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Abstract—The paper presents a framework for the design
and analysis of position observers for sensorless control of syn-
chronous reluctance machines. An improved inductance model is
developed to account for the position error induced inductance
variations. The instability regions of active flux based position
observer are analytically identified and validated. A novel tech-
nique, Adaptive Projection vector for Position error estimation
(APP), that alleviates the stability problems is introduced. Fur-
thermore, the proposed technique can be augmented with a
second projection vector to estimate speed error independently
of the position error, referred to as Adaptive Projection vector
matrix for Position and Speed error estimation (APPS). Stability
and performance of proposed technique is validated on a 1 kW
synchronous reluctance motor test bench.

Index Terms—Sensorless control, active flux, synchronous re-
luctance machine, speed error estimation, stability analysis.

I. INTRODUCTION

Owing to the saliency of synchronous reluctance (SyR)
machine, the position and speed estimation without an encoder
or resolver becomes realizable. The fundamental wave exci-
tation based approach is usually adopted at medium and high
speeds regions. For zero to low speeds operation, the literature
contains numerous works on high frequency signal injection
[1] [2] and switching frequency excitation [3] methods; [4]
presents a comprehensive review of high frequency injection
techniques. Fusion methods for smooth transitioning between
the two models are reported in [5] [6].

The present work concerns with the fundamental wave ex-
citation approach although it can be augmented with the high
frequency injection scheme with ease. Multiple works report
on the established active flux based sensorless control for
medium-high speeds region [5] [6] [7]. Yet, a comprehensive
stability analysis of the active flux approach has been largely
open. A generic observer framework for analysis is developed
in [8] with the concept of projection vectors to derive the
position error signal that drives a phase locked loop (PLL) or
a speed adaptation law. Instability of active flux approach in
the form of one among the many possible projection vectors
is studied for high speed regions in [8].

The section II introduces the machine model, control system
notations and the position observer in the form of a PLL. The
main contributions of the paper are summarized as follows:

• A generic framework for stability analysis, along the
lines of [8], with an improved inductance modeling is
developed in section II. Contrary to convention, the
improved inductance model also accounts for the position
error induced variations.

• The active flux based approach is subjected to analysis
to reveal the regions of instability in section III.

• A new position observer, Adaptive Projection vector
for Position error estimation (APP), is developed and
analyzed for stability in section IV.

• The proposed technique is shown to have the capability
to estimate speed error in addition to and independent of
the position error with a second projection vector, named
Adaptive Projection vector matrix for Position and Speed
error estimation (APPS).

The section V presents the experimental evaluation on the
instability of active flux method, the steady-state and transient
performance of the proposed technique along with the speed
error estimation on a 1 kW SyR motor test bench.

Fig. 1. Control system block diagram depicting position observer aided by
Hybrid Flux Observer (HFO). Current vector control can be replaced by any
other scheme.



II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ. Estimated vectors are represented by the
superscript .̂ The orthogonal rotational matrix is J = [ 0 −1

1 0 ]
and I is the identity matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-axis
is at θ̂ = θ−θ̃, where θ̃ is the position error. The speed error is
symbolized by ω̃ = ω−ω̂. Real space vectors will be used; for
example, the stator current is id̂q = [id̂, iq̂]

T where id̂ and iq̂
are the vector components in estimated rotor reference frame.
Space vectors in stationary reference frame are denoted by
subscript αβ.

The block diagram illustrating an overview of the motor
control is shown in the Fig. 1.

A. Mathematical Model of SyR Machine

The voltage equation of a SyR machine is expressed in (1)
where Rs is the stator resistance and λd̂q is the stator flux
linkage.

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

The stator flux linkage and its time-derivative in terms of the
incremental inductance l and apparent inductance L matrices
are expressed in (2).

λd̂q = eJθ̃ L e−Jθ̃ id̂q (2a)

sλd̂q = (s θ̃) Jλd̂q + eJθ̃ l s
(
e−Jθ̃ id̂q

)
(2b)

The components of inductance matrices are shown in (3)
where ld, lq represents the incremental inductance along direct
d and quadrature q axis respectively while ldq is the cross-
saturation term. Apparent inductance are defined likewise. All
quantities are a function of idq .

l(idq) =

[
ld ldq
ldq lq

]
L(idq) =

[
Ld 0
0 Lq

]
(3)

The estimated electromagnetic torque is given by (4) where
p is the number of pole pairs.

T̂ =
3p

2
(λd̂q × id̂q) (4)

B. State Observer

The flux observer is implemented in stator reference frame
as defined by (5) where Gαβ is a 2× 2 gain matrix.

sλ̂αβ = v̂αβ −Rsiαβ +Gαβ

(
eJθ̂L̂ e−Jθ̂iαβ − λ̂αβ

)
(5)

L̂ is the apparent inductance from the current model in
estimated rotor reference frame. In principle, the term L̂
comprises of two different types of errors: inherent parameter
error in inductance, and position error induced inductance error
in sensorless control.

Let Λ denote the flux maps lookup table of the machine
under test as λdq = Λ(idq), shown in the Fig. 2. Parameter
errors are not considered in this work, i.e., Λ̂ = Λ is assumed.
Then, in the estimated reference frame, the current model

Fig. 2. Experimentally obtained flux maps lookup table, Λ, of the SyR motor
under test: λdq = Λ(idq) = L · idq

based inductance L̂ depends on the operating point id̂q as
in (6) whereas the real machine inductance L depends on idq
as in (7).

L̂(id̂q) · id̂q = Λ(id̂q) (6)

L(idq) · e−Jθ̃ id̂q = Λ(e−Jθ̃ id̂q) (7)

Note that the components of L̂ are also denoted by the
superscript .̂ It is worth pointing out that in case of linear
flux maps (i.e. constant Ld and Lq), the inductance operator
becomes invariant to position error, L̂ = L.

In the estimated rotor reference frame, state observer takes
the form in (8) where the gain matrix G equivalence is given
by (9).

s λ̂d̂q = v̂d̂q −Rsid̂q − ω̂J λ̂d̂q +G
(
L̂ id̂q − λ̂d̂q

)
(8)

G = e−Jθ̂Gαβ eJθ̂ (9)

C. Speed and Position Observer

A conventional PLL with a proportional-integral (PI) con-
troller is employed to drive the error signal εθ to zero as in
(10) where kp and ki are the respective gains.

ω̂ = kp εθ +

∫
ki εθ dt θ̂ =

∫
ω̂ dt (10)

The generalized error signal [8] is defined as the projection
of the difference in observed and current model flux estimates
on a projection vector φθ.

εθ = φT
θ (λ̂d̂q − L̂ id̂q) (11)

The selection of projection vector plays a crucial role in
stability as discussed in the succeeding section.

D. Linearized Error Dynamics

The operating point quantities are signified by a subscript
0 and accurate model parameters in stator resistance and
inductances are assumed. The flux error dynamics (12) is
derived from (8) where λ̃d̂q = λd̂q − λ̂d̂q .

s λ̃d̂q = −(G0 + ω0J) λ̃d̂q +G0 (λd̂q0 − L̂ id̂q0) (12)



Fig. 3. Apparent inductance variation due to position error in d axis: a) In
blue are the current id and flux λd = Ld id while in red are the corresponding
quantities, id̂ and λi

d̂
= L̂d id̂, in the estimated reference frame for a

positive position error; b) Real machine d axis inductance (blue), current
model estimate (red) and improved model (yellow) for a position error of
θ̃ = 10◦ on MTPA trajectory.

Examining the terms,

λd̂q0 − L̂ id̂q0 = (L− L̂) id̂q0 + θ̃ (JL−L J) id̂q0 (13)

In literature, it is common to assume the estimated apparent
inductance to be equal to the real machine inductance, L̂ ≈ L,
for small θ̃ which is not always acceptable, as shown in the
following.

E. Improved Inductance Model

While the approximation L̂ ≈ L stands for linear unsat-
urated regions, it is more reasonable to consider invariance
in incremental rather than apparent inductance within a close
vicinity, as illustrated in the Fig. 3.a. Thus, linearizing (7) gives

L · (id̂q0 − θ̃J id̂q0) = Λ(id̂q0 − θ̃ J id̂q0)

≈ Λ(id̂q0)− θ̃ l J id̂q0 (14)

On simplification using (6),

L ≈ L̂+ θ̃ (L̂− l) J (15)

Fig. 3.b shows the real machine inductance (7), current model
estimate (6) and the improved model (15) for a position
error of θ̃ = 10◦ on MTPA trajectory; it is seen that the
improved model is identical to the real inductance whereas
the conventional model diverges as the d axis saturates.

Using the improved inductance model (15) in (13),

λd̂q0 − L̂ id̂q0 ≈ θ̃ (J L̂− l J) id̂q0 (16)

Let λa
d̂q0

be the co-efficient of θ̃ in (16), referred as auxiliary
flux linkage vector in [8].

λa
d̂q0

=
(
J L̂− l J

)
id̂q0 =

[
(ld − L̂q) iq̂0 − ldq id̂0
(L̂d − lq) id̂0 + ldq iq̂0

]
(17)

The equivalent expression for the conventional inductance
model, L̂ = L, is (18), denoted as λa

′

d̂q0
.

λa
′

d̂q0
=
(
J L̂− L̂ J

)
id̂q0 = (L̂d − L̂q)

[
iq̂0
id̂0

]
(18)

Fig. 4. Analysis of closed loop transfer function of speed observer

It is worth mentioning that, at deep saturation of d axis,
the term ld − L̂q diminishes and could possibly even become
negative. Hence, care must be taken to refrain from relying
on λa

d̂0
for position error estimation. On the other hand, this

phenomenon is invisible in λa
′

d̂0
, which signifies the importance

of improved inductance modeling.

F. Closed Loop Transfer Function of Speed Observer

Using the improved inductance model, the error dynamics
of the system simplifies to

s λ̃d̂q = −(G0 + ω0J) λ̃d̂q + θ̃G0 λ
a
d̂q0

(19)

εθ0 = φT
θ0

(
λa
d̂q0

θ̃ − λ̃d̂q
)

(20)

The transfer function Kθ(s) from position error θ̃(s) to the
error signal εθ(s) in Fig. 4 is given by (21) .

Kθ0 =
εθ0

θ̃
= φT

θ0 (s I +G0 + ω0J)−1 (s I + ω0J) λ̃d̂q0 (21)

Finally, the closed loop transfer function of speed observer for
the PLL in (10) is given by

ω̂(s)

ω(s)
=

(skp + ki)Kθ0(s)

s2 + (skp + ki)Kθ0(s)
(22)

III. ACTIVE FLUX BASED POSITION ESTIMATION

The error signal εθ0 in the active flux based sensorless
control is proportional to the q axis component of λaf

d̂q
in (23).

λaf
d̂q

= λ̂d̂q − L̂q id̂q (23)

In accordance with former definitions, projection vector for
active flux based error signal is given by (24).

φafθ0 =
1

(L̂d − L̂q) id̂0

[
0
1

]
(24)

Considering G = g I, the transfer function Kθ0 in (21)
simplifies to

Kθ0(s) =
1

(L̂d − L̂q) id̂0
·
ω0 g λ

a
d̂0

+ (s2 + sg + ω2
0)λaq̂0

(s+ g)2 + ω2
0

(25)
It can be discerned that the steady-state terms ω0 g λ

a
d̂0

+ω2
0 λ

a
q̂0

in the numerator of (25) are not additive during braking which
could potentially lead to instability.

To sketch regions of instability in dq current plane, a
comprehensive search is carried out by calculating the poles of
speed observer transfer function (22) at all permissible optimal
operating states, respecting MTPA, MTPV and current limits
as shown in Fig. 5. Evaluated with conventional inductance



Fig. 5. Stable operating limits contour for active flux projection vector φaf
respecting MTPA, current and voltage constraints at g = 2π · 20 rad/s: a)
Conventional inductance model; b) Improved inductance model. Maximum
current is set to 1.5 p.u. The gains of PLL are tuned according to (34) with
Ωω = 2π · 25 rad/s.

model, i.e., using λa
′

d̂q0
in the place of λa

d̂q0
in (25), the

results in Fig. 5.a are more conservative, an over-estimation
of instability regions w.r.t the improved model in Fig. 5.b.

To alleviate the aforementioned problems, [8] proposes an
adaptive gain matrix such that Gλ̃d̂q0 = 0 to decouple the
dynamics of flux and the speed observer.

IV. PROPOSED SENSORLESS TECHNIQUE

A. Adaptive Projection Vector for Position Error Estimation -
APP

A primary design consideration for the proposed technique
is to circumvent the stability issues due to the interaction
of flux and speed observer dynamics; this is achieved by
adapting the projection vector φθ while keeping the observer
gain matrix constant, G = g I, in contrast to [8]. To this end,
using the flux error dynamics (19), the error function (20) is
manipulated to

εθ0 = φT
θ0 (s I +G0 + ω0J)−1 (s I + ω0J)λa

d̂q0
θ̃

= φT
θ0 (s I +G0 + ω0J)−1 (λa

d̂0
I + λaq̂0J)

[
s θ̃

ω0 θ̃

]
(26)

Examining the expression in (26), a natural choice for the
position error projection vector φθ0 is

φT
θ0 =

[
0 ω−1

0

] (
λa
d̂0

I+λaq̂0 J
)−1 (

s I+G0+ω0 J
)

(27)

To address the derivate term in the projection vector, an
observer is designed with a bandwidth h rad/s as shown
in the block diagram in Fig. 6. Hence, the projection vector
transforms to

φT
θ0 =

[
0 ω−1

0

] (
λa
d̂0

I + λaq̂0 J
)−1 ( sh

s+ h
I +G0 + ω0 J

)
(28)

For G = g I, the transfer function Kθ0 in (21) reduces to

Kθ0 =
s2 + g2 + ω2

0 + s g + g s
(

h
s+h

)
(s+ g)2 + ω2

0

(29)

It is discerned that the Kθ0 is independent of λa
d̂q

, id̂q and
the sign of ω. Moreover, as h→∞, Kθ0 → 1; however, h is
limited by the high frequency noise.

The bode plot at various speeds is shown in the Fig. 7,
with/without the derivative observer; it imitates a band-stop
filter with notch frequency of ω and the derivative observer is
seen to not have a major impact on Kθ0.

The locus of poles for the close loop transfer function of
speed observer (22) is shown in the Fig. 8 and is observed to
be stable in all operating points. Although succeeding analysis
and results correspond to G = g I, it is worth pointing out that
the gain matrix can be adapted as in (30) at h = 0 to obtain
Kθ0 = 1 that results in fixed PLL poles and the complex poles
of flux observer at s = −g ± j ω.

G0 =
g2 I− 2g ω0 J
ω0 |λad̂q0|2

[
λa
d̂0
λaq̂0 −λa

d̂0

2

λaq̂0
2 −λa

d̂0
λaq̂0

]
(30)

B. Adaptive Projection Vector Matrix for Position and Speed
Error Estimation - APPS

For the speed observer structure defined in (10), the deriva-
tive of position error is equivalent to the speed error, sθ̃ = ω̃.
Note that the equivalence does not hold for a PID-type
mechanical observer [9].

The speed error is estimated from the expression in (26);
though it is not employed in the PLL at present, it is valuable
in designing high performance observers. The cumulative error
signal vector ε is given by (31) where the projection vector
matrix (2×2) is Φ = [φω φθ]

ε =

[
εω
εθ

]
= ΦT (λ̂d̂q − L̂ id̂q)

=

[
φT
ω

φT
θ

]
(λ̂d̂q − L̂ id̂q) (31)

The projection vector matrix is derived akin to (28) as

ΦT
0 =

[
1 0
0 ω−1

0

] (
λa
d̂0

I + λaq̂0 J
)−1 ( sh

s+ h
I +G0 + ω0 J

)
(32)

For G = g I, the transfer function Kω(s) from speed error
ω̃(s) to the error signal εω(s) is expressed in (33). Similar
to Kθ0, it is independent of id̂q and the sign of ω, and as
h→∞, Kω0 → 1.

Kω0 =
g2 + s g + (s2 + ω2

0 + s g)
(

h
s+h

)
(s+ g)2 + ω2

0

(33)

The bode plot of Kω0 at various speeds is shown in the
Fig. 9; unlike Kθ0, Kω0 is strongly influenced by the derivative
observer. At h = 0 in Fig. 9.a, the speed error is unobservable
at high speeds as the gain is very small. Hence, the derivative
observer is deemed essential for speed error estimation as in
the Fig. 9.b which exhibits a low-pass filter behavior with a
cut-off frequency at h.

A perturbation analysis is developed to validate the accuracy
of position and speed error estimation. To this end, a sinusoidal
disturbance is injected into the encoder position measurement
as shown in Fig. 10 and the estimated error are juxtaposed
against the reference errors.



Fig. 6. Proposed speed and position observer, APPS: h is the bandwidth of derivative observer for the term s (λ̂d̂q − L̂ id̂q)

Fig. 7. Bode plot of Kθ(s) = εθ/θ̃ at g = 2π · 10 rad/s exhibiting a
band-stop filter like behavior: a) h = 2π · 0 rad/s; b) h = 2π · 25 rad/s

Fig. 8. Locus of poles of speed observer for |ω| = 0.2. . . 2 p.u: a) h = 2π ·0
rad/s; b) h = 2π · 25 rad/s. The circle, diamond and square represents the
speeds 0.2 p.u, 1 p.u and 2 p.u respectively. The poles of PLL are in blue,
flux observer in red and derivative observer in yellow; g = 2π · 10 rad/s and
the gains of PLL are tuned according to (34) with Ωω = 2π · 25 rad/s.

V. EXPERIMENTAL RESULTS

The proposed sensorless scheme is validated experimentally
on a 1 kW SyR motor on a dspace DS1103 control platform
running at a sampling frequency of 10 kHz. A picture of the
setup is shown in Fig. 11. The parameters of the SyR under
test are tabulated in Table I.

The gains of the PLL are tuned for a critically damped

Fig. 9. Bode plot of Kω(s) = εω/ω̃ at g = 2π · 10 rad/s exhibiting a
low-pass filter like behavior: a) h = 2π · 0 rad/s; b) h = 2π · 25 rad/s

Fig. 10. Perturbation of encoder measurement to validate speed and position
error estimation in APPS scheme

response at Kε0 = 1 by placing the two poles at s = −Ωω:

kp = 2 Ωω ki = Ω2
ω (34)

The observer bandwidth Ωω = 2π · 25 rad/s is chosen; the
estimated speed is low-pass filtered at Ωω . The flux observer
gain is set to g = 2π · 10 rad/s. Unless otherwise mentioned,
the derivative observer gain is set to h = 2π · 25 rad/s.



Fig. 11. Experimental Setup of 1 kW SyR motor under test on a dspace
DS1103 control platform at a sampling frequency of 10 kHz.

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated Power Pn 1 kW
Rated Voltage Vn 340 V
Rated Speed ωn 1500 rpm
Rated Current In 3.6 A
Rated Torque Tn 7.1 Nm
Pole pairs p 2 -
Stator Resistance Rs 4.5 Ω
Shaft Inertia J 0.04 kgm2

The SyR motor is speed controlled while the load torque is
imposed by an auxiliary drive. A minimum current in imind =
0.4 p.u (2A) is imposed to saturate the q axis ribs at no-load.

A. Validation of Improved Inductance Model using Active Flux
Method

To highlight the veracity of proposed improvements on
inductance model, the active flux transfer function Kε0 in
(25) is simplified excluding the dynamics to (35) at ω = −g;

Fig. 12. Effect of improved inductance model on stability analysis. Operating
conditions: ω = −g = −0.4 p.u, current angle = 45◦ (id = iq)

Fig. 13. Operation at high speeds motoring region for trajectory along MTPV
at ω = 1 p.u: a) Active flux approach; b) APP technique. Instability of active
flux method occurs at t = 2.75 s.

the steady-state term Kss
ε0 (scaling factor of speed observer

bandwidth) is given by

Kss
ε0 =

1

(L̂d − L̂q) id̂0
· 1

2

(
λaq̂0 − λad̂0

)
(35)

For the conventional inductance model (using λa
′

d̂q0
in (35)),

the term Kss
ε0 = 0 at id = iq which implies an unobservable

state. However, as shown in Fig. 12, it is a stable operating
state as affirmed by using the improved inductance model,
(17) in (35). The steady-state position error in Fig. 12 arises
due to the low Kss

ε0 that diminishes the strength of error signal
εθ making it more susceptible to inverter non-idealities.

B. Stability Analysis: Active Flux Vs. APP

As illustrated in Fig. 5, instability of active flux approach is
pronounced at high speeds motoring and low speeds braking
regions.

1) Motoring: Fig. 13 shows the operation at ω = 1 p.u
along the MTPV trajectory with an imposed minimum imind =
0.2 p.u. The active flux approach runs into instability well
below the rated torque while the proposed APP technique
alleviates the problem with negligible steady-state position
error.

2) Braking: In the case of braking in Fig. 14 at ω = −0.2
p.u along the MTPA trajectory, the active flux approach
becomes unstable at T ≈ 0.5 p.u while the proposed APP
technique is capable of tracking the torque reference.



Fig. 14. Operation at low speeds braking region for trajectory along MTPA
at ω = −0.2 p.u: a) Active flux approach; b) APP technique. Instability of
active flux method occurs at t = 2.5 s.

Fig. 15. Position error estimation of APPS under imposed sinusoidal
perturbation of θ̃∗ = 10◦ sin(2π · 25 t) and θ̃∗ = 10◦ sin(2π · 50 t)
(electrical) on encoder measurement: a) h = 2π · 0 rad/s; b) h = 2π · 25
rad/s . Operating conditions: T = 0.5 p.u and ω = 0.5 p.u

C. Perturbation Analysis

Note that the PLL is disabled for this test as the system is
no longer sensorless; moreover, the SyR is in torque control
operation with a constant speed imposed by the auxiliary drive.

Fig. 15 shows the position error in APPS technique when
a sinusoidal perturbation of θ̃∗ = 10◦ sin(2π · 25 t) and
θ̃∗ = 10◦ sin(2π · 50 t) are imposed on the encoder position
measurement. The band-stop behavior of Kθ in Fig. 7 at
ω = 0.5 p.u (25 Hz) is more visible for h = 2π · 0 rad/s

Fig. 16. Speed error estimation of APPS under imposed sinusoidal perturba-
tion of θ̃∗ = 10◦ sin(2π · 25 t) and θ̃∗ = 10◦ sin(2π · 50 t) (electrical) on
encoder measurement: a) h = 2π · 0 rad/s; b) h = 2π · 25 rad/s. Operating
conditions: T = 0.5 p.u and ω = 0.5 p.u

where the position error signal εθ tracks the θ̃∗ oscillations at
50 Hz while it falters at the notch frequency of 25 Hz.

The bode plot of Kω in Fig. 9 dictates a low-pass behavior
with cut-off frequency at h; accordingly, in Fig. 16, speed
error signal εω at h = 2π · 25 rad/s tracks accurately the
ω̃∗ oscillations at 25 Hz but falters at 50 Hz. As expected,
the inclusion of derivative observer improves the tracking of
speed and position errors.

D. Transient performance

The performance of APP technique with/without the deriva-
tive observer during transients is analyzed with step change
in load torque and reference speed in Fig. 17 and Fig. 18
respectively. In either case, a negligible transient error in
position is observed. Moreover, the exclusion of derivative
observer in Fig. 17.a and Fig. 18.a makes little difference as
supported by bode plot of Kθ in Fig. 7.

VI. CONCLUSION

This paper presents a framework for the design and analysis
of position observers for SyR machines in sensorless applica-
tions. An improved inductance model is developed to account
for the position error induced variations. The well-known
active flux based position observer is subjected to analysis
to reveal instability at high speeds flux-weakening and low
speeds braking regions.

A new observer is developed with an adaptive position
error projection vector, APP, to alleviate the stability problems.
Furthermore, the APP technique can be augmented with an
additional projection vector to obtain APPS that is capable
of estimating speed error signal independently by having
speer error projection vector orthogonal to the position error
projection vector. A derivative observer is introduced which is
deemed essential for speed error estimation; however, could
be optional if only position error is sufficient.



Fig. 17. Transient performance of the APP technique for a rated step change
in load torque, TL = 0 → 1 p.u, at ω = 0.5 p.u: a) h = 2π · 0 rad/s; b)
h = 2π · 25 rad/s

The stability concerns with active flux method, transient and
steady-state performance of the APP technique along with the
perturbation analysis of APPS for speed error estimation are
experimentally evaluated on a 1 kW SyM motor test bench.
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