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Chapter

Mycoremediation in Soil
Francesca Bosco and Chiara Mollea

Abstract

The chapter reviews the most important researches on the use of micro- and 
macrofungi in the bioremediation of contaminated soils. In particular, the main 
classes of soil pollutants in Europe (heavy metals, mineral oils, polycyclic aromatic 
hydrocarbons (PAHs), monoaromatic hydrocarbons, phenols and chlorinated 
hydrocarbons (CHCs)), together with the emerging contaminants (i.e. endocrine-
disrupting chemicals (EDCs) and pharmaceutical-personal care products (PPCPs)) 
are considered. A description of the fungal species (saprotrophic and biotrophic 
basidiomycetes) and biodegradative extracellular (laccases and class II peroxidases) 
and intracellular (cytochrome P450 monooxygenases and glutathione transferases) 
enzyme classes is reported. Moreover, the chemical-physical parameters that 
influence the biodegradation process are examined, and the biostimulation and 
bioaugmentation strategies are described. A specific attention is paid to the micro-
cosm studies, at the laboratory scale, which are an essential approach to evaluate the 
feasibility of a biodegradation process.

Keywords: mycoremediation, filamentous fungi, mushroom, microcosm, 
biostimulation, bioaugmentation, laccases, peroxidases, cytochrome P450 
monooxygenases, glutathione transferases

1. Introduction

The contamination of soil, water and air by toxic chemicals represents one of the 
major worldwide environmental problems. From this point of view, the European 
Union (EU) is paying attention to the improvement of soil protection and recovery 
and to the prevention of soil contamination, since there are still many historical 
and new contaminated sites that require remediation [1, 2]. The main classes of soil 
pollutants in Europe have been reported in [3].

Bioremediation is a simple and cost-effective method that, in the last decades, 
has received worldwide a particular attention. The general term “bioremediation” 
indicates the use of living organisms (i.e. bacteria, fungi, algae and plants) in the 
detoxification of polluted soils and wastewaters. In a bioremediation process, 
organic and inorganic hazardous substances may degrade, accumulate or immobi-
lize, resulting in a significant reduction of the contamination level.

In the last decay, the role of fungi in bioremediation has been increasingly 
recognized [4, 5]. About this, various authors have highlighted the ability of fungi, 
mainly saprotrophic and biotrophic basidiomycetes, to degrade or to transform toxic 
compounds [6, 7]. Mycoremediation is the bioremediation technique which employ 
fungi in the removal of toxic compounds; it could be carried out in the presence of 
both filamentous fungi (moulds) [8] and macrofungi (mushrooms) [9, 10]. Both 
classes possess enzymes for the degradation of a large variety of pollutants [11, 12].



Biodegradation Processes

2

Fungi are well known for their ability to colonize a wide range of heterogeneous 
environments and for their ability to adapt to the complex soil matrices, also at 
extreme environmental conditions. Furthermore, they can decompose the organic 
matter and easily colonize both biotic and abiotic surfaces [13, 14].

Filamentous fungi show some peculiar characteristics that make them more 
advisable in soil bioremediation than yeasts and bacteria [14, 15]. The most 
important are the type of growth (i.e. the development of a multicellular mycelial 
network) suited to soil colonization and translocation of nutrients and water, 
the production of many bioactive compounds and extracellular enzymes and the 
unique capability to co-metabolize many environmental chemicals [16].

Mycoremediation represents thus a biological tool to degrade, transform or 
immobilize environmental contaminants.

The state of the art of soil mycoremediation is reviewed in the present chapter. 
A particular attention is given to the fungal species and enzymes involved in the 
biodegradation processes, together with the classes of toxic compounds that could 
be biodegraded. Bioremediation strategies (i.e. biostimulation and bioaugmenta-
tion) and significant examples of microcosm and field studies are also discussed. 
Finally, the application of mushrooms as emerging technology in soil mycoremedia-
tion is reported.

2. Important fungal species involved in biodegradation

The most suitable fungi to be used in soil remediation are basidiomycetes and, in 
particular, the ecological groups of saprotrophic and biotrophic fungi [17].

The saprotrophic basidiomycetes, which use dead organic matter as a carbon 
source, include the wood-degrading fungi. Among them, white-rot fungi (WRF) 
are considered for the leading role in biodegradation [18]. WRF can degrade 
efficiently both lignin and cellulose biopolymers till the complete mineraliza-
tion [19], thanks to the production of an extracellular enzymatic complex, which 
comprehend lignin peroxidases (LiPs), manganese-dependent peroxidases (MnPs), 
versatile peroxidases (VPs), laccases, H2O2-generating oxidases and dehydroge-
nases, produced during the idiophase, usually under nitrogen depletion.

Some of the most representative WRF, able to degrade pollutants, include 
Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor, Bjerkandera 
adusta, Lentinula edodes, Irpex lacteus, Agaricus bisporus, Pleurotus tuber-regium and 
Pleurotus pulmonarius [20, 21]. Among these fungi, Phanerochaete chrysosporium has 
been the most investigated for its ability to degrade toxic or insoluble compounds to 
CO2 and H2O, more efficiently than other fungi. In 1985, for the first time, Bumpus 
et al. proposed the application of Phanerochaete chrysosporium in bioremediation 
studies, and the fungus became a model system in the mycoremediation field [22].

The biotrophic basidiomycetes comprehend ectomycorrhizas which obtain 
the carbon source from a mutualistic plant partner: the fungal hyphal network 
envelopes the root and penetrates between the cells of the root cortex [17]. 
Ectomycorrhizal fungi (ECM) can assemble and recycle the nutrients from the 
organic matter of the soil [23]. ECM comprehends about 10,000 fungal species; 
the most representatives are Amanita spp., Boletus spp., Gautieria spp., Hebeloma 
spp., Lactarius spp., Morchella spp., Suillus spp. and Rhizopogon spp. [16, 24]. ECM 
fungi secrete enzymes to get nutrients by means of the degradation of molecules in 
the soil organic matter. ECM possesses extracellular and cytosolic enzymes which 
attack molecules containing N and P atoms. Hydrolytic enzymes comprehend 
β-glucosidases and phosphatases, while the oxidative ones are peroxidases and phe-
nol oxidases [25]. The ECM fungi application is important in habitat where the litter 
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layer is restricted and consequently ligninolytic enzymes, typical of wood fungi, 
are not so efficacious; in this contest, ECM fungi are able to produce enzymes to 
sequester nutrients directly from the soil. The same enzymes allow ECM to degrade 
many persistent organic pollutants [26].

Most of the biodegradation studies at the laboratory and field scale are con-
cerned to microfungi, but in the last years, much attention has been given to 
mushrooms which are broadly present in soil and also easily soil-cultivated [27]. 
Bioremediation by macrofungi basidiomycetes is reported by [28] to be advanta-
geous because, together with remediation, soil is enriched with organic matter and 
nutrients and plant growth results enhanced. These macrofungi are potent degrad-
ers thanks to the secretion of the same non-specific enzymes (LiP, MnP and laccase) 
described for the wood-degrading fungi and, for this reason, are interesting in the 
bioremediation field. At the same time, they grow to a great extent producing high 
biomass quantities, in particular when cultivated on carbon sources, such as straw 
or sawdust [29]. The mushroom biomass can be a protein source or can contain 
biologically active compounds such as phenols with antioxidant activity [12, 30]. 
Furthermore, mushroom biomass can be applied in biosorption treatment thanks to 
its ability to accumulate ions and xenobiotics from contaminated soils [31].

3. Toxic compounds degraded by fungi

The biodegradation capability of different hydrocarbon classes such as mineral 
oils, polycyclic aromatic hydrocarbons (PAHs), monoaromatic hydrocarbons and 
chlorinated hydrocarbons (CHCs), together with phenols, was demonstrated for 
many fungal species [17]. Moreover, the possibility to decrease the risk associated 
with heavy metals, metalloids and radionuclides in soil has been described [16].

Cd, Cr, Hg, Pb, Cu, Zn and As are the most common heavy metals found in 
soil. In the EU, more than 80,000 contaminated sites are counted. Heavy metals 
can be generated by natural processes, like the metal-enriched rock erosion, and 
anthropogenic activities (e.g. mining, smelting, fossil fuel combustion, waste 
disposal, corrosion and agricultural practices) [32, 33]. Heavy metals that enter 
the environment can be transported or transformed by means of photo-, chemical-  
or biodegradation; moreover, they can also be biotransformed [34]. Fungi are 
potential heavy metal accumulators; in particular basidiomycetes mushrooms 
can uptake heavy metals from soil by means of their mycelia and accumulate 
them in the fruiting bodies, irrespective of their age [35]. As reported by [10], 
species of Agaricus, Amanita, Cortinarius, Boletus, Leccinum, Suillus and Phellinus 
are some of the mushroom applicable for the mobilization/complexation of dif-
ferent heavy metals in soil.

In the EU, mineral oils, together with heavy metals, represent the main source 
of soil contamination, significantly greater than 60% of the total contaminants. 
Mineral oils, refined from crude petroleum oil, are a group of various hydrocar-
bons, straight and branched-chain paraffinic, naphthenic and aromatic ones, with 
15 or more C numbers [2]. They can be used for the preparation of lubricant prod-
ucts (e.g. engine oils or hydraulic fluids) or “non-lubricant” ones (e.g. agricultural 
spray oils). Their industrial application is at a large scale, and the soil contamination 
can occur during transport, storage or refining or also for accidental leakages [36]. 
Hydrolases, dehydrogenases and membrane-bound cytochrome P450 enzymes 
constitute the fungal hydrocarbon-degrading system [37]. Fungal species belonging 
to Rhizopus, Paecilomyces, Alternaria, Mucor, Gliocladium, Aspergillus, Fusarium, 
Cladosporium, Geotrichum, Penicillium and Pleurotus are capable of utilizing crude 
oil as the sole carbon and energy source [37–39].
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Polycyclic aromatic hydrocarbons (PAHs), molecules with multiple carbon 
rings, derive from the incomplete combustion of organic materials. Their origin can 
be both natural (e.g. open burning, natural losses of petroleum and volcanic activi-
ties) and predominantly anthropogenic (e.g. residential heating, coal gasification, 
carbon black, activities in petroleum refineries). PAH contamination corresponds 
to 13%: these compounds tend to bound to soil particles and to remain absorbed 
[40]. Both ligninolytic and non-ligninolytic fungi are able to degrade PAHs by 
means of the extracellular lignin-degrading enzymatic system, which contribute 
to the first attack on PAHs, and of the P450 monooxygenase [41]. Apart from the 
model P. chrysosporium, species belonging to Aspergillus, Penicillium, Rhizopus, 
Fusarium, Cladosporium and Trichoderma are capable of degrading PAHs [42].

Another group of crude petrol-derived hydrocarbons, which represent the 6% 
of soil contaminants, is that of monoaromatic hydrocarbons, and in particular those 
grouped in the acronym BTEX (benzene, toluene, ethylbenzene and xylene). Fungi are 
efficient in aromatic hydrocarbon degradation, as for PAH degradation, thanks to the 
ligninolytic enzymatic system. WRF, such as P. chrysosporium and Trametes versicolor, 
are reported to be good BTEX degraders together with soil and mycorrhizal fungi [43].

Phenols consist of one or more aromatic rings with hydroxyl functional groups; 
they are present in the waste streams of almost all the phenolic-using industries 
(e.g. chemical, paper, food and textile industries) and contaminate the soil as 
leachates or particulate matter [44, 45]. The percentage of soil contamination is 
one of the lowest, being around 4% [33]. The biodegradation of phenols is mainly 
concerned to the production of phenol oxidase enzymes (laccases, tyrosinases 
and peroxidases) by basidiomycetes: they act on phenols and incorporate one or 
two atoms of oxygen [46, 47]. Due to the production of these multiple oxidative 
enzymes, Trametes spp., Lentinus spp., Pleurotus spp. and Ganoderma spp. are some of 
the most efficacious fungal species involved in phenol compound biodegradation [48].

The soil contamination of CHCs is about 2%. These compounds contain Cl atoms 
substituted for hydrogen atoms normally bonded to a carbon. This group of chemi-
cals comprehends highly toxic pollutants such as polychlorinated biphenyls (PCBs) 
and chlorinated pesticides, e.g., DDT [49]. As for PAH biodegradation, WRF have 
been intensively proposed as biodegraders of CHCs due to their unspecific oxidative 
enzymes. However, also non-WRF, in particular soil ascomycetes and zygomycetes, 
are able to enzymatically transform these pollutants; in particular, they have the 
advantage over WRF to tolerate neutral pH and adverse growth conditions [50].

In the last years, emerging contaminants have become of great interest [51]. 
Among them, the anthropogenic chemicals, endocrine-disrupting chemicals 
(EDCs) and pharmaceutical-personal care products (PPCPs) are relevant due to 
their biological effects on nontarget organisms; in particular, EDCs simulate or 
antagonize the endogenous hormone effects and are toxic to organisms also at very 
low concentrations. Estrone, 17β-estradiol, 17α-ethinylestradiol, bisphenol A and 
triclosan are the most detected and studied in soil. EDCs and PPCPs mainly enter 
the soil environment via irrigation with contaminated wastewater [52–54]. As 
reviewed by [55], ligninolytic fungi are able to transform EDCs allowing a reduction 
of the endocrine-disrupting activity or their ecotoxicity; moreover, these fungi are 
also reported to be able to degrade the heterogeneous class of PPCPs thanks to their 
broadly unspecific enzymatic systems [56].

4. Enzymes involved in biodegradation of toxic compounds

Since 1985, after the discovery of Bumpus [22] about the degradation potentiali-
ties of P. chrysosporium, a plethora of authors have described the fungal enzymatic 
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machinery and its role in the transformation of a wide range of organic pollutants in 
soils. Most of the enzymes are extracellular and allow to attack and then degrade large 
molecules into smaller units which can enter the cells for further transformations [57].

Extracellular laccases start ring cleavage in the biodegradation of aromatic 
compounds [8]. They are multicopper oxidases with low substrate specificity and 
can act on o- and p-phenols, aminophenols and phenylenediamines thanks to a 
four-electron transfer from the organic substrate to molecular oxygen. The laccase-
mediator systems (LMSs) have an effect on the electron transfer chain increasing 
the laccase substrate range [58].

Fungal peroxidases generate oxidants which initiate the substrate oxidation in 
the extracellular environment [8]. They belong to the class II peroxidases [59] and 
catalyse the oxidative conversion of various compounds utilizing H2O2 as electron 
acceptor. As previously reported, LiPs, MnPs and VPs are the main fungal high-
redox class II peroxidases. They are involved in the biodegradation of the complex 
lignocellulose structure and, consequently, can degrade various organic substrates 
and transform some inorganic ones [46]. Fungi can also secrete the dye-decolorizing  
peroxidases (DyPs), which have oxidative and hydrolytic activities on phenolic and 
non-phenolic organic compounds [60]. Heme-thiolate peroxidases (HTPs) transfer 
peroxide-oxygen, from H2O2  or R-COOH to substrate molecules; in this group 
chloroperoxidases (CPOs) and the unspecific or aromatic peroxygenases (UPOs 
or APOs) are included. In particular, UPOs can mainly operate on heterogeneous 
substrates thanks to aromatic peroxygenation, double-bond epoxidation or hydrox-
ylation of aliphatic compounds [59].

Intracellular detoxification pathways comprehend multigenic families of 
cytochrome P450 monooxygenases and glutathione transferases, mainly owned by 
wood and plant litter fungi but also by some symbiotic species [46]. These intracel-
lular enzymes have functional roles in fungal primary and secondary metabolism.

P450 cytochrome monooxidases, heme-thiolate-containing oxidoreductases, can 
act on various substrates in stereo- and regioselective manner, needing O2 for the 
reaction. They are activated by a reduced heme iron and add one atom of molecular 
oxygen to a substrate. Hydroxylation, epoxidation, sulfoxidation and dealkylation 
can occur and require NAD(P)H as electron donor [61].

Glutathione transferases are located in different cellular compartments and 
catalyse the nucleophilic attack of an electrophilic C, N or S atom in non-polar com-
pounds by means of reduced glutathione (GSH). When electrophilic substrates are 
conjugated with GSH, they become more water-soluble. These enzymes have a wide 
substrate specificity and take part in the detoxification of different endogenous 
toxic metabolites and exogenous toxic chemicals [62].

5. Main parameters that influence mycoremediation

In general, chemical-physical characteristics of soil, such as pH, temperature, 
water content and redox potential, show a significant impact on the microbial 
growth and consequently on the success of a bioremediation process.

In particular, the biodegradation activity of the microorganisms depends on 
macro- and micronutrient availability in soil and on the presence of any other factor 
that influence the microbial metabolism, such as the contaminant type and concen-
tration, and their bioavailability, toxicity and mobility [33].

A proper amount of nutrients for microbial growth is usually present in soil; 
nevertheless, nutrients can also be added in a functional form which serves as 
an electron donor to stimulate bioremediation process [63]. The biodegrada-
tion of a toxic compound mainly depends on the genetic characteristics of the 
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microorganism, in particular on both the extracellular and intracellular enzymatic 
systems [64]. The contaminant concentration directly influences the microbial 
activity: a high concentration may produce a variety of toxic effects on the differ-
ent microbial classes, whereas a low concentration could not be enough to activate 
degradative enzyme synthesis. Filamentous fungi, able to form extended mycelial 
network and to synthetize a lot of aspecific enzymes, generally show a higher 
resistance to high contaminant concentration than bacteria [16]. Moreover, thanks 
to the low substrate specificity, the synthesis of degradative enzymes occurs also 
at low contaminant concentrations. The intracellular metabolic pathways involved 
in mycoremediation show remarkable similarities with those that regulate the 
secondary metabolism in fungi, in particular those of mycotoxin production [64]. 
Filamentous fungi which produce mycotoxins (e.g. Aspergillus and Penicillium 
spp.) exhibit the ability to degrade a wide variety of pharmaceutical compounds 
[65], among them the emerging pollutants EDCs [16, 66], ineffectively degraded 
by bacteria. The contaminant bioavailability is one of the most important factors 
that can be improved to optimize and accelerate the biodegradation; this fact has 
been demonstrated in the mycoremediation of aged PAH-contaminated soils [67]. 
The fungal ability to chemically modify or affect the contaminant bioavailability by 
means of biosurfactant production has been reported in different reviews [68, 69]. 
Penicillium and Aspergillus species have been reported to be biosurfactant producers 
[70, 71]. A wide range of microbial biosurfactant applications have been reported 
in the environmental protection field (e.g. enhancing oil recovery, controlling oil 
spills, biodegradation and detoxification of oil-contaminated soils) [69].

6. Biostimulation and bioaugmentation

Biostimulation and bioaugmentation are the two most developed approaches 
among the bioremediation techniques. Their main purposes are the reduction of 
bioremediation time and the achievement of a complete removal of contaminant [4].

In biostimulation, nutrients and electron exchangers are injected into the con-
taminated site in order to stimulate the degrading ability of indigenous microorgan-
isms [72]. As regards lab-scale tests, nutrients are generally added as inorganic salts 
and as defined chemical species, while at the field scale, the nutrients are frequently 
added in the form of agro-wastes, organic wastes or inorganic fertilizers [63]. The 
main inorganic nutrients, usually added, are nitrogen and phosphorous, because the 
presence of organic toxic chemicals frequently induces an imbalance in the C:N:P 
ratio [73]. The main advantages of biostimulation approach are the low cost and 
the exploitation of indigenous microorganisms without the necessity of adaptation 
required by allochthonous species.

In bioaugmentation, allochthonous or enriched autochthonous microorganisms, 
able to metabolize a specific contaminant, are introduced in soil. In both cases, the 
homogeneous dispersion of the added biomass and its proliferation, in competition 
with native microorganisms, are the great challenges [63]. Moreover, bioaugmenta-
tion and biostimulation could be also coupled in order to further stimulate intro-
duced biomass [74].

In fungal augmentation, high-quality inocula with high potentiality are neces-
sary; consequently, specific methods have been developed for the production 
of fungal inocula. These inocula can be in the form of pelleted solid substrates, 
colonized by fungal mycelium, prepared from cheap agricultural and industrial 
by-products [4, 75]. Pelleted fungal inocula can be optimized in substrate composi-
tion to enhance fungal growth, degradation abilities and competitiveness against 
autochthonous soil microorganisms.
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The bioaugmentation with autochthonous filamentous fungi for the cleanup of 
a historically contaminated site has been shown to be a successful bioremediation 
approach as described by [76]. These fungi were able to grow under nonsterile condi-
tions and to degrade various aromatic hydrocarbons in the same contaminated soil.

In a recent review [77], the role of saprotrophic fungi in the biodegradation of 
xenobiotics and toxic metals in co-contaminated sites has been discussed along with 
the metabolic interactions between fungi and bacteria in a microbial consortium. 
Considering the occurrence of a mixed organic-inorganic contamination in brown 
field sites, the bioremediation mechanisms for combined pollution of PAHs and 
toxic metals by fungi and bacteria are also well documented [78].

7. Microcosm study at the lab scale

Microcosm studies are needed, before the in-field treatment, to evaluate micro-
bial potential to degrade soil pollutants, the activity of the indigenous biomass and 
the most effective bioremediation strategy (i.e. biostimulation and/or bioaugmenta-
tion). In order to obtain information on the contaminant biodegradation in soil, 
the use of microcosms is a better approach than other kinds of laboratory tests 
[79]. Even if trials carried out at the lab scale do not always guarantee reproducible 
results on-site, due to chemical, physical and biological factors, they allow to verify 
the biodegradability of a certain compound. Hereafter, some of the most significant 
soil microcosm studies with fungi are reported.

One of the first studies, about PAH degradation in soil microcosm, was car-
ried out with P. chrysosporium and T. harzianum, grown on wheat straw and then 
inoculated in naphthalene-contaminated soil. The biodegradation behaviour was 
monitored by means of naphthalene concentration measurement, CO2 evolution as 
well as phytotoxicity tests [80].

Phanerochaete velutina and many litter-decomposing fungi (LDF) are potential 
degraders of soil organic matter. In the work of [81], they showed good growth, respira-
tory activity and MnP production on pine bark as co-substrate in microcosm. In the work 
of [82], the addition of P. velutina, cultivated on pine bark, to a PAH-contaminated soil 
was evaluated in microcosm and at the field scale. In the microcosm treatment (about 
1 kg of soil), the bioaugmentation with fungi showed a positive effect on the biodegrada-
tion of the high molecular weight PAHs. On the contrary, in the field-scale experiment 
(about 2 tons of soil), carried out at lower starting concentration of PAHs, the degrada-
tion percentage (%) was similar in both the inoculated and non-inoculated soils.

The bioremediation of an aged PAH-contaminated soil in microcosm was dem-
onstrated for an isolate of Trichoderma reesei [83]. The fungus metabolized benzo[a]
pyrene in the presence of glucose as a co-metabolic substrate.

An isolate of Chaetomium aureum was able to halve the free Pb concentration in 
soil in about 2 months, irrespective of its association with indigenous microorgan-
isms when inoculated in Pb-contaminated soil microcosms [84].

A microcosm study was conducted to optimize the degradation of weathered 
total petroleum hydrocarbons (TPH) in arid soils contaminated for more than 
a decade. Among fungi, Aspergillus, Acremonium, Cryptococcus, Geotrichum and 
Penicillium were the most widespread in these soils [85].

Different fungal strains (Aspergillus, Fusarium, Rhizomucor and Emericella spp.), 
isolated from a higher As contaminated agricultural soil, showed different detoxi-
fication mechanisms (biosorption/bioaccumulation and biovolatilization). They 
were able to reduce As contamination under in situ conditions as reported by [86].

In a study on bioremediation of petroleum hydrocarbons, a periodic biostimulation 
and bioaugmentation (PBB), by a single strain or a fungal consortium, was reported 
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as the best biodegradation strategy [87]. PBB maintained the enzymatic activities of a 
fungal co-culture (Pestalotiopsis sp., Polyporus sp. and Trametes hirsuta) and enhanced 
the biodegradation rate, in particular during the early stage of remediation [73].

The biodegradation activity of Byssochlamys nivea and Scopulariopsis brumptii 
was evaluated in agricultural soil microcosms contaminated with pentachloro-
phenol (PCP), added with solid urban waste compost [88]. A synergistic effect of 
compost and fungal strains was observed with a reduction of more than 95% of PCP 
after 28 days of incubation. The detoxification role of the two fungal strains in the 
contaminated soil was also confirmed by toxicity assays [89].

8. Mushrooms as an emerging issue in mycoremediation

Mushroom application in the bioremediation field could be considered as an emerg-
ing technology; nevertheless, a lot of scientific works have appeared in the last years.

The biodegradation potential of mushroom species in soil has been reviewed by 
[9]. In this chapter, the mycelial capability of hyperaccumulate chemical elements, 
in particular heavy metals and radionuclides, along with the nutritional potential 
hazards due to mushroom consumption has been extensively discussed.

The biodegradation of recalcitrant pollutants like PAHs by WRF, the biore-
mediation of soil contaminated with engine oil by Lentinus squarrosulus and the 
decontamination of soils polluted with cement and battery wastes using Pleurotus 
pulmonarius were also reported by [29].

Many works on the edible mushroom P. ostreatus have been published. The biodeg-
radation of the carcinogenic secondary metabolite aflatoxin B1 (AFB1), produced by 
Aspergillus flavus on rice straw [90] and on maize [91], was reported for this species. 
The mycoremediation of heavy metal-contaminated soils by means of different 
Pleurotus species was also reviewed in the work of [92]. In general, Pleurotus spp. are 
reported to be able to accumulate high levels of heavy metals; each species is charac-
terized by different sensitivities towards the different metals and their concentration.

In the review of [10], mushroom bioaccumulation of different potentially toxic 
trace elements (PTEs) in the fruiting bodies was reported for Phellinus badius, 
Amanita spissa, Lactarius piperatus, Suillus grevillei, Agaricus bisporus, Tricholoma 
terreum and Fomes fomentarius. The accumulation capability was higher than that of 
plants, vegetables and fruits.

The bioremediation of crude oil-contaminated soil by an unidentified 
Agaricomycetes was demonstrated in the work of [93]. The addition of 10% of spent 
mushroom compost (SMC) allowed to degrade petroleum hydrocarbons over a 
short period of time.

9. Conclusion

The capability of micro- and macrofungi to degrade organic pollutants and to 
decrease heavy metal concentration in soil is a matter of fact. The growth morphol-
ogy in soil (i.e. extended hyphal network), the low specificity of extracellular enzy-
matic complexes and the possibility to use toxic compounds as the growth substrate 
make filamentous fungi more advantageous in bioremediation processes when 
compared to other microorganisms. However, in the design of a soil mycoremedia-
tion process, some important aspects have to be considered such as the choice of 
the appropriate fungal strain and the evaluation of its possible interaction with the 
contaminated soil microbiota. To this end, microcosm studies represent a useful and 
simple method which allows to evaluate the feasibility of a biodegradation process.
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