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An Integrated Control Architecture for a Cloud-based Unmanned
Aerial Vehicle System with Lossy Networks

Weibin Gu1, Carlos Perez-Montenegro2, Elisa Capello3, Alessandro Rizzo2

Abstract— Unmanned Aerial Vehicles (UAVs) have been suc-
cessfully employed in cooperative tasks over recent years, par-
ticularly in the applications for smart cities. In such scenario, a
networked control system (NCS) framework is usually adopted
since measurement and actuation data are mainly transmitted
through communication networks. This paper proposes an
integrated control architecture for a Cloud-based fixed-wing
UAV system, where the control logic resides in the Cloud and
sensing and actuating signals are transmitted over a realistic
wireless network. The proposed control strategy leverages
model predictive control (MPC) and a specialized Kalman
filter in combination with two ad-hoc buffers, which enables
simultaneous compensation for measurement and control input
packet dropouts. Simulations of a nonlinear aircraft model show
the effectiveness and advantages of proposed integrated scheme
over an existing linear quadratic (LQ)-based control strategy.

I. INTRODUCTION

Recently, much attention has been devoted to the use
of unmanned aerial vehicles (UAVs) in cooperative tasks.
Thanks to the increasing sensing and communication capa-
bilities and the reduced cost, UAVs are now ready for smart
cities and Internet of Things (IoT) applications [1], [2].

In such a scenario, most of the navigation and control
intelligence is still installed on-board the UAVs. There, a
large amount of navigation and control data is required to
be processed in real time, which is traditionally limited to
the computational power of on-board autopilots. Besides, in
the context of smart cities, the use of UAVs poses stringent
requirements, due to the potential risks of hurting people and
causing catastrophic damages. Consequently, control units
for UAVs with high performance that guarantee safety and
reliability are usually designed with complex control algo-
rithms that generally include on-line optimization processes
and/or with high sampling rate, which brings additional
computational burden on-board. To overcome these issues,
we envisage a Cloud-based control architecture, where most
of the intelligence is located in the Cloud, which exchanges
with UAVs a few data, mostly limited to sensing and ac-
tuation. It consists of an UAV front-end, the Cloud, which
encompasses both high- and low-level control features, and a
communication network. All the sensor data are transmitted
to the Cloud by UAVs through the communication network
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and processed in the Cloud. Then, command signals are
sent back to actuators to execute the planned control action,
establishing, in fact, a networked control system (NCS).

The key features of the proposed Cloud-based control
system are the reduction of the on-board computational
power and the relaxation of the on-board hardware and
software requirements. Placing low-level control (flight con-
trol) units along with high-level ones (including unmanned
traffic management, path planning, situation awareness, etc.)
into the Cloud provides convenience and flexibility to re-
configure flight control remotely using the data available
in the Cloud, without the necessity of recalling UAVs for
reprogramming. Such concept has already been used and
validated in applications in different fields, such as the
networked control of DC-motors [3], and seems to be very
promising for multi-UAV systems. Despite the presence of a
network unavoidably yields drawbacks, such as band-limited
channels, sampling and delays, packet dropouts, which might
lead to performance degradation or even cause instability in
the closed-loop control systems [4].

Different control strategies and compensation methods
have been proposed for NCS with lossy networks in re-
cent years. To deal with sensor-to-controller dropouts, es-
timator models for missing measurements can be found,
for example, customized Kalman filter [5], optimal estima-
tor with deterministic filter gain [6], and linear minimum
mean square error (LMMSE) estimator [7]. In different
manners, compensation methods for controller-to-actuator
data loss are zero-/hold-input strategy [8] and generalized
hold-input strategy [9], which are mainly adopted in the
Linear Quadratic Gaussian (LQG)-based control framework.
Alternatively, predictive-input strategy is deemed to have
better performance thanks to the use of a sequence of
“future” control inputs as backup solution when control input
packet is lost. Control scheme with such strategy is referred
to as networked predictive control (a.k.a. sequence-based
control, packetized predictive control) [7], [10]–[12], which
usually incorporates model predictive control (MPC) due to
its intrinsic prediction nature. Motivated by [5] and [7], our
core idea is to design a controller, based on the theory of
MPC, capable of handling input constraints. Meanwhile, a
complete design of control system is addressed, not only
an estimator as did in [7], and compensation of missing
packets in both communication channels are included, as
main difference with [10].

In this paper, a novel control strategy is proposed to deal
with packet dropouts, induced by a wireless communication
network for Cloud-based UAV control applications. The



proposed control strategy is part of the low-level control unit
devoted to a single UAV. Besides tracking a given flight
trajectory autonomously, the controller should be capable
of compensating for both measurement and control input
packet dropouts induced by the network. The main novelties
with respect to the state of the art are: (i) the ability of
managing control-related constraints; (ii) the ability to treat
packet dropouts both in the actuation and in the measurement
channels of the control system; (iii) the ability to deal with
partial-state feedback in the control loop; and (iv) the design
and validation for a real-time complex system.

The proposed controller integrates an MPC-based con-
troller with a customized Kalman filter for lossy networks
(KFLN) [5], making up for partial state feedback and pro-
viding backup sequences for measurement packet dropouts.
Moreover, two synchronized buffers, one on-board and one
on-Cloud, are included to manage the backup control input
sequence. We show that providing predicted backup series
for missing control inputs yields better performance than
retaining the last available control signal (hold-on strategy)
or setting to zero the control signal (zero-input strategy) [5].

The remainder of this paper is organized as follows.
Section II describes the mathematical model adopted for
the fixed-wing UAV employed in the Cloud-based UAV
system. Section III addresses the proposed integrated control
framework, including the MPC controller, the KFLN and
the two buffers. Simulation results with a fully nonlinear
aircraft model are presented to assess the effectiveness of
the resulting control architecture in Section IV. Finally,
conclusions are drawn in Section V.

II. MATHEMATICAL MODEL OF THE
FIXED-WING AIRCRAFT

Our control design starts from an open-source nonlin-
ear model of a fixed-wing aircraft UltraStick-25e, provided
by the UAV Laboratories of the University of Minnesota
[13], [14], and proceeds with linearization process us-
ing MATLAB R©&Simulink R© dedicated tools. The nonlinear
model is implemented for simulation purposes, as described
in Section IV. Employed symbols and parameter values
adopted in this paper are summarized in Table I. Table II
summarizes all the trim conditions and resulting trimmed
values from the linearization process.

For control purposes, we follow the common assumption
that the linear model of the aircraft can be decoupled into
longitudinal and lateral-directional motion dynamics [15].
The longitudinal state vector is xfull−lon = (u,w, q, θ)T and
the corresponding control input is ulon = δe. To further
simplify the control process, only the short-period mode is
used, which has a truncated state vector xlon = (w, q, θ)T .
The lateral state vector is xlat = (v, p, r, φ)T and the
corresponding control input vector is ulat = (δa, δr)T .
Indicating with k ∈ Z+ the discrete time index and using
boldface and capital letters to refer to vectors and matrices,
respectively, the discrete-time state-space linearized model
of the aircraft is expressed as follows:

TABLE I
SYMBOLS OF THE MATHEMATICAL MODEL OF UAV

Name Symbol Unit
Roll Angle φ rad
Pitch Angle θ rad
Yaw Angle ψ rad
Angular Velocity in body frame (p, q, r)T rad s−1

Linear Velocity in body frame (u, v, w)T ms−1

Aircraft Mass m kg
Aircraft Inertia Matrix J kgm2

Airspeed Va ms−1

Above Gound Level (AGL) h m
Flight Path Angle γ rad
Throttle δth nd
Elevator Deflection δe rad
Rudder Deflection δr rad
Aileron Deflection δa rad

TABLE II
TRIM CONDITIONS (1-3) AND TRIMMED VALUES (4-13)

ID Variable Value Unit
1 Va 17 m s−1

2 γ 0 rad
3 h 100 m
4 (φ, θ, ψ)T (-1.7e-03, 5.4e-02, 2.7)T rad
7 (p, q, r)T (3.95e-08, -1.88e-07, 2.61e-09)T rad s−1

10 δth 5.69e-01 nd
11 δe -9.63e-02 rad
12 δr 3.2e-03 rad
13 δa 1.0e-02 rad

• Longitudinal motion:

xlon(k + 1) = Alonxlon(k) +Blonulon(k)

ylon(k) = Clonxlon(k),
(1)

• Lateral-directional motion:
xlat(k + 1) = Alatxlat(k) +Blatulat(k)

ylat(k) = Clatxlat(k),
(2)

where Alon ∈ R3×3, Alat ∈ R4×4 denote system matrices,
Blon ∈ R3×1, Blat ∈ R4×2 input matrices and Clon ∈ R1×3,
Clat ∈ R1×4 output matrices.

The control objective is to track reference signals θref for
longitudinal dynamics and φref for lateral dynamics. Since,
in practice, these two references are generated by altitude and
heading angle tracking systems, a cascade control scheme is
conventionally employed in aeronautical applications [15].
This scheme separates the control loop into an inner and an
outer one, as detailed in the next section.

III. INTEGRATED CONTROL FRAMEWORK

A. System Design

As stated in the introduction, the architecture of the NCS
adopted in this work corresponds to the low-level control unit
for a single UAV. The following assumptions are considered.

• The communication network is packet-based and TCP-
like, hence an acknowledgment signal (ACK) is avail-
able to the controller.

• Sensors, controller and actuators are synchronized and
time-stamp information for each packet is available.



Fig. 1. The proposed control architecture

• Sensors are clock-driven while controller and actuators
are event-driven.

• Packet dropouts are the main source of network mal-
functioning and they may occur both in the sensor-to-
controller and the controller-to-actuator channel.

The main objective of this work is to mitigate the effects
of missing measurement and control input data packets
caused by network malfunctioning, while guaranteeing an
acceptable performance in autonomous trajectory tracking.
Figure 1 illustrates the proposed control scheme. The KFLN
receives available measurements and provides a full state
estimate (denoted by the symbol “âa”) based on the status
of the measurement packets transmitted by the sensors, the
available control input, and the statistics of noise. The outer-
loop controller is responsible for altitude and heading angle
tracking, carried out by a proportional-integral-derivative
(PID) control [16], [17]. The inner-loop controller adopts
an MPC-based control strategy, which produces a control
input sequence that will drive the inner-loop variables θ and
φ as close as the references provided by the outer-loop PID
controller. The buffer at actuators is designed to provide a
backup control input sequence in case of packet dropouts
due to network malfunctioning. The inputs of KFLN uKF,
based on ACK information, and the actuator inputs ua are
synchronized thanks to the introduction of the controller
buffer Bc (see Fig. 1). In the following, we address the
design of the MPC controller, the buffers and the KFLN.

B. Model Predictive Control

Since MPC is an effective control strategy especially for
constrained control problems, a large amount of research has
been put forward over the last decade making it a consider-
ably mature technique. Maciejowski [18] proposes solutions
to theoretical issues based on stability and feasibility, while

Oettershagen [19] presents practical solutions to enable the
applicability of MPC on systems with fast dynamics. In our
design, an MPC-based estimator is implemented to make the
controller insensitive to errors in the steady-state gain and
unknown constant additive disturbances.

The MPC is formulated for the discrete time-invariant
aircraft models given in (1) and (2). An incremental state
space model is formulated as in (3) using the control incre-
ment ∆u as system input to directly impose constraints on
the deflection rate of control surfaces in the optimization.
In the sequel, we present the MPC control formulation for
the longitudinal motion control, hence, the subscript “lon” is
dropped from matrices and vectors of Eq. (1) to enhance
readability. The same strategy can be adopted for lateral
motion control, which we assume as decoupled from the
longitudinal one, as previously mentioned. Due to space
constraint and to enhance readability, we omit the description
of lateral control in this paper.

The dynamical model of the system is described as

x̄(k + 1) = M x̄(k) +N∆u(k)

y(k) = Qx̄(k),
(3)

where

x̄(k + 1) ,

(
x(k + 1)
u(k)

)
∈ R4×1 N =

[
B
I

]
∈ R4×1

M =

[
A B
0 I

]
∈ R4×4 Q =

[
C 0

]
∈ R1×4,

(4)
Manipulating the incremental equations yields the explicit
prediction model employed in MPC

Y(k) = F x̂(k) +H∆U(k), (5)

where

Y(k) , (ŷ(k + 1|k) · · · ŷ(k +Np|k))T ∈ RNp×1,

∆U(k) , (∆u(k) · · ·∆u(k +Nc))T ∈ RNc×1,

F = [QM · · ·QMNp ]T ∈ RNp×4,

H ∈ RNp×Nc is a lower triangular matrix, Hij = QM i−jN.
(6)

Parameters Np and Nc represent the prediction and control
horizon, respectively. Variable ŷ(m|n) denotes the estimate
of y at time m, given observations time n included ( n < m)
and x̂ ∈ R4×1 is the state estimate.

The prediction model described above generates biased
predictions when model-plant mismatches occur, particularly
if the steady-state gain of the model is inaccurate. To mitigate
this issue, the traditional MPC is slightly modified by adding
a disturbance estimate term D leading to an improved
prediction model

Yup(k) = F x̂(k) +H∆U(k) + D(k), (7)

where
d(k) = yp(k)− ŷ(k|k − 1) ∈ R1×1

D(k) = 1d(k), 1 ∈ RNp×1.
(8)



The term D represents the discrepancy between the last plant
output yp and the latest prediction model output, assuming
that it will continue to act throughout the prediction horizon.

Based on the unbiased prediction model (7) and taking into
account actuator constraints, the control sequence is derived
by solving the following optimization problem:

min
∆U(k)

‖Yup(k)−Yref(k)‖2Qy
+ ‖∆U(k)‖2R∆u

s.t. (7) with system dynamics (1) or (2)
∆umin ≤ ∆U(k) ≤ ∆umax

umin ≤ u(k) ≤ umax,

(9)

where Yref ∈ RNp×1 is the reference signal vector,
Qy, R∆u ∈ RNp×Np are positive-definite penalty matrices
on tracking error and control increments, ‖x‖2A denotes a
quadratic form xTAx of an arbitrary vector x and matrix A,
(∆umin,∆umax,umin,umax) are constraints on deflection
rate and deflection of control surfaces. Having quadratic cost
function and linear inequalities, optimization problem (9)
belongs to Quadratic Programming (QP) which can be solved
by several available numerical solvers. The computational
complexity is not directly evaluated here since this MPC
controller will be implemented on the Cloud.

C. Buffers

There are two buffers deployed in the integrated control
architecture. The actuator buffer is located before the actuator
block and is denoted as Ba in Fig. 1. This is used to
provide backup control input when packet dropout occurs in
the controller-to-actuator channel. Each time the controller
solves the MPC optimization problem (9), it sends a data
packet PMPC, containing both control input sequence and
corresponding timestamps through the communication chan-
nel. Each time the buffer receives a data packet, it compares
the timestamp of the incoming packet with that of the stored
packet and keeps only the latest one. The controller buffer,
as Bc in Fig. 1, informs KFLN of the actual control input
applied to actuators, either samples produced in real time by
the controller, or samples surrogated by buffer Ba. Such a
selection is operated by monitoring the ACK signal available
in the TCP protocol.

Algorithm 1 describes the detailed working principle de-
signed for the controller buffer, which has a similar structure
with actuator buffer except the update mechanism. We de-
note as PMPC and Bc the data packets generated by the
MPC controller and those stored in the buffer, respectively.
A record-like structure is envisaged for PMPC, such as
(PMPC.u,PMPC.T ), where u is a field to store future
control input sequence and T to store timestamps. The two
buffers have the same length equal to the prediction horizon
(i.e., NB = Np), and i denotes the buffer index. We also
denote as uKF the actual control input applied to the KFLN.

The lengths of buffers are normally related to the relia-
bility of communication networks. Experimental trials are
required to find out the maximum length of consecutive

Algorithm 1: Controller Buffer (on-Cloud)
Input: PMPC, ACK
Output: uKF

1 while Simulation runs do
2 if ACK = 1 then

// Successful transmission
3 i← 1, Bc.u← PMPC.u, Bc.T ← PMPC.T
4 uKF ← Bc.u(i), i← i+ 1
5 else

// Packet dropout
6 if i ≤ NB then
7 uKF ← Bc.u(i), i← i+ 1
8 else
9 uKF ← Bc.u(NB)

10 end
11 end
12 end

packet dropouts of the employed network. Then, an ap-
propriate length of prediction horizon should be chosen to
simultaneously cope with the possible consecutive number of
data loss while maintaining satisfactory nominal performance
of control problem (9). Hence, a simple rule for the design
of the buffer length is

NB = Ncpd ≤ Np, (10)

where NB is the minimum length required for the buffer,
Ncpd the maximum number of consecutive packet dropouts
and Np the prediction horizon.

D. Kalman Filter for Lossy Networks
The proposed KFLN is similar to the filter proposed in [5],

but it plays two roles. First, as every Kalman filter, it reduces
the effect of measurement and process noises. Second, it
provides estimates for all the variables required in the pro-
posed control algorithms, even if measurement data packets
are lost. Different from [5] where no actuator buffer is used,
the control input packet is synchronized with the control
input stored at the actuator in our design. This guarantees
prediction consistency and enables the use of predictive-
input control strategy. The KFLN is formulated in discrete
time for the longitudinal motion, with the definition of the
innovation and correction steps. Similarly to the controller
design, the KFLN for the lateral motion is equivalent to the
one presented here and is omitted.

• Innovation Step:

x̂KF(k + 1|k) = AKFx̂KF(k|k) +BKFuKF(k)

P (k + 1|k) = AKFP (k|k)AT
KF +QN ,

(11)

• Correction Step:

K(k + 1) = P (k + 1|k)CT
KF(CKFP (k + 1|k)CT

KF +RN )−1

x̂KF(k + 1|k + 1) = x̂KF(k + 1|k) + µ(k + 1)K(k + 1)(

yKF(k + 1)− CKFx̂KF(k + 1|k))

P (k + 1|k + 1) = (I − µ(k + 1)K(k + 1)CKF)P (k + 1|k),
(12)



where x̂KF = (w, q, θ, h)T , yKF = (q, θ, h)T , uKF = δe,
AKF, BKF, CKF are system, input and output matrices
for Kalman formulation derived from linearization. QN , RN

are measurement and process noise covariance matrices.
Finally, P (k + 1|k), P (k + 1|k + 1) are a-priori and a-
posteriori estimate covariance matrices. Variable µ(k + 1)
in (12), i.e., sensor-to-controller transmission status, is a
Bernoulli random variable that is designed to actively ignore
the values of missing measurements during correction. This
variable makes the estimates less sensitive to measurement
packet dropouts. It is computed by checking the checksum
of measurement packets and this random variable is set to
one if the corresponding packet is successfully received, zero
otherwise. A major improvement with respect to [5] is in the
design of the control input applied in (11).

IV. SIMULATION RESULTS

A. Simulation Setup

We assess the control system performance through sim-
ulations, using the full nonlinear model of the aircraft to
simulate the plant to be controlled. Here, also the lateral
motion control is implemented, even though its description
is omitted for the sake of brevity.

The discrete-time linearized longitudinal dynamics (1) for
control design has a sample time Ts = 0.02 s with numerical
state-space matrices selected in accordance with data in Table
II. The state-space matrices used in the Kalman formulation
(11), (12) are given by

AKF =


8.408e-01 2.471e-01 -9.755e-03 0
-1.165e-01 7.111e-01 6.698e-04 0
-1.265e-03 1.702e-02 1 0
1.493e-04 -3.057e-03 -3.400e-01 1



BKF =


-4.088e-01

-2.272
-2.402e-02
2.797e-03

 CKF =

0 1 0 0
0 0 1 0
0 0 0 -1

 ,
(13)

while the state-space matrices used in the MPC formulation
(3) are Alon = AKF(1 : 3, 1 : 3), Blon = BKF(1 : 3), Clon =[
0 0 1

]
.

Design parameters for MPC, KFLN and PID are
the following: (i) Prediction horizon Np = 10 and
control horizon Nc = 1; (ii) Manipulated variables
rate weight R∆u = 0.1 and output variables weight
Qy = 0.08; (iii) Process noise covariance matrix RN =
diag(5e-07, 5e-07, 5e-07, 1e-02) and measurement noise co-
variance matrix QN = diag(5e-07, 5e-07, 1e-02); and (iv)
Discrete PID gains KP = 0.3,KI = 0.001. The actuator
constraints are defined in terms of deflection angle, δe =
[−25, 25] deg and of actuation rate, δ̇e = [−150, 150] deg/s.

B. Simulation Results and Discussion

A reference trajectory is provided to the aircraft for all
the simulations, starting from a straight and leveled flight
at 100 m, then giving a doublet altitude command of 10 m,
and finally maintaining altitude at 100 m. No noise and
disturbances are considered.

Fig. 2. Stability threshold of LQG-based and integrated control with respect
to packet dropout rates.

Fig. 3. Altitude tracking under 45% and 65% packet dropouts.

A comparison is firstly made with an LQG-based con-
troller [5], relying on a similar structure of Kalman fil-
ter for lossy networks and hold-input strategy for packet
dropouts. Figure 2 illustrates the stability threshold of the
LQG-based and our proposed integrated controller with
respect to packet dropout rates. It can be observed that
our controller allows a wider operational range in terms of
network conditions. Specifically, our system is stable even
with 65% dropout rate (by noticing a considerably small root
mean square error (RMSE) on the altitude), while the LQG-
based one becomes unstable with 30% dropout rate. This is
largely due to the constraint handling ability of MPC, which
avoids actuator commands to easily saturate. In addition, the
proposed predictive-input strategy provides more effective
backup control inputs compared with either zero- or hold-
input strategies, especially in cases where consecutive packet
dropouts are a common issue as dropout rate increases. The
tracking performance of the integrated controller with 65%
dropout rate regardless of disturbances and uncertainties is
shown in Fig. 3. It is remarkable that the increasing dropout
rate will introduce more oscillations to the transient and
steady-state behavior of the aircraft.

To further determine a more realistic stability threshold
for the proposed control architecture, we take into account
parametric uncertainties and variations in the initial condi-
tions. The following simulation set offers a robust stability
analysis executed through Monte Carlo simulations with 100
independent runs for several dropout rates, considering the
subsequent conditions. Aircraft mass and inertia matrix are
considered with a uniform distribution with 15% and the
initial conditions are assigned in terms of altitude and pitch
angle with a uniform distribution with 5%.

The upper graph in Fig. 4 illustrates the average tracking



trajectories of Monte Carlo simulations for three different
dropout rates, with corresponding RMSE indicated in the
bottom-left bar chart. The dropout rate of 65% is not
included due to the occurrence of instabilities throughout the
simulations, in spite of the fact that it is the stability threshold
shown in Fig. 2. The bottom-right bar chart illustrates the
number of unstable simulation in Monte Carlo runs for 50%
(2 times), 55% (15), 60% (35) cases. Our experimental cam-
paign lets us conclude that the stability threshold illustrated
in Fig. 2 provides only a reference criteria for flight con-
ditions without disturbances and uncertainties, whereas the
real stability threshold for dropout rate should be selected in
a more conservative fashion toward safe flight operations. In
our case, 45% dropout rate (not shown in Fig. 4) guarantees
that no instability occurs in simulations, under the selected
perturbations.

Fig. 4. 100 runs of Monte Carlo simulations for different dropout
rates (50%, 55%, 60%). Top: Average tracking trajectory of Monte Carlo
simulation results. Bottom-left: Altitude RMSE. Bottom-right: Number of
instability occurrence in 100 runs.

V. CONCLUSIONS

In this paper, an integrated control architecture for NCS
with lossy networks is proposed with a combination of model
predictive control, a Kalman filter for lossy network, along
with two buffers. The architecture is applied to the Cloud-
based control of a fixed-wing UAV. Simulation results have
shown advantages over an existing LQG-based strategy by
revealing higher stability threshold with respect to increasing
packet dropout rates. Robust stability analysis has also been
performed to analyze the effect of parameter uncertainties
of the aircraft and variations in initial conditions through
Monte Carlo simulations for several different dropout rates.
Specifically, 45% dropout rate is found to be a conservative,
realistic stability threshold in our case.
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