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On the Static Performance of Concave Aerostatic Pads  

 Federico Colombo1, Luigi Lentini1*, Terenziano Raparelli1, Vladimir Viktorov1, 

 Andrea Trivella1 

1 Politecnico di Torino, Turin (TO) 10129, Italy 
* luigi.lentini@polito.it 

Abstract. Numerical models have been largely utilized as a valuable tool to in-
vestigate the performance of aerostatic pads. These models make it possible to 
evaluate the effect of different parameters, e.g., supply pressure, orifices diameter 
and locations. This paper presents a numerical study to investigate to what extent 
the use of concave surfaces can modify the static performance of aerostatic pads. 
The study consists in comparing the performance of flat and concave pads in the 
presence of different supply pressures and maximum depths of concavity.  
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1 Introduction 

Aerostatic bearings are widely used in many applications where their high accuracy 
and almost zero friction are of relevant importance. Metrology, ultra-precision machin-
ing and semi-conductor production equipment are some examples of these applications 
[1].  

However, aerostatic bearings are characterized by low relative stiffness and poor 
damping [2]. Because of the current demand to have more performant bearings, differ-
ent technical solutions have been proposed. Among the possible solutions, one of the 
most frequently adopted to achieve performance enhancement is designing feeding sys-
tems of different types, e.g., simple and pocketed orifices, compound restrictors, micro 
holes and porous surfaces. Lumped and distributed models represent a valuable aid to 
perform preliminary design and assessment of the bearings performance. Because of 
their low computational cost, lumped parameters models are usually employed to per-
form stability analysis and simulate the performance of aerostatic bearings exploiting 
passive and active compensation methods [3]. Blondeel et al. [4] proposed a feedback 
loop model to carry out the stability analysis of an aerostatic pad with a central pocketed 
orifice. In this kind of lumped models [5–9], the governing equations of the pad are 
linearized  and used in combination with stability analysis methods. Ghodsiyeh et al. 
[10] used a lumped parameter model to design a passively compensated pad with an 
embedded diaphragm valve. Colombo et. al [11, 12] proposed an identification method 
to estimate the stiffness and damping of the air film of aerostatic pads and then used 
this method to simulate the performance of an actively compensated bearing exploiting 
the support compensation method [13, 14]. Conversely, distributed parameters models 
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are usually implemented through finite difference (FD) or finite element (FE) methods 
to obtain more accurate bearing characterizations. Colombo et al. [15] implemented a 
FD model based on the modified Reynolds equation (isothermal condition) to study the 
behavior of a rectangular pad with multiple orifices. The influence of the supply pres-
sure, orifice location and size was investigated both in static and dynamic conditions. 
In the presence of symmetrical boundary and loading conditions, the complexity of the 
model can be significantly reduced by the use of polar coordinates. This can be the case 
of circular pad. Charki et al. [16] developed different finite element models to compare 
the performance of circular aerostatic pads with simple orifices, compound restrictors 
and porous surfaces. Additionally, distributed models make it possible to study the per-
formance of bearings with non-flat surfaces. The use of this non-flat surfaces is a fre-
quently used solution that was introduced for different reasons, e.g., avoiding adhesion 
and compensating for pad deflections. 

This paper presents a numerical model used to investigated to what extent the pla-
narity of pad surfaces can affect their static performance. The performance of aerostatic 
pads with multiple inherent orifices is compared in the presence of a flat and semi-
ellipsoidal concave surfaces. The results of these comparisons show the possibility to 
study pads with concave surfaces as equivalent flat pads. 

2 The model of the pad 

 The bearings under investigations are aerostatic pads with sizes of 75x50 mm2 and 
thicknesses equal to 13 mm. These pads have flat or concave surfaces. The concave 
pads have of maximum depths of concavity of 1, 3 and 5 [µm]. Figure 1 shows a scheme 
of the active surface of the pads. The pads present eight supply holes with a diameter 
of 0.2 mm which are distributed on a supply rectangle of size 55x30 mm2. 

 

 
Fig. 1. Scheme of the active surface of the pad. 

The bearing surface was discretized through FD method and Reynolds’ equation (see 
Equation1) is used to compute its consumption and air gap pressure distribution.  
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where h is the air gap height, p, µ and ρ are the air pressure, viscosity and density 

respectively. The adopted boundary condition to solve the problem are the inflow 
through the supply holes and the ambient pressure at the pad edges.  The inflow through 
the supply holes is computed as: 

 

G34 = c6
πd9:

4
0.6855
√RT

p9D1 −Φ: (2) 

  
where, d9and p9 are the hole diameter and the supply pressure. c6 is a discharge 

coefficient obtained through a semi-empirical formula [17]: 
  

c6 = 0.85$1 − eHI.:
J
6K+ (1 − 0.3eHM.MMNOP) (3) 

  
where Re is the Reynolds’ number computed at the outlet of the considered supply 

hole: 

Re =
4G
πµd9

 (4) 

  
 Φ takes into account the pressure drop between the upstream (p9) and downstream 

(pQ) pressures of supply holes: 

Φ =

pQ
p9
− 0.528

1 − 0.528  (5) 

  
The pressure in each element of the mesh are computing solving the non-linear al-

gebraic system obtained by the discretization of Reynolds’ equation (1). In correspond-
ence of the supply holes the continuity equation is imposed in the discretized volume: 

  
G34 − GRST = ṁ (6) 

  
 where Gout is the mass air flow outflowing from the volume. The load capacity F of 

the bearing is computed by integrating the pressure distribution: 
  

F = X(p − pY)	dA (7) 

  
For reasons of simplicity, Euler’s explicit method was employed to find the steady 

state solution. Figure 2 shows a flow chart of the employed computational algorithm. 
The solutions are obtained by iterative steps through pseudo-unsteady method [18]. 
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Fig. 2. Flow chart of the computational procedure 

The first step of the procedure consists in defining the input parameters (supply pres-
sure p9, orifice diameter d9, their locations, the air gap function h(x, y)). Secondly, 
inflow G34, outflow GRST, air gap pressure p, load capacity F and air consumption G are 
initialized, along with the convergence errors: 

  
err_ =

(F3TP`aN − F3TP`)
F3TP`aNb ≠ 0 (8) 

and 
errd =

(G3TP`aN − G3TP`)
G3TP`aNb ≠ 0 

 
(9) 

The iterations continue by calculating in the order Re, G34, GRST, p, F and G till the 
convergence errors become lower than the defined thresholds. 

3 Methodology 

Different numerical simulations were carried out to investigate the difference in perfor-
mance between flat and concave aerostatic pads. Figure 2a shows the surface of the 
simulated concave pad. Here, to facilitate the visualization of the concave surface, the 
scale of the Z axis is enlarged. Figure 2b illustrates a sketch of the concave profile of 
the pad.  
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Fig. 3a. Semi-ellipsoidal surface of concave pads (c= 5 
µm) 

Fig 3b. Profile of concave pads 

Close to their edges the surfaces of concave pads are flat, whereas the inner regions are 
described by a semi-ellipsoidal function. This kind of surfaces was chosen to simulate 
a profile similar to those obtained through spherical milling. The mathematical expres-
sion of the concave gap is the following: 

  

hQR4QYfP = hghYT + ci1 − j
x
xM
k
:
− j

y
yM
k
:
 (7) 

  
where, c is the maximum depth of the concave profile and hghYT is the air gap at the 

edges of the pad. Only positive values of 1 − (x xM⁄ ): − (y yM⁄ ): were considered. The 
analysis was performed considering relative supply pressures (p9) equal to 3, 4 and 5 
bar and different depths of the concave profiles c= 1, 3 and 5 µm. The comparison of 
the performance of flat and concave pads was carried out taking into account their load 
capacity, air consumption and stiffness. 

4 Results 

Figures 4 to 6 show the static curves regarding the load capacity, air consumption and 
stiffness of the investigated flat and concave pads. These features are expressed as a 
function of the minimum air gap height of pads hghYT (see Figure 3b) in the presence of 
relative supply pressures equal to 3, 4 and 5 bar and different concavity depths c. As it 
can be seen in Figure 4, the load capacity of each pad increases with the supply pressure 
and it is possible to distinguish three different regions depending on the air gap height. 
The first region is located at air gaps smaller than 7-8 µm. Here, the load capacity of 
concave pads is always higher than those of flat bearings for each value of concavity. 
It is also worth noting that in this region, the curves of flat pads exhibit a saturation of 
their load capacities, whereas concave pads do not. Between air gaps of 7 and 8 µm flat 
concave pads exhibit similar load capacities. Conversely, at air gaps higher than 8 µm, 
the load capacity of the flat pads is always higher compared to that of their concave 
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counterparts. It appears that the load capacity decreases as the depth of concavity c 
increases. 

 

 
Fig. 4. Load Capacity vs minimum air gap height 

Figure 5 compares the air consumption curves of the simulated pads. As expected, the 
air consumption increases as the supply pressure and the concavity depth increases. 

 

 
Fig. 5. Air consumption vs minimum air gap height 

Figure 6 shows the static stiffness curves of the simulated pads. The stiffness of each 
pad increases with their supply pressure. Moreover, it is clear that concave pads exhibit 
stiffnesses that are higher than their flat counterparts up to about 5%. Secondly, the air 
gaps corresponding to the maximum stiffness of concave pads reduces as the concavity 
increases. Eventually, moving towards zero air gap condition, concave pads exhibit al-
most constant stiffnesses whereas, the stiffness of flat pads gradually reduces to zero.  
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Fig. 6. Stiffness vs minimum air gap height 

The analysis of the shift of the load curves in the third region allows the following 
relationships to be found: 

Maximum depth of concavity 𝐜 [µm] Relationship (𝐡𝐜,𝐞𝐪𝐯 𝐡𝐟𝐥𝐚𝐭) [µm] 
1	 h∗QN = hghYT + 	0.3 
3	 h∗Q( = hghYT + 	1 
5	 h∗Qw = hghYT + 	1.7 

 
where, h∗QN, h∗Q( and h∗Qw are air gaps that make it possible to study a concave pad 

as an equivalent flat pad. Figure 7, 8 and 9 show the comparison between flat and con-
cave pads considering these equivalent air gaps. As a confirm of this, Figure 7 shows 
that there is an almost perfect match between the air consumption curves (error less 
than 0.5 µm).   

 

 
Fig. 7. Air consumption vs equivalent air gap height 

Furthermore, similar results are evident in Figure 8. The load curves coincide at high  
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 air gaps and then, because the presence of the semi-ellipsoidal recesses, the load 
capacity of concave pads gradually departs from those of the flat pads. 

 

 
Fig. 8. Load capacity vs equivalent air gap height 

The effect of the recesses of concave pads is more evident on the stiffness curves 
(see Figure 9). The stiffness of the equivalent concave pad is very similar to that of flat 
pads only at high air gap heights, where the volume of the recess can be considered 
negligible compared to that of the flat air gap. For smaller air gaps, the difference be-
tween the stiffness of equivalent concave and flat pads increases as the air gap height 
reduces. Eventually the stiffness of concave pads tends to constant values whereas that 
of flat pads tends to zero. 

 
Fig. 9. Stiffness vs equivalent air gap height 

5 Conclusions 

This paper compares the performance of concave and flat aerostatic pads with multiple 
inherent orifices. The comparison was carried out through FD models of the two types 
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of pads. The obtained results show that, at the same minimum air gap height, concave 
pads exhibit always higher stiffness and air consumptions. Meanwhile, regarding load 
capacity, it is necessary to distinguish among three different regions. The first zone is 
at air gap heights lower than 7 µm, where concave pads exhibit higher load capacity 
than the flat pads. Conversely, in the third region the opposite trend occurs. Between 
these two regions there is a transitional zone where the two types of pads have similar 
load capacity. However, the most promising outcome of this investigation was that by 
considering a modified air gap height, the performance of a concave pad can be studied 
as that of an equivalent flat pad. This result is relevant because equivalent air gap 
heights could be exploited to extend the use of lumped models also in the case of non-
flat pads, e.g., for concave [19] and grooved bearings [20]. 
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