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Abstract 1 —In the last decade, General Purpose Graphics 

Processing Units (GPGPUs) have been widely employed in high 

demanding data processing applications including multimedia and 

high-performance computing due to their parallel processing 

capabilities. Nowadays, these devices are considered as promising 

solutions also for high-performance safety-critical applications, 

such as autonomous and semi-autonomous vehicles. Current 

GPGPUs are designed targeting challenging execution 

requirements, e.g., related to performance and power constraints, 

forcing designers to use aggressive technology scaling solutions. 

Nevertheless, some implementation technologies are prone to 

introduce faults in the device during the operative life adding 

unaffordable effects and errors for the safety-critical domain. 

Hence, effective in-field test solutions are required to guarantee 

the target reliability levels. In this paper, we propose in-field test 

solutions based on Software-Based Self-Test (SBST) targeting the 

control-path of pipeline registers located in the Streaming 

Multiprocessor (SM) of a GPGPU. We resort to a multiple-kernel 

approach to detect permanent faults in these register fields. The 

solutions were designed employing NVIDIA CUDA, when 

possible, and lower level constructs elsewhere. Several usages and 

compilation restrictions are also described.  Fault simulation 

results on an open-source VHDL GPGPU (FlexGrip) 

implementation of the G80 architecture of NVIDIA are reported, 

showing the effectiveness and limitations of the approach. 

Keywords— fault simulation, functional testing, GPGPUs, 

pipeline registers, SBST. 

I. INTRODUCTION 

General Purpose Graphics Processing Units (GPGPUs) have 
been used in the last years in highly demanding applications to 
process large amounts of data including multimedia and high-
performance computing. Nowadays, these devices are 
considered as feasible solutions also in new complex and safety-
critical applications, such as autonomous and semi-autonomous 
cars [1]. These devices are designed following execution 
requirements, including performance and power constraints, 
forcing designers to employ aggressive technology scaling 
solutions. Moreover, it has been shown that some 
implementation technologies are more prone to introduce faults 
(permanent or transient) during the operative life of the device 
[2, 3] causing unaffordable failures in the safety-critical domain. 
Unfortunately, the architectural complexity of GPGPUs 
aggravates the design of effective and affordable test techniques 
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oriented to verify the integrity of internal modules during in-
field operation [4]. 

In the industry, testing solutions for complex embedded 
systems are based on Design for Testability (DfT) approaches, 
such as Built-In Self-Test (BIST), and functional test. DfT is 
effective for end of manufacturing test. However, new 
reliability challenges exist in GPGPU devices, and DfT 
structures are not commonly accessible during in-field 
operation. On the other hand, functional test methods based on 
Software-Based Self-Test (SBST) employ the available 
modules in the device to perform the test. In SBST, a set of 
instructions is employed to generate test patterns on target 
modules and detect faults or verify the functionality of them, 
thus, checking the internal structures of the device.  

A GPGPU is mainly composed of groups of Streaming 
Multiprocessors (SMs). Each SM includes multiple levels of 
pipeline stages to improve application performance. A register 
is placed between each pair of adjacent stages to temporarily 
store information about the multiple instructions executed in the 
stage. These registers are crucial for the SM operation and 
stores temporary information about the data and control signals 
employed in the different stages of the SM. A fault affecting 
these structures could generate critical and unexpected 
behaviors, from an erroneous result, if the affected location is a 
data-path register field, until a system crash, when a control-
path register field is affected. Hence, faults in these structures 
could often be unacceptable for safety-critical applications. In 
particular, faults in control-path fields of Pipeline Registers 
(PRs) are complex to detect during the device operation. 
Moreover, systematic solutions for in-field test of faults in these 
GPGPU structures are still missing. 

Some works [5-7] proposed tools to inject soft-errors at the 
low-level code in real o micro-architectural models of GPGPUs, 
in particular, to support the analysis of transient faults effects. 
However, the injection locations are limited to some data-path 
units and it is not possible to determine a Fault Coverage (FC) 
for permanent faults resorting to these solutions. In other works, 
the authors employ RT-level models and real GPGPUs to 
propose test techniques targeting permanent faults in some 
modules, such as register files (RF) [8], memories [9] and 
controllers [10]. Similarly, other works [11, 12] analyzed the 
effect of transient faults on data-path and found a relation 
among the fault effects, the employed instructions and the 
module usage. In [13], the authors proposed hardening 
techniques to mitigate the effect of transient faults in the PRs 
calculating the effects of faults affecting each register for some 
selected applications. However, to the best of our knowledge, 
there are no works proposing methods addressing permanent 



fault detection in GPGPU PRs and reporting experimental data 
on their effectiveness. 

In this paper, we analyze the feasibility of using Software-
Based Self-Test (SBST) techniques to detect permanent faults 
in the PRs in the Streaming Multiprocessors (SMs) of a 
GPGPU. This work targets the control-path fields in the pipeline 
registers considering that these structures are present in GPGPU 
technologies and include control and management information. 
This information is crucial for SM operation and instruction 
execution. Moreover, these are not easy testable and are located 
across PRs in the SM. We neglected data-path fields since it is 
known that the test of data-path structures is more dependent on 
low-level implementation details and can be successfully 
achieved using techniques such as the one proposed in [14]. 

We resort to a multiple-kernel approach targeting different 
sub-sections of the control-path fields in the PRs, showing that 
traditional in-field functional techniques developed for CPUs 
can be applied in this case, provided that a careful combination 
of high- and low-level programming structures are adopted. 
Experiments were performed employing fault simulation on an 
open-source VHDL GPGPU (FlexGrip) implementation of the 
G80 architecture of NVIDIA [15]. The NVIDIA’s terminology 
is employed to describe the proposed techniques. However, it 
should be noted that these methods can be adapted to other 
GPGPU technologies. 

Results show the effectiveness and limitations of the 
approach. As far as we know, this is the first work presenting an 
experimental evaluation (i.e., assessing the achieved FC) of 
SBST approaches to detect permanent faults in the PRs of a 
GPGPU. 

The paper is organized as follows: Section II briefly 
introduces the basic architecture of a GPGPU, the pipeline 
registers in the FlexGrip model and some operative restrictions 
of FlexGrip. Section III introduces the proposed SBST 
techniques to detect permanent faults in the pipeline registers. 
Section IV describes the fault injection environment. Section V 
reports some experimental results and Section VI finally draws 
some conclusions. 

II. BACKGROUND 

GPGPUs are special purpose parallel processors designed to 
process simultaneously multiple tasks in groups (32 threads or 
a warp) using SMs. Each SM includes execution units (Scalar 
Processors, or SPs), caches, (shared) memories, RFs, a task 
scheduler, and a dispatcher controller. The SM executes the 
same instruction (warp instruction) on different SPs using 
particular thread operands. Internally, the SM employs multiple 
pipelines stages to process the warp instruction and improve 
performance. The next section describes the pipeline register 
structures in the FlexGrip GPGPU. 

A. Pipeline registers in FlexGrip 

These registers are placed between every pair of pipeline 
stages to store temporary information from the previous stage 
and supply information into the next one. In FlexGrip, PRs are 
distributed between the five stages in the SM, named Fetch, 
Decode, Read, Execution and Write-back. An additional stage is 
considered, Warp, which is the interconnection stage between 
the Warp scheduler and the Fetch stage (see Figure 1).  

Every pipeline stage partially manages the execution of 
warp instructions in the SM. The execution starts with the Warp 
scheduler dispatching a warp to be executed in the SM. The 
Fetch stage translates the warp program counter into the 
instructions to operate. The Decode stage converts the 
instruction operational code into memory or register locations, 

including operands and destinations, and instructions formats. 
The Read stage collects the different operators and assigns data 
formats for the active threads. The Execution stage executes 
control-flow or logic-arithmetical operations depending on 
predicate conditions and input format parameters. The Write-
back stage stores result in the target memory or register 
locations. Finally, the Warp scheduler checks the instruction 
operation and dispatches a new instruction for the next cycle. 

FIG 1. THE GENERAL SCHEME OF THE SM IN THE FLEXGRIP GPGPU 
 

The PRs store mainly operands for warp instruction 
execution. Nevertheless, these also include control information 
related to the warp instruction status. In the Warp-Fetch (W-F) 
registers, these are composed of control fields related to the 
actual instruction warp status and execution on the SM 
including the Warp program counter (WPC), the initial and 
active thread mask (AThM), parameters for shared memory and 
general purpose registers size configuration. The PR in the 
Fetch-Decode (F-D) stage includes the same information of the 
previous stage, adding the warp instruction operational code. 
The Decode-Read (D-R) PR stores the format of the specific 
instructions fields to activate some operational modes or sub-
modules in the next stage. The Read-Execution (R-E) PR 
additionally includes the Temporary Registers (TRs), which 
handle operands and predicate conditions for each SP in the 
execution stage. The Execution-Writeback (E-Wr) PR also 
contains some TRs. However, they store the result or partial 
result of a warp instruction. Table 1 summarizes the basic 
information about the control-path fields of PRs. 

TABLE 1. GENERAL INFORMATION ABOUT PRS IN FLEXGRIP (CONTROL-PATH 

ONLY). 

Regs 
Warp 

Instructions 
Warp Status 

Instruction 

Opcode 

Instruction 

Formats 
Bits per Reg 

F-D X X   237 

D-R X X X X 391 

R-E X X  X 302  

E-Wr X X  X 251  

Wr-W X X   133 

W-F X X   140 
 

The high number of bits per register in the R-E and E-Wr 
registers is caused by the large number of registers employed in 
the TRs to handle the operands for each SP. These structures 
temporary store operands and results of logical, arithmetical and 
control-flow operations of each thread on an SP in the SM. TRs 
are organized in sets, one per SP. Each register set is composed 
of 6 groups of registers and each group includes four 32-bit 
registers. The group of registers 0, 2 and 4 in the R-E register 
store the operands (SRC1, SRC2, and SRC3). Similarly, Group 
0 in E-Wr register stores the result (DST). 

B. FlexGrip restrictions 

The work reported in this paper has been performed on a 
modified version of the original Flexgrip model described in 
[15], where we fixed some bugs, removed some restrictions and 
added some extensions. There are still some operational 



restrictions in the adopted Flexgrip model related to the 
programming environment. Those are: i) FlexGrip executes one 
kernel per time. In order to launch other kernels, it is required to 
load memories and configuration parameters. ii) The shared 
memory and RF parameters are programmed during the 
configuration stage. iii) Flexgrip supports 27 instructions in 78 
formats, only. Moreover, it does not provide any floating point 
support. iv) The CUDA compiler may generate unsupported 
instructions for FlexGrip, and the optimizations may change the 
type and order of the instruction, thus possibly creating code 
which cannot be executed by FlexGrip. 

III. PROPOSED SBST METHOD 

We adopted a bottom-up approach designing multiple 
programs (kernels) to test permanent faults in the control-path 
fields of the GPGPU pipeline registers. Each kernel focuses on 
some specific parts of the register fields. In the end, the 
cumulative FC achieved by all the kernels is assessed. Each 
kernel is written through a high-level compiler (CUDA) when 
possible. Moreover, we added some assembly instructions 
(SASS) if required. It is worth noting that SASS assembly 
language is not fully known as it has not been released by 
NVIDIA. In FlexGrip, a file generation description was added 
in order to represent the global memory results after kernel 
termination. 

A. Proposed functional test methods 

PRs are divided into two main groups and multiple sub-sets 
for the purpose of developing multiple functional test methods, 
one for each target. Fig 2 represents the pipeline fields division. 
The proposed test methods are explained in the following 
sections. 

 

 

 

FIG.  2.  DIVISION OF PIPELINE REGISTER FIELDS 

B. Algorithms to test the warp instruction status registers 

As shown in Table 1, each PR stores warp instruction and 
status information across the SM. It means that, when targeting 
one sub-set of registers in one PR, it is enough to generate the 
detection on other PRs. The test method for the WPC field and 
AThM are introduced in the next subsections. 

1) WPC technique 

This method (PC_T) employs a main program which calls a 
set of sub-routines, strategically placed in memory, in order to 
generate test patterns in the WPC registers of each PR. Each 
sub-routine is composed of a Signature-per-Thread (SpT) and a 
Counter-per-Thread (CpT). These two elements increase the 
observability of the target registers in the memory of the test 
program and also stop the execution if a permanent fault affects 
one of these fields.  

The CpT verifies if a fault generates loop conditions and a 
hanging effect in the system. Kernel termination instructions 
(RET) are placed in memory locations between two subroutines 
to solve this issue. These instructions stop the kernel execution 
when a control-flow instruction does not reach a target memory 
location due to a fault turning hanging conditions into fault 
detections. Each subroutine checks the CpT value. If this value 
corresponds to the expected one, the SpT is loaded, actualized 
and stored. Then, a new subroutine is launched. Otherwise, the 
kernel is stopped. Fig 3 shows the operations performed by a 
subroutine. 

In the PC_T implementation, it was necessary to replace the 
CALL and RETURN instructions, not supported by Flexgrip, 
with unconditional and control-flow instructions (BRA). Thus, 
the test program consists of multiple unconditional jumps to and 
from subroutines. The lower bits in WPC registers were not 
explicitly tested with subroutines considering that instructions 
in master program implicitly generate patterns for them. 

The program kernel is configured with 32 TpB and one 
BpG. The execution of one warp checks the state of the WPC 
fields, considering that WPC is shared for all threads in a warp. 
The program kernel was designed to skip thread divergence and 
avoid the incidence of other modules during execution. 

RET                                                                 (*) ► Added before starting the routine 

Init:  CpT_S ← Expected_param ► Load expected CpT in subroutine 

         load_CpT(i);                                   ► Load CpT from global memory 

         If CpT[i] == CpT_S then ► Compare CpT and CpT_S 

            CpT[i]  ← CpT[i]  + 1                                                        ► Actualize the CpT 
            Store_CpT(i); ► Store the CpT in Global memory 

            load_SpT(i);                                   ► Load the SpT from global memory 
            SpT[i] ← SpT[i] + S_Param                                 ► Actualize the SpT 
            Store_SpT(i); ► Store the SpT in Global memory 
         else                                            ►  
             RET                                                     (*) ► Finish kernel Execution 

FIG  3. PSEUDO-CODE OF THE SUBROUTINE TARGETING THE WPC FIELDS. (*) 

ADDED ASSEMBLY INSTRUCTIONS. SUBROUTINES WERE EXPLICITLY PLACED IN 

THE SYSTEM MEMORY. 
 

2) AThM technique 

This technique is an adaptation of the M3 algorithm, 
introduced in [10]. This was originally intended to detect 
permanent faults in entry-lines of the warp status memory in the 
warp scheduler of GPGPUs. The same warp status information 
is presented in the warp status memory and pipeline registers. 
Thus, is possible to adapt this method targeting AThM fields. 
The method generates thread divergence operations to supply 
test patterns targeting the AThM fields. Two control-flow 
instructions are employed to start and finish the divergence in 
the model. The first instruction, a conditional control–flow type, 
is activated through logical comparisons between the Thread 
Identifier and a set of constant values. These values are all the 
potential Thread Identifiers in a warp (0-31). The divergence 
generates two potential paths (Taken and not-taken). In the first 
one (Taken), an SpT is actualized and stored in memory. The 
other path (not-taken) is not employed and an unconditional 
control-flow instruction returns to the convergence point for a 
new comparison. In the end, 32 comparisons are performed in a 
sequential fashion and each bit register is tested. The SpT is 
employed as observability mechanism of a fault in memory. Fig 
4 shows the general procedure to test AThM fields. 

Load_ThreadId(); ► Load the Thread.Id 

Load_SpT(i); ► Load signature 
for i ϵ {set of ThreadId in a warp} do                                   ► Evaluate for every Thread.Id 
     j ← Params[k]; ► Load the comparison parameter 

     if i == j then                                                                   ► Comparison of Thread.Id and Constant 
          Load_SpT(i);                                   ► Load SpT from global memory 
          SpT [i] ← SpT [i] + 1 ► Set signature 
          Store_SpT(i);                                         ► Store SpT to global memory 
     else   
          NOP                                      (*) ► Not used path 
     k ←k+1                                                                         ► Change constant value (Convergence Point) 

FIG.  4.  PSEUDO-CODE OF THE TEST PROGRAM FOR THE ATHM FIELDS. 

(*)ADDED ASSEMBLY INSTRUCTIONS. 

 

We proposed two solutions by changing one logic operation 
in order to select between detection and diagnosis test. In the 
first case, a fast fault detection test is designed with logical 
comparison through an AND operator. On the other hand, XOR 
operators are used in the diagnosis test version. 

The diagnosis test (WS_T_D) is able to identify an 
individual permanent fault in the AThM field. On the other 
hand, a detection test requires only two comparisons. For this 
purpose, two variations where proposed. In the first (WS_T_V1), 
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the divergence is performed on even and odd thread groups (16 
threads per time). Initially, an even constant is loaded and the 
comparison generates divergence on even threads. Those 
threads actualize the SpT and return to convergence. Then, an 
odd constant is loaded and the previous process is repeated with 
the odd threads. Finally, a comparison of SpTs in memory is 
performed to detect a permanent fault. The (WS_T_V2) test 
version employs only one comparison to generate the 
divergence (an even constant parameter). Nevertheless, in both 
paths (even and odd) the SpTs are actualized.  All test programs 
are configured with 32 TpB and one BpG taking into account 
that the execution of one warp in the SM is enough to test the 
fields in the pipeline registers. 

C. Method to test the kernel parameters fields 

1) The GPRS size 

These fields define the number of registers to be employed 
for each thread during kernel execution and are programmed 
during the device configuration stage. Thus, one kernel is not 
able to generate the required test patterns. The proposed method 
is based on designing three program kernels forcing the 
compiler to use an expected number of registers and generate 
the patterns. 

Test kernels GPR_T_3R, GPR_T_12R and GPR_T_63R 
were designed using 3 (0x03), 12 (0x0C) and 63 (0x3F) 
registers, respectively, which are also the patterns for the target 
field. The pattern selection followed the guidelines of the 
CUDA Tool-kit manual. The GPGPUs with computer capability 
1.0 is able to handle up to 63 registers per thread. Over this 
limit, the compiler generates optimizations or data transfer to 
other memories. 

GPR_T_3R program executes one logical and one 
arithmetical operation. This is configured with 1024 TpB and 
one BpG in order to use a complete SM. GPR_T_12R kernel 
executes a set of addition operations on global memory 
locations. This program is configured with 64 TpB and one 
BpG. Considering that RF placement policy assigns the 
registers of each thread in a consecutive way, it is possible to 
detect faults with this configuration. Finally, GPR_T_63 kernel 
computes an accumulative addition using each register as part 
of the result avoiding the optimization by the CUDA compiler. 
The kernel is configured with 256 TpB and 1 BpG. Each test 
program includes an SpT. Kernel termination and SpTs are used 
as observability mechanism for fault detection.  

GPR_T_3R is employed to test permanent faults in “1” on 
the higher part of the register field. Similarly, GPR_T_12R 
detects those in the higher part and the lower part of the field. 
GPR_T_63R is employed to test permanent faults in “0”, 
considering that a fault would overlap other thread registers, 
thus, corrupting the result. GPR_T_3R kernel was also able to 
generate patterns to test other control-path fields by employing 
a large number of threads in the kernel. 

2) GPRS and shared memory base fields. 

These fields are also programmed during the device 
configuration stage. Nevertheless, the execution of multiple 
blocks or a large set of threads per block, in the same SM, is 
able to generate test patterns on these fields. The proposed 
approach is a combination of both approaches. 

GPR_T_3R kernel is reused to test the low part of the target 
fields, considering that it uses the maximum number of threads 
per block and a low number of registers. On the other hand, the 
high part requires the assignation of distributed memory 
addresses across the RF. For this purpose, we designed one 
kernel (B_T) employing 16 registers per thread and configured 

with 8 BpG. In this way, the 9 bits in the GPRS base field can 
be tested. The test kernels execute a set of arithmetical 
operations in order to employ the selected number of registers; 
finally, the SpT is stored in global memory. 

D. Other register fields. 

This kernel targets the missing register fields in the control-
path fields. Most of them are presented in D-R register and are 
composed of the instructions op-codes, predicate registers flags, 
immediate operands values, and logical and arithmetic selectors. 
It was considered to employ a pseudo-random kernel employing 
most instructions, thus generating most test patterns. 
Nevertheless, this solution is feasible only when the ISA of the 
GPGPU is well known and it is directly generated at the 
assembly level. Nevertheless, CUDA employs multiple 
compiler optimizations removing instructions or modifying 
those that do not contribute to a thread result in memory. This 
restriction minimizes the effectiveness of this method. 

As a solution, this kernel employs most representative 
instruction op-code to increase missing FC through selective 
operations. Then kernel (PSR_T) is designed to generate the 
highest number of potential variations on some selected target 
fields. Those fields are: i) operand order and sign, ii) immediate 
operand parameters, iii) predicate flags and iv) op-code, which 
represent a high percentage of the missing faults. 

Targets (i and ii) require the generation of multiple 
arithmetic operations. On the other hand, the pattern for (iii) 
requires the explicit comparison of parameters. In order to avoid 
the compilation optimizations and force it to generate the 
expected pattern in those fields, the comparisons are made 
based on memory locations. An initial approach considered 
seven comparisons (!=, <, ==, <=, >, < | >, >=) to generate 
the patterns considering an unknown op-code. In the optimized 
version, it was required only two comparisons. 

The op-code generation was carried out employing memory 
and kernel parameters movement combined with shift 
operations. Those instructions were analyzed following the 
CUDA compilation and analyzing the assembly code of 
multiple arithmetics and movement operations. The kernel is 
configured with 32 TpB and one TpG, since SM shares those 
fields during the execution of a warp. 

E. Compiler restrictions in kernel implementation 

In some of the proposed methods, problems and restrictions 
were faced during kernel implementation. Those restrictions are 
caused by the CUDA environment, which employs advanced 
algorithms for resource reduction and performance 
improvement in the application.  

In the PC_T program, the RET instructions were manually 
added in free memory locations to terminate the program 
execution, since; CUDA compiler removes all instructions 
without any direct relation with the kernel execution. Besides, 
each subroutine was placed in the target location. Similarly, in 
WS_T_x kernels, the implementation required the explicit 
comparison of each thread identifier with the constant parameter 
independently in order to generate the expected divergence. 

In the description, the GPR_T_xR kernels avoid arrays and 
matrices definitions. In these kernels, the register declaration is 
replaced with an independent declaration of each variable. A 
consecutive register declaration, such as an array would be 
interpreted by the compiler as local memory locations for the 
kernel, so limiting the target of the test kernel. Moreover, the 
command to increase the registers usage per thread was required 
in order to guarantee the total of registers employed in the test 
kernel. Finally, every register, in a thread, should be part of a 



memory store operation in order to avoid optimizations and 
reduce the number of registers employed. 

IV. FAULT INJECTION ENVIRONMENT 

The environment was developed based on a high-level 
controller described in Python language. This controller 
translates a fault location into the command sequence for the 
simulator hosting the model (ModelSim), following the 
guidelines introduced in [16]. The tool is composed of a fault 
controller, a fault decoder and a fault checker and classifier. 
This framework also employs a multi-thread fault simulation 
approach [17, 18] to increase fault simulation performance. This 
method is implemented by dividing the fault list in equal size 
chunks and launching different faults campaigns, each working 
on a fault list chunk.  10 chunks were employed per fault 
campaign. 

A fault injection campaign starts by defining and sending 
the fault list. This list includes all faults locations and the 
selected fault model (stuck-at faults model). Then, the fault 
controller performs a fault-free (golden) simulation and the 
memory results and kernel time simulation are stored as 
reference parameters during the fault campaign. The fault 
decoder reads one line from the fault list and translates it into 
the command sequence for Modelsim. This command is applied 
and the fault simulation starts. The maximum fault execution 
time is fixed at twice the golden execution time in order to 
consider potential performance degradation effects by the fault. 

The fault checker and classifier compares the memory 
results and execution time to classify the fault. In the tool, the 
faults are classified as i) Silent Data Corruption fault (SDC), 
when the fault generates mismatches in memory results, ii) 
Hanging (Crash) fault, if the fault stops or prevents the kernel 
execution, iii) Timeout, if the fault affects the system 
introducing a delay in the kernel execution while the results are 
not affected, and iv) Silent, when the fault does not affect the 
system execution and results. 

The fault campaign starts again by reading another line from 
the fault list. In the end, two files are created describing the 
effect of every fault in the system and the total classification of 
faults. One fault simulation was performed per injected fault. 

V. EXPERIMENTAL RESULTS 

In the experiments, we injected 2,382 faults in the control-
path fields of the PRs. For the purpose of this paper, we only 
considered the RT-level model of the GPGPU: hence, we 
limited our analysis to the stuck-at faults on the inputs and 
outputs of the Flip-Flops composing each register. FlexGrip was 
configured with one SM and 32 SP-cores in the SM during the 
fault injection campaigns. Fault simulation campaigns required 
about 6 hours to be completed. The experiments were 
performed on a workstation with an Intel Xeon CPU running at 
2.5 GHz, equipped with 12 cores, and 256 GB of RAM. 

We performed injection campaigns on four representative 
benchmarks to compare the FC of applications with the one 
provided by the proposed solutions. The selected applications 
are: an embarrassingly parallel operation (Vector_Add) 
performing the addition of two arrays of 64 elements, the matrix 
multiplication of two (8x8) matrices, the FFT of a signal with 
64 elements and the Edge Detection, based on the Sobel 
algorithm with a (5x5) stencil element applied to an (16x16) 
image. 

Table 2 shows the characteristics of the developed SBST 
programs and the four applications. It shows that most of the 
kernels are composed of a low number of instructions and have 
a short execution time. Tables 3 and 4 show the achieved FC in 

the targeted structures. The total FC does not consider 
functionally untestable faults (FUFs) in the system, i.e., faults 
that cannot be tested resorting to a functional approach. For the 
identification of FUFs we adopted a method derived from the 
one presented in [19]; unfortunately, the identification of all 
FUFs in a complex circuit goes beyond the state of the art 
techniques. For the considered applications, Table 3 presents the 
average result of multiple simulations employing various data 
input sets. Results show that benchmarks provide a relatively 
moderate FC (32-57%). Moreover, a high percentage of fault 
effects are detected through hanging conditions in the system, 
stopping the operative state of the device. 

TABLE 2. CHARACTERISTICS OF THE IMPLEMENTED TEST KERNELS AND 

APPLICATIONS. (*) USING CPT 

SBST  kernels or 

Benchmark 

Execution time  

(Clock Cycles) 

Memory size  

(Bytes) 

WS_T_D 16,449 128 

WS_T_V1 2,175 128 

WS_T_V2 1,913 128 

TR_T 2,273 384 

GPR_T_3R 23,586 8,192 

GPR_T_12R 103,930 400 

GPR_T_63R 283,714 1500 

PC_T  31,570 128 / 256(*) 

B_T 178,750 9,256 

PSR_T 7,313 2,304 

VectorAdd 28,565 768 

MatrixMul 201,365 768 

Edge Detection 688,305 2048 

FFT 584,265 512 
 

TABLE 3. FC OF SELECTED APPLICATIONS IN CONTROL-PATH FIELDS OF PRS 

Kernel SDC  

(%) 

Hanging 

(%) 

Timeout  

(%) 

Total FC 

(%) 

Testable FC  

(%) 

VectorAdd 18.10 20.82 0.62 32.37 39.54 

MatrixMul 9.74 42.67 0.92 43.66 53.33 

Edge Detection 19.89 49.44 1.03 57.60 70.36 

FFT 21.89 42.36 0.67 53.15 64.92 
 

TABLE 4. FC OF THE PROPOSED SBST APPROACH 

Kernel SDC 

 (%) 

Hanging  

(%) 

Timeout  

(%) 

Total FC 

(%) 

Testable FC 

(%) 

WS_T_D 4.61 25.23 16.67 38.08 43.51 

WS_T_V1 4.77 23.33 13.85 34.34 41.95 

WS_T_V2 4.82 23.64 13.95 34.72 42.41 

GPR_T_3R 14.51 21.85 0.82 30.35 37.07 

GPR_T_12R 16.77 21.49 0.51 31.74 38.77 

GPR_T_63R 20.10 22.49 0.56 35.10 42.87 

B_T 9.13 22.51 1.23 26.91 32.87 

PC_T 21.69 17.59 0.41 38.37 39.69 

PSR_T 19.74 23.54 4.46 39.08 47.74 

Overall 38.31 23.44 18.51 65.70 80.26 
 

VectorAdd and MatrixMul applications employ mainly data-
path structures including data-path fields in the PRs of 
GPGPUs. However, the execution is affected by the incidence 
of a fault in the control-path fields. In the first application, faults 
are distributed among a system hanging condition and an SDC 
in results. In contrast, most faults in MatrixMul generate 
hanging conditions, due to the execution of flow-control and 
conditional instructions. Similarly, FFT and Edge Detection 
kernels, which are composed of multiple control-flow 
instructions, are more prone to fault effects belonging to the 
system hanging category. 

Every proposed SBST kernel achieves a low FC (lower than 
40%). Nevertheless, as explained below, the multi-kernel test 
approach is composed of multiple kernels, designed to target 
different pipeline registers fields, and executed independently. 
The FC in the control path is obtained as the cumulative number 
of faults detected by all the test kernels. The joint testable FC of 
those kernels reaches a relatively high percentage (80% in 
control-path). Moreover, the multi-kernel SBST approach is 
able to detect up to 38.31% of the permanent faults employing 
only memory results, a traditional mechanism for in-field test. 
On the other hand, the benchmarks are only able to detect 21% 



of the faults with the same detection mechanism, showing the 
effectiveness of the SBST approach. 

Edge detection is able to detect 70% of the permanent faults 
in the control-path field of the PRs. Nevertheless, 49.4% of it is 
through hanging detection. On the other hand, the proposed 
kernels reduced in up to 26% the hanging conditions and 
translating them into memory errors. 

The multi-kernel approach also guarantees that the in-field 
test can be performed employing chunks (multiple kernels) with 
short execution time. In Table 4, we reported both the total and 
the Testable FC%. The total FC has been computed excluding 
FUFs. Multiple FUFs can be found in the control-path of the 
GPGPU. These include faults affecting the two lowest bits of 
each WPC pipeline register, the initial active thread mask, and 
some other fields that are present in the design but did not affect 
the benchmarks or the SBST kernels execution. In the end, 456 
faults in the control-path are labeled as FUFs. 

Table 5 reports the FC in the control-path fields for each PR 
using the proposed multi-kernel approach. The proposed 
method seems to be globally effective for fault detection on 
most of the fields in the pipeline registers. 

TABLE 5. FAULT COVERAGE IN THE PIPELINE REGISTERS (PRS) STAGES 

Pipeline 

Register 

SDC  

(%) 

Hanging 

(%) 

Timeout 

(%) 

Total FC 

(%) 

Testable FC 

(%) 

F-D 51.24 16.17 9.20 64.98 76.62 

D-R 27.89 8.45 6.06 38.49 42.39 

R-E 36.21 25.0 19.82 46.69 81.03 

E-Wr 33.96 14.71 18.45 50 67.11 

Wr-W 45.36 28.35 16.49 65.79 90.21 

W-F 50.48 25.48 15.38 68.21 91.83 

Overall 38.31 23.44 18.51 65.70 80.26 
 

The relatively low FC in some PRs (D-R, and E-Wr) is 
mainly caused by restrictions stemming from the adoption of a 
high-level kernel description and implementation using the 
CUDA compilation tool. This tool sometimes removes or 
changes the execution order, instruction type, and operand 
placement in the device depending on the program description, 
the compiler configuration, and the optimizations options. This 
behavior is intended to increase the execution performance in 
the device. Nevertheless, from the reliability viewpoint, this 
abstraction level introduces restrictions for test pattern 
generation in fields, such as instruction op-codes, special 
operand types, physical memory addresses and fields that 
depend on external configuration units such as the block 
scheduler. Most previous registers fields are found in the D-R 
and E-Wr PRs. A naïve solution to improve the FC is the 
addition of assembly instructions, as we did in some of the 
proposed methods and increasing by up to 10% the obtained 
FC. However, this solution is limited by the incomplete 
knowledge of the SASS specifications as released by NVIDIA. 

It is worth noting that, the proposed approaches target the 
fault detection employing the SDC mechanisms (i.e., looking at 
the memory content). This effect can be observed in all PRs 
results. Moreover, the proposed methods were partially 
effective in detecting faults in the targeted data-path fields by 
checking memory errors without affecting the system operation. 

VI. CONCLUSIONS 

Thanks to the availability of an improved RT-level model of 
a GPGPU, we could for the first time assess the Fault Coverage 
of SBST programs on the pipeline registers of the internal SPs. 
A multi-kernel test approach composed of multiple SBST 
programs was proposed to test the control-path fields in the 
pipeline registers. Resorting to an RT-level fault simulation 
environment we could compute the related FC, which amounts 
to more than 80%. The test kernel implementation was based on 
a combination of a high-level environment (CUDA) and an 

assembly level tool to add suitable SASS instructions. This 
work revealed and detailed multiple compiler restrictions and 
constraints during test kernel implementation at high-level. 
Each proposed SBST kernel targeted different portions of the 
control-path fields in the pipeline register. An overlap of the 
proposed solutions is able to detect a considerable percentage of 
faults employing only memory results comparisons as the 
detection mechanism. 

We are currently working to further improve the proposed 
SBST methods, to assess which of the still untested faults are 
functionally untestable, and to extend the work to other GPGPU 
units. 
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