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Abstract

Context: The technical debt (TD) concept inspires the development of useful methods and tools that support TD
identification and management. However, there is a lack of evidence on how different TD identification tools could
be complementary and, also, how human-based identification compares with them.

Objective: To understand how to effectively elicit TD from humans, to investigate several types of tools for TD
identification, and to understand the developers’ point of view about TD indicators and items reported by tools.

Method: We asked developers to identify TD items from a real software project. We also collected the output of
three tools to automatically identify TD and compared the results in terms of their locations in the source code.
Then, we collected developers’ opinions on the identification process through a focus group.

Results: Aggregation seems to be an appropriate way to combine TD reported by developers. The tools used
cannot help in identifying many important TD types, so involving humans is necessary. Developers reported that
the tools would help them to identify TD faster or more accurately and that project priorities and current
development activities are important to be considered together, along with the values of principal and interest,
when deciding to pay off a debt.

Conclusion: This work contributes to the TD landscape, which depicts an understanding between different TD
types and how they are best discovered.

Keywords: Technical debt, Automated technical debt identification, Human-based technical debt identification
Introduction
The technical debt (TD) concept brings a new perspec-
tive on how software development tasks are discussed
and managed. It describes the tradeoff between the
short-term payoffs (such as a timely software release) of
delaying some technical development activities and the
long-term consequences of those delays [7]. According
to Avgeriou et al. [5], TD is a collection of design or im-
plementation constructs that are expedient in the short
term, but set up a technical context that can make fu-
ture changes more costly or impossible. TD presents an
actual or contingent liability whose impact is limited to
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internal system qualities, primarily maintainability and
evolvability.
It is common for a software project to incur TD dur-

ing the development process since small amounts of
debt can increase productivity [43]. However, its pres-
ence brings risks to the project. Effects of TD can be no-
ticed in different stages of software development due to
different types of debt. Low quality, delivery delay, low
maintainability, rework, and financial loss are among the
top 10 most commonly impactful effects of TD [36, 37].
Based on a familiar vocabulary from the financial do-

main, the TD concept facilitates discussion among prac-
titioners and researchers and has potential to become a
truly universal language for communicating technical
tradeoffs. However, the TD management is more than
just facilitating communication; it is comprised of a
whole set of tools and techniques. These tools must
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provide, among other things, facilities for TD identifica-
tion, an essential step for making TD manageable and
explicit, which leads to creating a TD “list” that allows
better control of the debt situation. Currently, TD iden-
tification approaches can be broadly categorized into
two groups:

� Automated tools use a metric or analyze an artifact
in a way that defines indicators of TD in software
projects. Most of these tools have been developed to
detect potential debt in the source code;

� Manual approaches identify TD items by asking
developers or other stakeholders about the presence
of debt or by making a manual search for debt in
artifacts from the project.

Automated tools are less time consuming and their
application is scalable. However, manual approaches are
hypothesized to have two advantages over automated ap-
proaches. One is that they might be more accurate, i.e.,
more likely to identify TD that is most significant, while
automated analyses may reveal many anomalies that
turn out to be unimportant. The other advantage is that
human stakeholders might be able to provide additional
important contextual information related to each in-
stance of TD (e.g., effort estimates, impact, decision ra-
tionale) that is difficult or even impossible to glean from
analysis tools.
Both approaches are relevant and have been investi-

gated in different studies ([14, 23, 27, 38, 51, 52]; Mor-
genthaler [30, 34]). Some of these studies have indicated
that it is possible to identify certain classes of potential
TD (in particular design debt) with computer-assisted
methods (Schumcher et al. [14, 38]). Other studies have
shown that code comment analysis can also be used to
identify several types of debt such as design, defect, and
requirement debt [11, 25]. More specifically, Schuma-
cher et al. [38] showed that metric-based detection ap-
proaches perform well compared to human classification
and that their use decreases the effort spent on manual
code inspections.
Despite the fact that a number of studies have been

conducted regarding TD identification, there is a lack of
evidence on how different tools could be complementary
and, also, how human-based identification compares
with them. The work presented in this paper intends to
investigate this area by performing a two-phase study,
involving several complementary research methods, con-
sidering both automated and human-based TD identifi-
cation approaches. The goal of the first phase of the
study was to compare human elicitation of TD to auto-
mated TD identification. We studied three automated
approaches (code smells, automated static analysis
issues, and collection of code size and complexity
metrics), and how their output (in terms of the location
in the codebase they pointed to as having potential TD
items) compares to TD that is elicited from humans.
The goal of the second phase was to understand the dif-
ferences in the outcomes of the two approaches to TD
identification and gain an understanding of when and
how they can best be used and/or combined. We also
hoped, in Phase II, to glean from developers some un-
derstanding on findings that were observed from the
first phase but that were hard to understand without
contextual information.
The results from the first phase were previously pub-

lished [51]. Here, we summarize the previously pub-
lished results from Phase I, present the results from
Phase II, and then draw conclusions based on the entire
set of results. Thus, this paper includes new analysis of
data that was collected in addition to that presented in
the previous paper, in particular the focus group, plus
the integration of the two data sets. Figure 1 highlights
the results from Phase I that were published in [51] (in
yellow), the steps from Phase I that were reanalyzed
based on the whole set of data that was collected, and
the steps of the work that are specific to this paper (in
blue). Thus, this work has three main contributions for
the area:

1. Better understanding of how to elicit TD from
humans: We assessed a TD template [40] that can
be used to capture, store, and communicate
essential information about TD to support decision-
making about debt payment. Our results give some
insight into the dynamics of eliciting TD from a
team of developers, helping us to answer such ques-
tions as: How did the developer find the TD items?
Were identified TD items related to code
ownership?

2. Comparison among several types of tool support for
TD identification: Despite the fact that automated
approaches point to system code fragments that
need improvement, it is not clear yet if they point
to the most important TD from software project
stakeholders’ point of view. Thus, we are interested
in exploring the extent to which they can support
TD identification, how big of a gap they leave if
used without human elicitation of TD, and whether
new tools might be warranted, possibly derived
from knowledge of manual TD inspections. This
understanding can help address questions such as
how tools can best be used, instead of or in addition
to manual approaches, in the identification of TD.

3. Developers’ point of view about TD indicators and
TD items reported by tools: We asked questions
regarding the connection between a TD indicator
(e.g., as reported by a tool) and a TD item (i.e.,



Fig. 1 Research strategy
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something a developer would find worthwhile to
pay off ), the value of performing preventive
maintenance to remove some of the issues found by
the tools, and level of surprise about the results
reported by the tools.

We identified that the main resources used by the de-
velopment team members to identify TD items is their
own knowledge on the project, augmented by an artifact
closely related to their own specific development tasks.
Different people, who work with different artifacts and
have different roles on the project, appear to report
completely different TD items. Thus, we have further
shown that different stakeholders know about different
debt in their project, indicating that TD identification
should include a range of project team members. We
also found that automated TD identification tools, to
some extent, point to different potential debt than
people do. The three different automated approaches
did well in pointing to source code files with defect debt
and also could point to some instances of design debt.
On the other side, many developer-identified TD items
could not have been found by the tools or metrics since
the artifacts in which they were located are not included
in the static code analysis. The type of debt that repre-
sented the greatest agreement between the human-
elicited TD items and the automatically detected TD
was defect debt.
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The remainder of the paper is organized into six more
sections. Section 2 describes some background concepts
related to TD and also related work. Next, section 3 pre-
sents the design of the present study. Section 4 reports
the results of the quantitative and qualitative analyses of
the study data. Next, section 5 discusses the results of
the study. After, the threats to validity are presented in
section 6. Finally, section 7 presents some final remarks
on this work.

Background and related work
This section begins with an overview of relevant back-
ground on technical debt management. In particular, we
present a specific view of TD management that moti-
vates our data collection instrument. Second, we review
past work on TD identification approaches in particular.

Background
TD is seen as an important part of software manage-
ment [43]. According to Guo et al. [15], the manage-
ment of TD can center on a TD list. This list contains
TD items (in the following simply referred to as items)
that represent tasks that were left undone, but that run a
risk of causing future problems if not completed. Each
item is described by a set of properties (see Table 1).
The principal on the debt refers to the cost to elimin-

ate the debt (i.e., the effort required to complete the
task). Depending on the type of TD, this can translate
into different kinds of activities, such as updating out-
dated documentation, refactoring code that is hard to
maintain, or defining new test cases to improve their
coverage. The cost of TD repair might be understood
better in some cases than in others. For example, adding
missing documentation might be more straightforward
to estimate than a more complex code refactoring. Sea-
man and Guo [40] proposed to initially estimate the
principal on a rough ordinal scale from low to medium
to high, which allows enough understanding to contrib-
ute to iteration planning. To further help in estimating
principal, historical effort data can be used to make a
Table 1 The TD template [40]

ID TD identification number

Responsible Person or role who should fix this TD item

Type design, documentation, defect, testing, or other t

Location List of files/classes/methods or documents/pages

Description Describes the anomaly and possible impacts on f

Estimated principal How much work is required to pay off this TD ite

Estimated interest
amount

How much extra work will need to be performed
High/Medium/Low

Estimated interest
probability

How likely is it that this item, if not paid off, will c
High/Medium/Low

Intentional? Yes/No/Do not Know
more accurate and reliable estimation beyond the initial
high/medium/low assessment. For example, if a debt
item is a set of classes that need to be refactored, the
historical cost of modification of those classes can be
used as the future modification cost (principal of the
debt item) estimation.
The second main component of TD is interest, which

is composed of two parts:

1. The interest amount is the potential penalty in
terms of increased effort and decreased productivity
that will have to be paid in the future as a result of
not completing these tasks in the present, including
the extra cost of paying off the debt later, as
compared to earlier. Sometimes, historical data can
help in estimating the interest amount. Like TD
principal, data on past defects, effort, and changes
can be useful. Also, like TD principal, an initial
estimate of high, medium, or low can be used for
initial prioritization decisions [40];

2. The interest probability is the probability that the
debt, if not repaid, will make other work more
expensive over a given period of time or a release
[40]. The probability part of the definition of
interest is necessary because TD will not always
bring negative impacts on future project activities.
For example, the higher the probability that the
artifact that contains the debt will undergo
maintenance, the higher the probability that the
interest will negatively impact the project, and vice
versa. Interest probability can also be estimated
using, e.g., historical usage and defect data. Again,
estimation can use a simple high, medium, and low
scale until numeric estimates become necessary. In
addition, it is also important to consider the time
variable because probability varies over time. For
example, the probability that a module that needs
refactoring will cause problems in the next release
(because modifications will need to be made to it)
may be very low, but that probability rises if we
ype of debt

involved

uture maintenance

m on a three point scale: High/Medium/Low

in the future if this TD item is not paid off now on a three point scale:

ause extra work to be necessary in the future on a three point scale:
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consider longer periods of time, e.g., over the next
year or 5 years.

The process of managing TD usually starts with de-
tecting TD items to construct the TD list. The next step
is to measure the debt items on the list by estimating
the principal, interest amount, and interest probability.
This estimation (often using a scale of high/medium/low
as in this example) is difficult and most often relies on
subjective, but educated, guesses from developers. How-
ever, there are ways to use historical data to make this
estimation more accurate. For example, interest prob-
ability, in most cases, is really the probability that a
given module will be touched in future maintenance
work. This probability can be estimated by calculating,
based on historical data, the frequency with which the
module has been touched in past releases. Once each
TD item’s interest and principal have been estimated,
using whatever methods are available, the debt items are
monitored and decisions can be made on when and
what debt items should be paid or deferred.
Recently, three mapping studies addressed the man-

agement of TD as part of their scope [1, 4, 22]. Ampat-
zoglou et al. [4] investigated the management of TD
from a financial perspective. Their goal was to under-
stand how financial aspects are defined in the context of
TD and how they relate to the underlying software en-
gineering concepts. As a result, the authors found that
the most common financial terms that are used in TD
literature are principal and interest. Besides, the financial
approaches that have been more frequently applied for
TD management are real options [3], portfolio manage-
ment [41], cost/benefit analysis [41], and value-based
analysis [44].
In another secondary study in the area of TD manage-

ment, Li et al. [22] presented an overview on the current
state of research on TD management. The authors iden-
tified eight TD management activities (identification,
measurement, prioritization, prevention, monitoring, re-
payment, documentation, communication) and 29 tools
for TD-related activities (among the 29 tools, only four
are tools dedicated to managing TD). Most tools support
code and design TD management, while few tools sup-
port managing other types of TD. Also according to the
authors, these TD activities received significantly differ-
ent levels of attention, with TD repayment, identifica-
tion, and measurement receiving the most attention and
TD representation/documentation the least attention.
More recently, Alves et al. [1] identified several TD

management strategies. However, only five strategies
(Portfolio Approach [41], Cost-Benefit Analysis [41],
Analytic Hierarchy Process [41], Calculation of TD Prin-
cipal [16], and Marking of dependencies and Code Issues
[9]) were cited in more than one paper. Thus, most of
them still require further investigation and empirical
evaluation. Further, few empirical studies have been per-
formed in real settings. This is an indicator that, for
some areas, we still do not fully understand all the costs
or benefits of the proposed TD management strategies.
Finally, Rios et al. [36, 37] identified, through a tertiary

study, a list of situations in which debt items can be
found in software projects, and organized a map repre-
senting the state of the art of activities, strategies and
tools to support the TD management. According to the
authors, there are a number of gaps that need to be ad-
dressed when dealing with TD management. The exist-
ing limitations such as lack of tools/strategies to support
some activities and the lack of comprehensive solutions
that consider a management process for TD as a whole
can make TD management difficult to perform.
Our work focuses on TD identification (discussed in

the next section), which is common to all approaches to
managing TD in the literature.
Technical debt identification
In this study, we are focused on the first step in TD
management: TD Identification. We can use different
strategies, both automated and human-based, to find TD
items for each TD type. Two automated strategies that
have been proposed and studied to support the identifi-
cation of design debt in software projects are identifica-
tion of code smells and issues raised by automatic static
analysis (ASA) tools, aka ASA issues. In addition to code
smells and issues, in this case study, we also collected
basic structural code metrics for size and complexity, in
order to study whether any relationship exists between
high levels of these metrics and the existence of TD.
The concept of code smells was first introduced by

Fowler and Beck (as Bad Smells) [12] and describes pat-
terns in object-oriented code that are less than ideal,
e.g., that violate the rules of good object-oriented design,
and should be refactored. Code smells are a type of de-
sign debt, because they are believed to slow down devel-
opment, in particular changes and enhancements to
affected code, when not removed early. Fowler and Beck
originally suggested that developers identify code smells
by performing code reviews during development, i.e.,
continuous refactoring. Marinescu [26] was the first to
see the opportunity to automatically detect code smells
by using metric-based rules that can be checked via a
tool. He proposed rules (detection strategies) for identi-
fying a set of 11 code smells. The precision and recall
for Marinescu’s classifiers have been studied for the most
often studied code smell, god classes, and found to be
high (precision 71%, recall 100%) [38].
Several studies have looked into the relationship be-

tween code smells (and related phenomena) and change
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and defect proneness. Most of these have focused on
one smell in particular, god classes. Most such studies
have found that god classes are associated with higher
change proneness and defect proneness [20, 21, 33, 38,
40], although there is some evidence that this association
disappears when the number of defects and changes are
normalized by size [33]. Other examples include a study
by D’Ambros et al. [10] that identified that introducing a
design flaw in a class is likely to generate bugs that affect
the class. However, this does not hold for all design flaws
in all software systems. Further, the authors also identi-
fied that there is no design flaw addition that has a con-
sistently high correlation with bugs in all the systems. In
another study on the relationship between code smells
and software maintainability, Yamashita and Moonen
[47] investigated the interactions among 12 code smells
and analyzed how those interactions relate to mainten-
ance problems. This study found empirical evidence that
certain inter-smell relations were associated with prob-
lems during maintenance and also that some inter-smell
relations manifested across coupled artifacts. More re-
cently, Soltanifar et al. [42] have used data science and
analytics techniques on software data to build defect
prediction models. As result, they found that code smells
are a good indicator of defect proneness of the software
product. This literature is representative of the work that
has established at least a correlational relationship be-
tween code smells and maintainability and has motivated
the use of code smell detection as a form of TD
identification.
Other types of TD identification that appear frequently

in the literature are automated static analysis (ASA) and
the use of code metrics. ASA refers to a set of source
code analysis techniques that consist of extracting infor-
mation about a program from its source or source code-
based artifacts using automatic tools [6]. ASA tools look
for issues in terms of violations of recommended pro-
gramming practices and potential anomalies that might
cause faults or might degrade some dimension of soft-
ware quality (e.g., maintainability, efficiency). ASA issues
are generally at a finer-grained level (e.g. at the source
code line) than code smells (e.g. at the method or class
level), and previous work indicates that there is little
overlap between the two automated approaches when
used to identify TD [52]. Issues should be removed
through refactoring to avoid future problems, and thus
may constitute TD. Many ASA tools exist; for this study,
we selected FindBugs, which is widely used in the litera-
ture and already used in past work [17, 45].
Gat and Heintz [13] identified TD in a customer sys-

tem using both dynamic (i.e., unit testing and code
coverage) and static (computing rule conformance, code
complexity, duplication of code, design properties) pro-
gram analysis techniques. Nugroho et al. [32] also used a
combination of static analysis and code metrics to iden-
tify TD. They assigned levels of different metrics and in-
dicators to risk categories to quantify the amount of
interest owed in the form of estimated maintainability
cost. A CAST report [8] focuses on the density of static
analysis issues on security, performance, robustness, and
changeability of the code. The authors built a pricing
model assuming that only a percentage of the issues are
actually being fixed. Sonar (http://www.sonarsource.
org/) is an open source toolkit that has gained in popu-
larity. It also uses static measurements against various
source code metrics and attributes to assess the level of
TD in a code base.
In a recent mapping study, Alves et al. [1] investigated

the types of TD, how TD items can be identified through
indicators of their existence in projects, and the strat-
egies that have been developed for the management of
this debt. Moreover, they assessed the degree of maturity
of the existing proposals through an analysis of the em-
pirical evaluations that have been carried out. TD indica-
tors allow the discovery of TD items when analyzing the
different artifacts created during the development of a
software project. The authors observed that some types,
such as design, already have a fair number of indicators
and, on the other hand, indicators were not identified
for some types of debt (process, infrastructure, people,
and usability debt). In total, the study mapped 45 differ-
ent TD indicators, and the results show that the most
cited and analyzed TD indicator is code smell, and the
type of code smell that has been most investigated is
god class. According to the authors of the study, an ex-
planation for this is that god classes are conceptually
easy to understand and are up to 13 times more likely to
be affected by defects and up to seven times more
change-prone than their non-smelly counterparts, which
makes them a good candidate when starting to detect
TD from the source code.
Few studies have explored the task of manually identi-

fying TD. Potdar and Shihab [34] manually analyzed
code comments to identify text patterns and TD items.
They read more than 101 K code comments and showed
that 2.4–31.0% of the files in a project contain self-
admitted TD. The most used text patterns that indicated
the presence of TD were (i) “is there a problem” with 36
instances, (ii) “hack” with 17 instances, and (iii) “fixme”
with 761 instances. Next, Maldonado and Shihab [25]
evolved the work of Potdar and Shihab [34] proposing
four simple filtering heuristics to eliminate comments
that are not likely to contain technical debt. For that,
they read 33 K code comments from source code of five
open source projects. According to the authors, the
most common type of self-admitted TD is design debt
(between 42% and 84% of the classified comments). Re-
lated to this work, but performed in an automatic way,

http://www.sonarsource.org/
http://www.sonarsource.org/


Table 2 Characterization of the participants

Participant Level of experience in years

Project Manager 10

Developer 2

Tester 2

Developer 1.5

Maintainer 1.5

Spínola et al. Journal of the Brazilian Computer Society            (2019) 25:5 Page 7 of 21
Farias et al. [11] proposed the CVM-TD. CVM-TD is a
contextualized structure of terms, implemented in a tool
named eXcomment, which focuses on using word clas-
ses and code tags to provide a TD vocabulary, aiming to
support the detection of different types of debt through
code comment analysis.
Despite the fact that a number of studies have been con-

ducted regarding TD identification, there is a lack of evi-
dence on how different tools could be complementary
and, also, how human-based identification compares with
them. This study intends to shed some light on this area.
Research design
In this section, we describe the methods and techniques
we used to investigate our research questions. Both
phases took place in the same industrial context, which
we describe in the next subsection, and used the same
goals, described in the “Goal and research” section.
Then, we describe the data collection and analysis activ-
ities in Phase I and Phase II, respectively.
Figure 1 illustrates our research strategy. The two

phases of the study are complementary and contribute
in different ways to the study findings. While in the first
phase, the goal was to understand the human elicitation
of TD and compare it to automated TD identification
(see “Phase I” section), in the second phase the goal was
to understand those differences, and gain an understand-
ing of when each set of approaches is appropriate and
how they can best be combined (see “Phase II” Section).
For instance, at the end of the first phase, we had several
open questions regarding how developers found TD
items, if there is a connection between identified TD
items and code ownership, if the results provided by
tools were expected or unexpected, and others. Phase II
was designed to answer as many of those open questions
as possible. At the end, the results from both phases
were analyzed together.
Context
The two-phase study was conducted at KaliSoftware, a
small software development company located in Rio de
Janeiro, Brazil, that developed primarily web applica-
tions written in Java and based on the MVC framework.
The project we studied consisted of a small application
of 25 K non-commented lines of code. It was a
database-driven web application for the sea transporta-
tion domain. It had undergone a full product lifecycle
(elicitation, design, implementation, deployment, and
maintenance). The project team was composed of five
professionals: two developers, one maintainer, one
tester, and one project manager who also played the
role of the requirements analyst. Table 2 shows the
level of experience of the participants in terms of years
working in the software development area.

Goal and research questions
The goal of the study is to understand the human elicit-
ation of TD and compare it to automated TD identifica-
tion. The study research questions are:

� RQ1—Do the TD identification tools find the
TD items that were reported by the members
of the development team?

� RQ2—How much overlap is there between the
TD items reported by different members of
the development team?

� RQ3—Is the TD item template a feasible and
effective tool for eliciting TD items from
members of development teams?

Data collection and analysis
Below, we outline the data collection and analysis tech-
niques used in Phase I and Phase II. More details about
the Phase I research design can be found in [51].

Phase I
As can be seen in Fig. 1, one of authors trained the de-
velopment team in TD basic concepts via Skype. This
training included an opportunity for Q&A. As the de-
velopment team’s native language was Portuguese, all
the material was prepared and then translated to Portu-
guese before presentation. Initially, we explained some
basic concepts related to TD. The definition of TD we
used was [29]: Technical Debt refers to delayed tech-
nical work that is incurred when technical short cuts
are taken, but that creates a technical context in which
the same work will cost more to do later than it would
cost to do now. To explain the attributes of a TD item
(principal, interest, interest probability) and the TD
template used to report a TD item, we used the con-
cepts and definitions presented in the “Background”
section of this work.
During the training, we wanted to give some examples

of TD items to make sure that the team members under-
stood the concept well. However, we also wanted to
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avoid biasing them towards, later, reporting only TD
items that were similar to the examples we presented.
Our solution was to present only non-software-related
TD items as examples (for instance, “TD items” related
to house or car repair). The types of TD presented dur-
ing the training (design, documentation, defect, and test-
ing) were defined and described as follows:

� Design debt: any kind of anomaly or imperfection
that can be identified by examining source
code that leads to decreased maintainability if
not remedied;

� Testing debt: refers to issues found in testing
activities that can affect the quality of those
activities. Examples of this type of debt are tests
that were planned but not executed;

� Documentation debt: refers to the problems found
in software project documentation and can be
identified by looking for missing, inadequate,
or incomplete documentation of any type;

� Defect debt: known defects that are not yet fixed.

We indicated that those types are just examples of
debt that could affect software projects. Thus, the par-
ticipants were free to consider any other type of debt
during the study. After the training, two parallel activ-
ities took place: manual and automatic TD identifica-
tion, i.e., collecting TD items from the development
team and collecting the output of tool-based analysis
on the source code.
For automatic TD identification, we applied the

CodeVizard and FindBugs tools to the latest version of
the subject project source code, in order to identify
code smells and ASA issues. These tools were chosen
primarily because of our previous experience in using
them in studies of technical debt [14, 18, 38, 45, 48–50,
52], as well as their ability to find common smells and
issues. They were, at the time, the best tools available
for our purposes. The resulting data described, for each
file (i.e., class) in the code base, how many of each type
of code smells were identified and how many of each
type of ASA issues were present. Each FindBugs issue
has a category (e.g., Performance, Correctness), and a
priority from 1 (highest) to 3 (lowest). We also selected
and computed for each file the following structural
metrics: Lines of Code, McCabe’s Cyclomatic Complex-
ity, Density of Comments, and Sum of Maximum Nest-
ing of all Methods in a Class. Lines of Code and
McCabe’s Cyclomatic Complexity are widely used in
the literature on defect and maintainability prediction
(e.g., [31, 35]). Higher accidental complexity is hypothe-
sized to point to TD since complexity increases main-
tenance cost (TD interest). Density of comments was
selected to study whether highly commented code
might have a relationship with TD, while Max Nesting
measures complexity in depth similar to McCabe’s
complexity measure. The metrics were computed with
ad-hoc scripts/tools. Application of all these tools, met-
rics, and indicators resulted in a very large amount of
data and an enormous number of potential TD items.
Therefore, in order to present relevant results, we de-
vised and applied some filtering strategies to the tool
outputs. Thus, the results presented in the “Results”
section do not include all of the metrics and indicators
mentioned here. The filtering mechanisms are also ex-
plained in the “Results” section.
In parallel to automatic identification, the develop-

ment team (project manager, developers, maintainers,
and testers) was asked to report TD items individually.
For this, we provided the team members with a short
questionnaire to both report the TD items through the
TD template (question 1 below) and provide informa-
tion about the difficulty of documenting debt items
(questions 2 to 5 below). The respondents were asked
to document up to five of the most pressing TD items
they knew of in the current version of the software.
The questions were the following:

1. If you were given a week to work on this
application, and were told not to add any new
features or fix any bugs, but only to address TD
(i.e., make it more maintainable for the future),
what would you spend your time on?

2. How difficult was it to identify TD items?
3. How difficult was it to report TD items (i.e., fill in

the template)?
4. How much effort did you need to identify and

document all the TD items?
5. Which are the most difficult fields to fill in/which

are the least difficult ones?

All answers were given as free text, although the re-
spondents were asked to use the TD template in Table 1
to answer question 1.
In addition to the financial properties of TD, several

properties that support decisions on repayment are cap-
tured in the TD template:

1. The type of debt can be helpful to tailor debt
payment to critical quality characteristics of
interest. For example, known defect debt may be
differently perceived in life critical software
applications. Other known TD types are design
debt, documentation debt, and testing debt, all of
which are defined above as they were defined for
the respondents. Other types of debt have been
identified and proposed in the literature [2], but at
the time this study was performed, these were the



Spínola et al. Journal of the Brazilian Computer Society            (2019) 25:5 Page 9 of 21
types primarily referenced, and so were the ones
used in the survey. However, respondents were also
free to invent other types of debt when these four
did not cover a particular situation, and some of the
respondents did that.

2. Was the original decision to go into debt made
intentionally or unintentionally? This information
can help to understand how explicit debt and
TD decisions are managed in a project.

3. Who is responsible for fixing the TD? This
information is important for administrative
reasons and may help to provide a basis for
assessing principal and interest.

4. Where is the TD located? This field indicates,
if the debt is code-related, the file, class, or
component that needs to be modified to
eliminate the debt. For other types of debt,
the relevant artifact or document is specified.
This information is important to understand
impact on the product, relationships between
items, and ripple effects in source code when
repaying the debt. For our study, it also allowed
us to match up the elicited TD items with the
output of the automated tools.

After manual and automatic identification of TD, we
performed data analysis with a comparison of the two
sets of results. More details and preliminary results
from Phase I were presented at the 17th International
Conference on Evaluation and Assessment in Software
Engineering (EASE 2013) [51].

Phase II
Phase II of the study involved a focus group with devel-
opers to help gain a deeper understanding of the find-
ings from Phase I. After reviewing the Phase I results,
we developed a structure for the focus group based on
questions about specific findings. First, questions CQ1
and CQ2 were used to gain an overall perception of
how the project team members worked to identify TD
items on the project:

� CQ1—How did you (developer) find the
TD items?

� CQ2—Were identified TD items related
to code ownership?

Next, we chose several specific instances in the
results where the same location in the source code was
found to have a high level of some TD indicator (as evi-
denced by one of the automated tools) and was indi-
cated in a TD item reported by a developer. Question
CQ3 helped us to determine if these instances of over-
lapping were meaningful:
� CQ3—Do you (developer) think there is a
connection between this indicator and the
TD item?

Questions CQ4 and CQ5 were asked about specific
instances in the results where issues were identified by
automated approaches in a particular file, but no TD
items in those files were present on anyone’s reported
TD list:

� CQ4—Does this file have any TD?
� CQ5—Would it be worthwhile to do some

preventive maintenance to remove some
of the issues found by the tools?

Finally, questions CQ6 and CQ7 were asked to shed
light on cases where a TD item was flagged by devel-
opers in a particular location but the tool-identified in-
dicators did not signal a problem:

� CQ6—Are you (developer) surprised that the
automated tools did not find any problems
with this file?

� CQ7—Would you have expected to see
more problems found by the tools? Why
or why not?

Due to the distance and language, this phase also in-
volved a company contact, who was part of the re-
search team (first author) and was in charge of data
collection, conducted the focus group, and performed
all communication between the project team and the
research team. All communication with the project
team was in Portuguese, while the research team com-
municated in English. We conducted the focus group
meeting over Skype, audio-recorded the entire session,
and transcribed it for analysis. The transcription of the
focus group was then translated to English. The next
step was to code [39] the transcription in order to find
evidence to help the authors understand the differ-
ences found in the results from Phase I. The coding
was also performed by the first author, who generated
and followed the coding schema defined in Table 3.
We coded the focus group data in vivo, using codes

that emerged from the data and thus were, in some
sense, related to the formulated questions. For this, we
used a combination of pen, paper, and Microsoft Excel.
We formulated findings by synthesizing the coded seg-
ments pertaining to categories that had substantial
data weight. That is, the findings were grounded in the
data rather than formulated ahead of time and vali-
dated through the data. At the end, the results of both
Phase I and Phase II were put together and we drew
conclusions based on the entire set of results.



Table 3 Coding schema

Code Description

TD Item Description Question and answer that helps explain a specific TD item.

Specific Question A question about a specific TD item.

Generic Question A question that is not specific for any TD item.

New Question A question that was not planned before the meeting.

Confirmation Question A question asking for confirmation from all participants.

Metric Correlation Answers related to the correlation between TD items and metrics.

Code Smells Correlation Answers related to the correlation between TD items and code smells.

Find bug Correlation Answers related to the correlation between TD items and FindBugs issues.

Note Moderator notes about participant actions.

Answer Answers to new or generic questions.

Technical Debt Overlap Answers addressing the lack of overlap between the identified TD Items.

Technical Debt Identification Answers about the manual TD identification process.

Indicators and Technical Debt
Identification

Answers about the correlation between technical debt and metrics, code smells, and
FindBugs issues.

Benefits of TD Management Comments about the benefits of TD management.

Benefits of TD Documentation Comments about the benefits of TD identification.

TD Identification without code reading Comments about TD identification without reading the source code.

TD Identification with code reading Comments about TD identification by reading the source code.

Indicators and Problems in the Project Comments about the correlation between problems in the source code and metrics, code
smells, and FindBugs issues.

Code Inspection Feasibility Comments about the feasibility of inspecting the source code to look for TD items.
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Results
The tools we used generated a large number of issues
pointing to potential TD, with indicators occurring in
nearly every file in the code base. Therefore, we had to
pre-filter the results in some way to allow a meaningful
comparison with the manually elicited TD items. For
each automatically generated indicator, we sorted the
source code files by the number or severity of issues
found. For example, we sorted by the number of Find-
Bugs Priority 1 issues, and by the value of each of the
source code metrics, and the number of each kind of
code smell found. For each indicator, we examine the
top 10% of the sorted list and determined how many
source files in that 10% corresponded to TD items re-
ported by developers. The indicators having the most
developer-reported source files in the top 10% were
FindBugs P1 issues, the MAX nesting metric, and In-
tensive Coupling code smell.
We realize that this filtering approach somewhat

biases our results by only showing the automated tool
results that performed best in terms of matching up
with manually reported TD items. Our motivation was
to determine simply if any of the automated ap-
proaches were related to the TD elicited from devel-
opers and to simplify the presentation of results.
Clearly, we cannot claim that these three top
performing indicators in this study would also be the
best ones in any given case. Thus, we can reject the
notion that none of the automated indicators (metrics,
ASA issues, and code smells) are good at finding TD,
but we are still not at the point where we understand
which indicators generally predict TD best, or under
which circumstances they predict best, especially given
the high number of false positives typically included in
the results from such tools.
Results in Fig. 2 show how the 21 TD items

(presented in Appendix) identified by the software
team, each represented as a colored box, were distrib-
uted over project roles and types of debt. As the legend
indicates, each box has three faces, corresponding to
principal (front), interest probability (right side), and
interest amount (top). Each face can be green, yellow,
or red with respect to the estimation of the team mem-
ber (respectively low, medium, and high). An “i” on the
front face indicates that the debt was intentionally in-
troduced. Note that one new TD type, usability debt,
was introduced by one of the subjects to describe the
lack of a common user interface template.
Figure 3 shows the results of automated identifica-

tion approaches (FindBugs, Code Smells, Metrics)
compared to the items reported by the development
team. Each box in Fig. 3 corresponds to one of the



Fig. 2 Results of the human elicitation of TD items (adapted from [51])
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boxes (elicited TD items) shown in Fig. 2. An “s” on
the front face of a box shows that the TD item was lo-
cated in the source code by the subject who reported
it (as opposed to some other artifact besides code).
The overlapping shaded areas in Fig. 3 depict the over-
laps between the TD items reported by the human
subjects (shown in Fig. 2), and the TD items found by
the top three automated indicators (MAX Nesting,
FindBugs P1, and Intensive Coupling). We can observe
that there are overlaps in only two types of debt, de-
fect, and design debt. For example, the shaded area la-
beled “Defect Debt” in Fig. 3 contains the nine defect
debt items reported by the development team (actually
by Developer 2 and the Maintainer) and that are
depicted in the “Defect Debt” shaded area of Fig. 2.
Figure 3 shows that, of these nine defect debt items,
seven were also found by all three automated indica-
tors. A possible explanation for this concentration of
overlaps on only those two types of debt is that they
are closely related to the code (and then, could be
reached by the tools) and there are participants whose
roles are also directly related to code tasks
(developers, tester, and maintainer). The other identi-
fied instances of debt in this study (documentation,



Fig. 3 Results of the tools compared to human elicitation (adapted from [51])
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testing and usability) could not be identified by the
used tools.
We synthesize these results below, along with insights

gained from the Phase II focus group, to address our
research questions.
Do the TD identification tools find the TD items that were
reported by the members of the development team? (RQ1)
We observe in Fig. 3 that the three top automated ap-
proaches do about equally as well as manual elicitation
in identifying defect debt. In fact, these three
automated indicators captured all source code
components identified by the development team as
having defect debt.
For design debt, automated approaches capture about

half of the human-reported TD items, although ASA
issues (in particular P1 issues) and code smells (i.e., In-
tensive Coupling) identified more TD items than trad-
itional code metrics (i.e., MAX Nesting). One design
debt item was located in a source file identified by all
automatic approaches, and another was identified by
ASA issues and code smells, but not traditional metrics.
Three developer-reported design debt items (two of
which were actually the same item) were not identified
by any automated approach. The first item (covered by
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two reports) was described as TD caused by informa-
tion stored redundantly in two databases. Subjects
reporting this TD item said that this kind of debt was
distributed over many files. Thus, it is likely that the
tools investigating single lines, methods, and classes
could not point out this type of TD easily. The second
missed item was reported as insufficient use of system
resources (i.e., memory usage). This type of TD was
missed even though one approach (FindBugs) reports
on bug patterns related to performance problems.
Seven human-reported TD items were of type docu-

mentation debt, testing debt, or usability debt. Only
one of these TD items was related to source code files,
all others were related to other development artifacts
(e.g., requirements documents and test plans).
In order to have a better understanding of how de-

velopers proceeded to find TD and what they think
about the indicators considered by the tools, our first
focus group question to the development team was
How did you (developer) find the TD items?
The main source for identifying TD items was clearly

the participants’ own knowledge on the project, with-
out external aids (i.e., written sources). The following
excerpts were typical: “Developer 1: I already had some
knowledge of these debts in my mind,” “Developer 2: I
reported those debts that I remembered,” “Maintainer:
I have knowledge of what was done differently from
what the customer wanted,” and “Tester: I used my
own experience with testing activities.” These types of
responses were reported regardless of the role assumed
by the participant in the development process, i.e., by
developers, maintainers, and testers.
In addition, the data showed that each participant

used a “resource” associated with their responsibility in
the development process to support the identification
of TD items. Both developers reported analyzing or
searching the source code for TD items. The main-
tainer reported analyzing tickets, and the tester relied
on information from “testing activities when several
problems are identified.”
Thus, we identified that the main resources used by

the development team members to identify TD items is
their own knowledge on the project, augmented by an
artifact closely related to their own specific develop-
ment tasks. Specifically, developers relied on source
code, the maintainer on tickets, and the tester on re-
sults of test activities.
This qualitative data from the focus group helps ex-

plain in part why there was so little overlap between
the developer-elicited TD items and the items revealed
by automatic tools and thus contributes to addressing
RQ1. Since part of the development team did not work
directly with the source code, and since they used
resources (knowledge, experience, artifacts) closely
related to their job tasks to identify debt in the project,
it follows that much of the debt reported by the devel-
opment team would not be associated with the code
and thus could not be identified by the tools used in
this study.
To further understand the difference between

developer-reported and tool-elicited TD, we asked de-
velopers about the value of the automated TD indica-
tors we used (metrics, code smells and FindBug issues)
. The answer was overall positive. When asked, “Do
you think these tools and metrics would help you to
identify TD faster or more accurately?,” all participants
responded in the affirmative, using phrases such as
“useful” and “valid.” However, interestingly, they also
used terms that indicated that the use of tools is not a
complete solution, e.g., “a starting point to identify TD,
” “they can indicate a path to follow,” and “for code,
they are good indicators.”
The focus group data also indicates that metrics,

code smells, and FindBugs issues, beyond being valid
indicators of debt, are also considered good indicators
of general quality problems in the source code of the
project. For example, when asked “If you didn’t have
time to report the TD items, do you think that using
these metrics (that point to some larger classes) could
help you to identify possible problems in the project?,”
the maintainer answered that “Looking at a project as
a whole, yes.” Participants also answered positively to
a similar question about code smells, indicating that
the smells, besides being useful as pointers to debt,
are also useful as indicators of quality problems in
general and could be used to guide quality improve-
ment efforts.
As a very specific example, there were two distinct

classes that we asked the participants to comment on,
because the developers had reported TD items in
them, but the automated indicators did not reveal any
issues. We asked the participants if they were surprised
by this result, and the two developers answered no, be-
cause the major problems with these two classes had
to do with performance, and so would not be expected
to be highlighted by the tools.
As another example, when asked about a class in

which the automated tools indicated the presence of
debt, but for which the participants did not report any
TD items (with the prompt “Does this file have any
TD?”), the participants answered that they did not know
but that the problems reported by the indicators actually
exist in the file: “I don’t know. But this class is really
quite complex since it involves several use cases and has
file handling …. Besides, there is a lot of IF conditions
that must be analyzed and, yes, there is a high probabil-
ity of errors in this class.” Again, participants felt that
metrics, code smells and FindBugs issues are good
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indicators of problems in the system classes, whether or
not those problems could be classified as “debt.”
When asked about the usefulness of the automated in-

dicators to help plan maintenance activities, the answers
given by one of the developers also reinforce this view
about automated indicators and source code problems
in general:

� Q: “Would it be worthwhile to do some preventive
maintenance to remove some of the issues found
by the tools?”

� A: “Yes. For example, I would have some trouble
understanding this even though I developed it
myself. It would be good to refactor this class,
for example, to decrease the size of the methods …
in order to facilitate future maintenance activities.”

� Q: “If you had only these data to indicate
potential problems in the project, would it
be useful?”

� A: “Yes. For example, I had an idea because I
developed this class, but the other developers
would not have any idea about this class because
they didn’t work on it. Thus, they would not have
an idea if there is or is not a problem there.”

� Q: “In addition, having knowledge about code
smells, could it be used to improve the quality
of the project?”

� A: “Yes. For example, large classes that have been
growing and we do not have time to refactor the
project although we would like to. More specifically,
there is a very large class that we need to adjust
but we do not have time right now.”

Therefore, indicators are useful to support the iden-
tification of TD items and are considered a good start-
ing point for this activity. On the other hand,
participants of the study also indicated that they are
not enough:

� “Developer 1: but these indicators are more
associated with refactoring to facilitate future
maintenance of the project”;

� “Developer 1: Therefore, the tools are not enough
(for example, we reported items that were not
identified by indicators)”;

� “Developer 2: After that, you need something more
to find more specific TD items like the ones related
to requirements”;

� “Maintainer: However, the indicators are not enough
for some technical debt related to functional
aspects, standardization or even system
requirements.”

� “Maintainer: So, the indicators are valid but
not enough.”
Summarizing, these results address RQ1 in the follow-
ing way:

� Code smells, FindBug issues, and code metrics
can support the identification of defect and
design debt in this project, but not other types
of debt that were reported by developers.

� These automated indicators are considered good
indicators of technical debt in the source code of
the project, at least as a starting point.

� They are also considered useful as indicators of
general quality problems and thus could be used
to guide quality improvement efforts during
maintenance.

However, the indicators we used are not sufficient be-
cause they are not able to identify other types of tech-
nical debt items that are not directly associated to the
code, for example, problems with requirements, busi-
ness rules that have not been fully implemented, and
usability issues. It should also be noted that the focus
group participants were looking at the results from our
pre-filtering of the automated indicators, so they were
only looking at the top-rated indicator results. The
tools returned flagged many more potential TD in-
stances than were examined in the focus group. Thus,
we can reject the notion that none of the automated in-
dicators is useful for TD identification, but we cannot
make claims about the usefulness of the overall ap-
proach of automatic TD identification, nor can we
comment on whether the same three indicators we
found to be the best performers would also perform
well in other contexts.
How much overlap is there between the TD items
reported by different members of the development
team? (RQ2)
Only one TD item was reported by two different stake-
holders (the manager and one developer). None of the
remaining 19 items were reported by more than one
team member. By analyzing the focus group transcript,
it is possible to identify what can lead to non-
overlapping TD items when they were being identified.
As mentioned before, when we asked the developer

team how they found TD items, they reported that the
main resource used was their own knowledge on the
project. In addition to their own knowledge, what they
used to support the description of the TD items was an
artifact related to the specific tasks each team member
was engaged in. Because each participant worked on
different parts of the project and each TD item was re-
ported based on their memories and experiences on
the project, we can assume that the reported TD items
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would be associated with their daily activities and
would be different from each other. In this project, two
of the participants worked as developers, one as main-
tainer and one as tester. Thus, in addition to working
on specific parts of the product, each participant had a
different perspective when analyzing and reporting TD
items. All of this contributed to reduce the overlap
when identifying TD items.
In addition, when asked directly about the reasons

that led them to report different technical debt items,
participants reported that “Everyone was focused on a
different part of the project;” thus, “Each developer re-
ported based on what they worked on the project.”
Lastly, participants indicated that there was no contact
between them while performing the TD identification
activity (“There was no contact between us in answer
to the questionnaire.”).
These findings provide initial evidence that indicates that:

� If the participants responsible for identifying TD
items work in different parts of the project, the
items reported by each participant tend to be
associated with the parts of the project in which
that participant works;

� Identified TD items are related to code/artifact
ownership.

Thus, to increase coverage when manually identifying
TD items, we can infer that it is important that the
people identifying the TD are ones who work on differ-
ent parts of the project and/or have different roles in the
development process.
Is the TD item template a feasible and effective tool for
eliciting TD items from members of development teams?
(RQ3)
As reported in [51], the five study subjects reported
that it took between 50 min and 2 h to identify and
document the TD items (average of 19 min per item).
Answers about difficulty of the task ranged from “easy”
to “difficult/high” (all answers were given as free text).
Subjects agreed that the fields principal, interest
amount, and interest probability were the most difficult
to fill in. Location, type, and responsible were com-
monly noted as the least difficult fields. These results
indicate that, in this project, the initial elicitation of TD
items could be done in reasonable time, but that the
key financial parameters of TD were difficult to esti-
mate and might require better process or tool support
in future. This research question was only addressed in
Phase I, i.e., we did not ask questions about the use of
the template during the focus group.
Discussion
The findings presented in the previous section have
several implications. We found that automated TD
identification tools (to some extent) point to different
potential debt than people do. Further, many developer-
identified TD items could not have been found by the
tools or metrics since the artifacts in which they were
located are not included in the static code analysis. We
did not limit our participants to reporting only TD
items that could be found by the tools we used, which
in some sense might have been a “fairer” comparison.
But this type of “fairness” was not our goal. We were
interested in finding which types of TD developers felt
were most important and what role tools could plan in
finding those types of TD. The fact that developers re-
ported some code-related debt, as well as TD items that
were not code-related, suggests that a focus on source
code as the single source of TD is too narrow. Future
studies might consider including or proposing tools for
other kinds of development artifacts affected by TD. At
the time of this study, few such tools were known to us,
but several have since been proposed (see, e.g., http://
www.hejf.de/).
Our findings also indicate that different people, who

work with different artifacts and have different roles on
the project, appear to report completely different TD
items. This result would have been stronger if we had
had multiple participants in the same role, to see if
people in the same roles would have reported the same
TD items or would have agreed on the importance of
different TD items (a limitation of this study that could
be addressed in future work). However, this finding is
still interesting and implies that, if a project wants a
comprehensive view of all the TD present, identification
must involve people representing all different develop-
ment roles, as well as automated tools. This also has
implications for prioritization and decision-making
about TD. It is likely that different development roles
have very different ideas about which TD items are
most important to address in the near term, making
consensus difficult to reach. This makes it important to
have objective criteria to help in prioritizing task and in
making decisions about what debt to pay off and when.
Estimation of principal and interest could be part of
such an approach, but we found that developers found
it especially difficult to make these estimations, even at
a very coarse-grained (high/medium/low) level. Thus,
further work in quantifying TD is crucial if TD
decision-making is to be facilitated.
On the other hand, it may be that most projects do

not need to consider a comprehensive view of all types
of TD. In this study, we asked the development team to
consider all types of debt, but in many cases, a project
has specific types of debt they want to focus on.

http://www.hejf.de/
http://www.hejf.de/
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Projects often have identifiable “pain points” [24] that
clearly imply specific types of TD that are most relevant
to that project. In such cases, our findings imply that
involving only specific tools, or specific people, would
be sufficient to identify the relevant debt.
These observations about the relationship between

code (or artifact) ownership and identifying TD also
imply another role for automated detection approaches.
In cases where a wide cross-section of developers is not
available for TD identification tasks, automated tools
might serve as a guide for those developers who are en-
gaged in TD detection, by helping them identify places
in the code (with which they might not be familiar) that
should be examined for potential TD.
The type of debt that represented the greatest agree-

ment between the human-elicited TD items and the
automatically detected TD was defect debt. Remember
that defect debt represents known defects that have
been allowed to persist beyond when they could have
been fixed. In this study, much of the defect debt re-
ported was actually not-fully-implemented require-
ments, i.e., implementations that do not fully meet the
requirements and thus are logged as defects. The tools
we used to analyze the source code were not intended
to find defects, per se, but are meant, in theory, to find
anomalies in the code that could, in the future, affect
maintainability and lead to changes that introduce de-
fects. Thus, at some level, it is surprising that auto-
mated source code analysis pointed to code that had
latent defects and unfinished implementations of re-
quirements. One possible explanation is that such pieces
of code represent “quick and dirty” implementations,
where time constraints led to (at the same time) code that
is poorly structured (thus triggering ASA issues, code
smells, and high complexity scores) and incomplete (thus
leading developers to tag it as defect debt). In this way, the
issues found by the automated tools could be said to co-
exist with defects, but not to cause them. Instead, the is-
sues and defects are both caused by a third factor, time
constraints. Another possible explanation is that poorly
structured code does, in fact, cause defects in a more dir-
ect way. Thus, the poor structure (as highlighted by the
automated tools) would have preceded the defects, which
were introduced during changes that were made more dif-
ficult and error-prone by the low quality of the code.
Although not a subject, we explored in the focus group,

some interesting observations can be made about the par-
ticipants’ estimations of principal and interest, represented
by the colors of the TD items in Fig. 3. This color coding
indicates that principal, interest amount, and interest
probability are rather equally distributed among the differ-
ent types of debt. This suggests that debt characteristics
are not tied to the type of debt, i.e., no type of debt has
noticeably higher overall interest or principal.
The color coding in Fig. 3 also hints at how this in-
formation can be further used to manage debt and
make clearer decisions on which debt to pay. For
example, items that have generally a low principal
(e.g., green front face), but yellow or red interest char-
acteristics are good candidates for paying off first,
since their return on investment is more favorable
than for other items. This idea of a cost/benefit deci-
sion approach has been previously proposed and dis-
cussed in [49].
Threats to validity
As with any case study, especially of a small project
such as this one, threats to external validity are signifi-
cant. We accept these threats and attempt to trade off
breadth for depth, by doing a thorough analysis of a
small case, yielding deeper insights that would not
have been possible in a much larger sample. Our goal
in this work (as with all case studies) was not
generalizable results, but insights derived from a deep
dive of a single case on how two classes of identifica-
tion approaches relate.
An important construct validity threat derives from

the fact that we do not know if either the human-
elicited TD items or the TD indicated by the tools we
applied, constituted “real” technical debt, i.e., that
would lead to future maintenance costs. Thus, we had
no “ground truth” against which different types of TD
identification can usefully be compared. The ultimate
and authoritative “ground truth” for studies of TD
would be a measure based on future maintenance ef-
fort associated with TD items. That is, a “real” TD item
is one that leads to higher maintenance effort than
would have been incurred if the debt did not exist.
However, measuring “real” TD in this way was not pos-
sible in this study, nor is it in many studies. For the
study in this paper, our results are limited to compari-
sons between the two modes of TD identification, but
not evaluation of either as being more “correct.”
Another assumption that we have made that may also

lead to a construct validity threat is that, when an auto-
mated approach identifies a problem in a source code
module that is also indicated in a TD item reported by
a developer, the two indicators are actually pointing to
the same TD instance, not to two separate TD instances
that happen to reside in the same source module.
While this assumption may not be strictly true, from a
practical perspective it is reasonable, as fixing one in-
stance of TD in a class (e.g., by refactoring) will very
often, as a side effect, fix other instances of TD in the
same class.
An internal validity threat (i.e., one that threatens

the validity of the relationships we believe we have
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discovered) arises from the dual role of our company
contact (first author) as researcher and member of the
organization. Dr. Spínola was a member of the re-
search team, but was also at the time a co-owner of
Kali Software, principally engaged in customer service.
Although he did not have direct involvement in opera-
tions (i.e., in software development), there may have
been some bias in the opinions the participants chose
to share with him.
In addition, we reported in the “Results” section that

we had to pre-filter the issues from automated tools by
applying a ranking strategy: for each indicator, we ex-
amined the top 10% of the sorted list and determined
how many source files in that 10% corresponded to TD
items reported by developers, selecting then the top
three performing indicators (i.e., FindBugs P1 issues,
the MAX nesting metric, and Intensive Coupling code
smell). This filtering mechanism gives rise to an exter-
nal validity threat, since we cannot claim that the top
performing indicators used in this study would also be
the best ones in any given case. Thus, it made sense to
look first at the top performing indicators.
Finally, the focus group was performed in Portuguese,

transcribed in Portuguese and, after that, translated to
English. So, language constraints and cultural idioms
may have had an influence in the understanding of the
statements, thus also posing an internal validity threat.
To deal with this, the first author is Brazilian and
worked carefully to avoid or minimize any bias or mis-
understanding in the translation process from Portu-
guese to English and during the execution of the focus
group. A related reliability threat is the fact that coding
was performed by only one author, with oversight but
not second coding, from another of the authors.
Conclusions
The TD concept has the potential to go beyond a
mechanism for communication, to be translated into a
whole set of tools and methods for measuring and
managing debt. We have presented the results of a two-
phase study, in which we compared the results of
applying manual and automated techniques for identi-
fying TD and gained further insight into the similarities
and differences through a focus group with the devel-
opment team members. We evaluated how the TD list
can be populated by developers through a common TD
template and how existing tool approaches can help to
identify certain types of debt. We have further shown
that different stakeholders know about different debt in
their project, indicating that TD elicitation should in-
clude a range of project team members. Aggregation,
not consensus, would appear to be the most effective
approach to combining the input from different team
members, if the goal is to gain a comprehensive under-
standing of all types of debt in a project. In addition,
three different automated approaches—code smells,
ASA issues, and traditional code metrics—did well in
pointing to source code files with defect debt and also
could point to some instances of design debt.
A limitation of the performed study is related to the

development team involved in the study. Given the fact
that multiple developers were not involved in the man-
ual identification of TD on the same part of the pro-
ject, it is not clear how reliable the reported results of
a single developer can be. Aggregation sounds like a
reasonable approach but some intersection of results
from different developers working on the same part of
the project may be necessary to improve the accuracy
of the results. Besides, the study pointed out that de-
velopers tend to report different results than tools but
it was not possible to investigate to which extent this
behavior is due to the fact that the study did not use
tools that find TD items in non-code artifacts, for ex-
ample in requirements.
This study raised, but did not answer, a number of

interesting and important questions that we commend
to future researchers (including ourselves):
� How much of the potential TD reported by
tools, but not reported by developers, is “real”
TD? That is, is there a value in using tools to
identify TD that developers are not aware of?

� How can manual TD identification be better
integrated into the development process, in
order to make it more efficient and feasible?

� Is developer-identified or tool-identified TD
more likely to lead to future maintenance issues
(i.e., which is more likely to be “real” TD)?

� How can TD principal and interest be better
and more objectively quantified in order to
facilitate decisions and prioritization of debt
items, in the face of potentially conflicting
priorities among stakeholders?

A more comprehensive study (using a larger set of
tools, such the ones presented in [9, 19, 28, 46]) would
be interesting in order to better grasp the overlap and
differences between manual and automatic identifica-
tion approaches. Thus, we also encourage practitioners
to use the proposed template in their projects and to
share results and experiences. It will require evidence
from a variety of environments to build a full picture of
how different TD identification approaches interact,
overlap, and are (or are not) synergistic. This evidence
is necessary to further refine and to bring into focus
the TD landscape.



Appendix
Table 4 TD items identified by the development team

ID Type Location Description Principal Interest Interest
Probability

Intentional?

1 Design Lingada.java, ItemGuarnicao.
java, FuncionarioAccess.java,
ItemTreinamento.java,
RestricaoFuncionario.java

These classes have the attribute Employer
Name, but this data is stored in an external
database. Thus, it is not possible to access
the employer information as we can do
with the other information stored in the
system database.

High High High Yes

2 Documentation MALO_SGI Especificacao_
Requisitos.doc

The Module of Allocation does not have
the requirements specification document.

High High High Yes

3 Design AlocacaoController.java
alocacar(...) method

This method checks the data about
employers in Access database and, after,
sort the data according to a set of criteria.
However, the method is currently very
large and need to refactored in small
methods.

Low Low Low No

4 Design customer inclusion (file
ClienteController.java)
company inclusion
(file EmpresaController.java)

By entering a zip code in the inclusion of a
company or customer, the system returns
some districts as cities, but those districts do
not exist on IBGE’s table. This fact can cause
errors when an invoice is created.

Medium Low Low No

5 Design Files FaturaController.java
and NFe.java

I need to make a verification with the activity
name when I need to identify a service type
or bill. This information is fixed in the code,
and can bring errors when some update is
performed or the data in database have
incorrect names.

Medium Low Medium Yes

6 Design File DespesaController.java There is a need to locate the cost codes
according to their numbering. However,
this information is fixed in the code and
any update or error on it can bring bad
side effects to the system.

Medium Low Medium Yes

7 Design File AutoTracJob.java High consumption of memory causing
stack overflow. This method needs to run
every 2 min, but because of this problem
it was only running once a day to keep
the data updated.

Medium Low Low No

8 Design File Parser.java In the import of “Machine Daily,” it is
necessary to associate the “Machine
Daily 1” to “Machine Daily 2” (this
mapping is one-to-one), but sometimes,
we can have more than one Machine
Daily 2. In this case, the system can only
store the “machine daily 2” that arrived
first, the second “machine daily 2” is lost.

High Low Low Yes

9 Documentation Use cases of the Module
of Billing

Requests for change by the customer
have been treated, but the description
of use cases and their business rules
have not been updated.

Medium Medium High No

10 Test Several functionalities Deliveries of system functionalities for
acceptance testing before system testing,
due to customer pressure who wants to
see the changes that have been
addressed (weekly deploys).

Medium Low High No

11 Design Many files of Tranship System
and many files of an external
system that is integrated
to Tranship.

Each system has its own database (both
MySQL), but they have some entities in
common, so some data are repeated.
Besides, sometimes one table is more
complete in one of the systems. The
integration work was only performed
for the
employees table.

High High High Yes
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Table 4 TD items identified by the development team (Continued)

ID Type Location Description Principal Interest Interest
Probability

Intentional?

12 Defect cadatrarContratoApoioMaritimo
method of Module of
Operations.

The contract can have a symbol or
“adjustment percentual.” These points
were not considered on the Module
of Operations.

Medium Medium High Yes

13 Defect excluirEmbarcacao method
of Module Administrative

A ship, even excluded, can be part of
the division of the cost center
associated with it.

Medium High Medium Yes

14 Defect gerarRelatorioEstado method
of Module of Operations

A query to the database does not return
old data that are still valid when the
search date is the current date.

Low Medium High Yes

15 Defect calcularValorServico method
of Module of Operations

The calculation of the Maritime Support
Services value is incorrect due to a change
occurred in how this calculation is made.

Medium High High Yes

16 Defect gerarRelatorioLocalizacao
method of Module of
Operations

This functionality is almost all incomplete. Medium Medium Medium Yes

17 Test Module of Operations It is a very complex module because there
are dependencies between modules in the
system, and this requires careful attention
during testing execution.

Medium High High Yes

18 Documentation Requirements specification
and use case description
for the Administrative and
Alocation Modules

The documentation must be always updated
and the requirements gathering must be in
accordance with customer needs. Frequent
changes in these modules have been
causing a lot of rework.

Medium Medium High Yes

19 Design Cliente class In the Cliente form, sometimes due to lack
of time when implementing any specific
method in the system, the system
loses quality.

Medium Medium Low No

20 Test Forms The lack of test plans can bring problems
after system deployment.

Medium Medium Medium No

21 Usability All project forms The system should have a user interface
“standard.”

Medium Medium Medium No
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