
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Clustering and evolutionary approach for longitudinal web traffic analysis / Morichetta, Andrea; Mellia, Marco. - In:
PERFORMANCE EVALUATION. - ISSN 0166-5316. - STAMPA. - 135:(2019), p. 102033. [10.1016/j.peva.2019.102033]

Original

Clustering and evolutionary approach for longitudinal web traffic analysis

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.peva.2019.102033

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.peva.2019.102033

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2750474 since: 2019-09-08T16:17:44Z

Elsevier

Clustering and Evolutionary Approach
for Longitudinal Web Traffic Analysis

Andrea Morichetta, Marco Mellia
Politecnico di Torino

andrea.morichetta@polito.it, marco.mellia@polito.it

Abstract

In recent years, data-driven approaches have attracted the interest of the
research community. Considering network monitoring, unsupervised machine
learning solutions such as clustering are particularly appealing to let the network
analysts observe patterns, and track the evolution of traffic over time. In this
paper, we present a novel unsupervised methodology to automatically process
and analyze batches of HTTP traffic, looking just at the URL structure. First,
we describe IDBSCAN, Iterative-DBSCAN. We design it to obtain well-shaped
clusters, and to simplify the choice of parameters – often a cumbersome step for
the network analyst. Second, we show LENTA, Longitudinal Exploration for
Network Traffic Analysis, which allows to automatically observe the evolution
over time of traffic, naturally highlighting trends and pinpointing anomalies.

We first evaluate IDBSCAN and LENTA on synthetic data to compare their
performance against well-known algorithms. Then we apply them on a real case,
facing the analysis of hundred thousands of URLs collected from a live network.
Results show both the goodness of clusters produced by IDBSCAN and LENTA
ability to highlight changes in traffic, facilitating the analyst job.

Keywords: Big data, Clustering, Edit Distance, Machine Learning, Security,
Traffic Monitoring

1. Introduction

Unsupervised machine learning techniques, and in particular clustering, are
popular approaches to automatically mine data and discover eventual patterns
by grouping similar elements together [1]. Density-based clustering techniques
offer the possibility to automatically find dense areas, i.e., regions in which there
is a number of objects with similar characteristics, where clusters of any shapes
naturally emerge. DBSCAN [12] is the most known implementation and it is
widely used in different applications, including network traffic analysis [11, 23].
In contrast to supervised approaches, clustering does not require that points
are already assigned a label, i.e., a class. This makes clustering appealing for

Preprint submitted to Elsevier September 8, 2019

network traffic and web monitoring, where the heterogeneity of applications,
terminals, and user interests makes it difficult to obtain labeled datasets.

In recent years, we witnessed the consolidation of internet services toward
the usage of HTTP at the application layers, making this protocol the de-facto
new “narrow waist” of the internet [29]. Video streaming, music, VoIP, chat,
and traditional web browsing today run on the top of HTTP or HTTPS. Even
malware prefers HTTP as a protocol to let infected clients communicate to
command and control (C&C) servers [3]. This originates from the easiness
for HTTP traffic to bypass network firewalls and intrusion prevention systems.
While this has simplified the structure of the protocol stack, the complexity of
modern services has complicated the analysis of web traffic, so that it is very
hard to understand how services are running in the network. In this paper, we
focus on web traffic, and specifically on the analysis of URLs that browsers uses
when fetching objects from the web.

Clustering algorithms, in this context, allow one to reduce the size of the
problem from a hundred thousand single objects – the unique URLs – to few
hundreds of clusters, which contain “similar” URLs. Notice that most URLs
carried by a network are not generated by an intentional user action (e.g., the
click of a link on a page), but are instead due to browsers and applications fetch-
ing objects in a web page, or system component for a web-app [34], including
malwares that periodically contact C&C server or execute automatic actions.
These URLs have often a regular syntax, which makes them strictly different,
but similar in the format. Designing a clustering solution for URLs requires in-
genuity, given URLs are strings, for which the notion of similarity and distance
is not trivial to define.

Furthermore, off-the-shelf solutions like DBSCAN require the user to set
parameters which are hard to choose. In particular, the choice of the radius to
consider an area as dense is often cumbersome to make, especially if the final
user does not have a clear knowledge on the feature space and of the distances
used. Clustering results thus inaccurate, compromising the final outcome.

In this paper we describe and test a novel clustering algorithms, Iterative
DBSCAN - IDBSCAN, that we previously introduced in [27]. It builds on
DBSCAN and controls the quality of the clustering by automatically selecting
parameters and iterating over data multiple times. The results is a clustering
algorithm that produces very homogeneous clusters while being very robust to
parameter settings. We demonstrate this using both benchmarking datasets
and a use case entailing HTTP URLs collected from an operational network
and comparing it to other clustering solutions.

We next design a system that is able to track traffic evolution over time,
automatically identifying traffic produced by already known applications, and
pinpointing new traffic. We introduced it in [27], with the name of LENTA (Lon-
gitudinal Exploration for Network Traffic Analysis). It builds on IDBSCAN,
and a novel self-learning approach that lets the system build and update its
knowledge. This knowledge grows thanks to a comparison methodology, which
associates clusters obtained from a new snapshot of data with previously ob-
served clusters. In this way, LENTA offers the analyst only new and previously

undetected clusters, while traffic in previously known clusters is automatically
labeled. This system highlights changes and pinpoints the birth of previously
unseen traffic patterns, building a longitudinal view of traffic.

LENTA results in a comprehensive solution that lets the network analyst
automatically process batches of URLs and discovers similarities, new applica-
tions, and anomalies, including malware or malicious traffic.

We test LENTA on HTTP traffic collected by a passive probe that observes
thousands of users in an ISP network during one week. Our prototype is able to
process one day worth of traffic in slightly more than two hours. Results show
both IDBSCAN ability in creating few and homogeneous clusters, which are easy
to investigate and associate to services or malicious activities, and the capability
of LENTA to identify new traffic generated by previously unknown systems.
For instance, in our experiment LENTA discovers traffic related to well-known
services (e.g., CDN, video services, online tracking and advertisement systems),
unexpected applications for the considered environment (e.g., Chinese chatting
applications) and even traffic generated by infected machines (e.g., malware
contacting C&C servers).

These results show the potential of LENTA to support the analysis and
discovery of services running on the top of HTTP, and to help the security
analyst in understanding current web services.

In our previous work we introduced CLUE [26], an unsupervised technique
for mining URLs to let the analyst identify possibly malicious traffic or other
services, which leverages DBSCAN. In [27] we improved the clustering algorithm
and introduced LENTA to identify variations in time and help the analyst in
finding suspicious traffic that may require further investigations by the network
analyst. In this work, we extend our previous works by (i) providing a thorough
parameter settings of IDBSCAN, (ii) adding a comparison with popular cluster-
ing algorithms, (iii) tuning LENTA using both synthetic and real case datasets.
Thanks to this extensive analysis we prove the robustness and flexibility of our
approach, comparing their performances with respect to other techniques. The
paper is organized as follows: Sec. 2 provides an overview of the scenario in
which we operate detailing the kind of data and introducing the system with
an overview. Sec. 3 provides a description of the intuitions behind the design
of LENTA. Sec. 4 and Sec. 5 give a detail of the performance of IDBSCAN
and LENTA over different data set and in comparison with different techniques.
Sec. 6 details the results of IDBSCAN on one day of traffic, while Sec. 7 de-
scribes the application of LENTA over one week of analysis. Sec. 8 presents the
related works, before drawing conclusions in Sec. 9.

2. Motivation and System overview

In this paper, we describe our system LENTA and the motivations behind
our technical choices, detailing each block and analysing its performance, pro-
viding benchmarks with respect to other approaches.

∆T

UG(1) UG(2) UG(3) UG(4)

C(1) C(2) C(3) C(4)

!"(1) !"(2) !"(3) !"(4)

New
New !#(1) !#(2) !#(3) !#(4)

Old
Updated

New

Old
Old

Updated

Old

Updated
New

Raw data, 100,000
unique URLs

Cluster to group
URLs

Sample each
cluster for data
reduction

Match and enhance
System Knowledge

Figure 1: System overview

2.1. Motivation
The analysis of HTTP traffic, which still today amounts to more than 40% of

web traffic according to global statistics [19], requires specific tools and method-
ologies. In this work, we leverage string similarity to generate homogeneous
groups of URLs instead of simply merge together those elements that have, e.g.,
a common domain name. Ideally, we aim at grouping together all those URLs
that refer to the same service, e.g., videos from Netflix, or services offered by
the same cloud platform, or requests to a botnet C& C server.

To give the reader the intuition of our problem, Table 1 shows examples of
URLs. A1, A2 and A3 belong to the same malware called TidServ – identified
in our dataset using a professional IDS. All URLs have common substrings in the
object path, but strictly different domain names and URLs. This is a common
behaviour in malicious applications which apply approaches to rapidly change
the domain name to evade static blacklist-based controls, the so-called DGA
(Domain Generation Algorithm) technique [5, 31]. B1 and B2 illustrate two
URLs generated by Sony connected Smart-TVs which access the same service,
but with different URLs. This is typical of services that use the same web
platform and that can be interesting to point out. In both the above examples,
we would like the algorithm to identify these regular patterns, and form two
groups, one for the malware, one for Smart-TV traffic.

Notice that grouping by domain name is not sufficient. Indeed, some services
are hosted on the same domain name, but are logically very different. This is
the case of the third example, C1 and C2, where Google Flights and Gmail
URLs are shown. In this case, we would like to identify two groups, one for
each service.

In this paper we propose LENTA to support network analysts in automati-
cally observing those services. We leverage unsupervised machine learning, i.e.,
clustering, based on the analysis of URL string. For this phase, we introduce

Table 1: Examples of similar URLs

Example of URL Example class

swltcho81.com/[...]VyPTQuMCZiaWQ9[...] A1
rammyjuke.com/[...]VyPTQuMCZiaWQ9[...] A2
iau71nag001.com/[...]VyPTQuMiZiaWQ9[...] A3

bravia.dl.playstation.net/bravia/WidgetBundles/BgmSearch-2ndDisp/info.xml B1
applicast.ga.sony.net/WidgetBundles/SNY_RSSReader/icon.png B2

google.com/flights/#search;f=TRN,ITT,TPY;t=LAX;d=2018-01-22
;r=2018-01-26 C1
google.com/mail/u/0/#inbox/160c745d9e5f6684 C2

IDBSCAN, an iterative clustering technique in which the quality of the clus-
ters is guaranteed and clustering is reapplied to those objects whose grouping
is poor.

The excellent clustering results are our building block to design an evolu-
tionary methodology that can automatically highlight changes in traffic over
time, looking at those patterns that are formed, which evolve and disappear, so
to provide a general framework that automatically adapts to traffic.

2.2. System Overview
Fig.1 sketches the overall process of LENTA. It ets as input all URLs ex-

tracted by a network during a predefined period of time. URLs may be extracted
from passive probes that sniff packets, or by HTTP proxies, which log requests
from clients. To get visibility into HTTPS traffic, men-in-the-middle proxies
could be used.

Our goal is to group all those URLs in clusters by only looking at the URLs
themselves. For this, we process URLs in batches, UG(i), where we insert all
unique URLs seen during the i-th time interval of a desired amount of time
∆T . Only unique URLs are considered since our goal is to understand which
resources are fetched by clients, independently of their popularity. At the end
of a period, URLs form the clusters C(i). Several challenges arise here, from the
computation of the similarity between two URLs (i.e., strings), to the proper
choice of the clustering algorithm, from the parameter settings to a scalable
design.

Once clusters are identified, we reduce the number of URLs by applying a
sampling process, i.e., by extracting a summary of URLs found in each cluster,
obtaining in output Ĉ(i). This has the benefit to reduce the footprint of the
data and limit the computational complexity of the next steps.

Next, we compare clusters found in the current batch with those found in
the past, Ẑ(i− 1), which are stored in the System Knowledge. If no match is
found, then the current cluster is considered new and automatically added to

the System Knowledge after being inspected by the network analyst, that can
provide a meaningful label. As we will show, the labeling process is greatly
simplified by the availability of several URLs of the same type that let a domain
expert take informed decisions.

3. Methodology

Here we detail our methodology defining the techniques adopted at each
step. We start describing IDBSCAN. We then illustrate the sampling tech-
nique. Next, we detail operations correlated to the update and support of the
System Knowledge. At last, we discuss proper definition of distances to compute
similarity among URLs.

3.1. Clustering
In the field of unsupervised methods, clustering is one of the most popular.

This class of algorithms aims at grouping together similar elements of a dataset,
separating them from the others. The three main categories of clustering are
partitional, hierarchical and density-based. Describing all of them is beyond the
scope of this work. However, it is important to highlight the main features that
influenced the decision of picking the density-based category as our choice. First
of all, density-based clustering algorithms work with different types of distance
metrics, included not Euclidean ones. Secondly, they do not require to specify
a priori the desired number of clusters. Lastly, they allow the presence of noisy
points, i.e., points that are not assigned to clusters.

3.1.1. DBSCAN
For clustering, we built upon and improve the well-known DBSCAN algo-

rithm [1]. A cluster is identified as the concatenation of consecutive dense areas
in the data space. Given an object o, its density can be measured by the number
of elements close to it. DBSCAN finds the core points, that are those objects
that have dense neighborhoods; then it connects these core points and their
neighbors to form the dense regions, i.e., the clusters. To define the neighbor-
hood area, the ε parameter is used. This represents the radius of the sphere that
has o as the center. A neighborhood is dense if there are at least MinPoints in
the sphere of radius ε.

3.1.2. Iterative DBSCAN (IDBSCAN)
Despite the good results, the setting of the MinPoints and ε parameters re-

mains difficult. In particular, MinPoints can be reasonably set using domain
knowledge since it represents the minimum number of elements to form a cluster.
ε is instead hard to set, especially if the used distance is not well understood. In
the original CLUE [26], ε was manually selected, a cumbersome and error-prone
task. Here we propose a new approach to automatically compute ε, while also
improving the final clustering. The intuition is to iteratively run DBSCAN, each
time using a different setting of ε, and each time accepting only those clusters

that, after an evaluation with a quality measure index, result to be well-shaped.
Objects in bad-shaped clusters are eventually re-clustered in the next itera-
tion, with a different choice of ε. This produces a remarkable improvement of
LENTA’s clustering stage, by further splitting/merging clusters at each itera-
tion, until they eventually form well-shaped clusters. After a maximum number
of iterations, or in case of a dead loop, the algorithm stops and labels all the
remaining elements as noise points (i.e., not assigning them to any cluster).
Those are outliers that would have to be ignored.

We define ε by using an a-priori rule, i.e., we want the algorithm to cluster
a given percentage η of objects at each iteration. To choose the proper ε that
would guarantee this, we rely on the k-Distance graph rule [1]. Let k = Min-
Points. For each object i = 1, . . . , N in the current dataset, the k-th nearest
point is found, whose distance is di. We next sort {di} from the lowest to the
highest distance and look for the minimum threshold dth for which di < dth for
a certain fraction of points η. We set ε = dth. With this choice, a η percentage
of objects have at least k = MinPoints objects at a distance smaller than ε.
Those would become core points, and form a cluster.

To identify well-shaped clusters, we rely on the silhouette analysis, an unsu-
pervised cluster evaluation methodology to find how well each object lies within
its cluster [30]. The silhouette coefficient s(i) measures how close the point
i ∈ C is to other points in C, and how far it is from points in other clusters.
Let a(i) be the average distance of point i with all points in its cluster. Let b(i)
be the minimum among average distance of point i to points in other clusters.
In formulas, we have:

a(i) =
1

‖C‖
∑

j∈C 6=i

d(i, j) (1)

b(i) = min
C′ 6=C

 1

‖C ′‖
∑
j∈C′

d(i, j)

 (2)

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3)

It results in s(i) ∈ [−1, 1]. Values close to 1 indicate that the sample is far
away from the other clusters, and very close to all other points in its cluster,
i.e., cluster C is very compact. Instead, values close to 0 indicate that i is on
or very close to the decision boundary between two clusters. Finally, negative
values of S(C) indicate that i might have been assigned to the wrong cluster.
The average S(C) = E[s(i), i ∈ C] over all the points in cluster C is a measure
of how tightly grouped all the elements in C are.

Given a cluster C, we say it is well-shaped if S(C) > Smin. Smin repre-
sents the minimum value for the cluster silhouette. This parameter provides a
threshold that allows separating good clusters from those that require further
processing. Consequently, if C is well-shaped, we insert C in the set of clusters
found so far. Otherwise, we put all points in C in the remaining set of points

to be considered for the next iteration of clustering. By setting a maximum
number of iterations, we avoid dead loops. If there is a cluster that cannot be
rearranged, the remaining elements are labeled as noise.

At the end of iterations, we are guaranteed to have all well-shaped clusters,
with the final clustering C being

C =
⋃
j

{Cj |S(Cj) > Smin} (4)

3.2. Sampling for Data Reduction
Once clusters are formed, we sample a subset of elements from each of them.

The rationale is twofold: to ease the comparison between clusters by reducing
computational complexity while maintaining their information quality; and to
keep in the System Knowledge a digest of the collected traffic, thus reducing its
footprint. Indeed, each time we need to look for similar clusters in our System
Knowledge, we need to compute the distance between all the points of the cluster
that we are considering, and all the other points in the clusters stored in the
System Knowledge. To reduce the number of points (and thus complexity), we
rely on sampling to limit the number of elements in the System Knowledge.

Notice that both the clustering and the System Knowledge look up must
be completed in ∆T , i.e., before the next batch of data arrives. For this, it
is important to guarantee that the samples are representative of the clusters’
content. With this goal, we propose and test three different approaches. We
sample each cluster Cj ∈ C keeping either a ratio r ∈ [0, 1] of the cluster
population, or a fixed specimen. At the end of the process, a set of sampled
clusters Ĉ =

⋃
j Ĉj is obtained.

Let m be the number of elements to extract. In case of fixed ratio r, we set
m = dr||Cj ||e, and then pick Ĉj = sample(Cj ,m). In case of a fixed sampling,
we choose m a priori, and we select elements as Ĉj = sample(Cj ,m).1

sample(Cj ,m) is a function that extracts m samples from Cj . We consider
two samplings:

• Random sampling: selecting m objects at random from the elements of
Cj , i.e., sample(Cj ,m) = rand(Cj ,m);

• Percentile sampling: selecting the elements that best represents the differ-
ent kind of objects present in a cluster, i.e., sample(Cj ,m) = percentile(Cj ,m).

percentile(Cj ,m) extracts m representatives by looking at the distribution of
mean distances for each object si ∈ Cj{

Esk∈Cj [d(si, sk)],∀si ∈ Cj

}
(5)

The selected elements correspond to values that divide in equally sized sets the
cluster, i.e., that correspond to the m percentiles. The idea behind percentile
selection is to have a set of cluster’s subsamples that includes both elements

1In case |Cj | ≤ m, all elements are selected.

that are in the center area of a cluster and the ones at its border. Note that
in case of m = 1, percentile(Cj ,m) would select the so-called medoid, i.e., the
element whose average dissimilarity to all the objects in the cluster is minimal.2
The medoid is generally a good choice to describe a group of elements, but it
is more appropriate for spherical and homogeneous clusters. Since a cluster in
IDBSCAN is made by a chain of interconnected smaller spherical dense areas,
the choice of only one point would exclude other possibly interesting instances.
In this sense, the percentile sampling produces a sampling that better represents
the population of the cluster.

3.3. System Knowledge enhancement intuition
LENTA maintains the set of clusters found in the past in the System Knowl-

edge Ẑ(t), t being the time slot. At the beginning Ẑ(0) = ∅. Given a sampled
cluster Ĉi we want to identify the closest cluster found in the past. Let

dmin(Ĉ, Ẑ) = min
Ẑ∈Ẑ

(
d
(
Ĉ, Ẑ

))
where d(Ĉ, Ẑ) = min

c∈Ĉ
z∈Ẑ

d(c, z) (6)

Equation 6 explains how to find the closest cluster for Ĉi. We can call it Ẑl. Ẑl

is the cluster belonging to the System Knowledge Ẑ(t) that has the lowest value
of d

(
Ĉ, Ẑ

)
, i.e., is at the minimum distance from Ĉi. d

(
Ĉ, Ẑ

)
is extracted

computing all the possible pairs of distances between the elements of Ĉi and the
elements of Ẑ(t).

Let Ĉ(t) be the result of the clustering of the current batch. We need to check
if a cluster Ĉj(t) ∈ Ĉ(t) has been already found in the past, or if it represents
new traffic. For the cluster Ĉj(t), the most similar cluster Ẑl(t− 1) ∈ Ẑ(t− 1)
is

Ẑl(t− 1) = arg min
(
dmin

(
Ĉj(t), Ẑ(t− 1)

))
(7)

A cluster is then considered as new if the minimum distance is larger than the
threshold α. The System Knowledge is updated as follows:

Ẑ(t) = Ẑ(t− 1) ∪
{
Ĉj(t) ∈ C(t) | dmin

(
Ĉj(t), Ẑ(t− 1)

)
≥ α

}
(8)

That is, we add a new cluster found at time t if its distance to the closest
cluster is higher than α.

3.4. Ageing
When dmin(Ĉj(t),Z(t−1)) < α, two clusters are considered similar, so they

contain the same kind of information. The new cluster is associated to the
old one and may contain new knowledge, e.g., some important changes in the

2The medoid is different from the centroid since the first is selected among the elements of
the cluster.

particular service or differences in the structure or information carried by the
considered objects, that in our use case are URLs. It is vital to register, if
possible, those updates.

We use a random replacement policy. That is, we substitute each element
zi ∈ Ẑl(t− 1) with the element ci ∈ Ĉj(t) with a certain probability p. So,

zi := ci ← p ∀i ∈ [1,m], zi ∈ Ẑl(t− 1), ci ∈ Ĉj(t) (9)
In doing so, we update the System Knowledge clusters, ageing and replacing
“old” representatives with fresher information.

3.5. Distance definition
The concept of distance refers to a specific class of dissimilarity measures that

aim at quantifying numerically the degree to which two points are far away [14].
The information that can be extracted by the distance computation can then
be used for the clustering step.

For multi-dimensional points space the Euclidean Distance is the most well-
accepted choice. It defines the dissimilarity between two objects as their actual
geometric distance.

In the URL use case, we look for a distance metric to compute the dissim-
ilarity of strings. Distance measures suitable for application to textual strings
take the name of “string metrics” or “string distance functions”. The adoption
of such metrics is popular in the field of text-mining but also in all the problems
where it is required to compare groups of elements for which one has no a-priori
knowledge or understanding. Textual distance metrics, therefore, represent a
convenient and viable way to compactly represent in numbers the dissimilarity
among strings.

Here, we focus on a particular class of distance metrics, the edit-distance
based functions [10]. As the name suggests, the distance between two given
strings s1 and s2 is intended as the minimum number of steps required to convert
the string s1 into s2. Edit-distance functions have been used to target the
analysis of free text where strings are well-formed words from a dictionary, with
a defined grammatical syntax and with well-understood constraints.

The most popular technique is the Levenshtein distance [21] dLEV (s1, s2)
that assigns a unitary cost for all editing operations, i.e.insert, remove, or replace
one character. It computes an absolute distance between strings that is at most
equal to the length of the longer string. This makes the Levenshtein distance
inconvenient when comparing a short URL against a long one, as URL length
possibly spans from few to hundreds of characters.

The Levenshtein distance dLEV (|s1|, |s2|) is defined as:

dLEV (i, j) =

max(i, j) if min(i, j) = 0.

min

dLEV (i− 1, j) + 1

dLEV (i, j − 1) + 1 otherwise.
dLEV (i− 1, j − 1)+I (s1i 6= s2j)

where i and j are respectively the lengths of s1 and s2, i.e.|s1| and |s2|, re-
spectively, dLEV (i, j) is the distance between the first i characters of si and the

first j characters of s2, and I is the indicator function, namely equal to 0 when
s1i = s2j .

A different approach is taken by the Jaro distance. In this case, the distance
function considers the number and the order of common characters between two
strings. Let m be the number of matching characters, and t be half the number
of transpositions. The Jaro distance dJRO(s1, s2) is defined as:

dJRO =

{
1 if m = 0.

1− 1
3 (m
|s1| + m

|s2| + m−t
m) otherwise.

Given the peculiarity of URLs, whose length may vary widely and which may
include random substrings, we propose a custom modification of the Levenshtein
distance, dURL. URLs are possibly very long strings with up to thousands of
characters. For this we explicitly consider the string length, and normalize the
results in a [0, 1] range:

dURL(s1, s2) =
dLEV ∗(s1, s2)

(|s1|+ |s2|)
This leads to a bounded distance metric, and specifically dURL = 0 if s1 = s2,
while dURL = 1 if the two strings are completely different. We count the total
number of insertions and deletions, but we weight replacement by a factor of
two to count it as a deletion and insertion operation. We call it dLEV ∗ .

To give the intuition of the different results achievable, consider a simple
example. Let s1 be “google.com” and s2 be “1goggle.com”. We now compute
the numerical value provided by each of the considered distance functions. The
Levenshtein distance dLEV (s1, s2) = 2, accounting for one insertion (“1”) and
one replacement operation (“o” → “g”). For dJRO, the number of matches m is 9
(g,o,g,l,e,.,c,o,m), and the number of transpositions t is 0. Thus dJRO = 0.094.
dLEVnorm

is the normalized version for the Levenshtein distance; as we analyzed
above, dLEV is 2, thus dLEVnorm

= 0.095. Finally, dURL = 0.143 since we have
one insertion, weighted 1, and one replacement, weighted 2.

We now run a simple experiment to raise awareness on the importance of
choosing an adequate distance function. We consider all the URLs found in our
dataset that have been generated by TidServ, a polymorphic DGA malware. We
then compute the distance between any pair of URLs (u1, u2). Fig. 2 shows the
Cumulative Distribution Function (CDF) of the measured distances for dLEV ,
dJRO, dLEVnorm

and dURL, respectively.
Given our goal is to cluster elements that are “close” one to the other, we

prefer to have distances concentrated in ranges. A pair of similar elements
should exhibit a small distance, while a pair of different elements should exhibit
a very large distance. dLEV shows three groups in its CDF, suggesting for
potential clusters. However, dLEV support is not bounded in a given range
(in our experiments, it spans in the [0:250] range), since no normalization is
entailed. This makes the comparison mostly driven by string lengths, i.e.any
two short strings will be much more similar than any two long strings. dJRO

instead results in a nearly-uniform shape, showing no clear steps that would

0 50 100 150 200 250 300
dLEV

0.00

0.25

0.50

0.75

1.00
C

D
F

(a) Levenshtein distance.

0.0 0.1 0.2 0.3 0.4 0.5
dJRO

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) Jaro distance.

0.0 0.2 0.4 0.6 0.8
dLEVnorm

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) Normalized Levenshtein distance.

0.0 0.2 0.4 0.6 0.8
dURL

0.00

0.25

0.50

0.75

1.00

C
D

F

(d) URL distance.

Figure 2: CDFs of distances on the TidServ URLs.
To facilitate the consequent clustering of URLs, we aim at having distances
concentrated in ranges.

help in separating close from far away pairs.
dLEVnorm

and dURL satisfy the intuition of having distance ranges, as clearly
shown by three modes in the CDF. Moreover, their support is bounded in the
[0:1] range, normalizing the distance with respect to the length of the two con-
sidered strings. The results of the two approaches are similar, however we opt
for dURL since, as we can notice comparing Fig. 2c with Fig. 2d, the latter is
able to produce larger values of distances, easing thus the separation of two ele-
ments. In fact, dLEVnorm

range is smaller than dURL. For example, considering
the two TidServ elements T1 and T2, where:

• T1: lkeopee32.com/daz0yDNl785yiCU5dmVyPTQuMCZiaWQ9YjZjYWVhNjE
0NjhhMmQ4ZTc0OGQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9NDAxOTcmc2lk
PTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPXVuaWZlIG15ZGVzaw==07c

• T2: switcho81.com/JKm2Ptpd8J5xOYc1dmVyPTQuMCZiaWQ9YjZjYWVhNjE
0NjhhMmQ4ZTc0OGQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9NDAxOTcmc2lk
PTAmcmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPWFydWJhIG1haWw=37g

The results that we obtain with dLEVnorm
and dURL are respectively: dLEVnorm

=
0.11, dURL = 0.19.

4. IDBSCAN Benchmarking

4.1. Datasets
In this section we evaluate the performance of IDBSCAN using two datasets.

First, we consider synthetic datasets commonly used for benchmarking. Then,
we use a real dataset composed of URLs5.

For benchmarking and comparison with state of art algorithms, we generate
data using the Python machine learning5 library Scikit-Learn.3 We rely on
the make blobs module, which creates globular clusters, generated by specifying
the total number of points, the number of desired clusters, the feature space
dimension, and the standard deviation of the points in each clusters. For our
benchmarks, we consider datasets generated respectively (i) varying the number
of clusters from 10 to 100 while keeping the dataset size equal to 20 000; or
(ii) varying the size of the dataset keeping fixed number of clusters to 100 –
maintaining the ratio between number of objects and number of clusters equal
to 200. In both cases, we consider three-dimensional feature space, and standard
deviation of points equal to 0.4.

As use case, we use actual URLs extracted from web traffic. In this work,
we rely on Tstat [33], a scalable passive network monitoring solution that is
able to process data in real time on high-speed links. Tstat implements an
efficient DPI architecture that logs HTTP requests observed in packets. The
logs contain details about observed HTTP transactions. For each transaction,it
records the URL, a client identifier as well as other HTTP headers of requests
and response, including the object path for not encrypted traffic. For our ex-
periment we use a one-week-long HTTP trace collected during March 2016 in
an ISP network. From this traces, we selected 30 households at random.4 Only
URLs are extracted, in aggregated form to make impossible to know which host
of which household actually originated the request. K-anonymity - with k=30
- is guaranteed. To protect users privacy, all parameters in the URL have been
removed, and only unique URLs were saved.5 We observe more than 430 000
unique URLs during a week, more than 60 000 per day. For our preliminary
benchmark we focus on the first day of traffic.

4.2. IDBSCAN parameter sensitivity
To understand the behavior of IDBSCAN and its sensitivity to parameters

settings, we start to test performance over a synthetic set of 20 000 points, which
form 100 clusters. We then vary the η and Smin parameters, keeping one fixed,
respectively η = 0.75 and Smin = 0.3, and varying the other. Minpoints is set
to 20 in all experiments. For performance indexes, we consider i) the number of
clusters, ii) the homogeneity score, and iii) the Silhouette. Each configuration

3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
4A home gateway connects all devices in a household to the Internet. The probe observes

traffic generated by devices connected to the home network.
5The usage of this data set has been discussed and approved by our institution ethic

committee, and by the ISP security group.

has been executed three times, each time with different random points. Plots
report the mean value.

Fig. 3 reports the results. The plots on the left refer to η ∈ [10, 90]%, Smin =
0.3. Results show that values of η higher than 60% generate very pure clusters,
with homogeneity score close to 0.9, and Silhouette higher than 0.6. The num-
ber of clusters is in the 85-90 range (w.r.t. 100 ideal clusters). In a nutshell,
IDBSCAN prefers very pure clusters, eventually discarding some few clusters
which turn out to be not very pure.

Right plots report the sensitivity to Smin (with η = 75%). Any value be-
tween 0.1 and 0.5 show negligible impact, with the performance that suddenly
degrades when Smin is larger than 0.6. In a nutshell, IDBSCAN is very robust
to Smin, so that any value in [0.1, 0.5] range would be good.

For the goals of our work, we prefer to give importance to those settings
that guarantee homogeneous and pure clusters, well separated to the others.
For this, we fix η = 0.75 and Smin = 0.3.

4.3. Comparing IDBSCAN with other density-based technique
After verifying the potential of IDBSCAN for different parameters settings,

we test it against other three popular density-based algorithms, namely DB-
SCAN [1], our baseline, OPTICS [4] and HDBSCAN [9, 25]. We briefly intro-
duce them, referring the reader to the original publications for details.

OPTICS [4]. Ankerst et al., addressed the difficulty of setting DBSCAN pa-
rameters, and in particular the choice of ε. OPTICS stems from the basic idea
that, given a fixed value for MinPoints, the clusters at higher density are con-
tained in the ones that have lower densities. The idea is then to swipe ε to
compute core points for high-density areas first, finding first the denser clusters.
Points are thus ordered according to their density. Clusters can be identified
graphically or automatically from that structure, and so different local densities
may be defined to extract clusters in different areas of the data space.

HDBSCAN [9, 25]. HDBSCAN aims at solving the ε setting in a similar way.
It first creates a tree representation of all the possible clusters that can be
generated for different ε. The algorithm then solves the problem of finding
the best clusters as an optimization problem, where the overall stability of the
clusters, defined following the Hartigan’s definition of density-contour clusters
[18], is maximized. Thanks to this approach, there is no need to tune the ε
parameter.

Here we compare the performance of DBSCAN, OPTICS, HDBSCAN, and
IDBSCAN over artificially generated datasets. We use the Scikit-Learn imple-
mentations of DBSCAN and HDBSCAN, OPTICS is executed using the pyclus-
tering version, while IDBSCAN uses Scikit-Learn DBSCAN as building block.6

6http://scikit-learn.org/, https://pypi.org/project/pyclustering

20 40 60 80

η

75

80

85

90

95

E
st

im
at

ed
n

.
of

cl
u

st
er

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Smin

40

60

80

E
st

im
at

ed
n

.
of

cl
u

st
er

s

(a) Number of clusters

20 40 60 80

η

0.6

0.8

1.0

H
om

og
en

ei
ty

sc
or

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Smin

0.4

0.6

0.8

1.0

H
om

og
en

ei
ty

sc
or

e

(b) Homogeneity score

20 40 60 80

η

0.0

0.2

0.4

0.6

0.8

S
il

h
ou

et
te

sc
or

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Smin

0.0

0.5

S
il

h
ou

et
te

sc
or

e

(c) Silhouette score

Figure 3: Evaluation of IDBSCAN over artificially generated datasets, varying
η (left) and Smin (right).

For all the algorithms we use MinPoints equal to 20 and, for DBSCAN and
OPTICS, a ε value of 0.2.

Fig. 4 reports the results. We focus on two cases: On the left, we keep
the total number of points fixed, and we split them over am increasing number
of clusters; on the right, we keep the number of points per cluster fixed, and
increase the number of clusters.

Results show that IDBSCAN and HDBSCAN outperform both DBSCAN
and OPTICS, especially when the number of clusters is high. In those scenarios,
HDBSCAN and IDBSCAN can identify a higher number of clusters (top plot),
with the number of identified clusters that grows almost linearly with the actual
number of clusters. Homogeneity and Silhouette (middle and bottom plots) are
very good, too. In this benchmark, where data contains groups of points that

20 40 60 80 100

Number of clusters

0

25

50

75

100

E
st

im
at

ed
n

.
of

cl
u

st
er

s
IDBSCAN

HDBSCAN

OPTICS

DBSCAN

20 40 60 80 100

Number of clusters

0

25

50

75

100

E
st

im
at

ed
n

.
of

cl
u

st
er

s

IDBSCAN

HDBSCAN

OPTICS

DBSCAN

(a) Number of clusters

20 40 60 80 100

Number of clusters

0.8

0.9

1.0

H
om

og
en

ei
ty

sc
or

e

IDBSCAN

HDBSCAN

OPTICS

DBSCAN

20 40 60 80 100

Number of clusters

0.8

0.9

1.0

H
om

og
en

ei
ty

sc
or

e

IDBSCAN

HDBSCAN

OPTICS

DBSCAN

(b) Homogeneity score

20 40 60 80 100

Number of clusters

0.4

0.6

0.8

S
il

h
ou

et
te

sc
or

e

IDBSCAN

HDBSCAN

OPTICS

DBSCAN

20 40 60 80 100

Number of clusters

0.4

0.6

0.8

S
il

h
ou

et
te

sc
or

e

IDBSCAN

HDBSCAN

OPTICS

DBSCAN

(c) Silhouette score

Figure 4: Evaluation of density-based algorithms over artificially generated
datasets. Plots on the left consider a fixed number of points, split over a varying
number of clusters. Plots on the right refer to the case where the number of
points per clusters is fixed.

are all of the same density, OPTICS performs identically to DBSCAN, given
the pyclustering implementation that offers a threshold for ε. Not reported
here, CPU time of OPTICS is also much higher than the one of HDBSCAN and
IDBSCAN, with the original DBSCAN being the fastest, as expected.

4.4. Performance using URLs
We next compare IDBSCAN and HDBSCAN using actual data coming from

our use case. We consider 60 000 unique URLs. We use MinPoints = 20 for both,
η = 75% and Smin = 0.3 for IDBSCAN.

Here we do not have a ground-truth, and we do not know the correct number
of clusters we shall identify. As such, we focus on the Silhouette as a metric to
evaluate the goodness of the final clustering. Fig. 5 shows the results. It reports
Silhouette for each cluster, ordered by increasing value. Overall, HDBSCAN
identifies clusters (about 600), but 1/3 of those have a Silhouette value smaller
than 0.3 – with about 100 clusters with negative Silhouette. We manually
investigated those clusters, and clearly observed that those groups URLs do not
fit well together. On the contrary, IDBSCAN returns fewer clusters (about 300),
which are very pure – by construction with Silhouette higher then Smin = 0.3.
In Sec. 6 we will show how informative these clusters are.

These results show how IDBSCAN outperforms HDBSCAN in our use case.
It is able to identify few, but very pure clusters, simplifying the analyst job.

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Silhouette values

0.00

0.25

0.50

0.75

1.00

C
D

F
cl

u
st

er
s

IDBSCAN

HDBSCAN

Figure 5: Silhouette of clusters obtained with IDBSCAN and HDBSCAN when
considering one day of URLs.

5. LENTA Benchmarking

We now run a set of experiment to tune LENTA parameters. In particular,
we focus on the sampling stage. Indeed, extracting a digest of the clusters via
sampling represents the most critical step, since it is essential to balance repre-
sentativeness while limiting the memory of the System Knowledge enhancement
step.

We propose several methods for sample selection sample(Cj ,m): fixed size
m, or proportional to the cluster dimension, with r ratio, and random or per-
centile sampling. We test those first using the synthetic dataset, and then with
actual URLs.

5.1. Performance of sampling on synthetic data
We compare the sampling methodologies described in Sec. 3, over the results

of the IDBSCAN clustering applied in the artificial dataset scenario, with 20 000
points, 100 clusters, and a three-dimensional feature space.

We set up an experiment where we split the dataset in two parts. The first
part contains points of a subset of 50 clusters. The second dataset contains
instead all points from all 100 clusters. We compute the clustering on the
first set and extract the representatives. We then run again the clustering
with all points from all 100 clusters, extract the representatives, and compare
them with the previous representatives. The idea is to check if the clusters
sampling technique allows the identification of the same clusters (the 50 clusters
present in the first and second dataset), checking the similarity between the new
representatives and the old ones. We repeat this experiment for the different
sampling strategies, and for an increasing number of representatives.

Fig. 6 shows the results. For each test, we report, for each cluster C, the
minimum distance dmin(Ĉ, Ẑ), sorted by increasing dmin. Ideally, we would
expect to have dmin = 0 for those 50 clusters that are in common, while dmin ≥
α for the 50 new clusters that are present in the second batch only.

Results show that the sampling and System Knowledge enhancement works
quite well, with the percentile sampling performing better given its deterministic
approach to select representatives. As we could expect, all of the three sampling
methodologies perform better when increasing the number of representatives.
The proportional approach seems to offer good results in this scenario. Recall
that in this benchmark all clusters contain about 200 points each, so that also
random sampling, and fixed sampling present good results.

At last, considering the choice of the threshold α, we can see that any value
higher than 0.1 would offer a good separation between the 50 old clusters, and
the 50 new clusters.

5.2. Performance of sampling with URLs.
To choose which strategy works best in the real case scenario, we run a

second experiment in which we again split the set of URLs in the first day of
data into two sets. We run the clustering considering the first half of URLs,
extract representatives for each identified cluster, and add them to the System
Knowledge. We then rerun the clustering considering all URLs, extract repre-
sentatives, and match the new clusters with those in the System Knowledge. In
this case, too, we expect about 50% of clusters to be old, i.e., dmin < α, and
50% to be new, i.e., dmin ≥ α.

Results are depicted in the plots of Fig. 7, which compares the three dif-
ferent sampling strategies, with different parameters. We clearly observe that
the System Knowledge matching works as expected. The more the number of
representatives, the more the ideal step-curve-behavior is visible. The approxi-
mation is very good, picking a fixed m equal to 16, and very similar to the step
curve with proportional r of 20% or 30%.

Accordingly to both experiments, we obtain the best results when using
percentiles, whose smart sampling guarantees optimal results. Indeed, when
we consider the percentile, we always obtained a perfect distance of 0 for the
clusters that contain the same elements of the compared ones. That is happening
because two sets are equal and we deterministically select the representatives.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.5

1.0
d
m
in

m = 4 fixed

m = 8 fixed

m = 10 fixed

m = 16 fixed

(a) Fixed sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.5

1.0

d
m
in

r = 0.1 C size

r = 0.2 C size

r = 0.3 C size

r = 0.4 C size

(b) Proportional sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.5

1.0

d
m
in

m = 4 perc

m = 8 perc

m = 10 perc

m = 16 perc

(c) Percentile sampling approach.

Figure 6: Sampling applied to the artificial dataset with 100 clusters, 50 of
which were already seen in the past.

Considering the choice of α when actual URLs are considered, Fig. 7a, Fig. 7b
and Fig. 7c clearly show that the new clusters tend to be very dissimilar from
the old ones, and that any α ∈ [0.2, 0.4] is a proper choice. To not discard
potentially new and interesting clusters, in the following we choose a value of
α = 0.3.

At last, enlarging the number of representatives has the drawback to increas-
ing the computation complexity, due to the need to compute O(m2) dURL(.).
Fig. 8 shows the experimental computational time using lin/log scales consid-
ering the set of 60 000 URLs. For variable fraction r, we choose the average
number of elements in the cluster was chosen for a value of x. As expected, the
curve grows quadratically for m (logarithmically in log scale), with m = 32 and
r = 20% (on average 23 samples) or 30% (avg. 35 samples) that already have
a complexity larger than 3 000 s. Without sampling, this experiments would re-
quire more than 7 hours to complete. Considering the System Knowledge would
have thousands of clusters and that this step shall be completed every ∆T , the
best trade-off between cluster similarity identification and computational time
is obtained using a fixed m = 16.7

7In this case, too, CPU time can be reduced by computing dURL in parallel.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.2

0.4

0.6

0.8
d
m
in

m = fixed 4

m = fixed 8

m = fixed 16

(a) Fixed sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.2

0.4

0.6

0.8

d
m
in

r = 0.1 C size

r = 0.2 C size

r = 0.3 C size

(b) Proportional sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of clusters

0.0

0.2

0.4

0.6

0.8

d
m
in

m = 4 perc.

m = 8 perc.

m = 16 perc.

(c) Percentile sampling approach.

Figure 7: dmin when 50% of traffic is the same and 50% is new. Different choices
of sampling approaches.

6. Results

In this section, we provide experimental results for our use case. We choose
∆T = 24h, η = 75%, Smin = 0.3, p = 0.2 and MinPoints = 20 to look for
well-shaped and big enough clusters. We tested different parameters, observing
little changes.

Foremost we analyze the first day of traffic. LENTA obtains 283 clusters
from the set of 59543 original unique URLs. The Silhouette coefficient S(C)
has a value of 0.5 or more for 183 clusters, with 55 of them with S(C) > 0.75.
That is, clusters are very well shaped.

The top part of Tab. 2 shows the biggest clusters, while the bottom part those
with the highest silhouette. The table reports the silhouette S(C), the most
frequent hostname (in brackets the total number of hostnames), the number of
unique URLs, and the type of the service. Although the majority of clusters are
relatively small, some contain a considerable number of distinct URLs and of
different hostnames. That behavior is not to be taken as granted, as often the
complexity of URLs structure tend to increment the distance also for actually
similar elements.

Some suspicious clusters are also identified. For instance, 30 unique URLs
form a cluster where URLs have all the same IP address 219.129.216.161 – but

0 20 40 60 80 100 120
m

101

102

103

104

C
om

pu
ta

tio
na

lt
im

e
(s

) Fixed m values

r = 10% cluster size

r = 20% cluster size

r = 30% cluster size

No sampling

Figure 8: Computation time for different sampling strategies. Without sam-
pling, the comparison of the System Knowledge would require too much time.

Table 2: Insight of the clustered HTTP traffic from the first day of analysis. On
the top, the largest clusters. On the bottom, the top well-shaped clusters.

S(C) Main hostname (unique hostnames) Elements Activity
0.52 scontent-mxp1-1.cdninstagram.com (4) 4359 Instagram CDN
0.92 se-rm3-18.se.live3.msf.ticdn.it (6) 3504 Entertainment - Streaming CDN
0.36 skyianywhere2-i.akamaihd.net (9) 2087 Entertainment - Streaming CDN
0.30 www.google-analytics.com (29) 1940 Tracking
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Streaming CDN
0.76 videoassets.pornototale.com (1) 751 Adult content
0.57 tracking.autoscout24.com (2) 592 Tracking
0.37 ec2.images-amazon.com (10) 575 Image CDN
0.56 thumbs-wbz-cdn.alljapanesepass.com (1) 393 Adult Content
0.66 video-edge-8fd1c8.cdg01.hls.ttvnw.net (4) 359 Entertainment - Streaming
0.98 iframe.ad (1) 27 Advertising
0.97 news.biella.it (1) 23 News
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Video Streaming CDN
0.93 motoitalia01.wt-eu02.net (1) 45 Tracking
0.92 skygo.sky.it (1) 45 Entertainment - Video Streaming
0.92 se-rm3-18.se.live3.msf.ticdn.it.msf.ticdn.it (6) 3504 Entertainment - Video Streaming CDN
0.92 219.129.216.161 (1) 30 Malware
0.92 a.applovin.com (1) 20 Analytics
0.92 rum-dytrc.gazzetta.it (1) 47 Entertainment - Analytics

apparently random paths. After further analysis8, this cluster is actually found
malicious. Other suspicious clusters emerge as well. At last, it is important to
mention that the same service, i.e., the same hostname, may be broken apart in
multiple clusters, each one containing specific content. For example, the Chinese
messaging system msg.71.am is divided into two clusters, one serving images

8Google results: https://goo.gl/q3DgT8, VirusTotal results https://goo.gl/fqrNkG

0.80 0.85 0.90 0.95 1.00

Fraction of clusters

0.00

0.25

0.50

0.75

1.00

D
is

ta
n

ce
d
m
in

torrent injection

malware injection

streaming injection

Figure 9: Curves of distances when new traffic is injected in the controlled
experiment. Top 20% clusters are reported.

(.GIF), and the other exchanging control information like devices reports.
These results clearly show that LENTA let the services that commonly char-

acterize the traffic emerge. The security analyst can then analyze clusters and
consequently label them.

7. Evolution over time

In this section, we show the results of running LENTA in a real scenario.
We first consider a controlled experiment and then we apply LENTA over 21
days of traffic collected from the ISP network.

7.1. In vitro experiment
To evaluate the reaction of LENTA with respect to the appearance of anoma-

lous elements, we design a controlled experiment in multiple stages. We start
from an initial group UG(0) of almost 33 000 unique URLs extracted at random
from the previous dataset. We then artificially create new groups UG(1), UG(2)
and UG(3) where we progressively inject URLs belonging to different applica-
tions. We first add a block of 200 torrent URLs, i.e., UG1 = UG0∪{TorrentURLs}.
Next, we add 228 malicious URLs generated by hosts infected by TidServ, i.e.,
UG(2) = UG(1) ∪ {TidservURLs}. Finally, we inject 549 URLs generated by
a popular streaming service, i.e., UG(3) = UG(2) ∪ {StreamingURLs}.

After each stage, we run LENTA and check if it is able to identify the
new traffic. Results are reported in Fig. 9, which shows the minimum distance
dmin(Ĉ(t),Z(t − 1)) between clusters found in UG(t) and those in the System
Knowledge build on previous steps. We report only the first 20% of clusters,
ordered by distance. As clearly shown, LENTA is able to recognize the new
traffic: first, dmin is equal to zero for those clusters in UG(t) that were already

Table 3: New clusters after the comparison with the System Knowledge.

Experiment stage dmin Main hostname(s)

UG1 Torrent 0.75 b-0.ad.bench.utorrent.com
0.57 scorecardresearch.com, pixel.quantserve.com
0.23 torrent.gresille.org

UG2 Malware 0.76 wuptywcj.cn
0.76 *-6nbcv.com, iau71nag001.com
0.76 bangl24nj14.com, switcho81.com

UG3 Streaming 0.75 198.38.116.148
0.74 23.246.50.136, 198.38.116.148
0.74 198.38.116.148
0.73 23.246.50.136, 198.38.116.148
0.72 198.38.116.148

Table 4: Behavior of the system during the week.

Mar-01 Mar-02 Mar-03 Mar-04 Mar-05 Mar-06 Mar-07
Unique URL 59543 62842 67789 61849 77770 87928 88396
Daily Clusters 283 322 348 304 396 428 431

System knowledge 283 475 643 765 927 1097 1267
System enhancement 283 192 168 122 162 170 170

Table 5: Most interesting clusters obtained by the daily comparison with the
system knowledge in the controlled experiment.

Day Main hostname Activity Day Main hostname Activity
(unique hostnames) (unique hostnames)

Mar-02 adnxs.com (3) Advertising Mar-03 ams1.mobile.adnxs.com (1) Advertising
www.bing.com (1) Search Engine ads1-adnow.com (3) Advertising
amazon.it (3) E-commerce uk-ads.openx.net (1) Advertising
doubleverify.com (9) Advertising c.3g.163.com (1) Chinese Website
mp.weixin.qq.com (1) Chinese Website googleapis.com (1) Cloud Storage

Mar-04 banzai-d.openx.net (1) Advertising Mar-05 engine.bitmedianetwork.com (1) uTorrent Adv
dt.adsafeprotected.com (1) Hijacker 62.210.188.202:8777 (1) Suspicious Port
gvt1.com (3) Hijacker adaptv.advertising.com (1) Suspicious Adv
windowsphone.com (1) CDN Marketplace pubnub.com (16) Messaging
ocsp.digicert.com (1) Certificate Inspection irs01.com (1) Suspicious Tracking

Mar-06 23.246.50.130 (5) Netflix Italy Mar-07 aww.com.au (2) News
198.38.116.148 (3) Netflix Germany *.liverail.com (1) Advertising
23.246.50.136 (3) Netflix Italy spaces.slimspots.com (1) Adware Attack
23.246.51.136 (2) Netflix Italy googleusercontent.com (2) Page Translation
178.18.31.55:8081 (7) Suspicious Streaming s8.algovid.com (1) Malicious Adv

present in UG(t− 1). Second, and more important, the new traffic is clustered
in totally different clusters, whose dmin is much higher than α = 0.3.

In details, Tab. 3 depicts the results of the experiment. First, all clusters
contain only new URLs injected in each step of the process. Second, notice that
LENTA identifies multiple new clusters for each stage. This is welcome, since
each cluster corresponds to a semantically different service. For instance, for

the video streaming case, each cluster corresponds to videos served for different
platforms (iOS, Android, and PC), and torrent clusters correspond to different
swarms and trackers. Third, dmin > 0.3 for all clusters but one in the Torrent
data, for which dmin = 0.23. This cluster would be associated to a previously
seen cluster. The association is correct, and URLs have a very similar syntax
to the one already found and related to a tracker service, tntvillage.

7.2. Real case scenario
We now run LENTA on one week of data collected in an ISP network.

Table 4 details results. Figure 10 shows the growth of the system knowledge
||Ẑ(t)|| over time (blue bars), and the daily amount of clusters that are added
during the enhancement phase (red bars). The table gives the actual figures.
During each day, 280 ÷ 430 clusters are identified, with the variability due to
the daily activity of users. Some of those correspond to clusters already present
in the System Knowledge (typically more than 50-70%), which grows over time
of fewer than 170 clusters per day. In a nutshell, LENTA is able to decrease
the amount of information the security analysts have to process by 3 orders of
magnitudes so that they have to inspect about less than 200 clusters per day
instead of managing several tens of thousands of unique URLs.

Mar-0
1

Mar-0
2

Mar-0
3

Mar-0
4

Mar-0
5

Mar-0
6

Mar-0
7

0

500

1000

1500

C
lu

st
er

s

System Knowledge size

New clusters

Figure 10: Daily enhancement of system knowledge

The variability of URLs grouped in the same cluster also simplifies the inves-
tigation of the service being involved. For instance, we checked some clusters
that came into sight after each System Knowledge enhancement phase. We
report, for each day, five new clusters among those that were reported to be
among the most different with respect to the previously collected traffic, i.e.,
those for which dmin(Cj(t), Ẑ(t− 1)) is higher.

Tab. 5 details the results. In this case, too, the services are related to
streaming, advertising, e-commerce services. Some unexpected or at least not
so frequent traffic emerges as well; for instance, on March 3rd, the c.3g.163.com
cluster emerges. It is related to the Chinese web portal www.163.com, which was

never seen in the previous days. URLs are related to a newsfeed specific service.
During March 4th and 5th, some suspicious or malicious traffic is identified.
Clusters are related to hijacking services and aggressive advertisement targeting
and are likely generated by some hosts infected by some malware. March 6th
is extremely captivating. Eight out of ten most different clusters are formed
by URLs characterized by IP addresses which resolve Netflix Italy or Netflix
Germany CDNs. These were not found in the previous days, highlighting a
change in the Netflix load balancing policies. The other cluster contains traffic
from 178.18.31.55:8081, connected to liverepeater, a keyword related to illegal
streaming content. Finally, in the last day, some suspicious traffic is visible:
uncommon services like aww.com.au, an Australian news website, and web pages
translated using the Google Translate online service (curiously translating adult
content website, possibly to evade content filtering policies).

8. Related Work

Clustering is considered one of the most interesting unsupervised learning
techniques, providing a data structure partition which can be the basis for fur-
ther learning. In particular unsupervised techniques have provided the possi-
bility to obtain various forms of clusters and to separate the noisy points from
the final result. However, the sensitivity to the parameters and the inability
to manage data sets with different densities, has represented a limit. For these
reasons other methodologies started to emerge. OPTICS [4] from Ankerst et
al. offers a methodology to inspect the structure of clusters obtained from the
data – the reachability plot – that is used to extract clusters looking at density
valleys with visual inspection - a not always applicable solution. Campello et
al. proposed HDBSCAN [9, 25] which is built on top of DBSCAN, and con-
siders different radius values, combining the results to find the best clustering.
However, it offers limited control on the quality of clusters. In our proposed
solution IDBSCAN the clustering stage builds upon the classic DBSCAN and
make use of silhouette to allow better results in terms of quality with respect
to other well-known and novel algorithms. Furthermore, the automation of the
choice of cumbersome parameters reduces the effort needed by the analyst to
configure and tune the system.

Network traffic analysis, thank to the complexity and richness of its data,
has witnessed in the last decade a lot of research concerning the use of machine
learning techniques. The key applications are traffic classification and anomaly
detection. In the latter case, the application of clustering technique is of great
interest. Authors of [16, 17] addressed the task of botnets detection. The
former uses a two-step clustering of communication flows, first coarsely grouping
them considering a contraction of the feature space, and then, for each group,
computing a more refined cluster where all the features are considered. The
latter uses a hierarchical clustering technique to merge similar bags of bi-grams,
extracted from messages collected from Internet Relay Chat monitoring, using
the DICE coefficient to express the distance.

In other cases clustering is seen as a vehicle for classification. In [11] Erman
et al. presented a work on the classification of network traffic, using transport
layer statistics and testing clustering algorithms (namely, k-Means, DBSCAN
and AutoClass) over different labeled datasets. Authors of [23] use labeled traffic
flows and k-Means clustering for classification.

A number of studies focused on text and string mining techniques, with the
goal of clustering network traffic. In the field of network security authors of [28]
use a two-level clustering process, leveraging the single-linkage hierarchical algo-
rithm to disclose similarities between malicious URL, with the goal of building
malware signatures; Levenshtein distance, together with Jaccard Index, is used
in the second clustering stage. In [20], semantic features of the URLs are used to
target the same problem, using DBSCAN and Jaro-Wrinkler distance. Authors
of [24] use the Levenshtein distance aiming at detecting phishing sites, whose
names are built using typical spelling mistakes. Gao et al. [13] use clustering
techniques to detect spam campaigns on Facebook, looking at similarities in
destination URLs.

In this context, also big data approaches are starting to emerge to scale
the analysis of traces [6, 7, 15, 22, 32]. They offer the ability to process mas-
sive data [22], and run machine learning methodologies for traffic classifica-
tion [15, 32], traffic monitoring analytics [7], or in general to support the so-
called data science process, i.e., the extraction of insights from massive data [6].
Other works are exploring time series data to analyse user behavior, in different
scenarios. For example, Bulut and Szymanski in [8] they perform an analysis
on mobile user data trying to understand trends and deviation on users behav-
iors. In [2] Altman identify groups of Twitter subscribers looking at geographic
location and similarities in the language used in tweets. This study identified
features that contributes in the understanding of new spelling forms driven by
the social network platform.

With respect to all these works, our solution LENTA aims to be a general
purpose methodology that can be used in different fields and applications, with a
scalable solution. Our goal is to examine the traffic to find, from URL structures,
similar elements that can be used to easily identify patterns, anomalies and
novelties in protocol, services and users behaviors.

Considering our previous research [26] [27], here we compared IDBSCAN,
originally proposed in [27], with other clustering algorithms, both using syn-
thetic datasets and real case scenarios. We extended thus the motivation behind
our choices and we showed the potentials of our approach.

9. Conclusions and Future Work

In this paper, we presented LENTA, a methodology for the fast identifica-
tion of HTTP-based service by looking at URLs string similarities. We designed
a recursive version of a clustering algorithm over daily HTTP traffic generated
by hosts in a network, called IDBSCAN. We tested it against other off-the-
shelf algorithms, namely DBDSCAN, HDBSCAN, and OPTICS, using both a
synthetic dataset and a real use case with URL objects, showing the benefits

of our proposed solution. We then performed the clustering algorithm for an
entire week, comparing the result of each 24 hours with a collection of previ-
ously observed services. We found that LENTA allows reducing the traffic to
manually check and to ease the observation of changes in the network behavior.
Furthermore, it exposes well-formed clusters of URLs which greatly simplifies
the identification of possibly malicious and undesired traffic.

This work goes in the direction of reducing the problem complexity, quickly
producing an outcome for the analyst to whom are offered few hundreds of
clusters instead of several hundred of thousands of URLs. Our results show
that the methodology, applied in a long-term observation, is promising in the
ability to identify anomalies in the traffic.

When considering HTTPS, LENTA would work with no changes, assumed
visibility in HTTPS traffic is possible.In a corporate scenario this could be
achieved using a MITM proxy, or directly instrumenting the browsers with a
plug-in to log HTTP/HTTPS requests.

A supplementary effort is necessary to extend big data approaches to all the
stage of the system to scale the analysis. Another possible follow-up work is
the application of LENTA over different lexical features, like hostname in DNS
queries, or user-agents in HTTP requests.

The system can be also applied on different scenarios, going from flow anal-
ysis to user-generated content characterization, e.g., studying activity on social
media platforms.

10. Acknowledgements

We want to thank the Vienna Science and Technology Fund (WWTF) through
project ICT15-129, "BigDAMA" and the SmartData@PoliTO center for Big
Data technologies that funded the research leading to these results.

[1] Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applica-
tions. Chapman and Hall/CRC (2013)

[2] Altman, E.: Twitter and the Geo-linguistic fingerprint. (2012)

[3] Anderson, B.: Hiding in plain sight: Malware’s use of
tls and encryption. https://blogs.cisco.com/security/
malwares-use-of-tls-and-encryption

[4] Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: order-
ing points to identify the clustering structure. In: ACM Sigmod record.
Volume 28., ACM (1999) 49–60

[5] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S.,
Lee, W., Dagon, D.: From throw-away traffic to bots: Detecting the rise of
dga-based malware. In: USENIX security symposium. Volume 12. (2012)

[6] Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Giordano, D., Mellia,
M., Venturini, L.: Selina: A self-learning insightful network analyzer. IEEE
Transactions on Network and Service Management 13(3) (Sept 2016) 696–
710

[7] Baer, A., Finamore, A., Casas, P., Golab, L., Mellia, M.: Large-scale
network traffic monitoring with dbstream, a system for rolling big data
analysis. In: 2014 IEEE International Conference on Big Data (Big Data).
(Oct 2014) 165–170

[8] Bulut, E., Szymanski, B.K.: Understanding user behavior via mobile data
analysis. 2015 IEEE International Conference on Communication Work-
shop, ICCW 2015 (2015) 1563–1568

[9] Campello, R.J., Moulavi, D., Sander, J.: Density-based clustering based
on hierarchical density estimates. In: Pacific-Asia conference on knowledge
discovery and data mining, Springer (2013) 160–172

[10] Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string
distance metrics for name-matching tasks. In: IJCAI-03 Workshop on
Information Integration. (2003) 73–78

[11] Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering
algorithms. In: Proceedings of the 2006 SIGCOMM workshop on Mining
network data, ACM (2006) 281–286

[12] Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise.

[13] Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and
characterizing social spam campaigns. In: ACM IMC. (2010)

[14] Goshtasby, A.A.: Similarity and dissimilarity measures. Springer (2012)

[15] Grimaudo, L., Mellia, M., Baralis, E., Keralapura, R.: Select: Self-learning
classifier for internet traffic. IEEE Transactions on Network and Service
Management 11(2) (June 2014) 144–157

[16] Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis
of network traffic for protocol-and structure-independent botnet detection.
(2008)

[17] Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and
control channels in network traffic. (2008)

[18] Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

[19] Khatouni, A.S., Trevisan, M., Regano, L., Viticchié, A.: Privacy issues
of isps in the modern web. In: Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 2017 8th IEEE Annual,
IEEE (2017) 588–594

[20] Kheir, N., Blanc, G., Debar, H., Garcia-Alfaro, J., Yang, D.: Automated
classification of c&c connections through malware url clustering. In: IFIP
International Information Security Conference, Springer (2015) 252–266

[21] Levenshtein, V.: Binary codes capable of correcting deletions, insertions
and reversals. In: Soviet physics doklady. (1966) 10–707

[22] Liu, J., Liu, F., Ansari, N.: Monitoring and analyzing big traffic data of a
large-scale cellular network with hadoop. IEEE Network 28(4) (July 2014)
32–39

[23] Liu, Y., Li, W., Li, Y.C.: Network traffic classification using k-means
clustering. In: Computer and Computational Sciences, 2007. IMSCCS
2007. Second International Multi-Symposiums on, IEEE (2007) 360–365

[24] Maurer, M.E., Hofer, L.: Sophisticated phishers make more spelling mis-
takes: Using url similarity against phishing. In: Springer Cyberspace Safety
and Security. (2012)

[25] McInnes, L., Healy, J.: Accelerated hierarchical density based cluster-
ing. In: 2017 IEEE International Conference on Data Mining Workshops
(ICDMW). (Nov 2017) 33–42

[26] Morichetta, A., Bocchi, E., Metwalley, H., Mellia, M.: Clue: Clustering
for mining web urls. In: 2016 28th International Teletraffic Congress (ITC
28). Volume 01. (Sept 2016) 286–294

[27] Morichetta, A., Mellia, M.: Lenta: Longitudinal exploration for network
traffic analysis. In: 2018 30th International Teletraffic Congress (ITC 30).
Volume 1., IEEE (2018) 176–184

[28] Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based
malware and signature generation using malicious network traces. In:
NSDI. Volume 10. (2010) 14

[29] Popa, L., Ghodsi, A., Stoica, I.: Http as the narrow waist of the future
internet. In: ACM Hotnets. (2010)

[30] Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Math-
ematics 20 (1987) 53 – 65

[31] Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Phoenix: Dga-based
botnet tracking and intelligence. In: International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer (2014)
192–211

[32] Suthaharan, S.: Big data classification: Problems and challenges in network
intrusion prediction with machine learning. SIGMETRICS Perform. Eval.
Rev. 41(4) (April 2014) 70–73

[33] Trevisan, M., Finamore, A., Mellia, M., Munafo, M., Rossi, D.: Traffic
analysis with off-the-shelf hardware: Challenges and lessons learned. IEEE
Communications Magazine 55(3) (March 2017) 163–169

[34] Vassio, L., Drago, I., Mellia, M.: Detecting user actions from http traces:
Toward an automatic approach. In: 2016 International Wireless Commu-
nications and Mobile Computing Conference (IWCMC). (Sept 2016) 50–55

