
analysis, hence, suggests that low consumer profiles might present advantages in 
terms of thermal comfort. Occupants can therefore be motivated to assume a more 
aware energy lifestyle and experience thermal comfort at the same time. 
Furthermore, they could be motivated to adjust their clothing level in order to 
optimize their sensation of thermal comfort. A further analysis was carried out to 
give an idea about how the clothing level might affect the Predicted Mean Vote 
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(PMV) (CEN (European Committee for Standardization) 2005) during daytime 
with respect to indoor operative temperatures of 18°C, 20°C, and 21°C (Figure 
2.3-6). The other boundary conditions were assumed to be constant (relative 
humidity: 70%; air velocity: 0.1 m/s; metabolic energy: 1.2 met). The graph 
highlights that, in order to not exceed the limit of Predicted Percentage of 
Dissatisfied (PPD) of 10% (Comfort Class II: -0.5 < PMV < +0.5), the thermal 
insulation of clothing (Iclo) according to standard ISO 7730 has to be 1.1 clo (e.g. 
panties, stockings, blouse, long skirt, jacket, shoes) if the indoor environment is 
characterized by an operative temperature of 18°C. Perfect thermal neutrality would 
be achieved only with an unlikely thermal insulation of clothing around 1.5 clo (e.g. 
underwear with short sleeves and legs, short, trousers, vest, jacket, coat, socks, 
shoes).  

Table 2.3-1. Comfort classes according to Standard EN15251. 

Category  
Temperature range for 

heating (°C) 
Temperature range for 

cooling (°C) 

I 21-25 23.5-25.5 

II 20-25 23-26 

III 18-25 22-27 

 

 

Figure 2.3-5. Classification of thermal environment according to EN15251 in the living area during 
heating period.  
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Figure 2.3-6. Effect of indoor temperature settings on lifestyle in terms of clothing level in winter and 
PMV evaluation. 

2.4 Discussion and further investigations  

2.4.1  “Truly” reaching the nZEB target: Low energy consumers 
in high performing buildings  

The results obtained in this study reveal that the energy-related occupant 
behaviour lifestyles significantly influence the energy performance of the analysed 
residential nearly-zero energy building. With respect to the basic standard consumer 
scenario (REF-SC), the energy consumptions vary from -83% for the low consumer 
scenario up to +76% for the high consumer one. Furthermore, this study revealed 
that the energy performance is also heavily dependent on the type of post-
occupancy household arrangements; with respect to the basic scenario (REF, people 
per floor area: 0.04 pers/m2), two-person household compositions might imply 
significant reductions in energy consumptions (-102%). Indeed, the variation of 
different types of households additionally increases the discrepancy of the final 
energy consumptions in the several scenarios (~240%). This percentage is in line 
with literature values regarding the variation of the energy uses due to occupant-
driven interactions with the building envelope and systems (~300%) (R. V. 
Andersen, Olesen, and Toftum 2007). Furthermore, the influence of occupant 
behaviour on energy consumptions in the specific case of a nearly-zero energy 
buildings seems to gain even more importance. Indeed, in these kinds of buildings, 
in which technical solutions regarding the building envelope and HVAC system 
configurations have been optimized, the influence of the energy-related attitude of 
the occupants is translated into high percentage variations of the energy 
consumptions due to the very low values of these last ones. As an example, the high 
consumer scenario of the young couple household consumes 12.3 kWh/m2y, while 
the low consumer young couple is a plus energy scenario (-10.3 kWh/m2y). Hence, 
a building can only truly be considered a nearly-zero energy building if zero-
capital actions related to the behavioural change of the occupants become as 
important as technological high performing solutions for the building features. 
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Indeed, if the behaviour of the inhabitants is energy wasting, it might be 
unmanageable to reach the nearly-zero energy target, even if the building itself is 
defined “high performing”; the occupants need to be proactive in saving energy as 
well. Understanding the potential impact of technology-based and occupant 
behaviour-based strategies – and the combination of the two – is therefore a key to 
learning how to make high performing buildings commonplace and how to reduce 
spread in energy consumption. 

The most influencing occupant-driven variables on final energy consumptions 
are related to the electric equipment use in first place (from -28% up to +25%) and 
secondly to the lighting use (from -26% up to +18%). Indeed, the unpredictable 
loads related to these variables gain greater influence than in low performing 
buildings whose envelope-driven loads most likely dominate the consumptions 
profile.  

2.4.2 Investigation on high and low performing building features     

To support statements made in 2.4.1, the proposed methodology and key 
findings in section 2.2 and 2.3 encouraged further investigations for gaining a better 
knowledge on the impact of occupant behaviours lifestyles on building energy use. 
In detail, a further analysis consisted in deploying the same methodological 
framework for describing the effect of (the same) occupant-driven variables on the 
building energy performance of the residential nearly-zero energy building 
compared to a “traditional” Reference Building (RB) (PAPER IV).  

The characteristics of the RB were established by using the same geometrical 
model of the nZEB, but assuming different performance levels of the building 
envelope and the HVAC systems. A description of the building features assumed 
for the nZEB and the RB can be found in Table 2.4-1. The energy performance 
requirements for the building envelope of the RB were established to meet the 
requirements of the Italian directive for Climatic Zone E (Italian Ministry of 
Economic Development 2010). Figure 2.4-1 shows the primary energy 
consumptions for the (i) nZEB and the (ii) RB occupant behaviour lifestyle 
scenarios. As outlined in 2.3.1, the graph highlights that in all the nZEB scenarios 
the most relevant incidence on the total energy consumptions is related to electric 
equipment and lighting use. In the RB scenario, instead, the incidence of the energy 
use for space heating gains much more importance (23-29%) with respect to the 
high performing building scenario. Indeed, there is a large gap between primary 
energy consumptions for space heating and cooling in the low and high performing 
scenarios and higher variations due to occupant behaviour lifestyles in the RB 
scenario. Furthermore, the graph depicts the amount of energy consumption 
covered by the energy production by the PV system (dotted blue line). In the nZEB 
scenario full cover can be guaranteed only with a low consumer profile: the nZE 
target might, hence, not be truly reached if the behaviour of the occupants is energy 
wasting.  
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Table 2.4-1. Description of the building features assumed for the (i) nZEB and (RB) scenario. 

Building 
characteristics 

Description (i) nZEB (ii) RB 

Envelope 

U values 

(W/m2K) 

 

External wall 0.15 0.27 

Ceiling 0.15 0.24 

Slab 0.19 0.26 

Window 0.96 1.8 

HVAC system 

Heating 
Water heat pump (coefficient of 

performance = 4.4) + radiant floors 

Condensing boiler (nominal 
efficiency = 0.95) + radiant 

floors 

Cooling 
Water heat pump (energy efficiency 

ratio = 4.2) + radiant floors 
Multi split system 

Ventilation 
Controlled mechanical ventilation 

(CMV) with heat recovery 
Natural ventilation 

PV system 7 kWpeak 2.62 kWpeak 

 
 

 
Figure 2.4-1. Primary energy consumptions for (i) nZEB and (ii) RB scenarios. 

 

 

Figure 2.4-2. Impact of single key variables on building energy use of a (i) nZEB and a (ii) RB. 
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Also in this analysis, the impact of single behavioural patterns on the total 
energy consumptions is shown as percentage changes of the annual primary energy 
consumptions (Figure 2.4-2). The results highlight that the most significant impact 
on consumptions is given by different key variables in the (i) nZEB and the (ii) RB 
scenario. As regards the first, the highest variation of building energy use is due to 
the occupants’ interaction with electric equipment and lighting (see 2.3.1). In the 
RB scenario, instead, the highest variation is due to behavioural patterns related to 
the regulation of the heating/cooling set-point and operation profiles of the systems. 
The results show that the regulation of the set-point might lead to an increase of the 
building energy use by 22%. The electric equipment and lighting settings, instead, 
have a lower incidence with respect to the nZEB scenario. These outcomes stress 
that once the building design and the technological solutions for the building 
envelope and systems have been optimized, the effect of the occupants’ lifestyle 
and interaction with the building gains even more importance. In line with these 
outcomes, Table 2.4-2 provides a ranking of the behavioural patterns that mostly 
effect the building energy consumption in the (i) nZEB scenario and in the (ii) RB 
scenario and, therefore, highlights the key behavioural patterns that (according to 
the results of this particular case study) should be particularly stressed in energy 
engagement programs. For further details, the reader is invited to refer to 
(Barthelmes et al. 2017).  

Table 2.4-2. Ranking of behavioural key variables for scenario (i) nZEB and (ii) RB. 

Rank of key 
variables  

(i) nZEB (ii) RB 

1 Electric equipment use Temperature set-points and operation 

2 Lighting use Electric equipment use 

3 Temperature set-points and operation Lighting use 

4 DHW use Ventilation rate 

5 Adjustment of window blinds  Adjustment of window blinds 

6 Ventilation rate DHW use 

2.4.3 Insights on OB lifestyles and building automation    

A further investigation assessed how and to what extent the implementation of 
occupant behaviour lifestyles combined with automated building systems may 
affect the energy performance within the home (PAPER V). For this analysis 
different levels of Building Automation Controls (BAC) were explored and 
combined with a standard lifestyle (SC) and a low consumer lifestyle (LC) scenario, 
considering the same case study introduced in 2.2.1. In particular, EN 15232 (CEN 
(European Committee for Standardization) 2007) defines four different building 
automation and controls classes (A, B, C, D) of functions for non-residential and 
residential buildings: 

• Class D corresponds to non-energy efficient BACs – BACs is in class D if 
the minimum functions of class C are not implemented; 
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• Class C corresponds to standard BACS – minimum functions shall be 
implemented (e.g. emission control, control of distribution network, interlock 
between heating and cooling control of emission and/or distribution); 

• Class B corresponds to advanced BACs with some specific functions and 
Technical Building Management (TBM); 

• Class A corresponds to high-energy performance BACS and TBM – 
Technical building management function shall be implemented in addition to class 
B. Room controllers shall be able to demand control building services (e.g. adaptive 
set point based on sensing of occupancy, air quality, etc.) including additional 
integrated functions for multi-discipline interrelationships among the various 
building services (e.g. HVAC, lighting, solar shading, appliances). 

 From the energy simulations, it emerged that if a standard user is matched with 
an automated system, the energy savings are even more considerable and it is 
possible to reduce energy consumptions for space heating/cooling, lighting, 
ventilation and electric equipment. By implementing advanced levels of 
automation, even higher energy performance may be achieved. The sustainable 
lifestyle consumer (LC) defined for Class B of automation systems permits to 
obtain significant energy savings with respect to Class C. This study showed that 
savings in homes can be obtained either by considering a more conscious behaviour 
of the user or the implementation of building automation systems. Combining these 
two aspects, automation/control and aware user behaviour, permits to achieve 
important energy savings, to reduce energy demand and consequently to truly 
guarantee high building performance. 

2.5 Perspectives and challenges       

To outline perspectives and challenges that this study is aimed at bringing to 
surface, it is necessary to mention some limitations of the proposed approach. 
Precisely, simplified deterministic input values were used for defining the energy-
related behaviour of the inhabitants; further investigations in this thesis will 
therefore include the stochastic nature of occupant behaviour models in order to 
analyse more accurately their influence on energy uses (see Chapter 3 and 4). In 
second place, the assumed high consumer profiles took into account an energy-
wasting attitude related to the occupant-driven variables on consumptions, but some 
occupants might even reach higher energy consumptions. On the other hand, the 
low consumer profile could be even more energy-saving, as well, and smarter 
energy-related attitudes could be assumed. Although if this approach is based on 
solely one case study and results might not be generalized, it gives an idea on how 
significant the effect of occupant behaviour can be on building energy use in 
buildings. This study, hence, highlights the compelling necessity of reference 
models of occupant behaviour lifestyles and related behavioural patterns to 
bridge the gap between predicted and real building energy consumptions, in 
particular for nZEBs. Other upcoming studies related to other dwellings and to other 
different building typologies are required to strengthen the statements made in this 
chapter. Moreover, this requires also the necessity to put in place complex 



  
33 Chapter 2 – Occupant behaviour lifestyles: Impacts on building energy use and thermal comfort     

monitoring campaigns to capture occupant behavioural patterns in (nearly-zero 
energy) buildings, residential or not, in order to obtain large field data sets that 
permit to assess data-based behavioural profiles and related building energy uses. 
The latter might represent the starting point for more accurate occupant behaviour 
lifestyle models in low energy buildings that can be stochastically implemented in 
simulation programs. Although the research community around occupant behaviour 
puts in continuous and thorough effort, still a lot of work has to be done in order to 
further understand human behaviour and to define reference models related to 
human behavioural issues that permit to more reliably predict the influence of 
occupant behaviour on energy consumptions in buildings, and in particular in those 
that have a nearly-zero energy consumption. 
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Chapter 3  
 

Exploration of the Bayesian 
Network (BN) framework for OB 
analysis  

3.1 Overview  

In line with existing literature, the previous chapter outlined the urgent need for 
reliably modelling occupant behaviour in buildings in order to bridge the gap 
between predicted and real energy performance in buildings. Similar to the 
approach in Chapter 2, frequently, simulation-based design analysis relies on 
standard use and operation conditions such as fixed schedules for occupancy levels, 
light switching, ventilation rates and temperature settings. These assumptions often 
lead to an oversimplification of the human dimension in buildings and might lead 
to inaccurate outcomes of the dynamic building energy simulations. For this reason, 
in recent years, stochastic modelling approaches have been developed to more 
reliably capture energy-related human behaviour when simulating building energy 
use and environmental comfort conditions. The interaction with the windows has a 
significant impact on the building performance, as well as on the indoor 
environmental quality (IEQ), by changing the amount of fresh air to the building. 
An increasing number of studies have been carried out to develop stochastic models 
for predicting the occupant’s interaction with windows. Generally, the latter are 
based on statistical algorithms for predicting the probability of a specific condition 
or event, such as the window state or the window opening/closing action, given a 
set of environmental or other influential factors. Most popularly methods include 
logit analysis (Nicol 2001; Andersen et al. 2013; Rijal et al. 2008b; Yun and 
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Steemers 2008), probit analysis (Zhang and Barrett 2012), and Markov chain 
processes (Haldi and Robinson 2009).  

In this chapter, the capabilities of the Bayesian Network framework to model 
occupant behaviour in the context of thermal comfort and building energy analyses 
towards bridging the gap between real and simulated outcomes are investigated.  In 
comparison to the above-mentioned regression-based models, BN-based 
approaches are able to flexibly model complex relationships between diverse 
explanatory variables and window control behaviour by constructing a joint 
probability distribution over different combinations of the domain variables. 
Indeed, the BN model permits to easily model joint conditional dependencies of the 
entire set of variables through a graphical representation of the model structure 
(Korb and Nicholson 2010). The BN model also allows for structuring a variety of 
explanatory variables and multiple target variables in a hierarchical manner. In 
addition, BNs are demonstrated to yield good prediction accuracy even with small 
datasets (Mylly Aki et al. 2002). They also have capabilities to handle incomplete 
datasets by using Expectation-Maximization (EM) algorithms (Lauritzen 1995) in 
which missing data can be marginalized by integrating over all the possibilities of 
the missing values. Furthermore, the BN model provides a clear semantic 
representation of relationships between variables, which facilitates flexibly 
structuring a model and training it against available data in wider and 
interdisciplinary research communities. 

This study presented in this chapter is aimed at demonstrating the applicability 
of the Bayesian Network (BN) framework for predicting window opening/closing 
behaviour of building occupants based on the measurements in a residential 
apartment located in Copenhagen, Denmark. In particular, five key research 
questions related to developing a BN model for predicting window-use patterns 
were addressed. The first set of three research questions addresses general issues 
relevant to modelling window control behaviour:   

 Which variables are key drivers that determine window control behaviour? 

 What is the most suitable target variable of window control behaviour?  

 What level of correlations resides between variables and should they be 
captured in the BN model?  

The second set of research questions addresses modelling challenges related to 
the applicability of the BN framework for modelling occupants’ window control 
behaviour:  

 How to handle mixed data in the BN framework? 

 How to validate stochastic BN models? 

A key question regards how to deal with mixed data in the BN framework. 
Traditional BN approaches to treat either discrete variables or continuous variables 
are not suited to modelling window control behaviour as datasets typically consist 
of both continuous variables (e.g., indoor temperature, CO2 concentration) and non-
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continuous variables (e.g., binary control actions, time of the day). This study tries 
to overcome this problem by proposing a modelling procedure that allows for 
handling mixed data, particularly with use of the bnlearn package (Scutari 2010) in 
the statistical software environment R (Nagarajan 2013). The prediction accuracy 
of the model is evaluated through a series of methods suitable to validate stochastic 
models. The steps that were used for the BN modelling approach in this chapter are 
summarized in Figure 3.1-1.  

 

 

 

 

Figure 3.1-1. Overview Chapter 3. 
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3.2 Methodology    

3.2.1 Bayesian Networks 

A Bayesian Network (BN) is a Directed Acyclic Graph (DAG) or belief 
network that is used to represent the relationship among a predefined group of 
discrete and continuous variables (Xi) (Neapolitan 2004; Korb and Nicholson 
2010). BNs consist of two parts: a graphical model and an underlying conditional 
probability distribution. In detail, nodes represent the variables, and the 
dependencies between variables are depicted as directional links corresponding to 
conditional probabilities. Hence, the construction of a BN consists of determining 
the structure, as well as the probability distribution associated with these relations 
(see section 3.3.3). The relationships between nodes can be explained by employing 
a family metaphor: a node is a parent of a child, if there is an arc from the former 
to the latter. For instance, in case there is an arc from X1 to X3 then node X1 is a 
parent of node X3 (Figure 3.2-1). The Markov property of the BNs implies that all 
the probabilistic dependencies are graphically shown via arcs and that child nodes 
only depend on the parent nodes. To calculate the joint probability distributions the 
following chain rules are used for the discrete case (equation 3.1) and the 
continuous case (equation 3.2), respectively: 
 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑎𝑠𝑒                        𝑃(𝑋ଵ, … , 𝑋) = ෑ 𝑃(𝑋|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋))



ୀଵ

 

 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑎𝑠𝑒                  𝑓(𝑋ଵ, … , 𝑋) = ෑ 𝑓(𝑋|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋))



ୀଵ

 

 
 

 

Figure 3.2-1. Example of a BN: Probabilistic dependencies between occupant behaviour and possible 
explanatory variables (VARs)/drivers 

In the discrete case, conditional joint probabilities are represented by the so-
called Conditional Probability Tables (CPTs) since all variables are characterized 

(3.1) 

(3.2) 
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by discrete data. In this case, all intervals for each discrete variable are treated as 
independent variables, and there is no mechanism to capture the effect of 
continuous variables such as temperature and relative humidity as a continuous 
trend. On the other hand, the continuous case assigns each variable Xi with a 
Gaussian probability density function f (Xi) conditional on the values of its parent 
nodes. As datasets collected for model development often consist of different data 
types, many existing studies discretize continuous data for obtaining homogeneous 
datasets. A key limitation of discretization is a significant loss of information, 
which has a big impact on the predictive power of resulting BN models and the 
interpretability of BN models to understand relationships between variables. In fact, 
data collected for occupant behaviour modelling typically includes both categorical 
or binary variables (such as window control actions and time-of-day) and 
continuous variables (such as the indoor/outdoor environmental variables). Hence, 
it is important to develop a BN framework that allows for appropriately handling 
mixed data for occupant behaviour modelling, which will be carefully investigated 
in Section 3.3.4. 

3.2.2 BN modelling approach  

This paragraph describes how the BN model for window control behaviour in 
this study was developed. The development of the statistical model consists in a 
series of steps (Figure 3.1-1) (PAPER VI):  

Step 1: Variable selection 

The first step is to identify variables that are considered relevant for the 
analysis. The variable selection encodes a number of specific existing findings into 
the model through the process of target and explanatory variable choice (see Step 
3). Generally, variable selection can be based on outcomes from existing literature 
combined with expert knowledge and ad-hoc statistical analysis based on field 
measurements or models.  

Borgeson and Brager (2008) elaborated an extensive literature review on 
studies aimed at modelling window control behaviour of building occupants. In the 
majority of the cited studies, temperature was found to be the most important driver 
(Rijal et al. 2008a; Warren and Parkins 1984), although there is no consensus about 
whether indoor or outdoor temperature is dominant in determining the behaviour. 
Other models found time-related factors such as the time of the day and season or 
the current window state to be key variables to predict window control actions 
(Pfafferott and Herkel 2007; Haldi and Robinson 2008; Yun and Steemers 2008). 
Review of the existing literature confirmed that the dataset used for this study (see 
Table 3.2-1) includes key explanatory variables (e.g. indoor and outdoor 
environmental variables and time-related factors) that were found to impact 
window control behaviour. 

Next to the definition of key variables found in literature, a two-sample 
Kolmogorov-Smirnov test (K-S test) was carried out to test which variables are 
main drivers that trigger window control actions. The two-sample K-S statistic 
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quantifies a distance between the empirical distribution functions of two samples to 
evaluate whether two samples come from the same probability distribution function 
(Conover 1971). This method is useful to test whether a certain explanatory variable 
impacts window control actions by comparing the distribution of variable values 
when window opening or closing actions is different from that in the entire dataset. 
First, the entire dataset, including all explanatory variables and window control 
variable, was generated as a baseline (Figure 3.2-2). Then, from (i) the entire 
dataset, two subsets were generated depending on the window control action: (ii) 
data only when window opening actions were monitored and (iii) only data when 
window closing actions were monitored. Hence, (i) provides the distribution of 
explanatory variable values regardless the window control action, while (ii) and (iii) 
provide the specific distribution depending on the window control action (opening 
and closing, respectively). Then, the two-sample K-S test was applied to a pair of 
samples – (i) and (ii) for the window opening behaviour and (i) and (iii) for the 
window closing behaviour - for each environmental and time-related variable to 
examine how different the two samples are. For instance, if the distribution of the 
indoor air temperature substantially differs between the samples (i) and (ii), it 
indicates that the indoor air temperature has a significant impact on window 
opening actions. The statistical significance of differences between the two samples 
is represented by the p-value; the lower the p-value is, the more the two samples 
differ. The significance threshold of the p-value is typically 0.05, which is also used 
in this study to exclude unimportant variables from further analysis.  

 

 

Figure 3.2-2. K-S test: Definition of the samples. 

Step 2: Definition of a training dataset 

 Based on the identified relevant variables in Step 1, it is necessary to retrieve 
an adequate training dataset that contains variables of interest. Generally, the 
training dataset includes samples of the chosen target and explanatory variables and 
can be based on field measurements, survey data, existing models or simulation 
data. It can be used to support structure and parameter learning in Step 3 and Step 
4. Before this, most studies apply discretization techniques, which means that the 
training dataset containing continuous variables is transformed into a purely 
discretized domain for the BN model (Pfafferott and Herkel 2007). Some software 
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environments allow to directly discretize continuous variable sets of the training 
dataset during Step 3 or 4. The discretization of the domain of the training dataset 
allows the Bayesian Network model to capture rough characteristics of the 
distribution of the continuous variables, but often corresponds to a significant loss 
of information. This will be discussed in the following sections.  

The modelling process in this study is based on a training dataset with 
measurements of one natural-ventilated, rented two-persons apartment located in 
Copenhagen, Denmark (Andersen et al. 2013). Table 3.2-1 summarises 
measurements related to the indoor and outdoor environment conditions, 
occupants’ interaction with the windows, and time-related factors such as the time 
of the day or the day of the week. These measurements were collected in 10-minutes 
intervals continuously for approximately 3 months (February–May). The outdoor 
environmental measurements were acquired from a meteorological measuring 
station located near the apartment. The same time resolution was used for analysis. 
One thing to point out is that this study treats window states as a binary variable 
(0=closed, 1=open) and does not take into account the degree of opening (angle of 
the shutter with respect to the window frame). Windows are a two-wing window 
type, manually controlled by the building occupants. In total, the occupants 
performed 215 window opening actions during the monitoring phase. 

Table 3.2-1. Available target* and explanatory variables. 

Potential VARs Abbreviation Unit Min Max Mean Median St. Dev. 

Indoor Environment 

Dry bulb temperature  Tin °C 12.1 25 21 21 3 

Relative humidity RHin % 26 66 38 38 5 

Illuminance Lux lux 1 8360 95 43 171 

CO2 concentration CO2,in ppm 101 2261 608 580 161 

Outdoor Environment 

Air Temperature Tout °C -5 24 7 6 5 

Relative humidity RHout % 25 100 73 74 18 

Wind speed Wind m/s 0 13 3 2 2 

Global solar radiation SR W/m2 0 904 184 63 230 

Occupant Behaviour Range of values  

Window position/state WS* 0/1 (closed/open) 

Window opening/closing 

action 
WOA*/WCA* 0/1 (no action/action) 

Other Range of values 

Time of the day Hour 1-24 

Weekday WD Monday-Sunday 

 

Step 3: Definition of target variable  

The third step is the definition of the most suitable target variable that best 
allows for predicting the human behaviour in the building, and in particular for 
predicting occupants’ window control actions. Previous models have computed the 
probability of windows being open or closed (Haldi and Robinson 2009) or to the 
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probability of occupants taking window opening or closing actions (Andersen et al. 
2013; D’Oca et al. 2014). In this study, different BN models were created and tested 
using these two variables as a target variable predicted as the function of the indoor 
air temperature in order to investigate which target variable is most suitable.  

Step 4: Definition of connections  

The next step is to define the connections or rather the relationships between 
the selected variables in the BN. Determining the structure of a BN is at least as 
important as determining the conditional probabilities linking the variables, since 
the output of the network is more sensitive to changes in the structure than to 
changes in conditional probabilities. This step preceding the parameter learning 
step, hence, is crucial for defining an adequate model structure and consequently 
obtain reliable outcomes. The connections can be learned by machine learning 
algorithms (see Step 5) that extract information from the training dataset defined in 
Step 2, but should always be accurately verified by experts, since automated 
learning processes often lead to random and not realistic arc directions and 
connections between nodes.  

Additionally, this study applies the Kendall rank correlation coefficient to 
relatively evaluate the importance of correlations between the measured variables 
and accordingly structure the arcs between the explanatory variables in the BN 
model in an efficient manner. In particular, the Kendall rank correlation coefficient, 
commonly referred to as Kendall's tau coefficient, is a statistic used to measure the 
ordinal association between two measured quantities (Abdi 2007). 

The Kendall τ coefficient is calculated as follows: 
 
let (VARx,1, VARy,1), (VARx,2, VARy,2), …, (VARx,n, VARy,n) be a set of 

observations of the joint random variables VARx and VARy respectively, such that 
all the values of (VARx,i) and (VARy,i) are unique. Any pair of observations 
(VARx,i, VARy,i) and (VARx,j, VARy,j) are said to be concordant if the ranks of both 
variables agree; that is, if both VARx,i > VARx,j and VARy,i > VARy,j or if both 
VARx,i < VARx,j and VARy,i < VARy,j. Otherwise, they are said to be discordant. 
Equation 3.3 defines the Kendall τ coefficient and n is the total number of 
combinations: 

 

τ =
(number of concordant pairs) − (number of discordant pairs)

n(n − 1)/2
 

 

Step 5: Parameter learning and model fitting   

The BN model is trained by determining all the probabilities for the nodes, and 
the conditional probabilities for the arcs. In this step, based on the underlying 
training dataset, frequencies of each possible value for the nodes are counted. Then, 
these frequencies are used to calculate the conditional probabilities of the arcs based 
on Equation (3.1) for discrete data and (3.2) for continuous data. Traditionally, BNs 
were constructed from the knowledge of human experts, this first approach is also 

(3.3) 
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called “eclitation” (Shipworth 2010). This approach can be still useful for cases in 
which field survey data or measurements are not available. However, during the 
last decade, several methods have been developed to build BNs directly from 
databases. Indeed, this second approach is based on machine learning algorithms 
that extract a structure and estimate probability distributions from datasets. These 
two approaches can be combined: for example, defining the structure of the network 
based on expert knowledge and learning probability distributions in the BN model 
from available datasets (Figure 3.2-3).   

 

 

Figure 3.2-3. Learning the structure of a BN: Combination of expert knowledge and machine learning. 

 
Several machine learning algorithms have been developed to extract the 

structure of BNs from the dataset. Constraint-based algorithms learn the structure 
of a Bayesian Network by first running local hypothesis tests to identify a 
dependency model containing independence assertions that hold in the training 
data. Constraint-based algorithms (conditional independence learners) are all 
optimized derivatives of the Inductive Causation algorithm (Pearl and Verma 
1995). These algorithms use the conditional independence tests to detect the 
Markov blankets of the variables, which in turn are used to compute the structure 
of the Bayesian network. Constraint-based algorithms for structure learning are 
designed to accurately identify the structure of the distribution underlying the data 
and, therefore, the causal relationships. The main drawback of constrained-based 
algorithms is their poor robustness, which means that there can be large effects on 
the output of the structure of the BN for small errors in the independence tests. If 
all the variables in the network are highly correlated, it might be problematic to 
define neat independencies among them. The second class of algorithms, called 
search-and-score, is characterized by a higher robustness and searches over possible 
Bayesian Network structures to find the best factorization of the joint distribution 
implied by the training data. These score-based learning algorithms are general 
purpose heuristic optimization algorithms which rank network structures with 
respect to a goodness-of-fit score. This process assigns a score to each candidate 
BN, typically one that measures how well that BN describes the dataset. A score-
based algorithm attempts to maximize this score, e.g. Bayesian Information 
Criterion score (BIC score)(Nagarajan 2013), which represents a useful tool for 
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optimizing the complexity of the model. Equations 3.4 and 3.5 for the discrete and 
continuous cases represents a useful tool for optimizing the model in terms of both 
its predictive power and complexity. 

 

 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑎𝑠𝑒                      𝐵𝐼𝐶 =  𝑙𝑜𝑔𝑃 
ቀ𝑋|  ෑ 𝑋ቁ
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where d is the number of variables included in the BN network and n is the 

sample size. With the determined BN structure, parameter learning is carried out to 
train unknown parameters associated with conditional distributions in the BN 
against the dataset. Typically, in this process, the usability of the model is evaluated 
by the BIC score, and the importance of the variables is evaluated by the strengths 
of the arcs connected between the variables (Nagarajan 2013). The BIC score is a 
criterion used to select the best model among a given set of models in terms of the 
predication accuracy and the model complexity; the lower the BIC score is, the 
better the model is. The arc strength measures the importance of individual parent 
nodes on predicting the state of their child node. The strength is measured by the 
score gain or loss as the result of removing one arc while keeping the rest of the 
network fixed. Negative strength values indicate decreases in the network score due 
to the arc’s removal, and positive values indicate increases in the network score; 
the lower the arc strength is, the stronger the relationship between the two variables 
linked by the arc is. 

Finally, hybrid algorithms combine the former types of algorithms as they use 
conditional independence tests and network scores at the same time.  

In this study, parameter learning is carried out with a search-and-score-based 
algorithm, and in particular the Hill-climbing algorithm, available from the bnlearn 
package in R (Scutari 2010).  

Step 6: Model-based inference and directions of reasoning  

Once the model is trained, it is possible to infer the model and ask questions 
about the nature of the data. In particular, this step permits to carry out predictive 
analysis, diagnostic analysis and the investigation on relationships between 
individual nodes of the network. Bayesian Networks provide full representations of 
probability distributions over their variables and can be defined intuitively as both 
a knowledge model and an inference engine. That implies that they can be 
conditioned upon any subset of their variables, supporting any direction of 
reasoning (Figure 3.2-4). Indeed, once the BN is structured and parameters are 
learned, it is possible to ask questions about the nature of the data inside the BN. 
Thus, one can define a single probabilistic model and examine it in different ways 
to perform prediction and diagnosis, revision of hypotheses, carry out ‘‘what if?’’ 
reasoning, and ‘‘ruling out’’ hypotheses. The BN permits to perform diagnostic 

(3.4) 

(3.5) 
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reasoning, which could for example mean trying to understand which variables 
(VARs) influence the target node and in which manner. This type of reasoning 
occurs in the opposite direction to the network arcs. On the other hand, it is also 
possible to perform predictive reasoning, in this case reasoning is from new 
information about causes to new beliefs about effects, following the directions of 
the network arcs. Finally, a further form of reasoning involves reasoning about the 
mutual causes of a common effect, this has been called intercausal reasoning by 
Korb and Nicholson (2010). Since any nodes may be query nodes and any may be 
evidence nodes, sometimes the reasoning does not fit neatly into one of the types 
described above. Indeed, the above types of reasoning can be combined in any way 
in the same model.  

 

 

Figure 3.2-4. Types of reasoning with Bayesian Networks. 

In this study, the main aim is to carry out diagnostic (which are the main drivers 
for window control behaviour?) and predictive (how likely is the occupant to open 
the window given certain conditions?) analysis. The model is, hence, inferred 
mainly with respect to two directions of reasoning.  

Step 7: Model validation   

This section investigates validation approaches, which is a crucial step to test 
the predictive power of stochastic models. In particular, this research step validates 
and tests the predictive power of the final BN model described in the previous 
sections. For model validation, cross-validation is a standard way to obtain unbiased 
estimates of a model’s goodness of fit by partitioning the dataset into training and 
testing subsets. K-fold cross-validation in the bnlearn package is applied to 
randomly partition the entire dataset into k equally sized subsamples. Out of the k 
subsamples, a single subsample is retained as the validation data for testing the 
accuracy of the trained model, and the remaining k-1 subsamples are used as 
training data. In this case study, the dataset was split into 10 subsets, and the BN 
model was trained against 9 subsets and tested against 1 subset. 

In cross-validation for classification problems similar to the context of 
predicting binary control actions, the prediction error of a stochastic model is 
commonly calculated by a loss function that compares the predicted label of the 
target variable against measurements through the testing dataset. It is worth 
mentioning that as the original dataset is very unbalanced (0.3% of the dataset 
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corresponding to "window opening = TRUE" events and 99.7% of the dataset 
corresponding to "window opening = FALSE" events), the low classification error 
does not guarantee that the model reliably predicts the window opening action. 

A tailored approach for model validation is applied to examine the model 
predictability in detail with considering the imbalance of the dataset. This approach 
consisted of the following steps: 

1. Creation of a testing dataset containing 215 samples of “window opening = 
TRUE” and 215 samples of “window opening = FALSE”; 

2. Computation of model predictions by the BN model for given response 
variable values in the testing dataset; 

3. Creation of a confusion matrix of observed and predicted WOAs and NOAs. 
Steps 1 and 2 were repeated approximately 100 times to obtain the probabilistic 

distribution of prediction accuracy. 

3.3 Key findings    

3.3.1 Variable selection  

Table 3.3-1 shows the K-S test results used to rank the most influencing 
variables for the window opening and closing behaviour. For the window action 
behaviour, the results highlight that the six most influencing variables in the case 
study analysed are the time of the day, CO2 concentration, solar radiation, indoor 
and outdoor air temperature and indoor relative humidity. All the variables with a 
p-value higher than 0.05 were excluded from the analysis. One thing to note is that 
the day of the week (WD) does not influence the window opening action (WOA) at 
all (p-value=1). Furthermore, the K-S test results reveal that the six most 
influencing variables are identical for the window opening and window closing 
actions, while their ranking varies slightly. The most important variable is the time 
of the day for both actions. Indeed, exploratory data analyses also showed that the 
windows were opened and closed in certain times of the day (morning and late 
afternoon hours). The window closing actions were also influenced by the wind 
speed and the illuminance level. 

Table 3.3-1. K-S test: Variable selection. 

Rank 
WINDOW OPENING ACTION (WOA) WINDOW CLOSING ACTION (WCA) 

VAR p-value VAR p-value 

1 Hour 5.754 x 10
-12

 Hour 2.2 x 10
-16

 
2 CO2,in 8.668 x 10

-11

 SR 2.2 x 10
-16

 
3 SR  3.226 x 10

-6

 CO2,in 0.000102 

4 Tin 0.0001399 Tin 0.0001399 

5 Tout 0.005 Tout 0.003193 

6 RHin 0.008602 RHin 0.008602 

7 Lux 0.15 Wind 0.01012 

8 Wind  0.2212 Lux 0.03478 

9 RHout 0.335 RHout 0.335 

10 WD 1 WD 1 
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3.3.2 Target variable definition  

Figure 3.3-1 shows results from using the window state and the window 
opening action as a target variable predicted as the function of the indoor air 
temperature. Figure 3.3-1(a) depicts the counterintuitive trend of the probability of 
windows being open increasing as the indoor air temperature decreases. This 
misrepresentation is due to strong bi-directional interactions between the indoor 
environmental variables and the window state. When the window state is 1 (open 
window), cool air flows into the room, lowering the indoor air temperature and the 
CO2 concentration. Hence, using the window state as a target variable may lead to 
unreliable outcomes indoor environmental variables are used as explanatory 
variables.  Andersen et al. (2013) also pointed out that it is problematic to infer the 
window state based on indoor environment conditions (e.g. indoor temperature) 
since these are directly influenced by the state of the window. Figure 3.3-1(b) 
highlights that using the window opening action (WOA) as a target variable instead 
of the window state overcomes this problem by taking into account the values of 
the indoor environmental variables only when the window is actually being opened 
(or closed). It is worth mentioning that using the WOA rather than the WS may lead 
to weaker arc strengths in the BN model since much less data is used for training 
the model (e.g., 215 data points when WOA took place out of the entire set of 65335 
data points). 

 

 

Figure 3.3-1. Probability of (a) an open window (WS) and (b) a window opening action (WOA) 
depending on the indoor air temperature. 

3.3.3 Correlation between variables  

Table 3.3-2 shows the ranking of the most correlated variables with the six 
important drivers and associated Kendall coefficient values. Overall, highly strong 
correlations between the selected variables are not observed.  Mild correlations are 
observed among the indoor air temperature (Tin), the outdoor air temperature (Tout), 
and the solar radiation (SR). As expected, correlations are found between the indoor 
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temperature and relative humidity (Tin and RHin) and the outdoor temperature and 
relative humidity (Tout and RHout). Furthermore, minor correlations are found 
between the time of the day (Hour), the outdoor air temperature (Tout), and the solar 
radiation (SR). These correlations between the selected variables will be 
represented in the BN model by adding arcs between the identified pairs with 
correlations. It is worth noting that this analysis intends to evaluate all the 
correlations between the variables in a relative manner without specific numerical 
thresholds to define the importance of correlation. 

Table 3.3-2. Kendall's Tau: Non-linear correlation between the most influencing variables on window 
action behaviour and the other variables. 

Ranking  Hour CO2,
in

 SR T
in

 T
out

 RH
in

 

1 T
out

 0.16 T
out

 0.17 Luxin 0.38 RH
in
 0.39 RH

out
 0.40 T

in
 0.39 

2 SR 0.16 Hour 0.13 T
out

 0.36 T
out

 0.36 T
in
 0.36 RH

out
 0.25 

3 CO
2,in

 0.13 RH
in
 0.10 T

in
 0.21 RH

out
 0.23 SR 0.36 CO

2,in
 0.10 

4 T
in
 0.11 Lux

in
 0.08 Wind 0.20 SR 0.21 CO

2,in
 0.17 SR 0.09 

5 Wind 0.10 WD 0.02 Hour 0.16 Hour 0.11 Hour 0.16 Wind 0.09 

6 RH
in
 0.06 SR 0.02 CO

2,in
 0.02 Lux

in
 0.03 Wind 0.09 Lux

in
 0.07 

7 Lux
in

 0.03 Wind 0.02 WD -0.01 Wind 0.02 RH
in
 0.06 WD 0.06 

8 WD 0.01 T
in
 0.02 RH

in
 -0.09 CO

2,in
 0.02 WD 0.04 T

out
 0.06 

9 RH
out

 -0.22 RH
out

 0.02 RH
out

 -0.45 WD 0.01 Lux
in

 0.00 Hour 0.06 

 

3.3.4 A BN model for predicting window opening behaviour  

Figure 3.3-2 shows the proposed Bayesian Network for predicting window 
opening actions developed on the basis of the analysis results in paragraphs 3.3.1-
3. As outlined in 3.3.1, the key variables that most influence the window control 
behaviour are the time of the day, indoor CO2 concentration, solar radiation, indoor 
air temperature, indoor relative humidity, and outdoor air temperature. We highlight 
that this study is based on measurements from one residential unit with the four-
month of measurements and consequently the proposed model may not include 
potentially significant drivers that impact window opening actions, such as the 
season, ventilation type, room type, occupants (e.g., age, gender, smoker/non-
smoker), building characteristics, noise level, and security issues. On the basis of 
the outcomes in 3.3.3, the pairs of the variables with stronger correlations are linked 
by arcs. As the correlation results do not provide causal relationships between the 
variables, the directions of the arcs are determined based on building physics. 
Following the findings in Section 3.3.2, the target variable is the window opening 
action instead of the window state. As an extension, the window closing action 
(WCAs) can be included in the same model. As the proposed BN structure can be 
applied for both discrete and continuous cases, this study compares the BN model 
based on a fully discrete dataset (Models A, C and E) and on a fully continuous 
dataset (Models B, D and F). Furthermore, the proposed BN structure (Models E 
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and F) is compared against the structure derived only by machine learning (Models 
A and B) and the Naïve BN where WOA is the only child node and there is no arc 
between the other variables (Models C and D). For the discrete case, the continuous 
data is discretised into equal intervals of values based on logical reasoning as shown 
in Table 3.3-3. 

 

Figure 3.3-2. Proposal of a Bayesian Network for window opening behaviour. 

 

Table 3.3-3. Discretization of the continuous VARs. 

VAR 
Discrete values  

Tin <14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 
Tout -5-0, 1-5, 6-10, 11-15, 16-20, 21-25,  
SR 0-250, 251-500, 501-750, 751-1000  
RHin  <35, 35-40, 41-45, 46-50, 51-55 
CO2,in 0-500,501-1000, 1001-1500, 1501-2000, 2001-2500 

 
 

Figure 3.3-3 summarises the BIC score and arc strengths of different BN 
models. Models A and B show that the learning algorithm alone is not able to derive 
the BN structure that correctly captures relationships between the physical 
variables. The arcs automatically created by the learning algorithm do not represent 
the real physical dynamics beyond correlations between the variables. In addition, 
comparison between Models D and F highlights that the correlations between the 
explanatory variables are very high but the effect of modelling correlations between 
the variables on the model predictive power is very minor as the BIC score of Model 
F does not change much from that of Model D. The models based on the discrete 
data (Models C and E) are not able to quantify probabilistic dependencies between 
the explanatory variables and the WOA, while the continuous data (Models D and 
F) allows for identifying probabilistic dependencies between them. Indeed, the 
discretization of the dataset leads to a significant loss of information. Different 
discretization techniques have been developed to maintain substantial information 
embedded in the continuous dataset in the discretisation process. Suzuki (Suzuki 
2014), for instance, proposed a scoring method that incrementally discretises the 
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continuous data at finer resolution and evaluates the predictive power of the 
resulting models. On the other hand, the continuous data cases hold all information, 
but they do not appropriately handle categorical variables (e.g., time of the day) and 
binary variables (e.g., window control actions). Recent studies, such as (Dojer 
2016) developed methods for learning BNs from datasets joining continuous and 
discrete variables, but they are not readily available for the wider research 
community. 

 

 

Figure 3.3-3. Exploration of BNs for modelling window opening behaviour. 
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3.3.5 Treatment of mixed data  

This section proposes a BN modelling procedure that properly treats mixed 
data. This capability is crucial especially for the context of window control 
behaviour in which the main target variable is often binary (open/close) and key 
response variables are continuous. In particular, the target node “WOA” and time 
of the day are discrete variables while all the indoor and outdoor environmental 
variables are continuous. Currently, most available statistical analysis packages, 
including the bnlearn package (R environment), support either discrete or 
continuous variables. The bnlearn package offers more flexibility as it does not 
support the dependence of discrete variables on continuous variables but support 
the other way around. Hence, it is possible to build a bottom-up model in which the 
arcs are reversely connected from the discrete target variable to the continuous 
response variables (Figure 3.3-4). The semantic representation of this model might 
seem less intuitive, but since the BN model supports any direction of reasoning, it 
still can correctly infer the window opening action given the set of variable values. 
The BIC score of the model suggests that appropriately handling the mixed data 
improves the predictive power of the model in comparison to Models C and D. 
Furthermore, Model G yields the ranking of the response variables that well aligns 
with the outcomes of the K-S test described in section 3.3.1. In contrast, the 
continuous case (Model D) results in a much lower arc strength value for the time 
of the day as it does not correctly treat this variable as a categorical variable and 
instead expects a consistent trend between this variable and its child node. This 
comparison clearly illustrates the importance of appropriately treating mixed data 
to yield a reliable BN model and correctly analyse the effect of different variables 
on control actions. 

 

 

Figure 3.3-4. Treatment of mixed data: Bottom-up (BU) model. 

3.3.6 Model-based inference  

Figure 12 depicts the outcomes of the queries related to the probability of a 
window opening action given the main key response variables (Model G). As 
regards the main influencing driver, the time of the day (Figure 3.3-5a), the results 
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show that the probability of performing a window opening action is higher during 
the morning and late afternoon/evening hours. Furthermore, also found in the 
existing literature (Andersen et al. 2013; Yun and Steemers 2008), the results 
indicate that the probability of opening a window increases in correspondence of a 
higher CO2 concentration (Figure 3.3-5b), indoor air temperature (Figure 3.3-5c), 
and outdoor air temperature (Figure 3.3-5d). 

 

Figure 3.3-5. Probability of a window opening action given (a) time of the day, (b) CO2 concentration, 
(c) indoor temperature, (d) outdoor temperature, (e) solar radiation, and (f) indoor relative humidity. 
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3.3.7 Model validation  

The confusion matrix in Figure 3.3-6 indicates that there is a good match 
between observed and predicted window opening actions (WOA), and observed 
and predicted no opening actions (NOA). In detail, following the tailored validation 
procedure presented in 3.2.2 (Step 7), the accuracy of the model to predict the 
window opening action and no opening action is in average 93% and 98%, 
respectively. The expected loss value obtained with the balanced data is 5%, which 
confirms the strong predictive power of the BN model. 

 

 

Figure 3.3-6. Confusion matrix of observed and predicted WOAs and NOAs. 

 

3.4 Discussion and further investigations     

3.4.1 BN framework: a promising approach for OB modelling?  

The Bayesian Network modelling presented in this chapter well represents the 
stochastic nature of occupants’ interaction with the windows in relation to a variety 
of explanatory variables and consequently provides predictions with high 
confidence. The BN framework can be considered a promising approach for OB 
modelling given the following characteristics: 

 Clear semantic representation of the model; 

 Combination of different sources of knowledge (expert knowledge + 
information learnt from data); 

 Automatic structure and parameter learning feature; 

 Flexible applicability permits to include a large variety of variables in 
one model; 
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 Joint probability distributions between variables; 

 Easy belief updating when new data becomes available; 

 Handling of small datasets; 

 Handling of incomplete datasets; 

 Fast responses.  

However, it is necessary to highlight some challenges that need to be taken into 
account when using the proposed approach. The case study demonstrated that the 
proposed BN approach yields a probabilistic prediction model with higher 
confidence and better interpretability by fully exploiting information from the 
mixed dataset in comparison to the typical BN approaches. In all BN models, 
however, the joint distribution of all variables (global distribution) is factorised into 
local probability distributions, which reduces computational requirements for 
complex networks and increases power for parameter learning On the other hand, 
this also means that the local probability distribution between two nodes only 
explain the effect of the parent node on the child node, but does not take into 
account parameter interaction effects (Scutari and Jean-Baptiste 2014). In order to 
account for parameter interaction effects, Andersen et al. (2013) developed a 
multivariate logistic regression model with parameter interaction terms. Although 
if this study showed the high predictive power of the BN model without accounting 
for parameter interactions, it is not sufficient to conclude the effect of parameter 
interactions on the model predictive power. Further investigation is necessary to 
test the importance of parameter interactions in the context of window control 
behaviour modelling.  

The BN-based approach, in principle, allows for modelling complex 
hierarchical relationships between a large number of continuous and discrete 
variables through a clear semantic graphical representation. Moreover, the 
graphical representation is a valuable conceptual benefit since the structure and its 
underlying probabilistic dimension are easily interpretable for modellers in the 
building simulation community. However, owing to the limitation of the existing 
statistical packages, BN approaches used in existing studies with mixed data are 
based on discretized data of continuous and discrete variables, which may likely 
result in a significant loss of information (Dojer 2016). As the first step to overcome 
this limitation, a bottom-up modelling approach is proposed that handles mixed data 
when the target node is discrete and depends on continuous and/or discrete 
explanatory variables. However, it presents a challenge to extend the proposed 
approach to model a hierarchical complex structure that links continuous and 
discrete explanatory variables in multiple layers. In fact, occupants take a specific 
action or combination of actions among many control actions, such as thermostat 
settings, light dimming, blind control, to maintain their thermal comfort level, and 
modelling a series of control actions has been identified as one of the future needs 
for occupant behaviour modelling (Yan et al. 2015b). A Bayesian hierarchical 
network model can provide a mathematical framework for holistically modelling 
such adaptive actions in relation to environmental and contextual variables.  
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3.4.2 BN framework in the field of building energy analysis   

The suitability of the BN framework for occupant behaviour and in the field of 
building energy analysis was further investigated by providing a critical literature 
review on studies that have employed BNs in their methodological framework 
(PAPER VII). In particular, the literature survey identified the following areas in 
the field of building energy analysis in which BNs have been applied during the 
research process:  

i. Indoor Environmental Quality (IEQ) and Thermal Comfort Analysis 
ii. Building occupancy detection and other behavioural patterns 
iii. Design and operation of building components under uncertainty 
iv. Estimation of building energy consumptions at different scales and in smart 

grids 
A fifth area of investigation is related to the application of BNs for renewable 

energy systems, for an extended literature review on these applications the authors 
refer the reader to Borunda et al. (2016). Their study provides an extended literature 
review on BNs applied in renewable energy systems showing that most of the 
applications are devoted to wind and hydroelectric energy and the less applied and 
studied areas are geothermal, solar thermal and photovoltaic energies as well as 
biomass and energy storage. 

A first approach for using BNs is related to the analysis of Indoor 
Environmental Quality (IEQ) and thermal comfort. High Indoor Environmental 
Quality and an adequate thermal comfort is crucial for the productivity and 
wellbeing of the building occupants. In line with the needs related to an optimized 
indoor environment, BNs are well suited for estimating the effects of the indoor 
climate on the performance of occupants, since they take into account the 
uncertainty that inevitably will be present when trying to estimate human output as 
a function of the indoor environment.  Jensen et al. (2009) developed a Bayesian 
Network approach that can compare different building designs by estimating the 
effects of the thermal indoor environment on the mental performance of office 
workers. The authors introduced a Performance Index for comparing the several 
building designs by assessing the total economic consequences of the indoor 
climate. Also Wu et al. (2007) used BNs for estimating the relationship between 
occupant behaviours and indoor environmental parameters aiming at minimizing 
energy consumptions and maximizing occupant productivity. A personalized 
thermal comfort model was proposed by Auffenberg et al. (2015), which uses a BN 
to learn and adapt to user’s individual preferences by predicting their optimal 
temperature at any given time. This research highlights the big advantage of BN 
models to infer information about expected user feedback, optimal comfort 
temperatures and thermal sensitivity at the same time. Ghahramani et al. (2015) 
introduced an online learning approach for modelling and quantifying personalized 
thermal comfort. In this approach, the authors fit a probability distribution to each 
comfort condition (i.e., uncomfortably warm, comfortable, and uncomfortably 
cool) data set and define the overall comfort of an individual through combing these 
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distributions in a Bayesian network. Finally, Shipworth (2010) defined a BN to 
model and predict living room temperatures in the residential environment.  

Another investigated topic is related to the application of BNs for building 
occupancy detection to determine when and where people occupy the building, 
which is a key component of building energy management and security. Dodier et 
al. (2006) developed a universal analysis framework in which occupancy 
information is collected by a network of multiple independent and redundant 
sensors and is then processed using the Bayesian probability theory to estimate 
future occupancy patterns. The Bayesian Network approach presented by Petzold 
et al. (2005) is used to predict the occupant’s next location based on the sequence 
of their previous locations and the current time of day and day of the week. Next to 
occupancy detection, BNs have also been applied for the investigation of other 
behavioural patterns. Harris and Cahill (2005), for example, used a BN into support 
prediction of user behaviour patterns related to a Context-Aware Power 
Management (CAPM) with special regard to the power management of users’ 
stationary desktop PCs in an office environment. The study of Hawarah et al. (2010) 
dealt with the problem of the user behaviour prediction in home automation systems 
and their method relied on a BN to predict and diagnose user’s behaviour in 
housing. In particular, the aim of this study was to compute at each hour the 
probability of starting of each energetic service in the building. Tijani et al. (2015) 
proposed a new general approach based on a BN to model human behaviour in order 
to predict the rate of CO2 concentration in an office depending on the door opening.  

The third and yet less explored topic regards the design of building components 
under uncertainty. Indeed, the adoption of new and more sustainable construction 
technologies, especially in complex building systems, is sometimes difficult, due to 
the lack of adequate knowledge to properly perform rough sizing of such systems 
in the professional environment. The shortage of proper simulation programs for 
the preliminary design of sustainable construction prevents in fact the application 
of these systems in the contemporary construction market, oftentimes producing 
higher design costs and construction durations that exceed those of comparable 
standard buildings. For instance, Naticchia et al. (2007) used the BN framework 
intended as an expert system for the design of buildings equipped with roof ponds. 
Thanks to the explicit causal structure of Bayesian Networks, they are able to model 
also the very complex thermal behaviour of roof ponds, due to their changeable 
properties varying with seasons, building characteristics and climatic parameters. 
This probabilistic model is able to cope with several building configurations, and 
provides architects with a tool for multi-criteria decision-making. Furthermore, 
Zhao et al. (2013) proposed a generic intelligent fault detection and diagnosis 
strategy to simulate the actual diagnostic thinking of chiller experts.  

A last but very promising approach for using BNs in the domain of building 
energy analysis is the estimation of energy use at the single building level, on a 
large scale and in smart grids. O’Neill and O’Neill (2016), for instance, developed 
a BN model to predict HVAC hot water consumptions based on the time of the day 
and the outdoor air temperature. Tarlow et al. (2009) estimated energy consumption 
over a large building stock of the Walt Disney Company, which is characterized by 
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unusual operational patterns and policies that traditional energy simulation tools 
have difficulty to represent faithfully without extensive calibration. In this study, 
BNs were applied to automatically learn plausible models of energy consumptions 
by extracting the information contained in the data of one building in such a way 
that it can be used for calibration and improving real-world energy consumptions 
estimates in other similar buildings. Indeed, the authors are focused on developing 
a highly scalable, data-driven approach based on the BN framework, able to 
calibrate and share information between a large number of buildings at once. 
Furthermore, Vlachopoulou et al. (2012) focused on the transition to the new 
generation power grid, which requires novel ways of using and analysing data 
collected from the grid infrastructure. The authors showed that the BN model 
accurately tracks the load profile curves related to the aggregated water heaters 
under different testing scenarios. Huang et al. (2016) developed a BN model for 
forecasting cooling loads in educational facilities showing that the model can 
accurately capture the trend of the cooling load even with a limited size of training 
data.  Finally, the study of Nanda et al.(2016) proposed, developed and validated a 
Bayesian model for the thermal load forecast in a smart grid environment, which is 
crucial for optimizing energy production and developing effective demand response 
strategies on a larger scale. 

PAPER VII gives a more detailed critical review of the mentioned studies in 
view of how the several modelling steps were approached by the researchers.  

3.5 Perspectives and challenges     

To outline perspectives and challenges that this study is aimed at bringing to 
surface, it is necessary to mention some limitations of the proposed approach. As 
the case study in this study is based on measurements from one Danish residential 
apartment, statistical results from the case study are limited to draw generalizable 
findings due to the small sample size. Nevertheless, the case study serves as an 
adequate and useful testbed to investigate the applicability of the BN framework 
for modelling window control behaviour and demonstrate the statistical methods 
used for variable selection and model validation in the modelling process. A next 
step is to use an extensive dataset from a larger number of residential buildings 
to develop a generalizable model. The case study analysed in this chapter focused 
on environment- and time-related variables for predicting window control actions. 
In the further work, it is necessary to investigate other building-related factors that 
may yield different patterns of window control behaviour, such as different 
ventilation strategies (i.e., presence of controlled mechanical ventilation), room 
type, and building design characteristics. More importantly, as substantial variation 
is observed in the window control behaviour due to individual users (Fabi et al. 
2012; Schweiker 2017; Stazi et al. 2017), further work is needed to include 
contextual information, as well as individual characteristics of the occupants, 
such as occupant types (e.g. age, gender, smokers/non-smokers), social factors 
(energy-related knowledge and attitudes), and psychological and physiological 
factors. 
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Chapter 4 
 

Interdisciplinary investigation on 
OB through surveys  

4.1 Overview  

Chapter 3 explored the Bayesian Network framework for modelling window 
control behaviour in the residential context based on a number of time-related and 
environmental variables. However, in order to model window control behaviour – 
or occupant behaviour in general – in a comprehensive manner, it is necessary to 
explore a more extensive set of factors that drive the occupant to perform a certain 
action (Schweiker 2017). In this context, this in this chapter a theoretical model of 
occupant’s window control behaviour with an extensive set of drivers is proposed, 
and discusses ways to develop such models, particularly with use of Bayesian 
Networks based on extensive field measurements and survey-based information 
collected in Danish dwellings. The contextual information was collected through a 
tailored survey framework that included questions for understanding occupants’ 
individual comfort attitudes and preferences, physiological factors, social factors 
and norms, perceived control and psychological factors, motivations and habits 
related to window control behaviour, and preferences on adaptive opportunities 
(e.g. sequence of actions that occupants perform when they feel hot/cold). Then, 
field measurements were combined with survey-based information of individual 
household members collected in 14 Danish town houses. Based on the collected 
dataset, the Bayesian Network (BN) framework was applied to capture underlying 
relationships between these factors and window control actions. In particular, this 
chapter is aimed at contributing to the following research questions: 
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 How and which background information and individual 
characteristics/preferences of the occupants relevant to OB, and in 
particular window control behaviour, should be collected? 

 How can these factors be introduced in the modelling process and does 
the latter confirm that are they relevant?  

 

 

 

 

 

Figure 4.1-1. Overview Chapter 4. 
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4.2 Methodology    

4.2.1 Survey Framework  

As mentioned previously, most existing studies directly correlate occupants’ 
interactions with the building envelope and systems to physical parameters, such as 
environmental variables, or time-related parameters (e.g. time of the day). As 
shown in Figure 4.1-1, the behavioural process is influenced by a number of other 
factors – or “drivers” (Fabi et al. 2012) (Schweiker and Shukuya 2009) – that have 
effect on an individual’s perception and satisfaction of the indoor environment and 
on their motivation to change the indoor environmental conditions. The control 
intention, for instance, can also be conditioned by social and economic factors or 
norms, or the limited knowledge of how to interact with the building controls 
(Ajzen and Madden 1986)(D’Oca et al. 2017)(Mulville et al. 2017)(Chatterton 
2011). Next to traditional field measurements of environmental parameters and 
information on building characteristics, survey-based information can be 
introduced in the modelling process to obtain a more accurate picture of behavioural 
patterns. In this study, these additional factors are investigated by means of a 
tailored interdisciplinary survey framework for 47 Danish Dwellings. 

 The interdisciplinary survey framework was assessed to collect detailed 
information on the occupants regarding: (1) individual comfort attitudes and 
preferences, (2) physiological factors and individual characteristics (e.g. gender, 
age, height, weight, smoking habits), (3) social factors (e.g. education, household 
composition, household income), (4) perceived control and psychological factors 
(e.g. satisfaction of control options, knowledge of control options, interaction 
frequency with controls, safety), (5) motivations and habits related to window 
control behaviour, and (6) adaptive opportunities (e.g. sequence of actions that 
occupants perform when they feel hot/cold). Since building system characteristics 
and ethnical origin were similar in all households, information related to these 
factors were excluded from the survey framework. The results of survey responses 
shown in this study refer to a reduced sample size of 35 individuals. Furthermore, 
it is worth noting that the survey was distributed in Danish language, in this chapter 
only translations of the questions to English language are shown (PAPER VIII). 
The English version of the survey can be found in Annex A.  

Individual comfort attitudes and preferences  

The first section of the survey addresses the occupants’ perception of the indoor 
environment and their individual preferences. The respondents were requested to 
indicate their perception and satisfaction of thermal, visual, and acoustic 
environment and Indoor Air Quality (IAQ). The perception was indicated on a 
continuous seven-point scale, similar to the Predicted Mean Vote (PMV) thermal 
scale (Cen, 2007), and the respondents’ satisfaction was indicated on a Visual 
Analogue Scale (VAS) with “Very unacceptable” on one end and “Very 
acceptable” on the other. This subjective data will be analysed together with field 
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measurements in order to investigate differences in individual perception of the 
indoor environment due to individual physiological characteristics. Furthermore, 
the preferences of individual occupants were elicited by asking them how much 
they agree or disagree with comparative statements. Table 4.2-1 summarises the 
survey questions of the first section.  

 

Table 4.2-1. Survey section 1: Individual comfort attitudes and preferences. 

Code Survey question Scale  
1.1 Please indicate the date and the exact starting time in which you are 

compiling the survey  
- 

1.1.1 What kind of activity were you doing shortly before starting to 
compile the survey? 

Multiple choice  

1.2 Please indicate how you currently feel  Cold-hot continuous 7-point scale 
1.3 Do you currently feel air movement around you?  Yes/No 
1.3.1 If yes, how acceptable is it?  VAS Very unacceptable-very 

acceptable  
1.4 Please indicate how you are currently dressed  Nude-winter clothes 7 point scale 
1.5 Please describe the lighting level around you  Very dim-very bright - continuous 

7-point scale 
1.6 How satisfied are you with the amount of light around you? Very unsatisfied - very satisfied – 

VAS 
1.7 Please describe the air around you Very stuffy - very fresh - continuous 

7-point scale 
Very humid – very dry  - continuous 
7-point scale 

1.8 How satisfied are you with the air quality around you?  Very unsatisfied - very satisfied – 
VAS 

1.9 Please describe the noise level around you Very silent – very noisy - 
continuous 7-point scale 

1.9.1 If it is noisy, where does the noise come from?  Multiple choice 
1.10 How satisfied are you with the noise level around you?  Very unsatisfied -  very satisfied – 

VAS 
1.11 Finally, please indicate your current overall satisfaction with the 

indoor environment 
Very unsatisfied - very satisfied – 
VAS 

2 How important are the following to you:  
2.1 Not being too cold or too warm Very unimportant – very important - 

continuous 7-point scale 
2.2 Absence of drafts  Very unimportant – very important- 

continuous 7-point scale 
2.3  To have good lighting conditions  Very unimportant – very important - 

continuous 7-point scale 
2.4 Absence of noise  Very unimportant – very important - 

continuous 7-point scale 
2.5 To have fresh air  Very unimportant – very important - 

continuous 7-point scale 
2.6 How much do you agree/disagree with the following statements  
2.6.1 “When it is cold outside, I rather feel a little cold to get some fresh 

air”  
Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.2 “I can accept some noise from outdoors to have some fresh air”  Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.3 “I rather feel a little cold in order to save some on the heating bill” Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.4 “When I open windows, I think about higher energy costs for heating” Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.5 “I can accept a slightly bad indoor air quality in order to save some 
energy costs”  

Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.6. “My first priority is being comfortable with the temperature and air 
quality, I don’t worry so much about energy costs” 

Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.7 “When I open/close windows and adjust the thermostat, I think about 
my environmental impact” 

Strongly disagree – strongly agree - 
continuous 5-point scale 

2.6.8 “When I open the windows, I usually turn down the heating” Strongly disagree – strongly agree - 
continuous 5-point scale 
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Physiological factors  

The second section of the survey aims to gain a deeper knowledge on the 
physiological characteristics of the occupants. A number of existing studies found 
that  occupants’ gender and age influence the individuals’ perception of the indoor 
environment and comfort attitudes (Kingma and Van Marken Lichtenbelt 2015; 
Wei et al. 2014). However, consensus has not been reached about whether gender 
difference has an impact on the perception of thermal environment (Fanger 1973). 
As a health-related question, the occupants were asked if they had any smoking 
habits, but no further questions about illnesses or other health-related conditions 
were made due to privacy reasons. The questions related to this section are 
summarised in Table 4.2-2. 

Table 4.2-2. Survey section 2: Physiological factors. 

Code Survey question Scale  
3.1 Please indicate your gender   Multiple choice  
3.2 Please indicate your age   
3.3 Please indicate your height - 
3.4 Please indicate your weight   - 
3.5 Do you smoke?  Multiple choice 
3.5.1 Do you smoke inside your house?  Multiple choice 
3.5.2 Do you open windows to get rid of tobacco smoke? Multiple choice 

 

Social and economic factors  

This section provides a deeper insight on energy-related social norms in the 
household, the household composition itself and economic factors, such as 
household income and job categories. Extensive studies have shown that the 
economic level of occupants showed significant effect on the thermal sensation, 
preference, acceptance and neutrality (Indraganti and Rao 2010; Wei et al. 2014). 
The effect of social and economic norms on thermal comfort will be investigated 
on the basis on the data collected by the questions summarised in Table 4.2-3. 

Table 4.2-3. Survey section 3: Social and economic factors. 

Code Survey question Scale  
4.1 In a typical month, for how long do you live in the household this 

survey was sent to?   
Multiple choice  

4.2 Please indicate the total number of adults (including yourself) that in a 
typical month live in the household (Always, more than half of the 
time, ca. half of the time, less than half of the time) 

- 

4.3 Please indicate the total number of children that in a typical month 
live in the household (Always, more than half of the time, ca. half of 
the time, less than half of the time) 

- 

4.4 Please describe your education   Multiple choice 
4.5 Please describe your job category  Multiple choice 
4.6 Please indicate the monthly household net income  Multiple choice 
4.7 Who usually controls the temperature settings in your home?  Multiple choice 
4.8 Who usually opens the windows in your home? Multiple choice 
4.9 Who usually closes the windows in your home? Multiple choice 
4.10 Which and how many of the following domestic appliances are used 

in your home?  
Multiple choice 
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Perception, satisfaction, and activeness of control  

This section of the survey addresses control-related information. In this survey, 
no further information on available controls was required since control layouts were 
similar in all households. The respondents were asked if they had any difficulties 
in operating the control systems or, alternatively, they could indicate that they did 
not know how to use them. Several studies have shown that perception and 
satisfaction of control options directly influence perception and satisfaction of the 
indoor environment (Ajzen and Madden 1986; Toftum 2010; Wei et al. 2014). 
Questions in this section can be found in Table 4.2-4. 

Table 4.2-4. Survey section 4: Perception, satisfaction, and activeness of control. 

Code Survey question Scale  
5.1 How difficult is it for you to use the…?  
5.1.1 Thermostat Very difficult – very easy – 7 point 

continuous scale 
5.1.2 Windows Very difficult – very easy – 7 point 

continuous scale 
5.1.3 Shading devices    Very difficult – very easy – 7 point 

continuous scale 
5.2 How satisfied are you with the control options of the…?  
5.2.1 Thermostat Very unsatisfied – very satisfied – 7 

point continuous scale 
5.2.2 Windows Very unsatisfied – very satisfied – 7 

point continuous scale 
5.2.3 Shading devices    Very unsatisfied – very satisfied – 7 

point continuous scale 
5.3 Overall, how satisfied are you with the control options in your home? Very unsatisfied – very satisfied – 7 

point continuous scale 
5.4 In the last 14 days, how often did you operate the...?  
5.4.1 Thermostat Multiple choice 
5.4.2 Windows Multiple choice 
5.4.3 Shading devices    Multiple choice 
5.4.4 Ventilation slots Multiple choice 

 

Motivation and habits for window control behaviour  

In this section, the occupants were asked about their motivations or usual habits 
when they perform a window control action (Table 4.2-5) in relation to certain 
activities (e.g. sleeping, cooking, shower) and certain times of the day (e.g. leaving 
home, coming back home). This included psychological factors, such as closing the 
windows for safety reasons and the use of theft protection. 

Table 4.2-5. Survey section 5: Motivation and habits for window control behaviour. 

Code Survey question Scale  
6.1 Why and where do you usually open windows?  Multiple choice for different rooms 
6.2 Why and where do you usually close windows? Multiple choice for different rooms 
6.2.1 Do you close windows for safety reasons?  Multiple choice for different rooms 

 

Adaptive opportunities  

This section addresses adaptive opportunities that respondents would undertake 
if they found themselves in particular environmental conditions. In detail, the 
occupants were asked to indicate if and in which sequence they would perform 
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certain adaptive actions to improve their condition of discomfort (feeling too hot or 
too cold) (Table 4.2-6). 

Table 4.2-6. Survey section 6: Adaptive opportunities. 

Code Survey question Scale  
7.1 Think of a situation in your home, in which you felt feel too hot and it 

is cool outside. (e.g. a cool summer day), which action would you 
perform first? Please number the actions you performed in sequence 
(only the ones that apply) (e.g. __First action, __second action). 

Multiple choice 

7.2 Think of a situation in your home, in which you feel too cold, and it is 
cool outside (e.g. a cool summer day), which action would you 
perform first? Please number the actions you performed in sequence. 

Multiple choice 

7.3 Think of a situation in your home, in which you feel too hot and it is 
warm outside (e.g. a warm summer day), which action would you 
perform first? Please number the actions you performed in sequence. 

Multiple choice 

7.4 Think of a situation in your home, in which you feel too cold and it is 
warm outside (e.g. a warm summer day), which action would you 
perform first? Please number the actions you performed in sequence.  

Multiple choice 

 

4.2.2 Development of a theoretical model for window control 
behaviour  

Figure 8 shows a multi-layered theoretical model that introduces individual 
preferences, psychological, social and other drivers investigated by means of the 
above presented survey questions (codes are indicated in Figure 4.2-1 and Tables) 
for modelling occupant behaviour in a more comprehensive manner. In particular, 
the layers that compose the theoretical model structure are the following: 

 
• “Horizontal” survey-based layers related to comfort attitudes, preferences, 

perception and satisfaction of the indoor environment  
- Physiological characteristics of the occupants 
- Individual preferences on the indoor environment 
- Perception of the indoor environment 
- Satisfaction of the indoor environment  
 

• “Vertical” field measurement-based layers  
- Indoor environmental variables  
- Outdoor environmental variables  
- Time-related factors 
- Occupant-related factors (clothing level, activity level) 
 

• Other influencing factors layer with an extensive set of drivers/barriers 
- Habits  
- Building characteristics  
- Social and economic factors 
- Psychological factors 
 

• Control systems layer  
- Knowledge of control 
- Perceived control 
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- Satisfaction of control 
- Interaction level with controls  
 

• Adaptive opportunities layer 
 
• “Target”: Action layer  

- Window opening control 
- Window closing control  
 

The perception layer includes votes of the respondents on the thermal, visual 
and acoustic environment as well as on the Indoor Air Quality. The votes on the 
indoor environmental quality are influenced by a number of factors from the 
measurement layer, such as indoor/outdoor environmental variables, occupant-
related variables, and time-related factors. As an example, the Thermal Sensation 
Vote depends on influencing factors as indicated in the EN15251 standard (Cen, 
2007), which include environmental factors (air temperature, mean radiant 
temperature, air speed and humidity) and occupant-related factors (metabolic rate 
and clothing level). Additionally, in this model, the perception layer also depends 
on physiological characteristics (e.g. gender, age, weight) of the occupants and 
individual preferences on environmental comfort, as well as the relation of the 
occupant with the control systems (knowledge of control, perceived control, 
satisfaction of control, and interaction level with controls)(Paciuk, 1990). Based on 
the perception votes of the indoor environment, the occupants express levels of 
satisfaction in terms of thermal, IAQ, visual, and acoustic environment. The level 
of satisfaction with the indoor environmental quality is a key factor that drives the 
occupant to perform a certain action, such as a window opening or closing control 
action (target action layer). At the same time, next to the perception and satisfaction 
of the indoor environment, a layer containing other influencing factors, such as 
habits, building characteristics, psychological factors, and social/economic factors 
might influence the occupant to interact/or not to interact with the window. These 
factors, in turn, can also be influenced by factors located on the measurements layer. 
As an example, habits of window control behaviour during certain activities (e.g. 
sleeping, cooking) can be related to certain times of the day. Finally, the decision 
of performing a window control action is influenced by the possibility of ceasing 
different adaptive opportunities (e.g. active body adaptation, thermoregulation, 
environmental direct control) according to personal preferences and control 
options. In line with this, it is worth noting that next steps should extend the action 
layer to include additional control options, such as thermostat control or window 
blinds regulation. 
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Figure 4.2-1. Proposal of a multi-layered theoretical model for window control behaviour. 

 

4.2.3 Towards a comprehensive BN model: Combining field 
mesaurements and survey-based information  

Field measurements  

The field measurements were taken in 14 naturally-ventilated apartments 
located in a same neighbourhood close to Copenhagen, Denmark. Table 4.2-7 
summarises measurements related to the indoor and outdoor environment 
conditions, occupants' interaction with the windows in the living room, and time-
related factors. A time resolution of 15-min intervals was used for the analysis, 
which considers measurements for one month during the heating season (November 
2017).  

For the acquisition of window state and movement, windows were equipped 
with wireless sensor tags. The outdoor environmental measurements were acquired 
from a sensor located in a representative area for the neighbourhood. For the 
description of sensors and the monitoring campaign, more information can be found 
in Henriksen and Olsen (2018). 

Table 4.2-7. Measured target and explanatory variables. 

Variable  Abbreviation Unit  
Indoor environment   
Air temperature  Tin °C 
Relative humidity  RHin % 
CO2 concentration  CO2,in ppm 
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Outdoor environment   
Outdoor temperature  Tout °C 
Time-related    
Time of the day Hour h 
Target    
Window opening action  WOA  0/1 

 
 
Individual thermal comfort attitudes  

In the survey, the respondents were requested to indicate their perception of the 
thermal environment and other factors that influence their thermal sensation 
(clothing. activity level, perception of drafts). The perception was indicated on a 
continuous seven-point scale, similar to the Predicted Mean Vote (PMV) thermal 
scale (CEN 2007). This subjective data was analysed together with field 
measurements taken during the compilation of the survey in order to establish the 
thermal comfort attitudes of the occupants according to the procedure depicted in 
Figure 4.2-2 (PAPER IX).  

 

Figure 4.2-2. Definition of Thermal Comfort Attitudes (TCAs), where v=air speed, MET=metabolic 
rate, Icl=clothing insulation, MRT=mean radiant temperature, T=air temperature, RH=relative humidity. 

The influencing factors on the PMV according to EN15251 standard include 
environmental factors (air temperature, mean radiant temperature, air speed and 
humidity) and occupant-related factors (metabolic rate and clothing level). Since 
mean radiant temperature was not measured in the case studies, it was assumed 
equal to the indoor air temperature. Also air speed was not directly measured in the 
case studies, but was assumed based on survey answers. If respondents perceived 
air movement around them, the air speed was set to 0.2 m/s, in other cases without 
perceived drafts, the air speed was set to 0.1 m/s.  
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To take into account individual perceptions of the thermal environment of 
different occupants, thermal comfort attitudes (TCAs) were introduced that were 
defined as the numerical difference between the calculated PMV values and thermal 
sensation vote provided by the individual respondents under the same 
environmental conditions. Hence, if the TCA < 0, then respondents felt colder with 
respect to the sensation vote calculated according to EN15251; on the other hand, 
if TCA > 0, then respondents felt warmer than the sensation vote calculated 
according to the same standard. These values were assumed to be constant 
throughout the analyses. In case of 2-person households, the average value of TCAs 
was considered. 

Individual preferences  

The individual preferences of occupants were elicited by asking them how 
much they agreed or disagreed with comparative statements. In particular, the aim 
was to identify preferences in terms of thermal comfort (TC), indoor air quality 
(IAQ) and energy savings (SAV). For this analysis, we considered the responses to 
the following statements related to window control behaviour (originally in Danish 
language): 

• Statement 1 (TC-IAQ): “When it is cold outside, I would rather feel a little 
cold to get some fresh air”; 

• Statement 2 (TC-SAV): “I would rather feel a little cold in order to save on 
the heating bill”; 

• Statement 3 (IAQ-SAV): “I can accept a slightly bad indoor air quality in 
order to save the heating bill”. 

The respondents could indicate their opinion around these statements on a 
continuous 5-point scale (from “I strongly disagree” to “I strongly agree”).  

Based on these statements, the preference of each occupant (PREF) can assume 
three states: TC (respondent’s priority is thermal comfort), IAQ (respondent’s 
priority is indoor air quality), and SAV (respondent’s priority is saving on heating 
bill). The state of PREF was defined by:  

• PREF=IAQ if S1 was in agreement and S3 was in disagreement; 
• PREF=TC if S1 and S2 were in disagreement; 
• PREF=SAV if S2 and S3 were in agreement; 
where Sn is the number of the statement.  

 

4.3 Key findings    

4.3.1 Thermal comfort attitudes and individual preferences  

Thermal comfort attitudes 

Figure 4.3-1 summarises the calculated TCA values for the respondents at the 
moment of the compilation of the survey.  
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Figure 4.3-1. Definition of TCAs of 23 respondents in 14 households. 

Individual preferences  

As shown in Figure 4.3-2, 70% of the respondents preferred to have good 
indoor air quality and feel a little bit cold, while the priority of 17% of the 
respondents was to have adequate thermal comfort conditions. At least 87% of the 
respondents preferred to have a pleasant thermal environment and an adequate 
indoor air quality, rather than saving on the heating bill (Figure 4.3-3 and Figure 
4.3-4). This procedure allowed classifying the households according to their 
preferences. In particular, 71% of the households were classified as PREF=IAQ, 
22% as PREF=TC, and only 7% as PREF=SAV. 

 
Figure 4.3-2. Statement 1 (TC - IAQ). 

 
Figure 4.3-3. Statement 2 (TC-SAV). 
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Figure 4.3-4. Statement 3 (IAQ-SAV). 

4.3.2 A “personalized” BN model  

This section proposes the results of the BN modelling procedure that 
investigated relationships between window opening behaviour and (i) a set of 
“common” environmental and time-related drivers (indoor temperature, relative 
humidity, and CO2 concentration, outdoor temperature, time of the day), and (ii) 
individual characteristics of the occupants in terms of thermal comfort attitude and 
preferences. Figure 4.3-5 depicts the naïve (only one class node) bottom-up model 
that allows for treating mixed data in the same network and avoiding loss of 
information that usually occurs when discretizing continuous variables. Table 4.3-1 
summarises the arc strengths between the target and explanatory variables.  This 
analysis showed that the strongest probabilistic dependencies were found between 
window opening actions and preferences, thermal comfort attitude, indoor relative 
humidity, and indoor CO2 concentration. The strong relationship between window 
opening behaviour and relative humidity might be explained by cooking activities 
in open-plan living rooms. 

 
Figure 4.3-5. Bottom-up BN model for modelling window opening actions (WOA) - green dots refer to 

field measurements while blue dots refer to survey-based information. 

 
Table 4.3-1. Arc strengths. 

N°arc from to arc strength 

1 WOA PREF -151.90 
2 WOA TCA -125.63 
3 WOA RHin -99.56 
4 WOA CO2in -95.55 
5 WOA Hour -18.62 
6 WOA Tout -4.63 
7 WOA Tin -1.24 
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The BN model was inferred to define probabilities of a window opening action 

given the single explanatory variables. The outcomes of the queries can be 
summarised as follows: 

• Environmental variables: in line with existing literature, the results indicate 
that the probability of opening a window increases in correspondence of a higher 
CO2 concentration, indoor air temperature, and outdoor air temperature (Figure 
4.3-6); 

• Time-related factors: the probability of opening a window increased from 
the early morning hours to noon, and then decreased again until the late evening 
hours (Figure 4.3-7);  

• Preferences: the results show that the probability of opening a window is 
very reduced in households that were classified with a “TC” preference, or rather 
the priority to maintain adequate thermal comfort conditions (Figure 4.3-8); 

• Thermal comfort attitudes: interestingly, the outcomes of this analysis 
clearly shows that the probability of a window opening action increases with higher 
thermal comfort attitude values (Figure 4.3-9). This means that the window is more 
likely to be opened if during the compilation of the survey, the respondents 
indicated higher thermal sensation votes (felt warmer) with respect to the ones 
calculated according to Standard EN15251. 

 

    
                                (a)                                                           (b) 

   
                                (c)                                                           (d) 

Figure 4.3-6. Probability of opening a window given (a) indoor relative humidity, (b) CO2 
concentration, (c) indoor air temperature, and (d) outdoor air temperature. 
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Figure 4.3-7. Probability of opening a window given the time of the day. 

 
Figure 4.3-8. Probability of opening a window given preferences in terms of indoor air quality (IAQ), 

thermal comfort (TC), and energy cost savings (SAV). 

 
Figure 4.3-9. Probability of opening a window given the Thermal Comfort Attitude (TCA). 
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4.4 Discussion and further investigations     

4.4.1 Towards a comprehensive hierarchical BN model: a first 
approach 

In this study, a naïve Bayesian network (only one class node) is proposed to 
capture probabilistic dependencies among environmental, time-related and 
individual drivers that influence window control behaviour. In order to fully exploit 
the capabilities of the Bayesian Network approach, it is possible to further extend 
the model to explore (i) other interdisciplinary drivers (e.g. social or economic 
factors), (ii) other control actions (e.g. thermostat control, window blinds 
adjustment, light switching), or (iii) the capability of the network to structure 
influencing factors in a hierarchical manner. As an example, we found that in this 
case study the thermal comfort attitude (TCA) was linked to individual 
physiological characteristics of the respondents, such as age, weight, and height. 
This was done by developing a Bayesian Network as shown in Figure 4.4-1. The 
probabilistic queries of this BN model are shown in Figure 4.4-2 and investigated 
the probability that the respondents’ thermal comfort attitude was less than 0, or 
rather the probability of feeling colder with respect to values calculated with 
Standard EN15251. The results show that the respondents felt colder than the 
calculated PMV values with increasing age, lower weight, and lower height. No 
significant differences were found for the gender. Further work will include the 
exploration of “sub-networks” that can be integrated in the existing network to 
create one extensive and hierarchical model. 

 

 
Figure 4.4-1. BN model for exploring probabilistic dependencies between TCA (target) and 

physiological characteristics of the occupants. 

 
                                (a)                                                           (b) 
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(c) 

Figure 4.4-2. Probability that TCA<0 (respondents feel colder with respect to the PMV) given (a) age, 
(b) weight, and (c) height. 

 
Figure 4.4-3 shows a preliminary example of how the BN structure shown in 

Figure 4.4-1 could be extended to include a more extensive set of drivers and target 
variables. 

 

 

Figure 4.4-3. Preliminary proposal for further exploration: Example of an extensive BN model for 
window control behaviour. Further investigation is needed for variable selection and definition of 

connections between variables. 
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4.4.2 Cross-country survey investigation on human-building 
interaction in offices  

A further investigation was conducted within the Annex 66 framework with the 
aim to assess contextual and behavioural factors driving occupants’ interaction with 
building and systems in offices across different countries. First outcomes were 
presented in the context of three different Mediterranean climates in Italy – in Turin 
(Northern climate), Perugia (Central climate), and Rende (Southern climate) 
(PAPER X). The survey instrument was grounded in an interdisciplinary 
framework that bridges the gap between building physics and social science 
environments on the energy- and comfort-related human-building interaction in the 
workspace. Outcomes of the survey questionnaire provide insights into four key 
learning objectives: (1) individual occupant's motivational drivers regarding 
interaction with shared building environmental controls (such as adjustable 
thermostats, operable windows, blinds and shades, and artificial lighting), (2) group 
dynamics such as perceived social norms, attitudes, and intention to share controls, 
(3) occupant perception of the ease of use and knowledge of how to operate control 
systems, and (4) occupant-perceived comfort, satisfaction, and productivity. This 
study attempted to identify climatic, cultural, and socio-demographic influencing 
factors, as well as to establish the validity of the survey instrument and robustness 
of outcomes for future studies. Also, the study aimed at illustrating why and how 
social science insights can bring innovative knowledge into the adoption of building 
technologies in shared contexts, thus enhancing perceived environmental 
satisfaction and effectiveness of personal indoor climate control in office settings 
and impacting office workers' productivity and reduced operational energy costs. 

4.5 Perspectives and future challenges    

In this chapter a BN-based modelling procedure for window control behaviour 
was proposed that included not only environmental and time-related factors, but 
also a preliminary set of individual characteristics of the respondents, such as 
thermal comfort attitude and preferences. The study was based on a combination of 
field measurement and survey-based investigations in 14 Danish town houses. In 
this case study, the outcomes revealed significant probabilistic dependencies 
between individual thermal comfort attitudes and window control behaviour. This 
exploration highlighted that the Bayesian network framework represents a powerful 
approach towards a more comprehensive model of occupant behaviour. However, 
as outlined in Chapter 3, further investigation is needed in order to fully exploit the 
potential of this framework by adding even a larger number of potential drivers in 
a hierarchical BN structure. It is worth noting key challenges and aspects for the 
model construction. To reduce the complexity of a final model, it is necessary to 
select a reduced set of key explanatory variables by means of a preliminary survey 
analysis or additional statistical analysis (e.g. Kolmogorov-Smirnov test). For 
example, the preliminary survey analysis showed that a number of variables could 
be excluded from the model, such as window control behaviour related to pets or 
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smoking behaviour (almost all survey respondents did not report any habits related 
to these aspects). Also, further analysis on the relationship between influencing 
factors and aggregated window control behaviour data (e.g. total number of window 
openings/closings) might provide a first idea on important explanatory variables.  

In practice, it is challenging to collect survey-based information at finer time 
resolution as field measurements. In this case study, survey-based information is 
collected once at a specific time step during the heating period, while field 
measurements were collected in increments of minutes during a full year. It is 
therefore necessary to assume survey responses (e.g. comfort attitudes, preferences 
and habits) constant during the data collection period. Based on this assumption, 
thermal comfort attitudes (TCA) were defined by comparing thermal sensation 
votes at the time of response to the PMV calculated by standard EN15251 at the 
measured environmental conditions.  

In Chapter 3, and in line with other studies (Andersen et al., 2013), it is 
highlighted that window control action is more suitable as a target variable to model 
window control behaviour than the window open/close state. Indoor environment 
variables such as indoor CO2 concentration level and indoor temperature were 
identified as key variables that change the window state, but at the same time, the 
indoor environment conditions are directly influenced immediately after a window 
control action takes place. Hence, when the window state is used as a target 
variable, indoor environment variables as predictors may not correctly represent 
relationships between the indoor variables and window control behaviour. A next 
step is developing an extended Bayesian Network based on the proposed theoretical 
model with multiple target layers, such as window opening action (WOA) and 
window closing action (WCO). Further work to develop a comprehensive model 
for predicting major control actions (e.g., thermostat control, window blinds 
control or light switching) will depend on comprehensive monitoring campaigns 
that permit to collect data on a range of control actions altogether. Setting up such 
comprehensive monitoring campaigns is very difficult and hardly possible on a 
large scale. At the time-being, the outcomes of stochastic models are very valuable 
to gain a better understanding on the human-building interaction, but mostly are 
based on relatively small samples. The definition and implementation of reliable 
and affordable ways to collect large-scale occupant behaviour data remains a 
challenging task and will be addressed in the next Chapter.  
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Chapter 5  
 

Modelling Time Use Survey (TUS) 
data for OB profiling  

5.1 Overview 

Chapter 3 and 4 focused on the development of stochastic occupant behaviour 
models based on collected data in selected case studies. The previous chapters 
outlined the necessity of extending the sample size of the data underlying the 
analysis in order to obtain results at a larger scale. In this context, the present study 
is aimed at providing a methodological framework for profiling occupant behaviour 
using large-scale surveys, or rather national Time Use Surveys (TUS).  In general, 
TUS are statistical surveys aimed at reporting data on how, on average, people 
spend their time. The overall objective of these kinds of surveys is to identify, 
classify and quantify the main types of activities in which the respondents engage 
during a certain time period. TUS therefore represents a valuable resource for 
understanding occupants’ energy-related daily activities and occupancy patterns 
that clearly shape the timing and magnitude of energy demand in households.  

This study modelled data gathered in the diary-based Danish Time Use Survey 
(TUS) 2008/09 of 9640 individuals from 4679 households. Individuals’ daily 
activities were logged in 10-min time increments for 24 h, starting and ending at 
04:00, during both weekdays and weekends. The aims of this study were to (i) 
profile energy-related daily activities of occupants during different seasons and 
weekdays/weekends (ii) investigate time-related characteristics of activities such as 
starting and ending times and durations, and (iii) profile occupancy patterns for 
weekdays/weekends for different household types. The outcomes provide valuable 
input for building energy simulation for bridging the gap between simulated and 
real energy consumption in the Danish residential sector; typical occupancy profiles 
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for different household types for different days of the week are freely available 
online (DTU Civil Engineering 2018). This chapter is aimed at contributing to the 
following research questions: 

 Is TUS data a useful source for profiling OB on a large (national) scale? 

 How can TUS questions be clustered into useful knowledge on OB 
(energy-related activities and occupancy)? 

 How can this information be translated into enhanced input for building 
energy simulation? 

 What are the outcomes (activity and occupancy profiling) in the Danish 
context? 

 Do occupancy profiles based on the Danish TUS data differ from 
conventional profiles? 
 

 

Figure 5.1-1. Overview Chapter 5. 
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5.2 Methodology    

5.2.1 Survey Framework  

The analysis was based on the Danish TUS (2008/2009), which consisted of 
responses from 9,640 individuals from 4,679 households drawn randomly from a 
part of the Danish population aged between 18 and 74 years (Jens Bonke 2016). 
The questionnaire included 50 questions about general information on the 
respondents such as family background, incomes, and labour market connection. 
Respondents were asked to complete two forms for daily time use – one for a 
specific weekday and one for a specific weekend day. If respondents in the 18-74 
age group had a spouse or cohabiting partner and/or children aged 12-17, the latter 
were also asked to complete the forms for time use. The main respondent of the 
family completed surveys for children under 12. Finally, a booklet with information 
about the previous month’s spending on goods and services and about regular costs 
and durable goods bought within the previous year was filled out for all household 
members. 

As shown in Figure 5.1-1, the Danish TUS included three different instruments: 
Qhm; Dhi jm; Ehm, where Q is the questionnaire, D the diary, E the Booklet – 
expenditures for the household. Subscript h represents the household, i the 
individuals/household members, j the diary day – weekday or weekend day – and 
m the method used – telephone or web. 

 A pre-coding system for different types of activities was used in the diary for 
enabling the respondents to easily compile the TUS and to facilitate data analysis. 
The day was divided into 10-minute intervals (in total 144 intervals). The time spent 
on a given activity in the course of a day therefore becomes the sum of 10-minute 
sequences, where these activities occur. This was intended to ensure more 
consistent processing of the responses. Interviews were conducted at regular 
intervals over twelve months, covering the period of March 2008 to March 2009. A 
detailed description of the survey can be found in (J. Bonke 2002) and (Jens Bonke 
and Fallesen 2010) where the response rates and other information are specified. 

5.2.2 Representativeness of the Danish TUS  

This methodological step is aimed at providing a more detailed description of 
the main characteristics of the respondents in order to establish if the background 
information on respondents of the Danish TUS was comparable to national 
statistics. This pre-analysis was hence aimed at excluding significant sampling 
errors of the TUS sample with respect to the entire Danish population. In detail, the 
background information of the respondents collected in the questionnaire (Danish 
TUS 2008/09) was compared to the same type of statistical data available for 
research at the national level in 2008 (DK-2008) and 2015 (DK-2015)(Labour, 
income and wealth - Statistics Denmark n.d.). These two years were chosen for the 
comparison in order to provide a reference during the year in which the survey was 
compiled (2008) and to investigate whether the trend significantly changed in recent 
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times (2015). In general, the age distribution of the respondents and the Danish 
population had a similar trend with a slight overrepresentation of 41–60 years old 
respondents (Figure 5.2-1a). Both amongst the respondents and in the Danish 
population, one- and two- member households were the most frequent, while a 
smaller fraction lived in households of three to six people (Figure 5.2-1b). There 
was a balanced gender ratio of 51% male to 49% female among the respondents. 
The trend in the surveyed yearly household net income (DKK) was slightly 
smoother than the trend of DK-2008, which clearly peaked at incomes lower than 
200,000 DKK (Figure 5.2-1c). Nevertheless, the trends were comparable and the 
Danish TUS can be considered representative for the Danish population. In general, 
the highest percentage of the respondents was employees (27%) and students 
(16%). Both retired survey respondents and skilled workers represented 10% of the 
total respondents; all the other categories represented a lower percentage of the total 
sample size (Figure 5.2-2).  

 

 
(a) 

 
(b) 
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(c) 

Figure 5.2-1. Danish TUS data (2008) compared to statistical data on Danish population (2008 and 
2015): (a) age, (b) household composition, and (c) yearly household net income. 

 

 

Figure 5.2-2. Work status of the survey respondents. 

 

5.2.3 Profiling energy-related activities (i)  

The Danish TUS framework pre-coded and included over 35 primary activities, 
which were selected by the respondents for describing in 10-minute intervals how 
they spent their day. In this study, the activities in the original survey framework 
were consolidated into a set of 10 energy- and occupancy-related activity clusters 
valuable for occupant behaviour analysis in the residential sector. The new set of 
10 clustered activities is shown in Table 5.2-1. Since the focus of the study was to 
model occupant behaviour in dwellings, activities taking place outside the domestic 
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environment were all placed in category: no. 9 “not at home”. Moreover, the 
definition of a category “not at home” allowed for development of detailed 
occupancy profiles (see section 5.2.5). Based on this updated set of activities, the 
first step of analysis consisted of shaping daily activity profiles of the building 
occupants throughout the day. 

Table 5.2-1. Activity clustering. 

No. New clusters Activities included in the Danish TUS 2008/09 
1 Sleeping Sleeping 
2 Toilette Toilette 
3 Eating Eating 
4 Cooking/Washing dishes Cooking/Washing dishes 
5 Cleaning/Washing clothes Cleaning/Washing clothes 
6 Practical Work Other work, do-it-yourself work, garden work 
7 Family care/Free time Child care, reading with children, family care, reading, hobby, social 

gathering, phone conversations 
8 Relaxing/TV/IT TV/radio/music, IT, relaxing 
9 Not at home Work, lunch break, transportation as part of work, transport to and 

from work education, education, transport to and from education, 
shopping, errands, visiting public offices, pick up/bring children, 
association activities, voluntary work and similar, exercise/sport, 
entertainment/culture, restaurant/café 

10 Others Others 

 

5.2.4 Investigation on time-related factors (ii)  

Distribution of activity durations  

This methodological step is aimed at understanding typical durations of the 
identified energy-related activities throughout the day. The Kaplan-Meier estimate, 
which is a non-parametric method for describing the fraction of  activities persisting 
for a certain amount of time (Kaplan and Meier 1958). The Kaplan-Meier estimate 
(Kishore et al. 2010) involves computing probabilities of occurrence of event after 
a certain amount of time. To create a survival curve that yielded the time durations 
of the activities, the survival probability was calculated for each activity according 
to Equation 5.1: 

 

𝑆መ௧ = ෑ ൬1 −
𝑑

𝑛
൰

௧ஸ௧

 

 
where St is the probability of survival at time t, di is the number of ceased 

activities at time ti and ni is the number of continued (surviving) activities at time 
ti. 

Transition states  

 A further analysis was aimed at investigating the starting and ending times of 
the activities during weekdays and weekends. For this, transition states (activity 
started, activity ended) were defined for eight activities and then accumulated on 
an hourly basis. Table 5.2-2 shows an example of transition states for activity 2. In 
this case, a survey respondent performed activity 2 for half an hour; the starting and 

(5.1) 
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the ending time of this activity were described by the transition states “activity 
started” and “activity ended”, respectively. Activity 9 (“not at home”) was analysed 
separately in section 5.2.5 regarding the definition of occupancy profiles and 
activity 10 (“others”) was not considered relevant for the analysis. 

Table 5.2-2. Transition states of activity 2. 

Time Activity state (survey 
response) 

Transition state “activity 
started” 

Transition state “activity 
ended” 

00:00 0 0 0 
00:10 3 1 0 
00:20 3 0 0 
00:30 3 0 0 
00:40 0 0 1 
00:50 0 0 0 

 

5.2.5 Occupancy patterns (iii)  

The definition of representative occupancy profiles for the Danish residential 
sector during weekdays and weekends was addressed by analysis of the clustered 
activity 9 (“not at home”). Activity 9 provided information on when occupants were 
absent from home, while all the other activities took place in the domestic 
environment. A departure event occurred when activity 9 was started and a 
returning event occurred when activity 9 ended. In detail, activity 9 included 
activities performed outside the house.  

The probability of leaving home (LH) and returning home (RH) in the next hour 
at a given time of day n was calculated according to Equations 5.2 and 5.3, 
respectively: 

 

𝑃(𝐿𝐻)(𝑛) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑎𝑡 ℎ𝑜𝑚𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛 − 1  
 

 

𝑃(𝑅𝐻)(𝑛) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 ℎ𝑜𝑚𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛 − 1 
 

 

5.3 Key findings    

5.3.1 Shaping daily activity profiles (i)  

The percentage of respondents carrying out each of the ten identified activities 
throughout the day is shown in Figure 5.3-1. Sleeping was clearly the dominant late 
evening – early morning activity with 90% of the survey respondents being asleep 
between 00:40 and 06:00. There were two evident peaks in “eating”, corresponding 
to lunchtime (ca.12:30) and, dinnertime (ca. 18:30). Two other large portions of the 
graph represent the activities “Not at home” (Activity 9) and “Relaxing/TV/IT” 
(Activity 8). The largest percentage of survey respondents were out of home around 
11:20 and returned during the afternoon hours. A large percentage of respondents 

(5.3) 

(5.2) 
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were at home during the whole or a large extent of the day. This might be due to 
the fact that Figure 3 was based on the same number of weekdays and weekend 
days during which respondents tended to stay home longer (see Figure 4). The full 
percentage of total respondents at each time step corresponds to 9,518-9,521 
respondents for weekdays and from 9,607 to 9,640 respondents for weekends. As 
regards the activity related to relaxing and the use of TV and IT devices, a peak can 
be observed between 19:00 (after dinnertime) and 23:00. In particular, the identified 
patterns related to (a) cooking/washing dishes, (b) occupancy (at home/not at home) 
and (c) use of TV and IT devices provided valuable energy-related information with 
respect to occupant behaviour and its impact on building energy use.  

 

 
Figure 5.3-1. Daily activity profiles based on the Danish TUS 2008/2009 (all days). 

It is important to highlight that Figure 5.3 1 combined all of the collected survey 
responses in one graph, without distinguishing activities with respect to different 
seasons of the year or different days of the week. Figure 5.3-2 compared the daily 
activity profiles during different seasons and on weekdays (WD) and weekends 
(WE). No noticeable differences were found respectively between the 
spring/autumn and the summer/winter period. As a consequence, Figure 5.3-2 only 
shows outcomes related to summer (June, July and August) and wintertime 
(November, December and January).  

The key results of this analysis were: 
• longer sleeping times during weekends (8h39m – 9h1m) with respect to 

weekdays (8h-8h17m); 
• longer sleeping times in winter than in summer on both weekdays (8h17 and 

8h, respectively) and weekends (9h1m and 8h39m, respectively); 
• more time spent on practical and garden work in summer (43m-1h) than in 

winter (19-22m); 
• more time spent out of home during weekdays (6h30m-6h41m) than on 

weekends (3h51m-4h9m); 
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• longer relaxing times on weekends (3h59m-4h14m) than on weekdays 
(3h6m-3h32m); 

• small difference in time spent for toilette (ca.40m) and cooking/washing 
(ca.40m) for different seasons and/or day types; 

• in broad-ranging activities, such as “not at home”, “others” or “relaxing/free 
time”, the values of standard deviation indicated high variability and spread of the 
data due to occupant diversity - while more specific activities, such as sleeping, 
eating or toilette were characterised by a lower variability among occupants. 

 

 

Figure 5.3-2. Daily time spent on the activities during summer and winter weekdays/weekends (±1 St. 
Dev.) 
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5.3.2 Time-related factors: Time durations and starting/ending 
times (ii)  

Survival curves of activities’ daily time durations 

Figure 5.3-3 shows the probability that an activity survives for longer than a 
given period t once it has started. The longest time durations were linked to the 
sleeping activity. Around 90% of the respondents slept at least six hours in a row 
and 10% slept longer than 10 hours in a row. The second longest daily time 
durations were linked to activities away from home (“not at home”), this survival 
curve was less steep than the others, which reflected the large variety in duration of 
this activity throughout the day. The second longest activity performed at home, 
after sleeping, was relaxing and TV/IT usage. The activities with shortest durations 
were toilette, cooking/washing dishes, cleaning/washing clothes, and eating.    

 
Figure 5.3-3. Survival functions for daily occupants' activities. 

 
Starting/ending times of activities  

The number of activities started throughout the day is shown on an hourly basis 
in Figure 5.3-4 for a typical weekday (a) and weekend day (b), respectively. Figure 
5.3-5 depicts when the same activities ended on a typical weekday (a) and weekend 
day (b). These graphs provided insights into the time dependency of the activities 
and highlighted the following key aspects: 

• generally, there were three peak times for initiation of activities: morning 
hours (07:00-09:00), the late afternoon/early evening hours (18:00-20:00) and at 
bedtime (23:00);  

• most survey respondents started their sleeping activity between 22:00 and 
00:00 and ceased the activity between 06:00 and 10:00; moreover, both the onset 
and termination of sleeping activity was shifted later during weekend days; 

• there were clear peak values for toilette use in the morning and evening 
hours in correspondence of the starting and ending time of the sleeping activity; 
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• as expected, the highest number of eating activities started and ended during 
breakfast (07:00-10:00), lunch (12:00-14:00) and dinnertime (18:00-20:00); 
cooking and washing dishes were also linked to these starting and ending times; 

• activities related to relaxing and TV/IT usage began during the afternoon 
hours and reached the highest number of started activities in the evening hours 
(19:00-21:00); these activities mostly ended during the late evening hours (21:00-
01:00); 

• activities related to practical work and family care were not dependent on 
time of the day and starting/ending times were equally distributed throughout 
different hours of the day. 
 

 

(a) 

 

(b) 

Figure 5.3-4. Number of activities started during (a) weekdays and (b) weekends. 
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(a) 

 

(b) 

Figure 5.3-5. Number of activities ended during (a) weekdays and (b) weekends. 

5.3.3 Occupancy profiling (iii)  

The aim of this section is to gain a deeper knowledge on occupancy patterns in 
Danish households and to describe probabilities of occupancy related to state 
(probability of number of respondents at home) and transitions (probability of 
leaving/returning home). This information can be further elaborated for developing 
stochastic models aimed at capturing more accurately human presence in BEPS, 
and consequently contribute to reducing the gap between predicted and measured 
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energy consumptions in the building sector. Figure 5.3-6 depicts the percentage of 
survey respondents at home throughout the day during weekends and weekdays. 
The highest percentage of respondents not at home occurred in the late morning 
hours, a small portion returned home at lunchtime, while most of the respondents 
came home during the late afternoon/evening hours. During the weekend, a larger 
fraction of the survey respondents were home compared to weekdays.  

 

 
Figure 5.3-6. Occupancy patterns during weekdays (WD) and weekends (WE). 

Figure 5.3-7 shows occupancy profiles during weekdays (a) and weekends (b) 
for different sized households. The percentage of survey respondents at home was 
referenced to the number of household members in each category. For example, in 
a 2P household 100% meant that 2 persons were at home and in a 3P household 
100% meant that 3 persons were at home. Figure 5.3-8 depicts the probability of 
leaving (a) and returning to the home (b) within the next hour during weekdays and 
weekend days, respectively. The probability of leaving home was highest in the morning 
(06:00-08:00) and early afternoon hours (12:00-13:00). The probability of returning home 
was highest during lunchtime (11:00-13:00), dinnertime (16:00-18:00) and late evening 
(22:00-24:00). The probabilities of departure and arrival were calculated as the fraction of 
the total number of arrival or departure events at a time step and the number of respondents 
that were at home or away from home in the previous time step, respectively (Equation 2 
and 3).  

The probability of leaving home is characterised by less evident peak values during 

weekends than during weekdays (Figure 5.3-8a), while there were less difference in the 

peaks for the returning hours during weekdays and weekends (Figure 5.3-8b). Aggregated 
hourly data was used for this analysis to overcome inconsistencies in data trends at higher 
time resolutions (10-minute intervals) due to the tendency of survey respondents’ to report 
the start or the end of activities at the full hour or half hour. 

The levels of occupation were further analysed for different household types with 
different numbers of household members (from single-person households to 4-person 
households), and different types of day. To gain a better overview, a spectrum of occupancy 
profiles shows the level of occupation in 150 randomly-chosen households for each 
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household type during weekdays (Figure 5.3-9a) and weekends (Figure 5.3-9b). This 
analysis clearly highlighted a higher occupant density and a more irregular spectrum during 
weekends with respect to weekdays. The tendency of respondents to leave home earlier 
during weekdays than on weekends is also clearly readable in the spectrums. A growing 
density of occupancy can be observed with an increasing number of household members. 
This analysis allowed for profiling individual occupancy patterns based on household type 
and day type, which can be directly implemented in BEPS by interested researchers or 
professionals. To facilitate the applicability of the outcomes of this study in building 
energy simulation programs, individual occupancy profiles for different household 
compositions and types of day (weekday/weekend) have been made freely available 
online (DTU Civil Engineering 2018).  

 

 
(a) 

         
(b) 

Figure 5.3-7. Occupancy patterns for different household compositions (n*P=number of household 
members) during (a) weekdays and (b) weekends. 



 
93 Chapter 5 – Modelling Time Use Survey (TUS) data for OB profiling 

 
(a) 

 
(b) 

Figure 5.3-8. Probability of (a) leaving home and (b) returning home during weekdays and weekends. 

 

Figure 5.3-9. Spectrum of 150 randomly-chosen individual occupancy profiles of different household 
typologies during (a) weekdays and (b) weekends. 
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5.4 Discussion and further investigations     

5.4.1 Applicability of the TUS data 

Danish TUS-based daily activities vs. typical electric load profiles  

The survey respondents and background information (with respect to, e.g., 
household composition, age range, yearly net income) of those who completed the 
DTUS 2008/2009 can be considered representative of the Danish population. To 
evaluate the applicability of TUS data for modelling occupant behaviour and related 
energy consumptions, it was necessary to determine whether the created activity 
profiles can be related to existing studies on electricity use trends in the residential 
sector. In line with this, the following supplementary analysis compared Activity 4 
“cooking/washing dishes” (Figure 5.4-1), to typical hourly mean electric load 
profiles in Danish households during weekdays and weekends. The latter refers to 
the study of Marszal-Pomianowska et al. (2016) who developed a high-resolution 
model of household electricity use based upon a combination of measured and 
statistical data. Their study shows that typically there are two peaks during 
weekdays: a morning peak, which is caused by activities such as preparation of 
breakfast, morning toilette e.g. hair drying, and an evening peak, which reflects 
dinner preparation/cooking and evening entertainment, e.g. use of TV and/or PC. 
Furthermore, during weekends, the morning peak often moves to later morning 
hours due to longer sleep, and it is more flat. As depicted in Figure 5.4-1, similar 
trends was found from the analysis of the DTUS 2008/2009. These outcomes 
therefore confirmed that these activities could be related directly to the electricity 
loads in the households with an evident peak during dinnertime.  

 

 

Figure 5.4-1. Number of survey respondents cooking/washing dishes during the day compared to hourly 
mean load profiles. 
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Danish TUS-based occupancy profiles vs. typical reference profiles  

As mentioned previously, the definition of accurate occupancy profiles and 
their implementation in BEPS is crucial in order to predict building energy use more 
reliably. Developers of such tools tend to provide fixed predefined schedules that 
can be implemented when running simulations for other case studies. The U.S 
Department of Energy (DOE), for instance, developed reference buildings with 
predefined schedules for the EnergyPlus software (DOE 2017), such as schedules 
for occupancy, lighting use, electric equipment use, ventilation rates or heating and 
cooling set-points.  

To the best knowledge of the authors, there are no existing studies presenting 
tailored approaches for modelling the presence of building occupants in Danish 
households. Therefore, the DTUS-based occupancy profile was compared with the 
occupancy profile provided by DOE. Figure 5.4-2 depicts their proposed occupancy 
profile for weekdays of a mid-rise apartment house (DOE 2018), which was 
compared with the occupancy profile obtained from this study. This graph indicates 
that there is a resemblance between the DOE occupancy profile and the Danish 
TUS-based occupancy profile. As a consequence, the DOE profile could be 
implemented in energy simulation software to establish an approximation of 
average occupancy in Danish households. In cases where closer representation is 
needed, the average occupancy profiles from Figure 5.3-6 and Figure 5.3-7 could 
be used. The occupancy profiles are freely available online and can be used in cases 
where average profiles are not adequate and where it is important to represent the 
diversity in occupancy profiles in Danish households (DTU Civil Engineering 
2018). 

 

 

Figure 5.4-2. Comparison between the simplified DOE occupancy profile and the Danish TUS-based 
weekday occupancy profile. 
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Limitations of the TUS framework 

However, it is necessary to acknowledge some limitations related to the 
application of the Danish TUS data to occupant behaviour profiling and modelling. 
These limitations are mainly attributable to the fact that most TUS frameworks are 
not specifically designed for energy-related research purposes. The TUS 
classification systems may not always reflect meaningful distinctions between 
specific activities of interest for the desired research task. To obtain a solid 
conceptual basis for the specific analytic endeavour, it is necessary to extract, 
transform and/or cluster useful information from the broad-ranging survey 
framework. The latter includes a large number of activities and sometimes does not 
allow for an unambiguous interpretation when it comes to the translation of general 
times use to specific energy-related activities. An important drawback of the Danish 
TUS framework is that it was not designed to capture simultaneous actions of the 
respondents (e.g. cooking and watching TV) since they could only report one 
activity at the time. It is also important to keep in mind that all the data collected in 
the diary was self-reported: occupants may have underreported or forgot to record 
some actions or they may have exaggerated the frequency of some of their actions. 
Respondents also tended to report new activities at the full or the half hour, which 
to some extent affected the reliability level of resolution of the data analysis when 
it comes to reporting starting and ending times of the activities. The Danish TUS 
data available to the authors were analysable only in aggregate form. It was thus 
not possible to explore other interesting predictors (e.g. job category, age) linked to 
individual diary entries. 

5.4.2 Time Use in North Italian households: Investigation through 
ad-hoc surveys  

 In order to gain a better understanding on time use in the local context, the 
survey framework presented in Chapter 4 (see Annex A) was distributed to and 
answered by 453 respondents of households located in Northern Italy (PAPER 
XIV). For shaping energy-related activities, the respondents were asked to report 
their activities performed at home during the last full day, choosing for every 15-
minutes intervals among the proposed activities. This means that, while the 
responses of the Danish TUS had to be clustered into energy-related activities, here 
the latter could be directly investigated. This analysis therefore allows also for 
validating to some extent the effectiveness of the clustering procedure. However, 
unlike the Danish TUS data, it is necessary to highlight that the Italian sample 
cannot be considered representative for the wider Italian population, since the 
survey was compiled (online) mainly by respondents aged between 20 and 30 (60% 
of respondents). Indeed, further investigation is needed in order to extend the study 
to a more inclusive sample. 

Similar to the results obtained based on the Danish TUS, in relation to 
weekdays activity profile (Figure 5.4-3a), sleeping was the dominant activity - 90% 
of the survey respondents were asleep between 2:30 and 6:00. During the weekdays 
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the respondents have spent a significant portion of their time outside the home. 
Most of the respondents were not present at the home from 9:00 am to 18:30, 
however a part of respondents were back home during the lunch time (between 
13:00 and 14:00). There are two evident peaks for „eating” activity during the lunch 
(around 13:30) and dinner time (around 20:30). It is possible to distinguish the peak 
for „TV/IT entertainment” activity in the evening hours- from 21:00 pm to 23:00 
pm. The percentage of respondents who were doing „House cleaning/washing 
clothes” and „Practical work” activities were quite constant during all day. 

 
(a) 

 
(b) 

 

Figure 5.4-3. Daily activity profiles in investigated Italian households during (a) weekdays and (b) 
weekends (b).  

Not at home 

Others 

Not at home 

Others 
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In relation to weekend activity profile (Figure 5.4-3b), it is possible to notice 
that Danish and Italian respondents have spent much more time at home comparing 
to weekdays. The highest percentage of Italian respondents who were out of home 
(around 40 % of respondents) was at 11:30 and in the afternoon hours, from 15:30 
to 19:00. The „sleeping” activity duration was slightly longer than during the 
weekdays - more than 90 % of respondents slept from 2:00 to 7:00. During the 
weekend the occupants spent much more time on „Free/family time” activity- with 
the highest peak in the afternoon, from 15:30 to 17:30. Similar to weekdays, there 
are two significant peaks for „Eating” activity- from 12:30 to 14:30 and from 19:30 
to 21:30. During the weekend, the respondents spent slightly more time on 
„Cooking/washing dished activities” than during the weekends- there are two peaks 
in the lunch/dinner time- from 12:30 to 13:30 and from 19:30 to 20:30. For the „TV/ 
IT entertainment” activity the respondents had similar preferences as during the 
weekdays- more than 30 % of occupants have spent their time watching TV or 
navigating internet from 21:30 to 23:00 pm. „House cleaning/washing clothes” and 
„Practical work” activities were distributed during the day and there are no 
significant peaks which could indicate the preferable time for those activities. 

 
Figure 5.4-4. Comparison (Italian households vs Danish TUS) of daily time spent on the activities 

during summer. 
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Figure 5.4-4 represents the average time which the respondents have spent on 
the 10 energy-related activities in 24 hours during the weekdays and weekend 
compared to the Danish TUS-based investigation. The key results of these analysis 
were: 

 longer sleeping times during weekends (8h 16m) with respect to weekdays (7h 
17m) – Danish respondents reported to sleep longer with respects to the Italian 
respondents; 

 longer occupant presence within the residence during weekends (18h 02m) with 
respect to weekdays (16h 25m) – Italian respondents reported to be out of home 
longer than Danish respondents; 

 Italian respondents have longer free/family time during the weekends (1h 55m) 
than during the weekdays (1h 15m) and with respect to the Danish respondents; 

 Danish respondents reported longer time spent for TV/IT entertainment activity 
during the weekends and weekends with respect to the Italian respondents; 

 Italian respondents spent slightly longer time on cooking/washing dishes, while 
Danish respondents report slightly longer eating activities; 

 no significant difference for time spent for personal care activity during the 
weekends and weekdays.  

Finally, Figure 5.4-5 shows occupancy profiles based on the reported activities 
from the Danish and Italian respondents. This comparison highlights that Italian 
respondents in average reported to come home later with respect to the Danish 
respondents. The trend of higher percentages of respondents at home during 
weekends can be observed in both samples.  

 

 

 
Figure 5.4-5. Occupancy profiles based on the Danish TUS and the Italian time use survey in North 

Italian households for a typical weekday and weekend day. 
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5.5 Perspectives and challenges 

The analysis provided in this study demonstrated that TUS data provides 
valuable information for developing enhanced building simulation inputs for 
modelling occupant behaviour and its influence on energy consumption in the 
residential sector. Based on the Danish TUS data, daily profiles of ten energy- and 
occupancy-related activities were different depending on the season day of the week 
(weekdays and weekends). Survival curves of the daily time durations of the 
activities provided typical starting/ending times of each activity and representative 
occupancy profiles for different household typologies during weekdays and 
weekends. Furthermore, during weekdays occupants were most likely to leave their 
home at 08:00 or 13:00 and tended to return at noon or in the late afternoon/early 
evening hours (18:00). To enhance building simulation inputs for occupancy in the 
Danish residential sector, online access to a spectrum of individual occupancy 
profiles for different household typologies and different days of the week is 
provided.   

The outcomes were in line with typical trends of hourly electricity profiles in 
Danish households. Indeed, similar peak values of hourly electric load profiles and 
some energy-related activities were observed during the same hours of the day. In 
detail, these peaks referred to the early morning hours, lunch time and dinner time, 
and could therefore be strictly correlated to cooking and eating activities. The 
Danish TUS data provided occupancy patterns similar to an existing simplified 
occupancy profile developed by the U.S DOE. The Danish TUS is an important 
source for developing more accurate energy-related occupant behaviour profiles in 
Danish households. However, future work is necessary to further explore the TUS 
data and extracted occupancy patterns to create stochastic models that can be 
implemented in dynamic energy simulation programs towards bridging the gap 
between predicted and real energy consumptions. Further work should also 
investigate the link between energy-related activities and respective electricity 
demands in order to define high resolution demand profiles in Danish and Italian 
households. 
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Chapter 6 
 

Development of Energy 
Engagement campaigns for 
behavioural change 

6.1 Overview  

The previous chapters were aimed at modelling and profiling occupant 
behaviour with focus on individuals (Chapter 4) and large-scale investigations 
(Chapter 5). Chapter 3 and 4 explored key drivers of the human-building interaction 
based on the assumption that different occupant behaviour lifestyles can 
significantly impact building energy use and thermal comfort conditions of the 
occupants. Indeed, Chapter 1 highlighted that energy efficiency goals can be only 
met if the occupants adopt an aware attitude concerning their energy-related actions 
and consequences on energy use. Indeed, raising awareness among building 
occupants on how their behaviour, comfort criteria settings, and lifestyles affect 
building energy use has become a central topic of innovative energy efficiency 
strategies. Reaching European energy efficiency goals does not only require the 
optimization of building design and features, but also necessitates the real energy 
consumers to be more aware of their energy-related inter-actions with the building. 
However, motivating occupants to change their behaviour can become a 
challenging task. It is essential to provide novel, stimulating, and easily 
understandable information that help triggering a more energy-friendly behaviour 
on a daily basis. Motivations of the occupants to change their behaviour can differ 
significantly from context to context (residences, offices, public buildings). In line 
with this, the chapter is aimed at presenting methodological frameworks of energy 
engagement campaign to which I contributed during my Ph.D studies. Although if 
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these campaigns investigate different typologies of feedback and triggers and/or 
communication tools, it is possible to identify a general framework that is 
implemented in all the campaigns. Figure 6.1-1 shows the overview of Chapter 5 
depicting the human in the loop and a schematic process that reflect the overall 
strategy of behavioural change investigations. In this Chapter, three different 
energy engagements are analysed and compared following the structure of the 
elements shown in the loop (sensor network and data collection, data analytics and 
feedback, and communication tools). This chapter is aimed at contributing to the 
following research questions: 

 How to leverage efficiently behavioural change through innovative 
triggers (e.g. health, comfort, peer comparison)? 

 How to assess and evaluate behavioural change and related campaigns? 

 What analytical solutions can be developed for feedback provision? 

 How much energy can be saved through behavioural change?  

 

 

Figure 6.1-1.Overview Chapter 6. 
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6.2 Energy engagement targeting energy use, indoor 
environmental conditions and health   

6.2.1 Project framework  

The project presented in this first section originated from the Horizon 2020 
framework “MOBISTYLE- MOtivating end-users Behavioral change by combined 
ICT based tools and modular Information services on energy use, indoor 
environment, health and lifestyle” (Grant Agreement no: 723032)(Op’t Veld et al. 
2016). 

This project is still on-.going and deploys a multidisciplinary approach 
(including expertise on energy and indoor environmental quality, health and the 
human body, anthropology and the human mind, and ICT solutions) (Figure 6.2-1) 
to motivate behavioural change by raising user awareness through a provision of 
attractive personalized information on user’s energy use, indoor environment and 
health, through information and communication technology (ICT) based services. 
Indeed, the most relevant motivational factors and Key Performance Indicators 
(KPIs) for encouraging a more energy conscious and healthy lifestyle were defined 
by means of a people-centered approach (Tisov et al. 2018). The novelty of the 
project consists in feedback provision that includes not only energy and 
environmental aspects, but that combines the latter with suggestions on how to 
improve health conditions and personal well-being of the participants.  

The final objective and potential key outcome of this 42-months-long project 
is to achieve at least 16% of overall energy consumption and a subsequent reduction 
of CO2 emission. The achievement of this objective is aimed at confirming the 
effectiveness of a multidisciplinary engagement approach and innovative ICT 
solutions and the importance to exploit such strategies to hit environmental EU 
targets. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 6.2-1. Multidisciplinary approach to raise energy awareness among building occupant (Fabi et 
al. 2017). 
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6.2.2 Real-life application: Project testbeds  

The MOBISTYLE methodology is implemented in five selected testbeds across 
Europe, located in different geo-clusters and characterized by different types of 
buildings, end-users and scales (Table 6.2-1)(Skovgaard Møller et al. 2017).  

Table 6.2-1. MOBISTYLE project testbeds. 

Country 
Type  Scale  Target users Geo-cluster 

Denmark  Residential  Building 
complex 

Households Northern 

Slovenia Higher education, 
offices  

Faculty buildings  Faculty staff Continental 
Central 

Italy Hotel Building Guests, staff Mediterranean 
Poland Smart city  District Households Continental 

Central 
The Netherlands Offices Building Employees Western 

Central 

 

6.2.3 Methodological framework based on combined feedback 
targeting energy, IEQ, and health   

The core idea behind this on-going project is to deploy an interdisciplinary 
approach addressed to develop an effective methodology that combines together 
three key triggers: energy, indoor environmental quality, and health; where the 
latter is the innovative component to stimulate behavioural change on a long term 
(PAPER XVI). To drive users towards more conscious and energy-friendly 
actions, it was necessary to plan and undertake a series of steps that allowed for 
setting up an effective monitoring and engagement campaign: (i) data collection, 
(ii) parameter definition, (iii) data analysis and elaboration (iv) definition of Key 
Performance Indicators (KPIs), and finally (v) the awareness campaign. A 
framework of data collection, data analysis and elaboration, and tailored 
information was defined provided for each testbed (Table 6.2-1)(Fabi et al. 2017). 

The data collection was aimed at investigating the operation of users on energy 
systems through behaviour-related data (objective monitoring campaign on 
building and subjective data collection regarding the occupants). Then, data 
analysis and elaboration is used to depict human behaviour (related to energy, 
comfort, health) through user data (both wearable sensors and surveys, for example 
monitoring human presence and practices thanks to anthropological studies) and to 
obtain human-related performance indicators. Finally, energy savings and 
improvement of indoor environmental conditions and humans’ health and 
wellbeing is achieved by implementing behavioural communication strategies 
(awareness campaign).  

Tailored information campaign should rely on simple and immediate 
information using different communication methods and effective ICT tools 
(Olivadese 2018) in order to be understood by the target users and to achieve an 
effective knowledge transfer. In the context of this Ph.D. dissertation, the 
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implementation of the methodological framework will be presented in the Italian 
MOBISTYLE testbed – a hotel located in Turin (North Italy) (PAPER XV).  

 

 

Figure 6.2-2. Methodological framework of the MOBISTYLE project. 

 
Sensor network and data collection  

A residence hotel, an urban hotel located in a central area of Turin, is the Italian 
demonstration case. This case study presents a very traditional structure since the 
building was built at the beginning of 20th century with load bearing masonry walls. 
The building is heated by two condensing boilers powered by natural gas, also used 
for Domestic Hot Water (DHW) production. A chiller (cooling capacity 97 kW) is 
installed for the cooling system. Two-pipes fan coil units, placed in the false ceiling, 
are the terminals of the heating and cooling system (except radiators inside 
bathrooms). At present, the building does not have mechanical ventilation system 
(except for exhaust air systems in bathrooms and kitchens) and it does not a use any 
on-site renewable energy source. A tailored monitoring and engagement campaign 
was set up in four residential hotel apartments and the reception area.  

The monitoring campaign is based on continuous measurements of indoor 
environmental variables, electricity consumptions of domestic appliances (washing 
machine, dishwasher, microwave, TV), and behavioural patterns (e.g. window 
opening/closings, thermostat regulation, occupancy). Figure 6.2-3 depicts types and 
locations of the sensors installed in two apartment typologies. In all four 
apartments, measurements regarding energy consumption and indoor 
environmental quality (IAQ) will be taken. In particular, the following parameters 
are gathered: 

 indoor air temperature (T) [°C]: every 15 minutes; 
 indoor relative humidity  (RH) [%]: every 15 minutes; 
 indoor CO2 level (CO2) [ppm]: every 10 minutes; 
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 electricity consumption [kWh]: every 10 minutes; 
 electricity power [W]: every 10 minutes. 
To understand the mechanisms of occupants’ behaviours, it is necessary to 

monitor the behaviour itself but also to determine the cause and effect relationships 
that behaviours have with energy consumption, indoor and outdoor environment, 
and the occupants’ health status.  

The types of behaviour analysed in this case study can be listed as follows: 
 Occupancy (room access); 
 Thermostat adjustment; 
 Window opening/closing; 
 Whitegoods or other electrical devices; 
 Door opening/closing. 
Furthermore, the monitoring campaign at a future stage might also include 

measurements on Physical activity (PA) in order to see if the PA pattern are in 
correlation with the environment and how this relationship can be exploited to 
optimize well-being of the occupants (and productivity).  

Outdoor conditions during the campaign are established by third-party out-door 
data logging. Indeed, outdoor environmental variables, such as temperature, solar 
radiation, relative humidity, wind speed/direction, are acquired through online 
sources. 

 
                                      (a)                                              (b)          

Figure 6.2-3. Apartment typologies A (a) and B (b) and sensors/measured variables (Barthelmes et al. 
2019). 

Data analytics and feedback  

In this step, the raw data collected in the case study is transformed into Key 
Performance Indicators (KPIs) for (i) evaluation purposes (see section 6.2.4) and 
(ii) providing useful and easy-to-understand information for the target users, such 
as the hotel guests (Table 6.2-2). At this stage, some of the KPIs are translated in 
more intuitive units for the end users (e.g. energy costs or number of trees that it 
takes to absorb produced emissions) in order to optimize the knowledge transfer.  
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Similar KPIs were defined for the hotel staff (receptionists) that refer to IEQ 
variables, as well as electricity consumptions of electric devices, such as the 
personal computer and the printer. The hotel manager is provided with all the KPIs 
(apartments and reception) in order to allow for understanding and optimizing 
current building operation strategies. 

 
Table 6.2-2. Examples of KPI definition for hotel guests. 

KPI                             Unit  
Translation for the 
user  

Unit 
(for guest) 

Learning objectives  

Air Temperature  °C 
Indication of adequate 
temperature levels  

 °C 

• Improve perception of comfort 
• Improve IEQ conditions for health 
• Save energy (heating/cooling)  
• Decrease environmental impact   

Level of relative 
humidity  

% 
Indication of adequate 
relative humidity levels 

 % 
• Improve perception of comfort 
• Improve IEQ conditions for health 

Level of CO2  ppm  
Indication of adequate 
CO2 concentration  
levels 

 ppm 
• Improve perception of comfort 
• Improve IEQ conditions for health 

Electricity 
consumption 
(apartment)  

kWh/day 

Emission of CO2, equivalent 

translated into number 
of trees that it takes to 
absorb emissions 
Costs for electricity 
consumption 

number of 
trees/year 
 
 
€/day 

• Save energy (apartment level) 
• Decrease environmental impact 

Elec. consumption 
(electric devices)  

kWh/day 
Indication of adequate 
consumption levels 

  
• Save energy (electric devices) 
• Decrease environmental impact 

 
To guide the users to change practices to achieve energy savings or to improve 

indoor environmental quality, it is necessary to provide tailored feedback based on 
the collected data and the elaborated KPIs. For this purpose the KPIs are (i) shown 
to the users in real-time as well as historical trends with an intuitive representation 
if suggested limits are exceeded (see next subsection) and (ii) used for providing 
real-time suggestions aimed at triggering specific actions towards energy savings 
and better environmental and health conditions.  

Table 6.2-3 shows the key behavioural change objectives in the hotel 
environment for the different target users (guests, receptionists).  

 
Table 6.2-3. Behavioural change objectives (Fabi et al. 2017). 

 
Behavioural 
Change 
Objective 

Target Action Context Measure Sensor Variable  Unit 

H1 

Energy 
Saving/IEQ - 
Heating 
Cooling 

Hotel 
Guest 
 

Adjusting setpoint 
temperature 

Hotel 
Apartments 

[°C] 
T/RH/CO2 
sensor 

Temperature [°C] 

H2 
Energy Saving -
Washing 
Machine 

Switching off stand by 
power – Reduction and 
optimization of washing 
cycles 

Hotel 
Bathroom 

[kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

H3 
Energy Saving - 
Dish Washer 

Switching off stand by 
power - Reduction and 
optimization of washing 
cycles 

Hotel 
Kitchen 

[kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

H4 
Energy Saving - 
TV 

Switching off stand by 
power/ Reduction of 
viewing activity 

Hotel Living [kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

H5 
Energy Saving -  
Microwave 

Switching off stand by 
power 

Hotel 
Kitchen 

[kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

H6 
Health -  
 IAQ 

Opening/closing 
windows 

Hotel 
Bedroom 

[kWh] 
T/RH/CO2 
sensor 

CO2 concentration 
level 

[ppm] 
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H7 
Energy saving 
PC 

Staff 

Switching off stand by 
power 

Reception [kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

H8 
Energy saving 
Printer 

Switching off stand by 
power 

Reception [kWh] 
Smart 
Plug 

Electricity 
Consumption 

[kWh] 

 
For each behavioural change objective, conditional decision trees were 

developed in order to provide real-time feedback to the users and to make them 
aware how they could positively influence energy use and the indoor environment 
through specific actions. Furthermore, the target users are provided with additional 
information (e.g. eco pills) aimed at supporting the learning process and to achieve 
behavioural change objectives (van Marken Lichtenbelt et al. 2017). As an 
example, the awareness campaign promotes “temperature trainings” that should 
motivate end users to adopt a healthy lifestyle and healthy ageing strategy. This 
consists in explaining the users that lowering the thermostat for a certain time slot, 
will not just bring energy savings but can also contribute to their better well-being 
and metabolic health. Another example is that users are encouraged to take stairs 
instead of an elevator as this does not only saves building’s electricity consumption 
but also is healthier for them. Furthermore, hints and tricks on a clever and 
conscious use of appliances (e.g. stand-by mode) can complement the feedback 
based on measured variables and support the attractiveness of the services.  

Table 6.2-4 shows representative examples of feedback provided to the target 
users related to the temperature settings (H1), the use of an electric device (H2), 
and the indoor air quality (H6). Threshold values that trigger the feedback provision 
are shown in Table 6.2-5. The theoretical framework for the creation of the decision 
trees included the definition of two levels of alarms/suggestions (yellow and red) 
based on different threshold values and the urgency to intervene through a specific 
action; in reality, due to challenges in the practical implementation in the ICT 
services, the users will directly receive feedback when they exceed the first limit 
(yellow). The proposed examples serve a demonstration of the proposed 
methodology, but could still change throughout the project.  

Table 6.2-4. Examples (H1, H2, and H6) of feedback provision (message to users, criteria for decision 
trees, and complementary eco pills). 

H1 Energy Saving/Indoor environment – Heating/Cooling 

Message 
DURING DAY – Please lower/raise the set-point temperature to “xxx”.  
DURING NIGHT - Please lower/raise the set-point temperature to “xxx”.  

Criteria for 
decision tree 

DURING DAY - If set-point temperature is higher/lower (winter/summer) than “xxx”,  
DURING NIGHT - If set-point temperature is higher/lower (winter/summer) than “xxx”,  

Headlines of eco 
pills 

 Lowering the heating/cooling temperature by 1°C can reduce the overall energy by 
7% 

 lower temperatures are beneficial for heat loss during activities 
 Reducing the environmental temperature might increase your alertness 
 Do the temperature training to increase resilience! 
 Lower temperatures help to have healthy metabolism! 
 Reduce the temperature and boost your brains! 
 Want to lose some weight due to increased metabolism rate? Reduce the heating set-

point in your office! 
 High temperature might kill your productivity. Switch off heating for a while! 
 If you feel cool, put on some clothes! 
 Variable indoor environmental temperature are likely to increase your alertness and 

well-being 
 When outdoor conditions are suitable, opening the window will freshen your room 

and provide energy savings.  
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 Fresh air is beneficial for health. However, leaving the window open too long does 
not benefit much your wallet! Instead you will lose money for heating. 

 Open the window now and for just one minute. You will provide fresh air, without 
losing money for heating/cooling. 

 
H2 Energy Saving– Washing machine 

Message Please turn the washing machine completely off when you don’t use it. 
Criteria for 

decision tree 
If stand-by consumption of washing machine is detected 

Headlines of eco 
pills 

 People use significant part of electricity for small electric appliances 
 Devices draw energy all the time, even when in standby mode 
 If you aren't frequently using a device, unplug it 
 Schedule automatic power off 
 Try to reduce electricity wastes and vampire loads. Do you really need all the devices 

plugged in? 
 Filled the washing machine to the nominal load? 
 Try the eco-cycles to reduce your environmental footprint 

 
H6 Indoor Air Quality – Window control  

Message Please open the windows for improving the indoor air quality! 
Criteria for 

decision tree 
If the indoor CO2 concentration is higher than “xxx” 

Headlines of eco 
pills 

 Fresh air to stay in health  
 Boost your alertness with fresh air  

 
 

 
 

(a) 
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(b) 

 
 

 
(c) 

Figure 6.2-4. Example of decision trees related to temperature settings (H1) (winter season - during 
day), stand-by detection of the washing machine (H2), and window openings based on the indoor air quality 

(H3). 

 
Table 6.2-5.Threshold values for examples of decision trees. 

Label 
H1  

Threshold values  

H1 - Temperature 

(winter day) (oC) 

H6  
Threshold values 

H6 - CO2 
concentration (ppm) 

GREEN    < 22  < 800 

YELLOW   Tlim,1 22-23 CO2,lim,1 800 – 1000 

RED  Tlim,1 > 23 CO2,lim,2 > 1000 

 

Communication tools   

The feedback will be provided to the participants through two different (but 
related) ICT services: a dashboard for the visualization of the KPIs and a mobile 
application for KPI visualization and prompts/alerts that encourage specific actions 
given certain conditions (indoor environmental conditions and energy use)(Figure 
6.2-5).  

Information regarding energy use is based on the overall electricity use in the 
apartment and on the usage of single electrical appliances (depending on which 
appliances are used in the specific apartments). The KPIs will be displayed to the 
end user in a graphical with an indication of three colour levels: green (the 
conditions are fine), yellow (the threshold of suggested limit values is exceeded to 
some extent), and red (the threshold of suggested limit values is exceeded 
significantly). The relationship between colour levels and energy consumption is 
based on a generic profile defined during benchmarking and energy saving targets 
for the case study (energy saving of 16%). Users also have the possibility to read 
real-time consumption and historic records in order to gain a better understanding 
of their actions over time.  
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Similarly to the representation of energy usage, the IEQ conditions are 
translated to the user mainly through a graphical form that involves also in this case 
the use of three levels of colour, depending on their trend with respect to threshold 
values defined by European standards (Cen 2007). In other MOBISTYLE testbeds, 
the communication strategy is based on serious gaming, or rather interactive games 
based on a story-telling-approach with an educational scope.  

 

Figure 6.2-5. Prototype of the mobile application (still in development). 

Furthermore, in order to keep participants and stakeholders up to date on the 
development of the project, regular newsletters with latest updates are distributed 
in each MOBISTYLE testbed.   

6.2.4 Key findings/Evaluation method 

Since the MOBISTYLE project is still on-going, at the time-being it is not 
possible to provide final results on energy savings and improved indoor 
environmental and health conditions. However, a tailored methodological 
framework for the evaluation of the project was developed (PAPER XVII). Indeed, 
extended literature in the field of project management has highlighted that the 
evaluation process should not be an afterthought (Dahlbom et al. 2009; Patton 
2001). Planning for an evaluation and developing ad-hoc evaluation methodologies 
before-hand can help to overcome unexpected evaluation challenges by mitigating 
risks in advance (e.g. definition of parameters that have to be evaluated to answer 
certain research questions or to verify if the project goals were achieved, timing of 
the project), lead to more useful results, and improve the optimization process of 
the project (Wade and Eyre 2015). Indeed, planning the evaluation helps 
articulating research goals and identifying areas for improvement. Evaluation can 
also be a beneficial tool for communicating project results and demonstrating the 
effectiveness of deployed strategies. An evaluation should be driven by a specific 
set of questions, which are the foundation of all evaluation efforts, and that can 
focus on any stage of a project and generally fall into one of the following 
categories: Outcome evaluation, impact evaluation, and process evaluation. The 
outcome evaluation determines how well the desired outcomes and associated 
objectives for a project are met. In the MOBISTYLE project, this refers to achieving 
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pre-set goals in terms of energy savings, improved indoor environmental quality 
and well-being of the occupants (Figure 6.2-6). These goals are meant to be 
achieved by a pro-active change of the occupants’ behaviour, which therefore has 
to be tackled as a key parameter during the evaluation process. The impact 
evaluation assesses longer-term changes in social, economic, and environmental 
conditions, as well as long-term maintenance of desired behaviours (Duignan 
2011). This type of evaluation addresses if the occupants adopt the new behaviour 
in their daily routines in a long-term perspective and if pre-set goals can be 
maintained during time. The process evaluation analyses the development and 
implementation of a project in different stages by assessing whether strategies were 
implemented as planned, and whether expected outputs were produced (Linnell 
2015). This type of evaluation allows for identifying possible optimization and 
improvements of the implemented MOBISTYLE strategies. 

 

 

Figure 6.2-6. Overall evaluation strategy (Barthelmes et al. 2018). 

To set up an effective evaluation process during the entire project, the proposed 
MOBISTYLE evaluation strategy consists of three monitoring periods (M0, M1, 
M2) alternated with follow-up evaluation steps (E1, E2, E3)(Figure 6.2-7). Over 
time, monitoring periods and evaluation steps were planned to be implemented in 
6 steps scheduled as follows:  

 Initial monitoring (M0) 
 Benchmark definition (E1) 
 Feedback provision (M1) 
 Intermediate evaluation (E2) 
 Optimized feedback provision (M2) 
 Final evaluation (E3) 
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Figure 6.2-7. Monitoring and evaluation steps throughout time (Barthelmes et al. 2018).  

 
The aim of the initial monitoring period (M0) is to gather data for measuring and 
assessing the baseline performance in the project testbeds (Skovgaard Møller et al. 
2017). In each testbed, selected parameters are measured and, if necessary, 
transformed into meaningful KPIs that describe the trends of energy consumption, 
indoor environmental quality, and health aspects, before the implementation of the 
MOBISTYLE services. The data collected in this initial phase hence serve as a 
comparative etalon in the evaluation process and will underlie the calculations 
required for the benchmark definition (E1). During the initial monitoring period, no 
service or feedback will be provided, for capturing the “usual” daily routines and 
habits of the occupants and the impact of the latter on the energy consumptions and 
indoor environmental conditions. During this phase, the only influence on the 
occupants might be an effect described by Hawthorne (Adair 2000; Seligman et al.  
1977) in which ‘subjects may behave differently, because they are aware that they 
are being studied.’ However, this effect might slowly fade away if the users are 
observed for a sufficient amount of time.  
The first evaluation step, or rather the benchmark definition (E1), is aimed at 
analysing the collected data in M0 to provide a structured assessment of the baseline 
performance in the testbeds. The benchmark definition is used to measure 
performance using specific indicators resulting in a metric of performance that is 
then comparable to the same indicators in future evaluation steps (E2, E3). 
The second monitoring period (M1) includes the provision of MOBISTYLE 
services and feedback through ICT tools (dashboard, mobile application) to the end 
users and represents the core of the project. The data collected in this second 
monitoring period allows for assessing a comparative analysis to evaluate the 
changes in behaviour and related impacts on energy consumption, indoor 
environmental quality, and well-being of the occupants.  
The intermediate evaluation (E2) is aimed at gaining a first insight on the 
achievements of the MOBISTYLE strategy and implemented ICT solutions. This 
step allows for overseeing the current outcomes of the implemented strategies and 
the verification of a successful process. At this stage, it is possible to exploit first 
results for improving and optimizing feedback and other factors that might to some 
extent act as obstacle to the effectiveness of the proposed solutions (e.g. problems 
related to the usability of the ICT solutions, ineffectiveness of the provided 
feedback, difficulties in achieving energy saving goals). 
Based on the results and recommendations of the intermediate evaluation (E2), in 
monitoring period (M3) data based on optimized feedback provision is collected. 
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The gathered data will underlie the final evaluation of the MOBISTYLE project for 
evaluating if the project’s goals were achieved. 
In the final evaluation (E3) the same assessments of E2 should be performed. 
Particularly, the final evaluation is a comparative analysis between monitoring 
phase M2 (provision of optimized feedback) and monitoring phase M1 (feedback 
provision) and M0 (initial monitoring).  
Moreover, this final evaluation step is aimed at verifying if MOBISTYLE goals 
were achieved (16% of energy savings).  

Outcome evaluation  

An outcome evaluation assesses the effectiveness of the awareness campaign 
at an overall level of the project as well as in individual MOBISTYLE testbeds. The 
outcome evaluation is aimed at analysing the energy savings obtained in the 
MOBISTYLE testbeds and quantifies their environmental impact. A comparative 
analysis of specific KPIs defined in benchmark (E1) is necessary to establish 
changes in energy consumption, IEQ, health, and behavioural patterns of the 
occupants:  
 Energy savings: The amount of energy used before (M0) and after the feedback 

provision (M1, M2) is evaluated. It is necessary to consider external constraints 
(e.g. vacation period, long absence period, seasonal variations). In this case, it 
is suggested to remove as much as possible data related to these irregular 
patterns; and consequently calculate the resulting energy savings. This result 
can be obtained by direct measurements or dynamic energy simulations.  

 Greenhouse Gas (GHG) emissions: Once the amount of energy used is 
calculated, it is possible to link the results to the impact on the environment of 
each MOBISTYLE testbed. It is measured applying the conversion factors for 
primary energy (calculated for the used electricity or thermal energy 
typologies).  

 Indoor Environmental Quality (IEQ) and comfort: Variations of IEQ 
throughout the different monitoring periods need to be analysed. The analysis 
should include time profiles of thermo-hygrometric parameters and indoor air 
quality indicators, as well as statistical values that are essential to describe and 
evaluate the indoor environmental quality (mean hourly values, standard 
deviation, minimum and maximum values during the investigation period, 
frequency distribution and cumulated frequency). For evaluating the conditions 
of comfort (or discomfort) during the three monitoring periods, it is required to 
calculate the amount of time, in which the occupants might perceive discomfort 
(Cen 2007).  

 Health: Questionnaires during the static and during the dynamic indoor 
environment will be delivered to the involved users. Moreover, body 
temperature, heart rate and physical activity will be recorded in a subset of 
participants. A comparison between the two different indoor environmental 
conditions will be compared in two different seasons and linked to comfort, 
sensation, sleepiness, alertness and well-being. 
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 Behavioural change: Questionnaires before (M0) and after the feedback 
provision (M1, M2) will be delivered to the involved users. The investigations 
for assessing the behavioural change include: knowledge on MOBISTYLE 
project and its progress, change on comfort preferences and satisfaction and 
health-related aspects. Behavioural patterns should be compared before (M0) 
and after the (optimized) feedback provision (M1, M2) to assess the change of 
users’ interactions with technical building systems, building components and 
home appliances. These interactions patterns involve: number of window/door 
openings, temperature control, blinds control, lighting control, usage of home 
appliances (e.g. analysis of instant power data related to individual devices). 
These trends should be correlated with IEQ conditions and (human) body 
parameters, if available.  

Process evaluation  

The process evaluation is aimed at a potential optimization and improvement 
of the implemented process. Separate evaluation for each category of provided 
feedback (for example, advices related to temperature control or stand by usage of 
home appliances) should be performed. In this case, a comparative analysis of 
specific KPIs defined in the benchmark (E1) is needed for evaluating the results. 

Questionnaire assessing the usefulness of feedback from the user’s point of 
view are developed and addressed to the MOBISTYLE end users. The 
questionnaires address different aspects of the feedback provision:  

 Typology: Different feedback category will be analysed and compared in terms 
of achieved results. For example, it is possible to compare feedback related to 
heating, lighting, home appliances with the final energy used for heating, 
artificial lighting, home appliances to calculate where the major savings are 
obtained. 

 Time-frequency: Efficacy of feedback frequency (hourly, daily, or continuous) 
leading to increased user awareness and the best results in terms of behavioural 
change shall be assessed.  

 Communication content: The efficacy of the following characteristics should 
be verified for the provided feedback 
- Type (numerical, graphical), 
- Communication strategy (prompts, pop-up message, educative advices, 

serious game, newsletters),  
- Length (concise/long),  
- Wording and design (efficacy of the chosen terms in the message),  
- Content (antecedent, i.e. announcing the availability of positive or negative 

consequences; consequent, i.e. providing advices about the action carried out at that 
specific moment),  

- Credibility (coherency of provided feedback), 
- The level of detail of the provided information. 
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 Tools: The efficacy of paper-based (poster, brochure) or ICT-based (mobile 
phone, website, email, room displays) communication media should be 
evaluated in terms of 
- Usability; 
- User-friendliness, ease of use, barriers;  
- Reliability; 
- User satisfaction/experience; 
- Adaptability for meeting research goals and expected energy savings. 
 
The efficacy of the tools can be further evaluated by acquiring directly 

information from the ICT tools that allow for assessing: 
- How frequently the users interact with the tools (analytics for sub-tools e.g. 

number of asked questions through the ‘help’ sub-tool) and the relation with the 
time of sending a notification; 

- Length of use (number of hours, analytics for sub-tools); 
- How many people downloaded the MOBISTYLE application. 

Impact evaluation  

Concerning the impact evaluation of the implemented MOBISTYLE strategy, 
the main objective is to understand to which extent the occupants adopt the new and 
more conscious behaviour in their daily routine once the MOBISTYLE project is 
over. The aim is hence to test the behavioural persistence of the engaged occupants, 
or rather to verify if there is a long-term change in users’ habits and the 
internalization of new behaviour as part of daily living and routines, also without 
active input from the MOBISTYLE team. The evaluation process should 
specifically depict the tendency of the occupants to continue performing the new 
behaviour, saving energy and maintaining good IEQ and health conditions, while 
changing their lifestyle in a long-lasting manner. At this stage, the outcomes of the 
behavioural persistence analysis could contribute to investigating specific research 
questions on project outcomes on the long term, such as gaining a deeper 
knowledge on: 

• The types of feedback that lead to the most effective behavioural change; 
• Time thresholds necessary to induct behavioural persistence in the users 

after which tailored feedback is no longer needed; 
• How communication design, tools, and feedback developed within the 

MOBISTYLE project shape perspectives for a long-lasting internalization of the 
new behaviour. 

Finally, in case of behavioural changes induction though ICT-solutions 
provision and awareness campaign, benefits for the occupants in terms of energy 
saved, emissions avoided, but also IEQ and health improvement are expected. All 
these aspects need to be considered in the assessment, as well as their effect at 
macroeconomic level (e.g. sanitary costs reduction). Moreover, monetization of 
those benefits could give support in communicate the exploitation potential of the 
activities envisaged within the project, namely ICT-solutions and awareness 
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campaign provision, and, more in general, in investigating the potential market for 
ICT solutions pushing behavioural changes. Furthermore, monetizing benefits 
related to behavioural changes contribute in making them tangible, then it is a 
valuable tool to motivate occupants towards new persistent behavioural patterns.  

In this context, the introduction of a Cost-Benefit Analysis in the evaluation 
strategy has the potential to be innovative from a research point of view and, more 
interestingly, it could help in addressing the necessity for macro-economic 
perspective adoption in the evaluation process and the relevance of co-benefits 
monetization activities on a long term. 

6.3 Energy engagement targeting energy use and peer 
comparison in offices    

6.3.1 Project framework  

The aim of the second experimental study (PAPER XXI) was to provide 
employees with adequate tools, which encourage the conscious and rational use of 
energy and environmental resources thanks to smart monitoring and persuasive 
communication systems that help to understand the influence of occupant behaviour 
on electricity uses and to manage efficiently energy consumption in workplaces, 
especially in offices. The installation of monitoring tools like power meters and 
THL sensors (air temperature, relative humidity and lighting) allowed for assessing 
real-time data and to send automatically alerts to the occupants via mobile 
application on Tablet or cell phone (data visualization tool). In this experimental 
study, employees were provided with real-time feedback that consisted in 
suggestions for specific actions that the employees should perform in order to 
reduce energy consumptions and to improve indoor comfort conditions at the same 
time. Suggested actions regarded opening/closing of windows and doors, 
adjustments of window blinds, regulation of fan coil units, usage of electric office 
appliances, as well as the regulation of artificial lighting. In particular, an IT 
company was involved in the project to develop a smartphone application as a 
persuasive communication tool. In this way, it was possible to supply educational 
and feedforward information based on detailed algorithms that take into account the 
environmental conditions inside the offices (considering thermal comfort, visual 
comfort and air quality) and the energy consumption of plant systems and desktop 
appliances. 

6.3.2 Real-life application: Project testbeds  

The testbeds of this experimental investigation were four offices (pilot offices 
1, 2, 3 and 4) located in a city in the climatic zone D (HDD = 2259) in Italy. Figure 
6.3-1 illustrates the orientation of the four analysed offices. Two of them were 
situated on the first floor facing east (office 1 and 2) while the other two were 
located on the second floor facing north (office 3 and 4). Each office was occupied 
by four employees with a working time from 7 a.m. to 20 p.m. Every office was 
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equipped with two fan coils units for heating and cooling, 6 ceiling lighting 
appliances and plugs for several electric devices (fax, PC, printer). 

 

Figure 6.3-1. Location and layout of the pilot offices. 

6.3.3 Methodological framework: Real-time suggestions and peer 
comparison  

The intervention strategy consisted in four monitoring periods with different 
levels of feedback provision (Table 6.3-1) and experimentation efficacy. Indeed, it 
was crucial to understand if the monitoring of either environmental variables or the 
energy use of electric office appliances had a greater influence on the potential 
energy reduction and to evaluate how many sensors devices are actually needed in 
order to apply an efficient monitoring system and assess behavioural change. For 
this reason, the intervention program was structured in sequential stages in order to 
verify efficacy of the feedback generated based on environmental sensors first, 
energy sensors secondly and peer comparison finally. Each stage (with the 
exception of the first monitoring period, which covered a 6-month period) lasted 1 
month per season (wintertime and summertime).  

Similar to the framework presented in section 6.2.3, the first period, nominated 
Stage 0, consisted in monitoring the offices during a 6-month period in summertime 
and wintertime without any kind of interaction with the building occupants. The 
aim of this stage was to establish basic values used as reference state (benchmark) 
in the successive experimentation steps. During this phase, the only influence on 
the occupants might be an effect described by Hawthorne (Seligman and Darley, 
1977) in which ‘subjects may behave differently, because they are aware that they 
are being studied.’  

The second period, nominated Stage 1, consisted in sending educational and 
feedforward information to the employees notifying them about the environmental 
conditions (related to thermal and visual comfort and IAQ) of their offices during 
winter and summer time.  

The third period, called Stage 2, included feedback regarding the energy 
consumption of electric appliances in every office (e.g. PC, monitors). The main 
goal of this step was to warn the employees if they did not turn off the electric office 
equipment during the not-working hours (night time or weekends).  
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The last period, Stage 3, consisted in comparing the energy used in the four 
offices and the whole building and in encouraging employee’s energy saving 
attitude through peer comparison (using social norms as a key trigger). 

Table 6.3-1. Program stages. 

Stage  Feedback typology  Description  
0  Reference state (no feedback)  Without users’ interaction to establish basic values as 

reference state (benchmark). The only influence on the 
occupants might be an effect described by Hawthorne 
(Seligman et al. 1977) in which “subjects may behave 
differently, because they are aware that they are being 
studied.”  

1  Feedback  on environmental 
comfort  

 Thermal comfort  
 Visual comfort  

Users’ interaction through feedbacks to the employees 
about the environmental conditions (thermal and visual 
comfort) and their relationship with energy usage.  

2  Feedback on environmental 
comfort and energy consumptions 
(electric devices) 

Users’ interaction through feedback regarding the energy 
consumption of electric devices (e.g. PC, fax) to warn the 
employees if they do not turn off the appliances during 
night or weekends.  

3  Competition  Peer comparison encouraging employee’s energy saving 
attitude with compensations (energy competition).  

 
Sensor network and data collection  

The installation of monitoring tools like power meters and THL sensors (air 
temperature, relative humidity and lighting) allowed to assess real-time data and to 
send automatically information to the occupants via mobile application on tablet or 
cell phone (data visualization tool). Air temperature, relative humidity, lighting 
levels, and CO2 concentration in the office room were measured for both inside and 
outside (Table 6.3-2). Final use of electric energy for artificial lighting, electric 
appliances and fan coil units (kWh/m2y) were measured in real-time. In order to 
outline the influence of occupant behaviour on energy consumption at work, 
occupancy sensors revealed employee’s presence in office and their opening and 
closing actions on windows and doors.  

Since this application allowed to monitor and control electric energy 
consumption of the office at any time during working period and to send 
feedforward information in real time, each employee was reached via mobile 
application for smartphone or PC. These tools displayed the advices and tips of a 
virtual ‘energy coach’. 

Table 6.3-2. Measured variables. 

Environmental variables (indoor) 
Environmental variables (outdoor) 

 Air temperature (°C) 
 Relative Humidity (%) 
 Lighting level (lux) 
 CO2 concentration (ppm) 

 Air temperature (°C) 
 Relative Humidity (%) 
 Solar radiation (W/m2) 
 CO2 concentration (ppm) 
 Wind speed and direction (m/s) 

Final energy use Occupant behaviour 
Electricity 
 Artificial lighting  
 Electric appliances 
 Fan coil units  

 Presence of the employees 
 Opening/closing doors 
 Opening/closing windows 
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Data analytics and feedback  

Similar to the framework described in Section 6.2.3, feedback provision in 
Stage 1 and 2 was based on decision trees that allowed for sending suggestions on 
specific action to perform based on environmental conditions (Stage 1) and energy 
usage (Stage 2). In addition, in Stage 3, feedback was based on peer comparison 
aimed at stimulating changes in thought and behaviour that result in short and long-
term reductions in energy use. First, it was used to catch attention and to involve 
the employees in an interest-arousing manner. Energy competition among peers 
was also useful to educate them by communicating information on what, why and 
how behaviour should change to win the race. In this way, motivating and 
enhancing users to desire to change behaviour increased the perception and reality 
of self-efficacy and suggested employees concrete and actionable behaviour. A 
competition called “Energy Marathon” in this engagement program compared 
participants on energy use, energy reductions and/or progress completing 
educational tasks or other goals (Figure 6.3-2).  

 

 

 

Figure 6.3-2. Examples for the peer comparison communication: “energy races” (Fabi, Barthelmes, 
and Corgnati 2016). 
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Communication tools   

 

 

Figure 6.3-3. User interface on mobile device. 

 
The model used for comparing employees’ energy use included energy reports 

sent to them as electronic reports (Figure 2) which aimed at educating them about 
their energy use and encouraging them to save electricity and not waste it. Tables 
and graphs showed employees the rank of individual participants and teams 
regularly every week. Based on the actual indoor environmental conditions, direct 
suggestions for actions to perform were provided through a mobile device interface 
shown in Figure 6.3-3.   

 

6.3.4 Key findings  

The outcomes of this study confirm the high energy saving potential that can 
be reached through behavioural change. The highest effectiveness was achieved by 
providing combined feedback on the environment and electric devices (plug-load 
usage related to electric appliances) (Figure 6.3-4). Savings were achieved also 
through peer comparison, but it was not as effective a real-time feedback that 
required to perform certain actions as soon as the analysis of indoor environmental 
parameters suggested so. The outcomes of Stage 2 demonstrate energy saving 
potentials up to ca. 40%.  
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Figure 6.3-4. Energy savings achieved throughout different stages of the energy engagement campaign  
(Fabi, Barthelmes, and Corgnati 2016). 

 

6.4 Energy engagement targeting thermal comfort and 
feedforward information based on BES in university 
buildings  

6.4.1 Project framework  

The investigations of this section are part of the ComfortSense project 
(Università degli Studi di Torino 2018) funded by the ”Bando regionale a sostegno 
di 25 progetti di ricerca industriale e/o sviluppo sperimentale di applicazioni 
integrate e innovative in ambito Internet of Data - IoD - POR-FESR 2007 - 2013” 
(PAPERS XIX and XX). The goal of this project was to enhance the human-
building interaction through a crowd-sensing approach that allowed for real-time 
visualization of thermal comfort conditions, as well as feedforward information 
based on dynamic energy simulations (Figure 6.4-1). Parameters collection and data 
analysis were established for the realization of a Direct Virtual Sensor (DVS) 
allowing to match systematically objective and subjective measures of comfort and 
to provide final feedback on comfort conditions to the room end-users and useful 
indicators to the energy manager. Furthermore, collected data allowed to calibrate 
dynamic energy simulations of the case study and to exploit alternative scenarios 
related to user behaviour.  



 
125 Chapter 6 – Development of Energy Engagement campaigns for behavioural change 

 
Figure 6.4-1. Methodological framework of the ComfortSense project, figure from Cottafava et al. 

(2019). 

6.4.2 Real-life application: Project testbed 

An Italian University campus located in Northern Italy was one of the principal 
ComfortSense case studies and represents the testbed for this analysis. The 
University campus consists in several buildings scattered throughout the city, which 
differ significantly in terms of building typology, dimension and construction year. 
The university comprises many student houses in the proximity of the main building 
that, however, were not taken into account during the analysis. In Figure 6.4-2, a 
floor map of the main building taken as case study for the project is reported. 

 

 

Figure 6.4-2. One of the ComfortSense project testbeds. 

6.4.3 Methodological framework: building energy simulation for 
behavioural change  

Sensor network and data collection  

In particular, a network of sensors allowed for measuring a representative set 
of indoor environmental parameters useful for the evaluation of comfort: air 
temperature, relative humidity, CO2 concentrations and people density were 
gathered every 10 minutes. Moreover, wearable sensors were adopted in the project 
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for collecting data on air temperature, air relative humidity and illuminance level to 
be matched with the data gathered by fixed building sensors.  

The second source of information was the smartphone application on which the 
participants at the Living Lab were able to express the perception of their comfort 
condition. Since the variability in energy consumption was described by an increase 
(or decrease) in terms of comfort conditions, the ultimate goal was to match the 
customized feedback related to the energy consumption with users' perceptions of 
comfort. In this way, building (or zone) occupants, could provide their feedback on 
perceived comfort conditions, and at the same time understand the relationship 
between the comfort and the amount of energy use.  
 

Data analytics and feedback  

Different evaluation methods have allowed to analyse information with specific 
purposes. First, data processing has allowed to obtain both statistics on participation 
to the Living Lab and real-time measurements. These elaborations were represented 
by infographics and reported in a project dedicated website, in social media main 
pages and in a specific application for the energy manager. 

Then, the data collection allowed the estimation of a Direct Virtual Sensor, 
which provided the average comfort level as a function of the measured objective 
and subjective data. DVS was useful to give the users information on comfort 
conditions in all the zones, even if not equipped with sensors. DVS comfort 
outcomes were directly displayed on the smartphone app that was realized during 
the first months of the experimentation.  

A dynamic building energy simulation software (IDA ICE, v.4.6) was used to 
model the monitored rooms and perform predictions energy dynamic simulations. 
The simulation outcomes were scaled up to the building level to have a benchmark 
for comparing different user behaviour scenarios. In particular, the simulation 
inputs were calibrated by taking into account in-field measurements and real 
consumption data in order to obtain a model close to reality. Since the purpose of 
the simulation scenarios was to define different occupant behaviours, three different 
types of users were simulated: “Standard” User, “Aware” User and “Unaware” user. 
In particular, “Standard” user was modelled as defined in the EU standard and 
policies (i.e. EN 15251); "Aware" and "Unaware" users are broken down into 
further sub-categories, each of them characterized by variations in indoor 
environmental parameters requests having an impact on comfort assessment. User 
behaviour effect was then modelled by running sequential simulations varying 
specific physical environmental parameters. The set of performed simulations 
allowed to verify the effect of each variable separately (From Scenario 1.1 up to 1.5 
and from Scenario 2.1 up to 2.5), and the combined effect (Scenario 1 and Scenario 
2) with respect to the Standard User (Scenario 0). Table 6.4-1 outlines the different 
values considered for the definition of the simulation scenarios. Obtained outcomes 
were then used to define customized feedback for the engaged users.  
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The following variables were identified for the definition of the simulation 
scenarios: 

 Winter and summer temperature set-point (°C); 
 Relative humidity (%); 
 Indoor illuminance level (lux); 
 CO2 concentration (ppm). 

The results obtained from the energy dynamic simulations were useful for other 
stakeholders, i.e. the energy managers, who could link energy forecast scenarios to 
optimize the operation of the building plant systems. 

 
Table 6.4-1. Assumed user scenarios based on indoor environmental variables. 

Set-point Winter  Set-point Summer  Relative Humidity  Illuminance level  CO2 Concentration  
Standard User 

Scenario 0 21°C 25°C 40%-70% 500-700 lux 700-1000 ppm 
Informed User 

Scenario 1.1 19°C 25°C 40%-70% 500-700 lux 700-1000 ppm 
Scenario 1.2 21°C 27°C 40%-70% 500-700 lux 700-1000 ppm 
Scenario 1.3 21°C 25°C 50%-80% 500-700 lux 700-1000 ppm 
Scenario 1.4 21°C 25°C 40%-70% 500-550 lux 700-1000 ppm 
Scenario 1.5 21°C 25°C 40%-70% 500-700 lux 800-1300 ppm 
Scenario 1 19°C 27°C 50%-80% 500-550 lux 800-1300 ppm 

Uninformed User 
Scenario 2.1 23°C 25°C 40%-70% 500-700 lux 700-1000 ppm 
Scenario 2.2 21°C 24°C 40%-70% 500-700 lux 700-1000 ppm 
Scenario 2.3 21°C 25°C 40%-50% 500-700 lux 700-1000 ppm 
Scenario 2.4 21°C 25°C 40%-70% 300-1000 lux 700-1000 ppm 
Scenario 2.5 21°C 25°C 40%-70% 500-700 lux 500-700 ppm 
Scenario 2 23°C 24°C 40%-50% 300-1000 lux 500-700 ppm 

 
 

Communication tools  

Three different data visualization types have been developed, based on 
JavaScript, on the main website of the project, in the form of a real-time dashboard: 

• display the historical power consumption; 
• display of all the data collected during the project; 
• display of average values of collected data, referred to a selected time 

interval and a specific zone in the campus map (Figure 6.4-3). 
Finally, an estimate of the energy consumption variations and related costs 

arising from changes in the physical environmental parameters such as temperature, 
relative humidity and CO2 were calculated by running energy dynamic simulations 
of the case study. 
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Figure 6.4-3. Real time visualization on dashboard (Cottafava et al. 2019). 

 

6.4.4 Key findings  

Each simulation scenario depicted in Table 6.4-1 is represented in Figure 5 and 
was compared to the measured energy consumption of the building (“Real 
Building”). The results of these scenarios were used to create “what if” scenarios 
implemented as direct feedback for the users in the mobile application. Indeed, the 
feedback related to different potential scenarios aimed at raising user awareness by 
showing them how their behaviour might influence building energy performances, 
also in terms of thermal comfort and costs. The synergy between ICT tools and 
energy simulations was therefore a crucial aspect for this research: On one hand, 
energy simulations were calibrated with collected data from the ICT tools; on the 
other hand, the results of the energy simulations were implemented to give feedback 
via mobile application and obtain behavioural change. Results showed that a 
generic "Unaware User" corresponds to significant energy savings and to a decrease 
of the classic peak of energy consumption for cooling during the summer months.  

In particular, the “Aware” User defined in Scenario 1 leads to a decrease in 
terms of annual primary energy consumptions by -29%. As regards the single effect 
of each variable setting, the highest energy savings are related to Scenario 1.4, in 
which the illuminance level range was set to 500-550 lux with respect to the 
“Standard” User (500-700 lux). Scenario 1.3, which regarded the variation of the 
indoor relative humidity settings, instead, did not lead to any significant changes of 
the annual primary energy uses of the building.  

On the other hand, the “Uninformed” User represented as Scenario 2 increased 
the annual primary energy use of the building up to +30% with respect to the 
“Standard” User. Similar to Scenario 1, the highest impact is given by Scenario 1.4, 
in which the range of the illuminance level was assumed to be 300-1000 lux. 
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Among the “Unaware” User scenarios settings, the variation of the CO2 
concentration ranges (Scenario 2.5) did not alter significantly the outcomes of the 
simulation results. In Figure 6.4-5, the final annual energy consumption of the main 
simulated user types (“Standard”, “Aware”, “Unaware”) are plotted against the real 
measured primary energy use (blue line) The graph highlights that the modelled 
“Standard” User (Scenario 0) is similar to the real building energy consumption 
profile. Indeed, Scenario 0 (grey line) was calibrated according to the current 
comfort settings in the case study. The simulated consumption profiles of the 
“Aware” and “Unaware” users are presented by the green and the red line, 
respectively. The latter profiles show a significant variation in terms of primary 
energy consumptions throughout the whole year, and especially during the summer 
peak.  

 

 
Figure 6.4-4. Primary energy consumptions of the analysed energy scenarios. 
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Figure 6.4-5. Annual primary energy consumption of the analysed scenarios. 

Finally, Table 6.4-2 summarises the main simulation results in terms of thermal 
comfort conditions and energy consumptions (electric, thermal and primary). As 
regards the simulated thermal comfort conditions, the authors referred to the 
European Standard EN 15251 (CEN 2008) and to the Predicted Mean Vote (PMV) 
Index (EN 7730; 2005) evaluation during winter and summer, respectively. 

 In particular, the table highlights that in Scenario 1 (“Aware User”), the PMV 
indexes both in winter and summer period are close to 0, corresponding to a neutral 
thermal condition and at the same time to a decrease of annual primary energy 
consumption of -29%. 

Table 6.4-2. Simulation results of the analysed scenarios. 

   
Scenario 0 
Standard 

User 

Scenario 1 
Aware 
User 

Scenario 2 
Unaware         
 User  

Comfort  

EN 15251 
 

Category I  
Category II  
Category III  
Category IV  

23% 
34% 
43% 
0% 

16% 
23% 
50% 
10% 

31% 
34% 
35% 
0% 

EN 7730  
PMV winter 

PMV summer 
-0.16 
0.02 

-0.24 
0.08 

-0.11 
0 

Energy 
Consumption 

Electric (kWhel/m2) 117.5 86.6 (-26%) 152.1 (+29%) 
Thermal (kWht/m2)  61.1 36.1 (-41%) 80.7 (+32%) 
Primary (kWhEP/m2) 316.1 224.1 (-29%) 410.7 (+30%) 

 
 

6.5 Discussions and further investigations  

 

6.5.1 Comparison of the three analysed engagement campaigns  

 
Figure 6.5-1 shows the behavioural change strategy for each of the presented 

projects. This comparison is aimed at highlighting that behavioural change can be 
leveraged through different triggers and that different typologies of feedback can 
be provided towards reaching energy efficiency goals and well-being of the 
occupants at the same time. The effectiveness of Campaign 1 still needs to be fully 
explored, however it represents the most interdisciplinary approach that tackles not 
only energy and comfort-related aspects, but also anthropological and biological 
(health) factors of the engaged users. A holistic approach and the combination of 
different areas of expertise seem to be essential to fully understand and leverage the 
behaviour of users in different building contexts. Campaign 2 exploits the stimulus 
of the employees to “be better than others” through peer comparison at work. The 
development of decision trees that allow for providing the users real-time feedback 
permit to interact with the users instantly when an action to improve their indoor 
environment was required. Campaign 3 exploited dynamic energy simulations to 
provide university staff and students information on how their behaviour can impact 
building energy consumption. The common objective of these campaigns is to 
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move towards a new human-building ecosystem, in which occupants become 
living sensors and exercise smart control over their indoor environment. This can 
only happen if the occupants are engaged to adopt a long-term behavioural 
change.  

 
(a) 

 
(b) 
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(c) 

Figure 6.5-1. The human in the loop - comparison of the 3 behavioural change campaigns. 

6.5.2 Towards a new human-building ecosystem  

As shown in Figure 6.5-2, the user becomes an active player in the human-
building ecosystem and interacts with the building and systems causing changes in 
indoor environmental quality and energy consumption (Fabi et al. 2017). The user 
node is activated by technology to be part of the sensing system (i.e. sensors and 
devices), receiving feedbacks on indoor environmental quality and health levels and 
the outcomes on energy savings. As a result, people will interact with the building 
and systems in a more “informed” and aware manner.  

Technology is then used to design buildings that help people work, live, 
perform and feel their best. 

Technology is a fundamental tool to let buildings be flexible and dynamic.  
The “DYNAMIC BUILDING” node refers then to buildings becoming active, 

flexible and adapting themselves according to the preferences of the users. A set of 
indoor, outdoor, fixed and wearable sensors gain and provide data through an app. 
Tailored information from and to users let the system learn and adapt itself to the 
user needs. 

 
Figure 6.5-2. The human-building ecosystem (Fabi et al. 2017). 

6.5.3 Long-term behavioural change objective   

According to the behavioural automatization process presented by Fabi et al. 
(2017), the long-term behavioural change can be described as follows (Figure 
6.5-3): 
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• Unawareness: The occupants might not be aware if and/or how their 
behaviour might impact energy consumption, their indoor environment quality and 
their own well-being (“I don’t know that I don’t know”); 

 
• Learning: With the help of the MOBISTYLE awareness campaign, the 

occupants learn about how their behaviour affects building energy use, the indoor 
environmental quality and their well-being (“I know that I don’t know”); 

 
• Habit formation: The occupants start putting into practice the information 

they learnt and may develop a change in routine habits (“I know that I know”); 
 
• Internalization of behaviour: The occupants adopt and internalize the new 

and more conscious behaviour and now act automatically (“I don’t know that I 
know”). 

 

 

Figure 6.5-3. Long-term behavioural change objective (Fabi et al. 2017). 

 

6.5 Perspectives and future challenges    

The presented energy engagement campaigns highlight that energy efficiency 
goals can be only met if the occupants adopt an energy-aware aware lifestyle. For 
this reason they should be informed about the consequences of their energy-related 
actions and how they can become “smart” users in smart buildings. Only in that 
way the impact of the human factor on building energy demand can be optimized 
and it is truly possible to reach the nearly zero energy target (Chapter 1). In order 
to optimize the behavioural change process, further work is needed to address the 
capability of innovative triggers in different building typologies and on a large 
scale. The effectiveness of different feedback strategies (e.g. feedback or 
feedforward information) and related analytics are crucial aspects that need further 
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attention. Also the effectiveness of different feedback typologies compared to each 
other should be carefully investigated. This includes characteristics such as type 
(numerical, graphical), communication strategy (prompts, pop-up message, 
educative advices, serious gaming, newsletters), length (concise, long), wording 
and design (efficacy of the chosen language), credibility (coherency of provided 
feedback. Oftentimes, behavioural change programs are designed to follow one 
particular approach, but do not evaluate the effectiveness of a wider range of 
feedback and communication strategies. Furthermore, a key challenge is to explore 
the required duration of energy engagement campaigns that allows for obtaining 
behavioural change on a long term, since otherwise the engaged users might fall 
back into their old (and not energy-friendly) habits. To this aim, further work is 
needed to perform post-project evaluations in order to assure energy savings not 
only on a short term, but rather to achieve and guarantee a reliable energy 
conservation measure through leveraging long-term behavioural awareness.  
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Chapter 7 

Conclusions  

7.1 Conclusive summary  

This Ph.D dissertation tackled different challenges in the field of energy-related 
behavioural research. Table 7.1-1 summarises research gaps, research questions and 
respective efforts made in this dissertation to contribute addressing shortcomings 
in the current research body.  

Table 7.1-1. Conclusive summary of this Ph.D dissertation. 

Research gaps Research questions  Contributions  

Lack of understanding to which 
extent OB can impact building 
energy use and thermal comfort in 
high performing buildings 

How significant is the impact that 
OB can have on building energy use 
and thermal comfort conditions of the 
occupants, especially in the context 
of high performing and 
technologically optimized buildings? 

Estimation of the impact of OB on 
building energy use and thermal 
comfort in low energy buildings 
(Chapter 2) 

Gap between real and predicted 
building energy use due to an 
oversimplification (e.g. fixed 
schedules) of the human factor in 
simulation programs 

Is there an innovative approach to 
model the stochastic nature of the 
human-building interaction 
influenced by key environmental and 
time-related drivers towards bridging 
the gap between real and predicted 
building energy use?  

Exploration of the Bayesian Network 
framework for developing advanced 
stochastic OB models (Chapter 3) 

Absence of qualitative data and 
individual characteristics and 
preferences of building occupants in 
existing models 

Which role do qualitative data and 
individual characteristics of the 
occupants play (e.g. thermal comfort 
attitudes) and how can they be 
introduced in the modelling process? 

Introduction of qualitative data and 
individual characteristics of the 
occupants in these models through 
tailored OB surveys (Chapter 4); 

Lack of reliable and affordable ways 
to collect large-scale occupant 
behaviour data 

Is there a reliable way for profiling 
OB on a large scale to provide 
enhanced building simulation input? 

Profiling OB (daily activities and 
occupancy) on a large scale based on 
Time Use Survey data (Chapter 5) 

Lack of innovative solutions for 
motivating and assessing behavioural 
change towards energy efficiency 
goals 

How to engage and assess 
behavioural change to optimise 
building operation and well-being of 
the occupants? 

Development and evaluation of 
energy engagement campaigns in 
different environments to improve OB 
and raise user awareness (Chapter 6) 
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7.1.1 Estimation of the impact of OB on building energy use and 
thermal comfort in low energy buildings 

The key findings of this chapter highlight that the energy-related occupant 
behaviour lifestyles significantly influence the energy performance and thermal 
comfort conditions, especially in high performing buildings, in which technological 
features have been optimized. Furthermore, results highlight that energy 
performance is also heavily dependent on the type of post-occupancy household 
arrangements. Hence, a building can only be considered an nZEB if zero-capital 
actions related to the behavioral change of the occupants become as important 
as technological high-performing solutions for the building features. Indeed, if 
the behavior of the inhabitants is energy wasting, it might be unmanageable to reach 
the nZE target, even if the building itself is defined “high performing;” the 
occupants need to be proactive in saving energy as well. Understanding the 
potential impact of technology-based and occupant behavior-based strategies—and 
the combination of the two—is, therefore, a key to learning how to make high-
performing buildings commonplace and how to reduce spread in energy 
consumption. This chapter also confirms the urgent need of developing reliable 
models that can capture the stochastic nature of the human factor in modelling 
environment to bridge the gap between real and simulated building energy use. 
Table 7.1-2 summarises tailored research questions and key outcomes of Chapter 
2.  

Table 7.1-2. Conclusive summary Chapter 2. 

Contribution Tailored research questions Outcomes 

Estimation of the 
impact of OB on 
building energy use 
and thermal comfort 
in low energy 
buildings 

What impacts can different 
occupant behaviour lifestyles 
and household arrangements 
have on the energy 
performance of a nearly zero 
energy building?  

With respect to the basic standard consumer scenario (REF-
SC), the energy consumptions vary from –83% for the low 
consumer scenario up to +76% for the high consumer. with 
respect to the basic scenario (REF, people per floor area: 0.04 
pers/m2), two-person household compositions might imply 
significant reductions in energy consumptions (–102%). 
Indeed, the variation of different types of households 
additionally increases the discrepancy of the final energy 
consumptions in the several scenarios (∼240%). This 
percentage is in line with the literature values regarding the 
variation of the energy uses due to occupant-driven 
interactions with the building envelope and systems (∼300%; 
Andersen 2007; Mahdavi 2011). 

What impacts can different 
occupant behaviour lifestyles 
and household arrangements 
have on the thermal comfort 
conditions of a nearly zero 
energy building?  

During winter, the best thermal comfort conditions are linked 
to the high consumer profiles for all types of household 
compositions On the contrary, the low consumer profiles are 
generally responsible for the poorest comfort conditions. 
However, energy savings and adequate comfort conditions 
can be achieved at the same time through adaptive actions 
(clothing adjustment). Results suggest that the thermal 
comfort conditions, especially associated to two-person 
households, during the cooling period do not vary 
significantly according to the different consumer lifestyles 
(Class I varies from 31 to 36% for the old and young couples 
scenarios, respectively). Low consumer profiles might, 
therefore, be accepted also for their indoor thermal comfort 
conditions. 

Which are the key behavioural 
patterns that should be 
addressed by decision-makers 
of behavioural change 
programs in high performing 
buildings?  

The most influencing occupant-driven variables on final 
energy consumptions are related to the electric equipment use 
in first place (from –28% up to +25%), and second, to the 
lighting use (from –26% up to +18%). Indeed, the 
unpredictable loads related to these variables gain greater 
influence than in buildings whose envelope-driven loads 
dominate the consumptions profile. 
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Do these key behavioural 
patterns differ in high and low 
performing buildings? 

As shown above, in the (i) nZEB scenario, the most 
influencing occupant-driven variables on final energy 
consumptions are related to the electric equipment use in first 
place (from –28% up to +25%), and second, to the lighting 
use (from –26% up to +18%). Indeed, the unpredictable loads 
related to these variables gain greater influence than in 
buildings whose envelope-driven loads dominate the 
consumptions profile. In the latter, or rather the scenario 
related to (ii) RB, results show that the most influencing key 
variable on energy consumption is given by the variation of 
the behavioural patterns related to the space heating/cooling 
set-points. 

 

7.1.2 Exploration of the Bayesian Network framework for 
developing advanced stochastic OB models 

This chapter proposed Bayesian Network modelling as a methodology to model 
window opening behaviour of occupants in residential buildings. The case study on 
the basis of measured data in a residential apartment located in Copenhagen, 
Denmark demonstrated the potential benefits of using the Bayesian Network 
framework for modelling the stochastic processes of energy-related behaviour with 
consideration of various factors that drive final control actions. The key research 
questions related to modelling stochastic window control behaviour were addressed 
through the case study and key findings are summarised in Table 7.1-3. 

Table 7.1-3. Conclusive summary Chapter 3. 

Contribution  Tailored research questions  Outcomes  

Exploration of the 
Bayesian Network 
framework for 
developing 
advanced stochastic 
OB models 

Which variables are key drivers 
that determine window control 
behaviour? 
 

The Kolmogorov-Smirnov (K-S) two sample test allows for 
identifying key variables that impact window control actions 
regardless the data type (i.e., continuous, categorical) and 
underlying trend between variables. The K-S two sample test 
ranked the following variables with respect to their influence 
on triggering window opening actions: time of the day, CO2 
concentration, indoor and outdoor temperature, and indoor 
relative humidity. However, it is important to highlight that 
this analysis was based on data from one apartment, 
eventually drivers might change in other apartments.  

What is the most suitable target 
variable of window control 
behaviour?  
 

Correlation analysis was performed to identify strong 
correlations between dominant variables that impact window 
opening behaviour. Adding correlations between the 
variables in the BN model by linking them with arcs did not 
increase the BIC score (criteria for best model selection) as it 
increases the model complexity but does not substantially 
increase the predictive power of the BN model. 

What level of correlations 
resides between variables and 
should they be captured in the 
BN model? 

This study showed that the window opening action is more 
suitable as a target variable to model window control 
behaviour than the window open/close state. Indoor 
environment variables such as indoor CO2 concentration 
level and indoor temperature were identified as key variables 
that change the window state, but at the same time, the indoor 
environment conditions are directly influenced immediately 
after a window control action takes place. Hence, when the 
window state was used as a target variable, the statistical 
model with using indoor environment variables as predictors 
did not correctly represent relationships between the indoor 
variables and window control behaviour. 

How to handle mixed data in 
the BN framework? 

The study demonstrated that most BN models used for only 
discrete or continuous datasets are not suited to fully 
exploiting information embedded in the mixed dataset. A 
reversed BN model was proposed to appropriately handle 
mixed data in the bnlearn environment. The proposed model 
was structured to predict the probability of a window opening 
action given the identified key environmental and time 
variables. In line with existing studies and the K-S two 
sample test results, arc strengths in the BN model also 
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indicated that, in this case study, the time of the day, CO2 
concentration and indoor/outdoor temperature are the most 
important variables. 

How to validate stochastic BN 
models and does the BN model 
have a high predictive power? 

The BN model was validated in terms of the expected loss 
value and the confusion matrix through the classical cross-
validation procedure. As the data points with WOAs 
(Window Opening Actions) are much smaller than those with 
NOAs (No Opening Actions), a tailored validation approach 
was applied to select the same number of data points for each 
case and compute the confusion matrix. The validation 
measures confirmed the high predictive power of the model 
and its successful application for modelling window control 
behaviour. In summary, Bayesian network modelling well 
represents the stochastic nature of window control behaviour 
in relation to a variety of explanatory variables and 
consequently provides predictions with high confidence. 
However, steps involved in the modelling process, 
specifically variable selection and validation, need to be 
carefully set up to correctly reflect the stochastic nature in the 
analysis process. 

 

7.1.3 Introduction of qualitative data and individual 
characteristics of the occupants in the modelling 
environment through tailored OB surveys 

The objective of this chapter was to gain a deeper knowledge on human 
interactions with the building, and in particular window control behaviour.  Field 
measurements with survey-based information of individual household members 
collected in 14 Danish town houses. Based on the collected dataset, the Bayesian 
Network (BN) framework was applied to capture underlying relationships between 
these factors and window control actions. The study showed that the Bayesian 
Network framework presents a promising environment for hierarchically and 
flexibly structuring a large number of explanatory variables that drive the occupant 
to perform a certain action. Table 7.1-4 summarises tailored research questions and 
key outcomes of Chapter 4. 

Table 7.1-4. Conclusive summary Chapter 4. 

Contribution Tailored research questions Outcomes 

Introduction of 
qualitative data and 
individual 
characteristics of the 
occupants in these 
models through 
tailored OB surveys 

How and which background 
information and individual 
characteristics/preferences of 
the occupants relevant to OB, 
and in particular window 
control behaviour, should be 
collected? 
  

To introduce individual characteristics of the occupants or 
households in the modelling process, a tailored survey 
framework was developed (see Annex A). The survey-based 
information was collected once during the heating period and 
was aimed at investigating a more extensive set of potential 
drivers:  

 individual comfort attitudes and preferences; 
 physiological factors and individual characteristics 

(e.g. gender, age, height, weight, smoking habits); 
 social and economic factors (e.g. education, household 

composition, household income); 
 perceived control and psychological factors (e.g. 

satisfaction of control options, knowledge of control 
options, interaction frequency with controls, safety); 

 motivations and habits related to window control 
behaviour; 

 adaptive opportunities (e.g. sequence of actions that 
occupants perform when they feel hot/cold). 

How can these factors be 
introduced in the modelling 
process and does the latter 
confirm that are they relevant? 

This study proposed a BN-based modelling procedure for 
window control behaviour that included not only 
environmental and time-related factors, but also a 
preliminary set of individual characteristics of the 
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respondents, such as thermal comfort attitude and 
preferences. The study was based on a combination of field 
measurement and survey-based investigations in 14 Danish 
town houses. In this case study, the outcomes revealed 
significant probabilistic dependencies between individual 
thermal comfort attitudes, preferences, and window control 
behaviour. 

 

7.1.4 Profiling OB (daily activities and occupancy) on a large scale 
based on Time Use Survey data 

In order to explore reliable ways to profile occupant behaviour on a large scale, 
in Chapter 5 data gathered in the diary-based Danish Time Use Survey (TUS) 
2008/09 of 9640 individuals from 4679 households was analysed. Individuals’ daily 
activities were logged in 10-min time increments for 24 h, starting and ending at 
04:00, during both weekdays and weekends. The aims of this study were to (i) 
profile energy-related daily activities of occupants during different seasons and 
weekdays/weekends (ii) investigate time-related characteristics of activities such as 
starting and ending times and durations, and (iii) profile occupancy patterns for 
weekdays/weekends for different household types. The outcomes highlight that 
TUS is a valuable data source for large-scale-analysis and can provide a solid base 
for valuable input for building energy simulation for bridging the gap between 
simulated and real energy consumption in the Danish residential sector; typical 
occupancy profiles for different household types for different days of the week are 
freely available online. Tailored research questions and key outcomes of Chapter 5 
are summarised in Table 7.1-5.  

Table 7.1-5. Conclusive summary Chapter 5. 

Contribution Tailored research questions Outcomes 

Profiling OB (daily 
activities and 
occupancy) on a 
large scale based on 
Time Use Survey 
data 

Is TUS data a useful source for 
profiling OB on a large 
(national) scale? 

The analysis provided in this study demonstrated that Danish 
TUS data provides valuable information for developing 
enhanced building simulation inputs for modelling occupant 
behaviour and its influence on energy consumption in the 
Danish residential sector. 

How can TUS questions be 
clustered into useful knowledge 
on OB (energy-related 
activities and occupancy)? 

In this study, the activities in the original survey framework 
were consolidated into a set of 10 energy- and occupancy-
related activity clusters valuable for occupant behaviour 
analysis in the residential sector. Since the focus of the study 
was to model occupant behaviour in dwellings, activities 
taking place outside the domestic environment were all 
placed in category: no. 9 “not at home”. Moreover, the 
definition of a category “not at home”allowed for 
development of detailed occupancy profiles.  

How can this information be 
translated into enhanced input 
for building energy simulation? 

The aims of this study were to (i) profile energy-related daily 
activities of occupants during different seasons and 
weekdays/weekends (ii) investigate time-related 
characteristics of activities such as starting and ending times 
and durations, and (iii) profile occupancy patterns for 
weekdays/weekends for different household types. The 
outcomes provide valuable input for building energy 
simulation for bridging the gap between simulated and real 
energy consumption in the Danish residential sector. To 
enhance building simulation inputs for occupancy in the 
Danish residential sector, online access to a spectrum of 
individual occupancy pro- files for different household 
typologies and different days of the week is provided.  

What are the outcomes (activity 
and occupancy profiling) in the 
Danish context? 

Daily profiles of ten energy- and occupancy-related activities 
were different depending on the season day of the week 
(week- days and weekends). Survival curves of the daily time 
durations of the activities provided typical starting/ending 
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times of each activity and representative occupancy profiles 
for different household typologies during weekdays and 
weekends. Furthermore, during weekdays occupants were 
most likely to leave their home at 08:00 or 13:00 and tended 
to return at noon or in the late after- noon/early evening hours 
(18:00).  

Do occupancy profiles based 
on the Danish TUS data differ 
from conventional profiles? 

The outcomes were in line with typical trends of hourly 
electricity profiles in Danish households. Indeed, similar 
peak values of hourly electric load profiles and some energy-
related activities were observed during the same hours of the 
day. The Danish TUS data provided occupancy patterns 
similar to an existing simplified occupancy profile developed 
by the U.S DOE. 

 

7.1.5 Development and evaluation of energy engagement 
campaigns in different environments to improve OB and 
raise user awareness 

Energy efficiency goals can be only met if the occupants adopt an energy-aware 
aware lifestyle. For this reason they should be informed about the consequences of 
their energy-related actions and how they can become “smart” users in smart 
buildings. Chapter 6 presented three energy engagement campaigns, which were 
analysed and compared following the structure of the elements in a behavioural 
change loop (sensor network and data collection, data analytics and feedback, and 
communication tools). The three engagement campaigns focused on three different 
key triggers for leveraging behavioural change, such as health aspects, comfort and 
peer comparison. Research questions and key findings of this chapter are 
summarised in Table 7.1-6.    

Table 7.1-6. Conclusive summary Chapter 6. 

Contribution Tailored research questions Outcomes 

Development of 
Energy Engagement 
campaigns for 
behavioural change 

How to leverage efficiently 
behavioural change through 
innovative triggers (e.g. health, 
comfort, peer comparison)? 

Section 6.2 highlighted that behavioural change might be 
leveraged through the introduction of health-related aspects 
in the motivation process. The willingness of the users to 
improve their own well-being (e.g. higher productivity in an 
adequate indoor environment, improvement of the 
cardiovascular system) represents a key trigger for raising 
user awareness and should be further explored. This goes in 
line with the improvement of comfort conditions highlighted 
in section 6.3. Also the comparison to other peers leverages 
behavioural change based on concepts of social norms and 
the motivation to “do better than this”.  

How to assess and evaluate 
behavioural change and related 
campaigns? 

The development of a methodology for assessing and 
evaluating behavioural change has been presented in section 
6.2.4. It is highlighted that the planning of the behavioural 
change strategy is a key to obtain solid results and to obtain 
a long term impact.   

What analytical solutions can 
be developed for feedback 
provision? 

Chapter 6 showed that there can be different analytical 
solutions for developing user feedback. The definition of Key 
Performance indicators based on real-time (or historic) in-
field measurements allows for providing useful feedback; 
however, the indicators need to be translated in useful and 
understandable information to the users. Also feedforward 
information developed through simulation tools can make the 
user aware of the consequences of his action and his impact 
e.g. on the environment.  

How much energy can be saved 
through behavioural change? 

Section 6.3.4 confirms that significant energy savings (up to 
44%) can be achieved through behavioural change 
interventions. These type of low-cost interventions should 
therefore become a key strategy when implementing energy 
efficiency measures.  



 

143 Chapter 7 – Conclusions 

 

7.2 Achievements and publications 

The framework of this Ph.D dissertation allowed for contributing to the current 
knowledge in literature through a series of international conference papers and 
journal articles, and in particular:  

 8 published peer-reviewed journal papers;  

 10 international conference papers; 

 1 book chapter. 

Paper XI was awarded with a Best Paper Award at the 4th International 
Conference on Building Energy & Environment 2018, 5-9 February, Melbourne, 
Australia, pp. 97-102. 

 
Further contributions were given in the context of the development of reports 

and deliverables of the presented projects (Chapter 6).  
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Chapter 8 

Perspectives and future challenges  

“The incredible thing about the human mind is that it didn’t come with and 
instruction book” (Terry Riley) 

 
This quote might be representative for the fact that the human mind and triggers 

for interacting with the building is a challenging task for the building energy 
research community. While the physical world and performances of the building 
services can be “measured and modelled” in a reliable way, the analysis of the 
human factor will always represent a key factor of uncertainty. However, the main 
objective of energy–related behavioural research is to reduce the factor of 
uncertainty and a lot of work has been done in this context in order to capture to 
some extent the stochastic nature of the human-building interaction. Further work 
is necessary to gain a more comprehensive picture of the way the users interact with 
the buildings, as well as targeting these behaviours to reach energy efficiency goals 
and reduce the environmental impact due to unaware actions. Table 7.2-1 
summarises key challenges for each line of research that require further work and 
perspectives that should be addressed based on the lines of research of this Ph.D 
dissertation.  

 

Table 7.2-1. Challenges, future work and perspectives. 

Line of research Challenges  Future work and perspectives  

Estimation of the 
impact of OB on 
building energy use 
and thermal comfort 
in low energy 
buildings 

Extension of impact 
estimations on a large scale  

Upcoming studies should include further investigations on 
different building types, as well as exploration on a larger 
scale. 

Consideration of occupant 
diversity  

Future work is needed to estimate the impact on building 
energy use and thermal comfort based on a larger variety of 
user types. 

Monitoring the impact on site 
Next to the simulation of occupant behaviour lifestyle 
scenarios, future work is necessary to define impacts in low 
energy buildings through in-field studies.  

Impact reduction through 
building automation  

Further work should be developed to gain a better 
understanding about the relationship between impacts of 
occupant behaviour and building automation solutions.  
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Exploration of the 
Bayesian Network 
framework for 
developing 
advanced stochastic 
OB models 

 

Model comparison  

Future work should address the comparison of different 
modelling approaches (e.g. Bayesian networks, logistic 
regression, Markov chains) in terms of their predictive power 
and ability to capture the human factor.  

Integration in building energy 
simulation programs 

Further investigations should address solutions for 
integrating the model outcomes into building simulation 
software (e.g. EnergyPlus, IDA ICE). 

Overcome current model 
limitations 

Future explorations should address current model limitations, 
such as the treatment of mixed data in a complex model.  

Integration of multiple target 
variables  

Further work is needed to integrate multiple control actions 
in the same model such as window control, window blinds 
control, thermostat control, light switching and occupancy.  

Introduction of 
qualitative data and 
individual 
characteristics of the 
occupants in these 
models through 
tailored OB surveys 

Investigation of a more 
comprehensive set of drivers 

Further exploration is needed on the relationship between 
occupant perception, satisfaction and behaviour related to 
social, psychological and cognitive factors. 

Behaviour and global comfort  

Further work is necessary to the relationship between 
occupant perception, satisfaction and behaviour and factors 
related to global comfort (thermal comfort, visual comfort, 
acoustic comfort, and indoor environmental quality). 

Investigation of more complex 
hierarchical models  

Future work should address how a comprehensive set of 
factors can be modelled statistically in a hierarchical 
Bayesian Network model (or with other modelling 
approaches). 

Integration in building energy 
simulation programs 

Further studies are needed to understand how a model based 
on a set of comprehensive explanatory variables can be 
introduced in simulation environments and if occupants can 
be clustered according to e.g. social or cognitive 
characteristics. 

Profiling OB on a 
large scale based on 
Time Use Survey 
data 

Analysis of Italian TUS data  
Further work is needed to explore and compare TUS data for 
modelling occupant behaviour in specific geographical areas, 
such as Italy. 

TUS data for energy-related 
modelling purposes 

Time Use Surveys re not specifically designed to investigate 
energy-related behaviour, tailored surveys could improve the 
reliability of the obtained responses and the modelling 
outcomes. 

Link between TUS data and 
electricity demands 

Further work should investigate the link between energy-
related activities and respective electricity demands in order 
to define high resolution demand profiles in households. 

Development of TUS-based 
stochastic models and 
validation 

Further investigations should regard the development of 
TUS-based stochastic models validating them against real 
energy consumption data. 

Development of 
Energy Engagement 
campaigns for 
behavioural change 

Innovative triggers for 
behavioural change 

Further work should address the capability of innovative 
triggers to leverage behavioural change in different 
building/district typologies, and which of them is the more 
effective in which context. 

Innovative ICT solutions 
behavioural change 

The development of innovative ICT solutions and their 
usability, as well as their capability to leverage behaviour to 
the maximum) is a topic that remains interesting to explore.  

Effectiveness of feedback 
typologies  

Further work is needed to fully explore which 
feedback/feedforward typologies are the most effective.  

Optimization of the learning 
process  

Further studies are needed in order to understand project time 
durations and assessments to reach a long-term behavioural 
change. 
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