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Abstract We consider (transient) 3D elastic wave propagation problems in unbounded isotropic
homogeneous media, which can be reduced to corresponding 2D ones. For their solution, we
propose and compare two boundary integral equation approaches, both based on the coupling of a
discrete time convolution quadrature with a classical space collocation discretization. In the first
approach, the PDE problem is preliminary replaced by the equivalent well known (vector) space-
time boundary integral equation formulation, while in the second, the same PDE is replaced by a
system of two (coupled) wave equations, each one of which is then represented by the associated
boundary integral equation. The construction of these two approaches is described and discussed.
Some numerical testing are also presented.

Key words: elastic wave propagation; space-time boundary integral equations; discrete convolution

quadrature; collocation method.

1. Introduction

Since many decades, a large number of papers have been published on the numerical
solution of transient elastodynamic problems, defined on bounded or unbounded domains,
by means of their well-known (time dependent) spatial Boundary Integral Equation (BIE)
representation. Several numerical approaches have been proposed with satisfactory results.
In general, problems have been solved by working in the Laplace or Fourier transform spaces
(see [4, 14]), where a classical Boundary Element (BE) method is then applied, after which
a numerical inversion of the results to the time domain is performed.

Later, the same problems have also been solved by using their space-time BIE representa-
tion, first coupling a time-marching (quadrature) rule with a (BE) spatial discretization (see

1We acknowledge that the present research has been performed in the framework of MIUR grant
Dipartimenti di Eccellenza 2018-2022 and supported by GNCS-INDAM 2018 research program:
Sviluppo di tecniche efficienti e accurate per metodi BEM.
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[20, 22]), and then replacing the previous time integration formula with a discrete (time)
convolution quadrature due to Ch. Lubich [13] (see, for example, [21, 12, 9, 16]). This
quadrature has some very nice features, which include the use of the FFT to compute its
coefficients, whence the sums of all the corresponding boundary integrals. For the latter
approach we are not aware of stability and convergence (theoretical) results, except for those
recently obtained in [11]. In this paper, the authors have examined a Lubich - BE Galerkin
approach for the solution of a particular wave-structure interaction problem, proving its sta-
bility and convergence. We are not aware of similar results for a Lubich - BE collocation
approach, in spite of the numerical evidences given by the many authors that have applied
this method.

A key issue of any Lubich-BE method is the accurate calculation of the required (bound-
ary) integrals. The more accurate is their evaluation, the larger is the time interval where
the method is stable and accurate (see [8]). But in spite of this, in the above mentioned
papers this issue has never been properly examined.

In this paper we consider (transient) 3D elastic wave propagation problems in unbounded
isotropic homogeneous media, which can be reduced to corresponding 2D ones. This is the
case, for example, of problems defined on the exterior of a bounded rigid domain, which
are invariant in one of the cartesian directions. For their solution, in the next section we
use the classical space-time BIE formulation (see, for example, [20, 22]), and discretize it by
combining a Lubich time convolution quadrature with a classical space collocation method
(see [7, 8]). Approaches of this type, also with collocation replaced by Galerkin, have been
already used by several authors to solve 2D and 3D elastodynamic (interior and exterior)
problems (see, for example, [12, 2, 16, 21]). We rigorously examine the integrand behaviors of
all the integrals required by the proposed method, and for their efficient evaluation propose
proper integration rules.

Then, in Section 3, by applying a classical Helmholtz decomposition we split the elastic
(vector) equation into a couple of scalar wave equations, describing, respectively, the prop-
agation of P -waves and S-waves. The two equations are coupled by the problem Dirichlet
boundary conditions. This splitting has been used in [3] to solve an interior problem by
a finite element method. Instead, here the two aforesaid scalar equations are reformulated
in terms of their associated space-time BIE representations, which are then discretized by
the corresponding time convolution quadratures and a space collocation method. This new
approach inherently allows to include P - and S-wave sources.

In Section 4 we report the testing we have performed on the two approaches and make
some comparisons. Some conclusions are then drawn in the last section.

2. The standard BIE formulation for elastodynamics

Because of the problem assumptions we have made in the introduction, we define by
Ωi ⊂ R2 an open, bounded and rigid domain, whose boundary Γ is assumed to be a closed
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and smooth curve, or the union of a finite number of separated domains of this type. Then,
we set Ωe = R2 \ Ωi and Ωe = R2 \ Ωi.

The linear elastodynamics problem that characterizes small variations of a displacement
field u(x, t) = (u1(x, t), u2(x, t)), x = (x1, x2) in a homogeneous isotropic elastic medium Ωe,
caused by a body force f , initial conditions u0,v0 locally supported and a Dirichlet datum
g, is defined by the following system:

ρ
∂2u

∂t2
(x, t)− (λ+ µ)∇(divu)(x, t)− µ∇2u(x, t) = f(x, t) (x, t) ∈ Ωe × (0, T )

u(x, t) = g(x, t) (x, t) ∈ Γ× (0, T )

u(x, 0) = u0(x) x ∈ Ωe

ut(x, 0) = v0(x) x ∈ Ωe,

(1)
where ρ > 0 is the constant material density, λ > 0 and µ > 0 are the Lamé constants.

The Time-Domain Boundary Integral Equation (TDBIE) for the displacement u(x, t) of
Problem (1) with f = (f1, f2), g = (g1, g2), u0 = (u1,0, u2,0) and v0 = (v1,0, v2,0), is formulated
in a usual manner as

2∑
`=1

∫ t

0

∫
Γ

U∗i`(x− y, t− s)t`(y, s) dΓyds −
2∑
`=1

∫ t

0

∫
Γ

T ∗i`(x− y, t− s)u`(y, s) dΓyds

+Iui,0(x, t) + Ivi,0(x, t) + Ifi(x, t) =

ui(x, t) x ∈ Ωe (2a)
1

2
ui(x, t) x ∈ Γ (2b)

where U∗i` and T ∗i`, i = 1, 2, are the displacement and traction fundamental solutions, respec-
tively, and t` is the `-component of the traction vector t associated with u. The expression
of U∗i` and T ∗i` can be found in [22], while the volume integrals are defined by

Iui,0(x, t) :=
2∑
`=1

∂

∂t

∫
Ωe
U∗i`(x− y, t)u`,0(y, t)dy

Ivi,0(x, t) :=
2∑
`=1

∫
Ωe
U∗i`(x− y, t)v`,0(y, t)dy

Ifi(x, t) :=
2∑
`=1

∫ t

0

∫
Ωe
U∗i`(x− y, t− s)f`(y, s)dyds.

(3)

The details of the TDBIE reformulations (2a)-(2b) of Problem (1) can be found, for example,
in [21, 4].

In this paper we assume that the problem data satisfy the smoothness and compatibility
conditions which guarantee the solution u(x, t) to be at least C2 continuous in Ωe × [0, T ].
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2.1. Numerical resolution of the standard TDBIE formulation

In this section, we describe the numerical procedure we adopt to solve (2b) in the un-
knowns t`, ` = 1, 2, being u` = g` known on Γ. Once the solution t = (t1, t2) is retrieved, the
displacement u(x, t) is computed at any exterior point x of Ωe and at any time t by using
(2a).

For the solution of (2b), we consider the numerical approach which combines the time
integral discretization by using a Lubich second-order time convolution quadrature (see [13]),
recalled in the Appendix, with a (continuous) piecewise linear space collocation method.
Because of the previous solution smoothness assumptions we have made, the boundary Γ is
assumed to be at least C2-continuous.

2.1.1. Time discretization

We consider a uniform partition of the interval [0, T ] into N steps of equal length ∆t =
T/N and we collocate equations (2b) at the time instants tn = n∆t, n = 0, . . . , N . After
having exchanged the order of integration, we approximate the time integrals by means of
(A1) (see Appendix for details). Then, setting Û∗i`(r)) := Û∗i`(r, s), T̂

∗
i`(r)) := T̂ ∗i`(r, s), we

obtain the following integral equations on Γ:

2∑
`=1

n∑
j=0

∫
Γ

ωn−j(∆t; Û
∗
i`(r)) tj`(y) dΓy =

1

2
gni (x) +

2∑
`=1

n∑
j=0

∫
Γ

ωn−j(∆t; T̂
∗
i`(r)) gj`(y) dΓy

−Iui,0(x, tn)− Ivi,0(x, tn)− Ifi(x, tn), i = 1, 2; n = 0 : N

(4)

in the unknowns tn` (x) ≈ t`(x, tn), with r = ‖x − y‖. In (4) ωn−j(∆t; Ŵ
∗
i`(r)) denotes

the quadrature coefficient associated with the Laplace transform of the convolution kernel
W ∗
i` = U∗i`, T

∗
i`, which is then approximated by formula (A3).

The expressions of the Laplace transforms Ŵ ∗
i`, involved in (A3), can be found in [4] and

are reported here for completeness. These are:

Û∗i`(r, s) =
1

2πρv2
S

(
ψ(r, s)δi` − χ(r, s)r,ir,`

)
(5)

T̂ ∗i`(r, s) =
1

2π

{[
∂ψ

∂r
(r, s)− χ(r, s)

r

](
δi`
∂r

∂n
+ r,`ni

)
− 2

χ(r, s)

r

(
r,in` − 2r,ir,`

∂r

∂n

)
−2

∂χ

∂r
(r, s)r,ir,`

∂r

∂n
+

(
v2
P

v2
S

− 2

)[
∂ψ

∂r
(r, s)− ∂χ

∂r
(r, s)− χ(r, s)

r

]
r,in`

}
,

(6)

where r,i := ∂yir, δi` is the Kronecker delta and vP , vS denote the so-called P - and S-wave
speeds defined by (see Section 3)

vP =

√
λ+ 2µ

ρ
, vS =

√
µ

ρ
. (7)
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The functions ψ and χ in (5) and (6) are defined as follows:

ψ(r, s) = K0

(
rs

vS

)
+
(vS
rs

)[
K1

(
rs

vS

)
− vS
vP
K1

(
rs

vP

)]
, (8)

χ(r, s) = K2

(
rs

vS

)
−
(
vS
vP

)2

K2

(
rs

vP

)
, (9)

where K0, K1 and K2 are the second-kind modified Bessel functions of order 0, 1 and 2,
respectively.

By using the relations K ′0(z) = −K1(z), K ′1(z) = −K0(z) − 1/zK1(z) and K ′2(z) =
−2/zK2(z)−K1(z), easy calculations yield (see [10])

∂ψ

∂r
(r, s) = −1

r

[
χ(r, s) +

rs

vS
K1

(
rs

vS

)]
(10)

and
∂χ

∂r
(r, s) = −1

r

[
rs

vS
K1

(
rs

vS

)
−
(
vS
vP

)2
rs

vP
K1

(
rs

vP

)
+ 2χ(r, s)

]
. (11)

2.1.2. Space discretization

In order to describe the space discretization, we assume that the boundary Γ is defined,
for simplicity, by a global (at least) C2-continuous parametric representation

x = η(ϑ) = (η1(ϑ), η2(ϑ)), ϑ ∈ [0, 1]. (12)

After having introduced the parametric representation (12), hence reduced the integration on
Γ into the equivalent one defined on the parametrization interval [0, 1], we apply a nodal col-
location boundary element method with piecewise linear basis functions {Nk}M+1

k=1 associated
to a uniform partition {ϑk}M+1

k=1 of [0, 1].

By approximating the unknown functions tn` (x), ` = 1, 2, for x ∈ Γ by

tj`(η(ϑ)) ≈
M+1∑
k=1

tj`,kNk(ϑ), (13)

we end up with the following block lower triangular Toeplitz system

2∑
`=1

n∑
j=0

Un−j
i` tj` =

1

2
gni +

2∑
`=1

n∑
j=0

Tn−j
i` gj` − Inui,0 − Invi,0 − Infi =: bni , i = 1, 2 (14)

in the unknowns tn` = (tn`,1, . . . , t
n
`,M+1)T , with ` = 1, 2 and n = 0, . . . , N . The entries of the

matrices Un
i` and Tn

i` in (14) are

(Un
i`)m,k =

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0

Û∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (15)
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and

(Tn
i`)m,k =

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0

T̂ ∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L , (16)

where z := γ(%eı̇l2π/L)/∆t, rm = ‖η(ϑm)−η(ϑ)‖, being ϑm, m = 1, . . . ,M+1, the collocation
points.

In matrix form, the solution of system (14) at each time instant t = tn is determined by
solving the following 2× 2 block linear systemU0

11 U0
12

U0
21 U0

22

tn1

tn2

 = −
n−1∑
j=0

Un−j
11 Un−j

12

Un−j
21 Un−j

22

tj1

tj2

+

bn1

bn2

 . (17)

for n = 0, . . . , N .

2.1.3. Efficient computation of the matrix elements

We first recall that (see [8]) the efficient and accurate evaluation of all the integrals
required by the proposed method is a key ingredient for its success. In particular, the more
accurate is the integral evaluation, the larger is the length of the time integration interval that
one can choose, where the numerical method turns out to be perfectly stable (see Example
3). In spite of this, to our knowledge this issue has never been properly examined in the
papers where a Lubich-BEM approach has been applied to an elastodynamic problem. We
further note that once the BIE has been solved, the (unknown) u(x, t) is evaluated at a point
x ∈ Ωe by using its representation (2a), whose kernels are all smooth functions. However, for
x very close to the boundary Γ, these kernels have quasi-singularities that must be properly
treated.

In order to compute accurately the integrals appearing in (15) and (16), it is necessary
to make some preliminary remarks on the behaviour of the involved integrand functions.

We start by detailing the numerical procedure to compute the matrix entries of Un
i`. To

this aim, we rewrite (8) as follows

ψ(r, s) = K0

(
rs

vS

)
+ ψ1(r, s), (18)

where

ψ1(r, s) :=
(vS
rs

)
K1

(
rs

vS

)
−
(
vS
vP

)2 (vP
rs

)
K1

(
rs

vP

)
.

We recall the series expansion of the Bessel function K0 appearing in (18) (see [1] formula
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(9.6.13)):

K0(z) = −
(

ln
z

2
+ γ
)
I0(z) +

∞∑
k=1

ak
(z2/4)

k

(k!)2

I0(z) =
∞∑
k=0

(z2/4)
k

(k!)2
, a1 = 1, ak+1 = ak +

1

k + 1
,

(19)

γ = 0.5772156649... being the well known Euler’s constant. Formula (19) highlights the
log-behaviour of the first term in ψ for small values of z. Moreover, the remaining term
ψ1 in (18) involves two functions of the form K1(z)/z which, separately, are hypersingular.
However, these hypersingularities are only apparent because, by properly manipulating the
expressions therein, the hypersingularities cancel each other out and the overall sum has only
a log-singularity. Indeed, by using the series expansion of the Bessel function K1(z) (see [1]
formula (9.6.11))

K1(z) =
1

z
+log

(z
2

) z
2

+
z

2

{
log
(z

2

) ∞∑
k=1

(z2/4)k

k!(k + 1)!
− 1

2

∞∑
k=0

[Ψ(k + 1) + Ψ(k + 2)]
(z2/4)k

k!(k + 1)!

}

with Ψ(k) = −γ +
k−1∑
n=1

1

n
defined by (6.3.2) in [1], easy calculations yield

ψ1(r, s) =
1

2

[
log

(
rs

2vS

)
−
(
vS
vP

)2

log

(
rs

2vP

)]
+

1

2

[
R

(
rs

vS

)
−
(
vS
vP

)2

R

(
rs

vP

)]
(20)

where

R(z) = −1

2
[Ψ(1) + Ψ(2)] +

∞∑
k=1

{
log
(z

2

)
− 1

2
[Ψ(k + 1) + Ψ(k + 2)]

}
(z2/4)k

k!(k + 1)!
. (21)

Therefore, by taking into account (19), (20) and (21), we can state that the overall behaviour
of the function ψ in (18) is of log-type.

For what concerns the expression of χ in (9), we remark that K2(z) is hypersingular at
z = 0. However, by using the relation K2(z) = K0(z) + 2K1(z)/z, we can rewrite χ as
follows:

χ(r, s) = K0

(
rs

vS

)
−
(
vS
vP

)2

K0

(
rs

vP

)
+ 2ψ1(r, s), (22)

where some log-singularities formally appear. However these cancel each other out after
inserting in (22) the series expansions (19) and (20). Indeed we obtain:

χ(r, s) = γ

[(
vS
vP

)2

− 1

]
+R

(
rs

vS

)
−
(
vS
vP

)2

R

(
rs

vP

)
+R1

(
rs

vS

)
−
(
vS
vP

)2

R1

(
rs

vP

)
, (23)

where

R1(z) =
∞∑
k=1

{
−
[
log
(z

2

)
+ γ
]

+ ak

} (z2/4)k

(k!)2
. (24)
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Therefore, we can conclude that actually the function χ tends to zero as z → 0.

For what concerns the computation of the entries of the matrices Tn
i`, by taking into

account (10) and (11), we can rewrite (6) as follows:

T̂ ∗i`(r, s) =
1

2π

{[(
∂ψ

∂r
(r, s)− χ(r, s)

r

)
δi` +

(
4
χ(r, s)

r
− 2

∂χ

∂r
(r, s)

)
r,ir,`

]
∂r

∂n

+

[
∂ψ

∂r
(r, s)− χ(r, s)

r

]
r,`ni

+

[(
v2
P

v2
S

− 2

)(
∂ψ

∂r
(r, s)− ∂χ

∂r
(r, s)− χ(r, s)

r

)
− 2

χ(r, s)

r

]
r,in`

}
=(T1)i`(r, s) + (T2)i`(r, s)

(25)

where

(T1)i`(r, s) :=
1

2π

{
−
[
2χ(r, s) +

rs

vS
K1

(
rs

vS

)]
δi`

+

[
8χ(r, s) + 2

rs

vS
K1

(
rs

vS

)
− 2

(
vS
vP

)2
rs

vP
K1

(
rs

vP

)]
r,ir,`

}
1

r

∂r

∂n

(26)

and

(T2)i`(r, s) :=− 1

2π

{[
2χ(r, s) +

rs

vS
K1

(
rs

vS

)]
r,`ni

+

[
2χ(r, s) +

rs

vP
K1

(
rs

vP

)
− 2

(
vS
vP

)2
rs

vP
K1

(
rs

vP

)]
r,in`

}
1

r
.

(27)

Noting that ∂r/∂n ∼ r for r → 0, and recalling the previous statements, the term
(T1)i` turns out to be integrable in the classic sense. On the contrary, the term (T2)i` has
a singularity of the type r−1 as r → 0; thus the corresponding integral has to be defined in
the Cauchy principal value sense and properly treated.

Because of the above remarks, to compute the matrix entries (Un
i`)m,k and (Tn

i`)m,k we
proceed as follows. When rm is smaller than a prescribed tolerance εm, to efficiently compute
the integrals having the kernels Û∗i` and T̂ ∗i`, we have first to take into account the behaviours
of the kernel single components given in (8)–(11) and, using the series expansions of the
latter, cancel their apparent higher order singularities. After this analytic cancelation, the
remaining singularities are of the type log rm for Û∗i` and r−1

m for T̂ ∗i`.

To compute the integrals having the log term, we apply the very simple and efficient
polynomial smoothing technique proposed in [18] and [19], coupled with a ν-point Gauss-
Legendre quadrature rule. The series in (21) and (24) are truncated to k = N0, for a suitable
N0. In the simpler case where rm is larger than the prescribed tolerance εm, to compute the

8



integrals in (15) we directly apply to them the above chosen ν-point Gauss-Legendre rule;
the evaluation of their kernel functions are performed using directly expressions (8)–(11).

For what concerns the integrals in (16), by taking into account the behaviour of T̂ ∗i`
given by (25)–(27), the integrals containing the regular terms (T1)i`, and (T2)i` for k 6= m,
are computed by the ν-point Gauss-Legendre rule. On the contrary, for the evaluation of
the matrix elements defined by (16) with k = m, and in particular those having the kernel
singular component T2 (see (27)), we proceed as follows. First we split the integration interval
in two parts∫ 1

0

− (T2)i` (rm, s)Nm(ϑ) ‖η′(ϑ)‖dϑ =

(∫ ϑm

ϑm−1

= +

∫ ϑm+1

ϑm

=

)
fi` (ϑ)

rm
dϑ, rm = ‖η(ϑm)− η(ϑ)‖

where fi`(ϑ) = (T2)i` (rm, s)Nm(ϑ) ‖η′(ϑ)‖rm denotes the smooth part of the integrand func-
tion; then, following [17], we compute the hypersingular integrals as follows:∫ ϑm

ϑm−1

fi` (ϑ) (ϑm − ϑ)/rm − f−i`
ϑm − ϑ

dϑ + f−i` log(ϑm − ϑm−1),

(28)∫ ϑm+1

ϑm

fi` (ϑ) (ϑ− ϑm)/rm − f+
i`

ϑ− ϑm
dϑ + f+

i` log(ϑm+1 − ϑm),

with f±i` = ± limϑ→ϑ±m fi` (ϑ) (ϑ−ϑm)/rm. Finally, the regular integrals in (28) are computed
by using the same ν-point Gauss-Legendre rule already used for the preceding integrals.

Further details on the choice of the number of quadrature points ν and on the parameters
εm and N0 are given in Section 4.

3. A novel approach

It is well-known (see [5]) that under the assumptions we have previously made on the
domain boundary Γ and on the problem data, by taking first the divergence and then the
curl of the elastodynamic equation in R3, we can always replace the unknown displacement
by two unknown potentials, the first scalar and the second vectorial, ϕP and ϕS, solutions
of the following two wave equations:

∂2ϕP
∂t2

(x, t)− v2
P∇2ϕP (x, t) =

1

ρ
fP (x, t)

∂2ϕS
∂t2

(x, t)− v2
S∇2ϕS(x, t) =

1

ρ
fS(x, t),

(29)

where f = ∇fP + curl fS and u = ∇ϕP + curl ϕS =: uP + uS. The unknowns ϕP and
ϕS are called Primary (or longitudinal) and Secondary (or transverse) waves, since, being

9



always vP > vS, the first travel faster. The vector fields uP ,uS denote the corresponding
displacement components.

This is the well-known Helmholtz decomposition of a vector field, which is used in many
applications of Physics. Formulation (29) is of particular interest, for example, when the
problem source is a P -wave or a S-wave, and the knowledge of the propagation of the P - and
S-waves generated by this source is required. However, this approach requires corresponding
boundary conditions for system (29), which must couple the two wave equations. This is the
major issue for the application of this alternative approach. For example, when the interior
domain Ωi is a cavity, a null traction must be imposed on Γ. But this means to use the
representation of the traction in terms of ϕP and ϕS, which involves the evaluation of all
second order partial derivatives of the latter two functions, a computation that turns out to
be costly.

In the 2D case mentioned in the first paragraph of the introduction, after defining the
new operators

curl w =

(
∂x2w
−∂x1w

)
, curlu = ∂x1u2 − ∂x2u1,

the following alternative expression of (1) is obtained (see [3]):


ρ
∂2u

∂t2
(x, t)− (λ+ 2µ)∇(divu)(x, t) + µ curl (curlu)(x, t) = f(x, t), (x, t) ∈ Ωe × (0, T )

u(x, t) = g(x, t) (x, t) ∈ Γ× (0, T )

u(x, 0) = u0(x) x ∈ Ωe

ut(x, 0) = v0(x) x ∈ Ωe.

(30)

Note that this new problem representation is the 2D analogue of the corresponding 3D
one we are considering in this paper.

In the same paper [3], by proceeding as in the 3D case, and taking into account the
identities

−∇2u = −div (∇u) = curl (curlu), div (curlu) = 0, curl (∇u) = 0, (31)

the following decoupled equations have then been obtained:
∂2ϕP
∂t2

(x, t)− v2
P∇2ϕP (x, t) =

1

ρ
fP (x, t)

∂2ϕS
∂t2

(x, t)− v2
S∇2ϕS(x, t) =

1

ρ
fS(x, t)

(32)

10



where now also ϕS is a scalar function and f = ∇fP + curl fS.

The two equations in (32) are however coupled on the boundary Γ by the problem Dirich-
let condition. This takes the new form

∇ϕP + curlϕS = g on Γ. (33)

With reference to the domain Ωi, we introduce along Γ, anti-clockwise oriented, the ingoing
unit normal vector n = (n1, n2)T and the corresponding unit tangent vector τ = (n2,−n1)T ,
so that the identities

∂φ

∂n
= ∇φ · n, ∂φ

∂τ
= ∇φ · τ

hold on Γ for any smooth enough scalar function φ.

Following [3], by applying the scalar products, first by n and then by τ , to both sides of
(33), hence using the following identities:

curlφ · n = −∂φ
∂τ

, curlφ · τ =
∂φ

∂n
on Γ,

the relations
∂ϕP
∂n
− ∂ϕS

∂τ
= g · n, ∂ϕS

∂n
+
∂ϕP
∂τ

= g · τ on Γ (34)

are obtained.

Finally, after setting

ϕP,0(x) := ϕP (x, 0), ϕS,0(x) := ϕS(x, 0)
ϕ̄P,0(x) := ∂tϕP (x, 0), ϕ̄S,0(x) := ∂tϕS(x, 0)

(35)

and decomposing the initial data u0, v0 and the Dirichlet datum as follows

u0(x) = ∇ϕP,0(x) + curlϕS,0(x)
v0(x) = ∇ϕ̄P,0(x) + curl ϕ̄S,0(x)

(36)

g(x, t) = ∇gP (x, t) + curl gS(x, t), (37)

we obtain that the elastodynamics problem (1) is formally equivalent (see [3]) to the following

11



potentials problem:

∂2ϕP
∂t2

− v2
P∇2ϕP =

1

ρ
fP (x, t) ∈ Ωe × (0, T ) (38a)

∂2ϕS
∂t2

− v2
S∇2ϕS =

1

ρ
fS (x, t) ∈ Ωe × (0, T ) (38b)

∂ϕP
∂n

=
∂ϕS
∂τ

+ g · n=:
∂ϕS
∂τ

+ gn (x, t) ∈ Γ× (0, T ) (38c)

∂ϕS
∂n

= −∂ϕP
∂τ

+ g · τ=: −∂ϕP
∂τ

+ gτ (x, t) ∈ Γ× (0, T ) (38d)

ϕP (x, 0) = ϕP,0(x) x ∈ Ωe (38e)

ϕS(x, 0) = ϕS,0(x) x ∈ Ωe (38f)

∂ϕP
∂t

(x, 0) = ϕ̄P,0(x) x ∈ Ωe (38g)

∂ϕS
∂t

(x, 0) = ϕ̄S,0(x) x ∈ Ωe. (38h)

Note that, if we consider the Helmholtz decomposition (37) of the datum g, the functions
gn and gτ are given by

gn(x, t) =
∂gP
∂n

(x, t)− ∂gS
∂τ

(x, t)

gτ (x, t) =
∂gP
∂τ

(x, t) +
∂gS
∂n

(x, t).

For this new problem formulation we require its unknown functions ϕP and ϕS to be
at least C2-continuous with respect to their two variables. Note that this implies that the
unknown displacement u is only required to be C1-continuous with respect to x.

The novel approach we propose to solve elastodynamic problems of form (1) is based on
the TDBIE formulation of the above system (38a)-(38h). To this end, we start by recalling
the expression of the fundamental solution of the 2D scalar wave equation, related to the
propagation of a planar wave travelling with speed c:

∂2ϕ

∂t2
(x, t)− c2∇2ϕ(x, t) = f̃(x, t). (39)

It is well known that the fundamental solution of (39) is given by

G̃(x, t) =
1

2πc2

H

(
t− ‖x‖

c

)
√
t2 − ‖x‖

2

c2

, (40)

and satisfies the equation

∂2G̃

∂t2
(x, t)− c2∇2G̃(x, t) = δ(x)δ(t).

12



Proceeding as in [7] and setting G(x, t) := c2G̃(x, t), the following TDBIE for the exterior
problem associated to (39) with initial condition ϕ(·, 0) = ϕ0(·) and initial velocity ϕt(·, 0) =
ϕ0(·) can be derived:∫ t

0

∫
Γ

G(x− y, t− s)∂nϕ(y, s) dΓyds −
∫ t

0

∫
Γ

∂nG(x− y, t− s)ϕ(y, s) dΓyds

+
1

c2

∂

∂t

∫
Ωe
G(x− y, t)ϕ0(y, t)dy +

1

c2

∫
Ωe
G(x− y, t)ϕ0(y, t)dy

+
1

c2

∫ t

0

∫
Ωe
G(x− y, t− s)f̃(y, s)dyds =

ϕ(x, t) x ∈ Ωe (41a)
1

2
ϕ(x, t) x ∈ Γ. (41b)

Therefore, by applying this latter TDBIE representation to both equations (38a) and (38b),
and by considering the coupling relations on the boundary Γ (38c) and (38d), we can anal-
ogously reformulate (38a)–(38h) as follows:

1

2
ϕP (x, t) + (KPϕP )(x, t)− (VP (∂τϕS))(x, t)

= (VP gn)(x, t) + IϕP,0(x, t) + Iϕ̄P,0(x, t) + IfP (x, t), x ∈ Γ

1

2
ϕS(x, t) + (KSϕS)(x, t) + (VS(∂τϕP ))(x, t)

= (VS gτ )(x, t) + IϕS,0(x, t) + Iϕ̄S,0(x, t) + IfS(x, t), x ∈ Γ

(42)

where

(V?ψ)(x, t) :=

∫ t

0

∫
Γ

G?(x− y, t− s)ψ(y, s) dΓyds

(K?λ)(x, t) :=

∫ t

0

∫
Γ

Gn,?(x− y, t− s)λ(y, s) dΓyds

(43)

are the well known single and double layer operators associated to the scalar wave equation,
having set ? := P, S and Gn,? := ∂nG?. Moreover

Iϕ?,0(x, t) :=
1

v2
?

∂

∂t

∫
Ωe
G?(x− y, t)ϕ?,0(y, t)dy

Iϕ̄?,0(x, t) :=
1

v2
?

∫
Ωe
G?(x− y, t)ϕ̄?,0(y, t)dy

If?(x, t) :=
1

ρv2
?

∫ t

0

∫
Ωe
G?(x− y, t− s)f?(y, s)dyds.

(44)

are the volume integrals (38e)-(38h) due to the initial data and the body force. In (43)

and (44), the fundamental solutions are GP (x, t) := v2
P G̃P (x, t) and GS(x, t) := v2

SG̃S(x, t),

where G̃P and G̃S are given by (40), with c replaced by the velocities vP and vS of the P -
and S-waves, respectively.

Therefore the potentials problem (38a)-(38h), reformulated in terms of TDBIEs, consists
in finding the two scalar functions

ϕP : Γ× [0, T ]→ R and ϕS : Γ× [0, T ]→ R

13



which satisfy the TDBIE system (42). Note that all the data of this new formulation are
one order smoother than the corresponding ones in (1).

Remark 3.1. Once the functions ϕP and ϕS are known on Γ, the solution u = (u1, u2)
of Problem (1) in Ωe is retrieved from the expression u = ∇ϕP + curlϕS. Indeed, by
differentiating (41a) with respect to xi, for i = 1, 2, we obtain

u1(x, t) = ∂x1ϕP (x, t) + ∂x2ϕS(x, t)

u2(x, t) = ∂x2ϕP (x, t)− ∂x1ϕS(x, t),
(45)

where

∂xiϕP (x, t) =−
∫ t

0

∫
Γ

∂xiGn,P (x− y, t− s)ϕP (y, s) dΓyds

+

∫ t

0

∫
Γ

∂xiGP (x− y, t− s)∂τϕS(y, s) dΓyds

+ ∂xi

[
(VP gn)(x, t) + IϕP,0(x, t) + Iϕ̄P,0(x, t) + IfP (x, t)

] (46)

and

∂xiϕS(x, t) =−
∫ t

0

∫
Γ

∂xiGn,S(x− y, t− s)ϕS(y, s) dΓyds

−
∫ t

0

∫
Γ

∂xiGS(x− y, t− s)∂τϕP (y, s) dΓyds

+ ∂xi

[
(VS gτ )(x, t) + IϕS,0(x, t) + Iϕ̄S,0(x, t) + IfS(x, t)

]
.

(47)

We note, however, that according to Remark 3.2 below, the behaviour of the kernels
∂xiGn,?(r, t−s) as r → 0 is O(r−2), while that of the remaining two kernels is O(r−1). Thus,
when x is very close to the boundary Γ, also these four kernels have quasi-singularities that
need to be properly treated.

3.1. The numerical resolution of the new TDBIE system

Following [7], for the numerical solution of system (42), we propose a numerical approach
which combines the time integral discretization by using a Lubich second-order time convo-
lution quadrature (see [13]) with a (continuous) piecewise linear space collocation method.
In the following, this method will be identified with the adjective “new” or “novel”, while
that of Section 2 will be called “standard”.

3.1.1. Time discretization

We start by introducing the time integral discretization by means of the chosen Lubich
convolution quadrature. To this end, we first split the interval [0, T ] into N steps of equal
length ∆t = T/N and collocate equations (42) at the times tn = n∆t, n = 0, . . . , N . After
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having exchanged the order of integration, the time integrals appearing in the definition of the
operators V? and K? in (43) are discretized by means of the Lubich convolution quadrature
formula (A1) associated with the BDF2 method:

(V?ψ)(x, tn) ≈
n∑
j=0

∫
Γ

ωn−j (∆t;G?(r))ψ
j(y) dΓy

(K?λ)(x, tn) ≈
n∑
j=0

∫
Γ

ωn−j (∆t;Gn,?(r))λ
j(y) dΓy

(48)

for n = 0, . . . , N , where we have set ψj(y) := ψ(y, tj) and lj(y) := l(y, tj).

In (48) the coefficients ωn(∆t; J?(r)), J? = G?, Gn,? denote the quadrature weights asso-
ciated to the convolution kernels J?, which are approximated by formula (A3).

The Laplace transforms Ĵ?, involved in (A3), can be computed by using some well known
properties of the modified Bessel functions (see formulas 8.486(11,16,17) in [10]). In partic-
ular, we have that

Ĝ? (r, s) =
1

2π
K0

(
rs

v?

)
, (49)

Ĝn,? (r, s) = − s

2π
K1

(
rs

v?

)
∂r

∂n
, (50)

where K0(z) and K1(z) are the second kind modified Bessel function of order 0 and 1,
respectively.

For the computation of the solution u of Problem (1), according to Remark 3.1, we also
need the Laplace transforms of the derivatives of G? and Gn,? with respect to the variables
xi, i = 1, 2. These are given by (see [10] and [8])

∂̂G?

∂xi
(r, s) = − s

2π
K1

(
rs

v?

)
∂r

∂xi
(51)

∂̂2G?

∂xi∂n
(r, s) =

s2

2πv2
?

[(
K0

(
rs

v?

)
+
v?
rs
K1

(
rs

v?

))
∂r

∂xi

∂r

∂n
− v?

s
K1

(
rs

v?

)
∂2r

∂xi∂n

]
. (52)

Remark 3.2. Taking into account the behaviours of K0(z) and K1(z), as z → 0 (see [1]),
straightforward calculation shows that the above two kernels have a singularity at r = 0 of
the type r−1 the first, and of the type r−2 the second.
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To summarize, the temporal discretization of the TDBIE system is obtained by inserting
in (42) the Lubich convolution quadrature formulas (48):

1

2
ϕnP (x) +

n∑
j=0

∫
Γ

ωn−j (∆t;Gn,P (r))ϕjP (y)dΓy −
n∑
j=0

∫
Γ

ωn−j (∆t;GP (r)) ∂τϕ
j
S(y)dΓy

=
n∑
j=0

∫
Γ

ωn−j (∆t;GP (r)) gjn(y)dΓy + IϕP,0(x, tn) + Iϕ̄P,0(x, tn) + IfP (x, tn)

1

2
ϕnS(x) +

n∑
j=0

∫
Γ

ωn−j (∆t;Gn,S(r))ϕjS(y)dΓy +
n∑
j=0

∫
Γ

ωn−j (∆t;GS(r)) ∂τϕ
j
P (y)dΓy

=
n∑
j=0

∫
Γ

ωn−j (∆t;GS(r)) gjτ (y)dΓy + IϕS,0(x, tn) + Iϕ̄S,0(x, tn) + IfS(x, tn),

(53)
for all n = 0, . . . , N .

In what follows, after having introduced the parametric representation (12) of Γ, for the
computation of the derivatives ∂τϕ

j
?, it is convenient to consider the curvilinear abscissa γ

on Γ which, we recall, is defined by

γ = γ(ϑ) =

∫ ϑ

0

‖η′(s)‖ ds, ϑ ∈ [0, 1]. (54)

Since for any smooth enough scalar function φ it holds ∂τφ(y) = ∂γφ(η(ϑ)), we will compute
the derivatives ∂γϕ

j
?(η(ϑ)) in place of ∂τϕ

j
?(y).

3.1.2. Space discretization

Let Γ be described by (12). We approximate the unknowns ϕj?(x) and ∂γϕ
j
?(x) for x ∈ Γ

by

ϕj?(η(ϑ)) ≈
M+1∑
k=1

ϕj?,kNk(ϑ), ∂γϕ
j
?(η(ϑ)) ≈

M+1∑
k=1

ϕj?,k∂γNk(ϑ) (55)

where, we recall, Nk’s are the standard continuous piecewise linear basis functions associated
with the partition {ϑk}M+1

k=1 of the parametrization interval [0, 1].

Remark 3.3. If Γ is a circumference of radius R, as in our numerical tests, we have

x = η(ϑ) = R(cos 2πϑ, sin 2πϑ), ϑ ∈ [0, 1].

In this case γ = 2πRϑ and for the derivatives in (55) we have

∂γNk(ϑ) =
dNk(ϑ)

dϑ

dϑ

dγ
=


1/(2πR), if ϑ ∈ [ϑk−1, ϑk], k > 1

−1/(2πR), if ϑ ∈ [ϑk, ϑk+1], k < M

0, otherwise.
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Remark 3.4. In the case where a global parametric representation of Γ is not given, a local
one can be considered. To this aim, introducing a set of points {xk}M+1

k=1 on Γ, we can define

a local parametric representation of the arc
_

Γk ⊂ Γ, joining the two mesh points xk, xk+1,
by

x = ηk(ϑ) = (η1,k(ϑ), η2,k(ϑ)), ϑ ∈ [0, 1].

Then, we approximate the unknown functions by

ϕj?(x) ≈
M+1∑
k=1

ϕj?,kbk(x), (56)

where the bk’s are piecewise linear Lagrangian basis functions. In this case the curvilinear

abscissa γ in (54) on each arc
_

Γk has its own representation

γk(ϑ) =

∫ ϑ

0

‖η′k(s)‖ ds, ϑ ∈ [0, 1]. (57)

The corresponding derivative ∂γbk is then given by

∂γbk(x) =


dbk(ηk−1(ϑ))

dϑ

dϑ

dγk−1

, if x ∈
_

Γk−1

dbk(ηk(ϑ))

dϑ

dϑ

dγk
, if x ∈

_

Γk

0, otherwise.

(58)

It is worthy to note that, for the approach that approximates simultaneously the boundary
Γ and the unknowns ϕj? by polygonal functions defined on the same uniform mesh, we can
define

x = ηk(ϑ) = (1− ϑ)xk + ϑxk+1, ϑ ∈ [0, 1].

Since γk = Lkϑ, where Lk = ‖xk+1 − xk‖ and the basis functions bk are defined by

bk(x) =


bk(ηk−1(ϑ)) = ϑ, if x ∈

_

Γk−1

bk(ηk(ϑ)) = 1− ϑ, if x ∈
_

Γk

0, otherwise,

the derivatives in (58) take the very simple form:

∂γbk(x) =


1/Lk−1, if x ∈

_

Γk−1

−1/Lk, if x ∈
_

Γk

0, otherwise.

In order to apply a nodal collocation method, we approximate gjn and gjτ by the interpolant
piecewise linear function in terms of the basis functions Nk, we insert (55) into (53) and we
collocate the latter at the collocation points ϑm, m = 1, . . . ,M + 1.
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By using (A4) in (53), we introduce the matrix notation:

(Vn
? )m,k :=

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0

K0

(
rmz

v?

)
Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (59)

(Ṽ
n

? )m,k :=
1

2π

%−n

L

L−1∑
l=0

(∫ 1

0

K0

(
rmz

v?

)
∂τNk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (60)

(Kn
? )m,k := − 1

2π

%−n

L

L−1∑
l=0

(∫ 1

0

sK1

(
rmz

v?

)
∂r

∂n
Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ı̇nl2π
L (61)

where z := γ(%eıl2π/L)/∆t and rm = ‖η(ϑm)− η(ϑ)‖.

Finally, setting gjn := [gjn(η(ϑ1)), . . . , gjn(η(ϑM+1))]
T

and gjτ := [gjτ (η(ϑ1)), . . . , gjτ (η(ϑM+1))]
T

,
we get the following system

1

2
ϕnP +

n∑
j=0

Kn−j
P ϕjP −

n∑
j=0

Ṽ
n−j
P ϕjS =

n∑
j=0

Vn−j
P gjn + InϕP,0 + Inϕ̄P,0 + InfP =: dnP

1

2
ϕnS +

n∑
j=0

Kn−j
S ϕjS +

n∑
j=0

Ṽ
n−j
S ϕjP =

n∑
j=0

Vn−j
S gjτ + InϕS,0 + Inϕ̄S,0 + InfS =: dnS

(62)

in the unknowns ϕn? = (ϕn?,1, . . . , ϕ
n
?,M+1)T .

In matrix form the final linear system is1

2
I + K0

P −Ṽ
0

P

Ṽ
0

S

1

2
I + K0

S


ϕnP
ϕnS

 = −
n−1∑
j=0

Kn−j
P −Ṽ

n−j
P

Kn−j
S Ṽ

n−j
S


ϕjP
ϕjS

+

dnP

dnS

 . (63)

Note that when the boundary Γ is a circle and the chosen mesh points {xk} are equidistant,
all matrix blocks of the above system have the Toeplitz form. This means that only the first
row of each block needs to be determined and stored.

Finally, we remark that for the computation of the matrix entries (59)–(61), following
the numerical procedure described in [7] and [8], we have applied a ν-point Gauss-Legendre
quadrature formula, after introducing the polynomial smoothing transformation when the
kernel K0 displays the log behaviour. Details concerning the computation of these entries
and of the volume integrals defining the known terms dn? in (63) are postponed to the next
section.

In the next section we present some numerical test aiming at comparing the classical
TDBIE formulation for Problem (1), described in Section 2, with the new approach we have
described in Section 3.
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4. Numerical results

Since by a simple change of variables we can always normalize the obstacle dimension
and the S-wave propagation velocity, in the examples reported below the obstacle is a circle
of radius 1 and, in the first two examples, vS = 1, vP =

√
3. Furthermore, since the

elastodynamic equation (1) can be rewritten in the form

∂2u

∂t2
(x, t)− (v2

P − v2
S)∇(divu)(x, t)− v2

S∇2u(x, t) =
1

ρ
f(x, t)

in the first two examples we do not choose specific values of λ and µ. We also remark that
although the above mentioned change of variables modify the force f by introducing the
factor [R2v2

S]−1, where R denotes the original obstacle radius, for simplicity we assume that
this factor is included in the expression defining f .

Example 1. In this preliminary test we compare stability and convergence properties of the
two analyzed approaches. To this end, we consider Problem (1) defined on the exterior of the
unit disk centered at the origin of the axes, with homogeneous initial data and null source
f . The Dirichlet datum is g = (g1, g2), where

g1(x, t) = t3e−2te−(x21+2x22), g2(x, t) = t3e−2t cos(x1), x ∈ Γ, t ∈ [0, T ],

with T = 1. In Table 1 we report the maximum in time of the L2 errors

EL2,f = max
t∈[0,T ]

‖f ex(·, t)− f(·, t)‖L2(Γ) ≈ max
n=0,...,N

√√√√∆ϑ

M∑
k=1

(
f ex(η(ϑk), tn)− f(η(ϑk), tn)

)2

(64)
being f = ϕ?, ? = P, S for the new approach, and f = t`, ` = 1, 2 for the standard
one. In (64), f ex denotes the reference solutions obtained with M ex = N ex = 2048 for the
new approach, and M ex = N ex = 512 for the standard one. The discretization parameter
∆ϑ = 2π/M denotes the step size of the uniform partitioning of the parametrization interval
of the curve Γ into M subintervals. We remark that, being the obstacle a disk, for the new
approach we could take advantage of the Toeplitz structure of the involved matrices at each
time step and, consequently, we could perform an efficient matrix-vector product, without
storing the whole matrices. This property allowed us to consider the quite fine discretization
reference parameters M ex = N ex = 2048. On the contrary, in the standard elastodynamics
approach, the matrices do not have the special Toeplitz structure and, therefore, we had
to compute and store all their entries. For this reason the finer value of the discretization
reference parameters we could consider is M ex = N ex = 512, since M ex = N ex = 1024 gave
rise to an out of memory. Therefore, in the tables below, we denote by the symbol “×” the
errors that could not be computed.

As Table 1 shows, the approaches have a comparable order of accuracy and the cor-
responding EOC is quadratic, as expected. The numerical results corresponding to the
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standard approach have been obtained by using the tailored quadrature described in Section
2.1.3 by using a smoothing polynomial transformation of degree q = 3 (see [18] and [19]),
εm = 1.0e− 02 and N0 = 30. These choices can not be considered optimal, but revealed to
be effective for our purposes.

Table 1: Example 1. Maximum in time of the L2 absolute errors and corresponding EOC.

M = N EL2,ϕP
EOC EL2,ϕS

EOC EL2,t1
EOC EL2,t2

EOC

8 2.39e− 02 1.71e− 02 2.25e− 02 4.94e− 02
1.4 1.2 1.6 1.8

16 9.04e− 03 7.59e− 03 7.51e− 03 1.39e− 02
1.9 1.9 2.0 1.8

32 2.51e− 03 2.10e− 03 1.88e− 03 4.09e− 03
2.0 2.0 2.1 1.8

64 6.30e− 04 5.27e− 04 4.70e− 04 1.20e− 03
2.0 2.0 2.3 2.2

128 1.55e− 04 1.29e− 04 1.16e− 04 3.10e− 04
2.1 2.1 2.3 2.3

256 3.79e− 05 3.15e− 05 2.41e− 05 6.47e− 05
2.3 2.3 × ×

512 8.97e− 06 7.46e− 06 × ×
2.3 2.3 × ×

1024 1.79e− 06 1.49e− 06 × ×

In Table 2 we report the values of the approximations unew(P ) = (unew
1 (P ),unew

2 (P )) and
ustd(P ) = (ustd

1 (P ),ustd
2 (P )), given by the new and the standard approaches respectively, of

the solution u of the original problem at the external point P = (2, 0). We also report the
EOC of the corresponding errors.

Table 2: Example 1. Approximations unewand ustdat P=(2,0) and T = 1.

M = N unew
1 (P ,T) EOC unew

2 (P ,T) EOC ustd
1 (P ,T) EOC ustd

2 (P ,T) EOC
8 6.63586e− 03 −9.91880e− 04 7.60399e− 03 −6.04807e− 04

1.1 1.1 0.5 1.5
16 7.39561e− 03 −1.20263e− 03 7.75437e− 03 −1.10216e− 03

1.9 1.3 2.1 1.5
32 7.90670e− 03 −1.30820e− 03 8.01355e− 03 −1.28358e− 03

2.0 1.6 2.1 1.8
64 8.04662e− 03 −1.35790e− 03 8.07430e− 03 −1.35186e− 03

2.0 1.8 2.3 2.1
128 8.08192e− 03 −1.37534e− 03 8.08888e− 03 −1.37384e− 03

2.1 1.9 2.3 2.1
256 8.09070e− 03 −1.38073e− 03 8.09244e− 03 −1.38036e− 03

2.3 2.2 × ×
512 8.09288e− 03 −1.38227e− 03 × ×

2.3 2.2 × ×
1024 8.09343e− 03 −1.38270e− 03 × ×

In Figures 1 and 2 we show the time-space (with respect to the parametrization interval)
behaviours of the density functions ϕP , ϕS obtained with the new approach, and the corre-
sponding ones of t1 and t2 given by the standard approach. In Figure 3 we show the good
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agreement of the solutions unew
i (P, t) with ustd

i (P, t), i = 1, 2, at the exterior point P = (2, 0)
and by varying t ∈ [0, T ].

Figure 1: Example 1. Behaviour of the density functions ϕP and ϕS for T = 1.

Figure 2: Example 1. Behaviour of the density functions t1 and t2 for T = 1.
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Figure 3: Example 1. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 1].

In Figures 4 and 5 we show the space-time behaviour of the density functions ϕP , ϕS of
the new approach and t1 and t2 of the standard one, for T = 10. In Figure 6 we can see
that the solutions unew

i (P, t) and ustd
i (P, t), i = 1, 2 given by the two approaches match also

for long times.

Figure 4: Example 1. Behaviour of the density functions ϕP and ϕS for T = 10.

As already pointed out in [12] for an interior problem, and in [16] for an exterior one, to
avoid the instability of the approach of Section 2, the chosen stepsizes ∆t and ∆x must satisfy
a lower bound for the Courant-Friedrichs-Lewy (CFL) number, that in our case (vp =

√
3)

has been numerically estimated to be:

β =
vp∆t

∆x

> 0.17.

Note that this is satisfied for the choice M = N we have made above and in the following
examples. This is not the case, for examples, when M = 48 and N = 128 (β = 0.1034).

22



Figure 5: Example 1. Behaviour of the density functions t1 and t2 for T = 10.

Figure 6: Example 1. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 10].

However, while for the standard approach instability soon appears, as shown in Figure 7,
this is not the case for the novel approach. Actually, applying for example the method with
M = 48 and N increasing up to 2048 (β = 6.461E − 03) we have obtained the same graphs
reported above. The same has happened when we took further values of M and N violating
the CFL inequality. Thus, the novel approach does not seem to have instability problems.
This issue needs to be further investigated.

Since the two method behaviours described above are also confirmed by the testing we
have performed in the following two examples, in these latter, to compare the two methods
when they both are stable (and convergent), we have taken M = N (β = 0.2757).
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Figure 7: Example 1. Behaviour of the density functions t1 (left plot), t2 (middle plot) and of the
solution u at P=(2,0) (right plot) for T = 1, M = 48 and N = 128.

Example 2. We consider an elastic wave generated by a horizontally propagating incident
wave

g(x, t) = (g(x1 − x1,0 + vP t), 0)T , (65)

impinging on an obstacle represented by the unit disk centered in (0, 0). We consider g(t) =
e−20(t−t0)2 , with t0 = 0.475, x1,0 = 2 and the final time T = 4. The total field consists of
the superposition of an incident and a scattered field u(x, t) = uinc(x, t) + uscatt(x, t), being
uinc(x, t) = −g(x, t) for x ∈ Ωe and uscatt the solution of Problem (1) with null u0 and v0

and Dirichlet datum g on Γ.

In Figure 8 we show the snapshots of the solution, obtained by the new numerical ap-
proach at the time instants t = 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3. The discretization
parameters used to compute the approximate solution are M = N = 128. In the first and
third column we represent the first component u1 of the total field u, in the second and
fourth column the second one u2. As expected, this latter appears once the solution u1,
generated by the datum g, bumps against the obstacle and is reflected back.

We remark that, for what concerns the standard approach, the reconstruction of the total
external field revealed to be too expensive. For this reason we have compared the solutions
unew(P, t) and ustd(P, t) at some exterior points, observing a good agreement of the two
approaches. As an example, in Figure 9 we show their behaviour at P = (2, 0) by varying
t ∈ [0, 4].
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Figure 8: Example 2. Snapshots of the solution unew(P, t) at different instants.
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Figure 9: Example 2. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 4].

In the last example we aim at simulating the seismic response of a linear elastic medium
including a buried unlined tunnel to a wave generated by a source term f . The contribution
of this source is given by the corresponding volume integral in (3) for the standard approach,
and by that in (44) for the novel one.

Example 3. The 2D tunnel section is the circle of radius 1m centered at (0, 0). We consider
Problem (1) with the following physical material parameters: λ = 5.6654e + 08N/m2, µ =
1.4e+09N/m2, ρ = 1580 kg/m3, hence vP = 1459.7m/s, vS = 941.32m/s, which correspond
to the clay elastic moduli (see Table at https://pangea. stanford.edu/courses/gp262/Notes-
/5.Elasticity.pdf).

By properly rescaling the velocities in such a way that vS = 1m/s (vP = 1.5507), we
observe the propagation in the temporal interval [0, T ], with T = 20 s. The expression of
the source is f = ∇fP + curl fS, with fP = 0 and

fS = 1010t3e−te−50[(x1−x1,0)2+(x2−x2,0)2], (66)

centered at x0 = (x1,0, x2,0) = (3, 0). We remark that, since fS decays exponentially fast
away from its center x0, it can be regarded as compactly supported from the computational
point of view. Therefore, in the standard approach, the expression of the source volume
integrals (3) takes the form:

Ifi(x, t) =
2∑
`=1

∫ t

0

∫
supp(f`)

U∗i`(x− y, t− s)f`(y, s)dyds

with
f = (f1, f2) = −1012t3e−te−50[(x1−x1,0)2+(x2−x2,0)2](x2 − x2,0,−(x1 − x1,0))T .

For the new approach, the corresponding volume integrals (see (44)) are IfP = 0 and

IfS(x, t) =
1

ρv2
S

∫ t

0

∫
supp(fS)

GS(x− y, t− s)fS(y, s)dyds.
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For the numerical computation of such integrals we have considered supp(f`) = supp(fS) =
{x ∈ R2 : ‖x− x0‖ ≤ 1}, since at the boundary of such support fS assumes values of order
1.0e − 22 and f` values of order 1.0e − 20. Then we have applied the 8 × 8-point Gauss-
Legendre quadrature rule in space and a BDF2 Lubich convolution quadrature in time,
based on the decomposition of the time interval [0, T ] into N subintervals. In Figures

Figure 10: Example 3. Behaviour of the density functions ϕP and ϕS for the local source (66),
t ∈ [0, 20].

Figure 11: Example 3. Behaviour of the density functions t1 and t2 for the local source (66),
t ∈ [0, 20].

10 and 11 we show the density functions of the two approaches. We remark that, for the
standard method, the accurate computation of the integrals defining the matrix entries by
the smoothing transformation and the series expansion of the Bessel functions, revealed to
be crucial to obtain a reliable solution. Indeed, without these computational shrewdness,
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Figure 12: Example 3. Behaviour of the density functions t1 and t2 for the local source (66),
t ∈ [0, 20] with spurious oscillations given by a non accurate computation of the integrals.

spurious oscillations appear in the traction components t1 and t2, as Figure 12 shows. We
remark that these oscillations do not disappear by simply increasing the number of the
quadrature nodes, rather they get worse because the aforesaid apparent singularities do not
cancel out numerically. In Figure 13 we show the good agreement of the solutions unew

i (P, t)
with ustd

i (P, t), i = 1, 2, at the exterior point P = 1.5(cos(π/4), sin(π/4)) and by varying
t ∈ [0, 20]. Finally, as last test, in the same setting of the previous case, we consider a wave

Figure 13: Example 3. Behaviour of the solutions unew(P, t) and ustd(P, t) for the local source (66),
t ∈ [0, 20], P = 1.5(cos(π/4), sin(π/4)).

generated by a point source, f = ∇fP + curl fS, with fS = 0 and

fP = h(t)δ(x− x0), h(t) = 1010t3e−2t sin(4t), x0 = (10, 0). (67)

For this choice, it is possible to apply only the new approach. In this case, the source volume

28



integrals given by (44) become IfS = 0 and

IfP (x, t) =
1

ρv2
P

∫ t

0

GP (x− x0, t− s)fP (x0, s)ds.

This latter has been efficiently computed by the Lubich quadrature rule, with the same
number N of time steps used in the numerical approach of the associated TDBIE. In Figure
14 we show the 3D behaviour of the density functions ϕP and ϕS obtained by the space and
time discretization parameters M = N = 2048. Finally, in Figure 15 we show the solution

Figure 14: Example 3. Behaviour of the density functions ϕP and ϕS for the pointwise source (67),
t ∈ [0, 20].

unew
i (P, t) with unew(P, t), at the exterior point P = 1.5(cos(π/4), sin(π/4)) and by varying
t ∈ [0, 20].

Figure 15: Example 3. Behaviour of the solution unew(P, t) for the pointwise source (67), t ∈ [0, 20],
P = 1.5(cos(π/4), sin(π/4)).
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5. Conclusions

As we have remarked in Section 3, the major open issue for the application of our novel
approach is the determination of the (coupling) boundary conditions of the new problem
formulation. The Dirichlet case has been easily solved. Furthermore, in a recent study (see
[15]) the authors have derived and examined the Helmholtz decomposition of the elasto-
dynamic problem when the null traction is imposed on the boundary Γ. However, further
investigations are needed to make the new approach efficient in the latter case.

Nevertheless, at least for the Dirichlet case we have examined in this paper, the novel ap-
proach has several important advantages. A major computational one is due to the simplicity
of the Laplace transformed kernels (49),(50) with respect to those of the standard approach
(51),(52). Note that the efficient evaluation of the latter two kernels also requires the special
procedure described in Section 2.1.3. Thus, the evaluation of all matrices required by the
Lubich-collocation method is much faster in the novel approach. A final advantage, that
allows to speed up significantly the computation and to save memory space, is the Toeplitz
structure of all matrices when the boundary Γ is a circle, uniformly partitioned; a case of
interest when a BEM-FEM strategy is applied (see the first sentence following (63) and [6]).

Another major advantage of the novel approach is the apparent absence of a CFL condi-
tion. This does not hold for the standard approach, as the numerical test reported in Section
4, end of Example 1, has shown. Finally, the novel approach is of particular interest when
the problem source is a P -wave or a S-wave, and the knowledge of the propagation of the
waves generated by this source is required.
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Appendix

The BDF2-based Lubich quadrature formula

The convolution quadrature method proposed by Lubich [13] for the efficient computation
of the convolution integral ∫ t

0

k(t− s)ϕ(s)ds, t ∈ [0, T ]

is based on a uniform partitioning of the interval [0, T ] into N steps of equal length ∆t = T/N
and on the following formula∫ tn

0

k(tn − s)ϕ(s)ds ≈
n∑
j=0

ωn−j(∆t;K)ϕ(tj), tn = n∆t, n = 0, . . . , N (A1)
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where, for each j = 0, . . . , N ,

ωj(∆t;K) =
1

2πı

∫
|z|=%

K

(
γ(z)

∆t

)
z−(j+1)dz, (A2)

K being the Laplace transform of the convolution kernel k. In (A2) the function γ(z) =
3/2− 2z + 1/2z2 is the characteristic quotient of the BDF method of order 2 and % is such
that for |z| ≤ % the corresponding γ(z) lies in the domain of analyticity of K.

By introducing the polar coordinate z = %eıϑ we have the following integral representation
for the coefficients of formula (A2):

ωj(∆t;K) =
%−j

2π

∫ 2π

0

K

(
γ(%eıϑ)

∆t

)
e−ıjϕdϑ. (A3)

This integral can be efficiently computed by using the trapezoidal rule, that is,

ωj(∆t;K) ≈ %−j

L

L−1∑
l=0

K

(
γ(%eıl

2π
L )

∆t

)
e−ıjl

2π
L , j = 0, . . . , N (A4)

where the interval [0, 2π] has been partitioned into L subintervals of equal length. All the
ωj(∆t;K) can be computed simultaneously by the FFT with O(N logN) flops. Assuming
that K is computed with a relative accuracy bounded by ε, Lubich has shown that the choice
L = 2N and %N =

√
ε leads to an approximation of ωj with relative error of size

√
ε.
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