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Abstract 

A new algorithm is introduced to decompose interference surface electromyogram (EMG) 

recorded by a multi-channel system aligned to muscle fibers into propagating and non-

propagating contributions. Muscle fiber conduction velocity (CV) is also estimated, reducing 

the bias induced by non-propagating components. The algorithm is fast and stable, as it is based 5 

on alignment and averaging procedures. Simulated signals (with different fat thickness, SNR, 

number of channels, epoch duration and force level) are used to test the algorithm. The median 

cross-correlation of simulated and estimated components were about 98% and 90%, for 

propagating and non-propagating terms, respectively. CV was estimated better than using a 

multi-channel maximum likelihood approach applied to double differential data (mean error of 10 

0.08 versus 0.13 m/s), with a greater gain in case of thinner fat layer, low SNR and few channels. 

Example applications to experimental data are also shown (single motor units action potential, 

M-wave and interference EMG).  

Propagating components reflect the travelling of action potentials along muscle fibers. 

Preliminary tests show that non-propagating contributions provide selective information on 15 

motor units firing statistics. The separation of interference EMG into propagating and non-

propagating components opens new perspectives, e.g., in the study of synergies, common drive 

and myoelectric manifestations of fatigue.  

 

Abbreviations 20 

CV  muscle fiber conduction velocity 

DD  double differential filter 

EMG  electromyogram 

FD  fractal dimension 

IED   inter-electrode distance 25 

IZ  innervation zone 

MU  motor unit 

MUAP  motor unit action potential 

MVC  maximum voluntary contraction 

PSD  power spectral density 30 

RMS  root mean square 

SD  single differential filter 

SFAP  single fiber action potential 

SNR   signal to noise ratio
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Introduction 

Surface electromyogram (EMG) is the potential recorded over the skin and reflecting the 

distribution of current sources inducing the contraction of the muscle tissue [1-2]. Specifically, 

transmembrane currents are generated at the neuromuscular junctions, propagate along the 

muscle fibers and extinguish at the tendons. When recorded with an array of electrodes placed 5 

along the direction of muscle fibers between the innervation zone (IZ) and the tendon region, 

the EMG shows the propagation of the bioelectric sources, allowing to estimate their speed 

along the fibers, called conduction velocity (CV) [3]. CV is a physiological parameter reflecting 

important properties of the membrane of muscle fibers. For example, it can give indications on 

the peripheral condition of the neuromuscular system and its modification because of 10 

pathologies [4], fatigue [5] or exercise [6].  

The definition of CV requires that the surface action potentials (AP) travel without shape 

distortion. This is not the case for real surface EMGs. Indeed, many factors introduce shape 

variations on surface APs, e.g., tissue inhomogeneity [7], additive noise [3], power line 

interference [1], inclination of the fibers with respect to the skin surface [8], misalignment of 15 

the fibers with respect to the detection system [9], crosstalk from nearby muscles [10-11], end-

plate and end-of-fiber components [12-13]. Thus, many definitions of the delay between 

potentials detected from different channels can be chosen, resulting in different CV estimation 

methods [3].  

Most perturbations to the ideal purely propagating signal derive from far field potentials that 20 

appear as non-propagating components. These contributions are mainly due to the generation 

of the transmembrane current at the neuromuscular junction and to its extinction at the tendon 

endings (end-of-fiber effect) [14], crosstalk from other muscles [10], or by the stimulation 

artefact in electrically elicited contractions [13]. Spatial filters have been proposed to remove 

common mode [15] and improve performance of algorithms applied to surface EMGs, due to 25 

their selectivity [16]. For example, double differential (DD) filter is considered in applications 

as the gold standard for the estimation of CV as it allows to reduce the bias of non-propagating 

components [17-18]. 

This paper addresses the problem of separating surface EMG into propagating and non-

propagating components. This allows to reduce the bias on CV estimation. Moreover, the two 30 

components provide specific information (as shown in this paper), which is mixed (and more 

difficult to discriminate) in the original signal. Thus, it is better to estimate the non-propagating 

components, instead of simply removing their effect, as usually done in the literature. Two 

methods for the identification of non-propagating components have been proposed in the 
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literature [12-13]. The first method is based on an optimal choice of a pair of spatial filters that 

reduces the effect of non-propagating components [12]. As a by-product, the non-propagating 

components are also estimated, starting from the optimal filters chosen. Being based on filters 

with vanishing sum of weights, which have high pass behavior (reducing the SNR), the method 

is sensible to high frequency noise. Moreover, it is efficient in estimating non-propagating 5 

components only if they have differences in amplitudes across channels that are larger than 

noise. The second method is based on an adaptive filter technique (also sensitive to noise) [19] 

and on a computationally intensive optimization to estimate the non-propagating components 

[13].  

Both methods can determine only one non-propagating component [12-13]. This means that 10 

only single motor units (MU) APs (MUAP) or single M-waves can be studied.  

This work proposes the first method in the literature to separate propagating and non-

propagating components also in interference EMGs. The method is stable, as it is based on 

averages (instead of differences, on which the first method was based [12]). Moreover, it 

requires simple and efficient operations (i.e., alignments and averaging), resulting in a low 15 

computational cost (compared to the complicated optimization procedure required by the 

second method [13]). 

In the following sections, the method is introduced and then tested on simulated and 

experimental data. The performance of the method is assessed in terms of the accuracy in 

estimating the two components and the mean CV of active MUs (in comparison to a multi-20 

channel approach applied to DD signals). Potential future applications are finally discussed.  

 

 

Methods 

A. Signal model and notations  25 

Consider multi-channel interference surface EMGs obtained from detection points located 

along the direction of muscle fibers (assumed to be parallel to the skin surface). A detailed 

model of an interference EMG should sum the contribution of different MUAP trains, each 

associated to different propagating and non-propagating components. However, it is assumed 

here that our signal could be approximately represented using single propagating and non-30 

propagating components. For simplicity, the model for a two-channel detection system is here 

discussed (but its generalization to N channels is straightforward1): 

                                                        
1 The general expression for the kth channel is 𝑣𝑘 = 𝐴𝑘 ∗ 𝑣𝑝(𝑡 − (𝑘 − 1)𝜏) + 𝐵𝑘 ∗ 𝑣𝑛𝑝(𝑡). Notice that IED and 

CV are assumed constant, so that the delays of the propagating components are multiple of a constant value  
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where vi(t) (i = 1, 2) are the recorded signals, vp(t) is the propagating component ( being the 

propagation delay between channel 1 and 2) and vnp(t) is the non-propagating one. The non-

propagating component can be assumed to account for generation and extinction of 

transmembrane currents flowing on muscle fibers, whereas the propagating one could be ideally 5 

obtained if the muscle fibers were infinite (so that generation and extinction phenomena are 

removed). The two components may present different amplitudes and shape distortion, which 

can be described by the convolution with the functions Ai and Bi. However, clear propagating 

and non-propagating contributions are assumed to be present in the recorded signal, so that the 

convolution with the functions Ai and Bi will account only for small shape variations of the two 10 

components across channels2.  

Notice that the propagating component is assumed to have only small shape distortion across 

the recorded channels and its velocity of propagation is unique. As mentioned above, this 

assumption is critical as more MUAPs from an interference signal are considered, as in general 

they propagate with different CVs. This determines a distortion of the propagating component 15 

at different channels (it is worth noticing that all methods for global CV estimation from 

interference EMGs make implicitly the hypothesis that there is a single travelling component, 

even if it is constituted by the sum of MUAPs with different CVs). Moreover, this assumption 

requires that all MUAPs propagate in the same direction (which could be critical in the case of 

either pinnate muscles [20] or large spread of the IZ [18][21]).  20 

The signals in model (1) can be either monopolar or derived by the application of a spatial filter, 

but monopolar detection will be assumed. 

 

B. Estimation of the two components 

The algorithm is based on the following two steps, which are iterated. 25 

1. CV computation, alignment of signals and estimation of propagating component by 

averaging. 

                                                        
2 Notice that there is an ambiguity in model (1), due to the multiplication between the components and the 

coefficients Ai and Bi. Indeed, the amplitudes of the components could be scaled by a factor, which could be 

compensated by a reciprocal scaling of the coefficients. However, the arbitrarity of the amplitudes of the 

components does not affect the algorithm, that optimally estimates the coefficients once estimated the components 

(see section B4). 
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2. Subtraction of propagating component and estimation of non-propagating component by 

averaging. 

Notice that averaging operations are fast and stable (and useful also to remove noise). The 

method is further described below in details. 

 5 

B.1 Estimation of the time delay of propagation  

The delay was estimated by a maximum likelihood approach applied to DD data [3]. The 

method consists in minimizing the following mean square error function: 
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where K is the number of DD signals (equal to N-2, where N is the number of monopolar 10 

channels) used for the estimation, M is the number of samples, xk(n) is the nth sample of the kth 

DD signal and  is the time delay between adjacent signals to be estimated.  

 

B.2 Estimation of the propagating component 

Suppose for simplicity that the correct delay  is known (this assumption will be dropped in 15 

section B4). Moreover, shape variations of the two components are neglected, so that the 

convolution operators in model (1) are substituted by scalar products (the general model, 

including shape variations is considered later, in Section B.5). The propagating component is 

estimated by aligning the signals and averaging. Considering again equation (1), including only 

2 signals, we have 20 
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If the cross-correlation of non-propagating components is small when computed for the time 

delay  (which happens for example when these components are the sum of waveforms with 

small temporal support, as for the case of end-of-fiber components), the last term of equation 

(3) is reduced. Specifically, its amplitude is of the order of that of the non-propagating 25 

components divided by the number of channels used for the averaging (only 2 in equation (3), 

as 2 channels were considered to simplify the presentation, but more channels are used in 

practice). On the other hand, the first term emphasizes the propagating component, due to the 

constructive sum. Figure 1 shows examples of this alignment and averaging technique. 

 30 
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B.3 Estimation of the non-propagating component 

Once estimated the propagating component, it was subtracted from the original EMGs (after 

optimally estimating its amplitude, as described below), obtaining the following signals yi, i = 

0, 1 
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          (4) 5 

where the constants (introduced to simplify the notation)can be obtained as functions 

of the amplitudes Ai and Bi by collecting like terms. Notice that the propagating components 

were optimally subtracted (i.e., they were multiplied by the correct amplitude). The non-

propagating component can now be estimated by averaging these signals 

𝑣𝑛𝑝(𝑡) =
𝑦1(𝑡)+𝑦2(𝑡)

2
=

𝛼+

2
𝑣𝑛𝑝(𝑡) +

𝛽𝑣𝑛𝑝(𝑡+𝜏)+𝛿𝑣𝑛𝑝(𝑡−𝜏)

2
                      (5) 10 

The first term is the weighted average of the correct non-propagating components of each 

channel and is emphasized by the constructive sum, whereas the second term is the average of 

asynchronous contributions, which decreases in amplitude, as they are more uncorrelated. 

Figure 1 shows examples of this procedure to estimate non-propagating components. 

 15 

B.4 Reconstruction of original data as sum of the two components and iteration  

Notice that above we assumed that the delay of propagating components was known, but this 

is not true in general, as it can only be estimated and non-propagating components introduce a 

bias. However, once estimated the non-propagating component, it can be subtracted from the 

original signal. The resulting data have a lower content of non-propagating components, so that 20 

CV can be better estimated from them (and hence also the delay). With this improved estimation 

of CV, also the propagating component can be better estimated by repeating the alignment and 

averaging method described in Section B.2. The improved estimation of the propagating 

components allows to get also a better estimation of the non-propagating ones, by repeating the 

subtraction and averaging discussed in Section B.3. Thus, the estimation of propagating and 25 

non-propagating components can be improved by iteration. After fine-tuning on different 

simulations, the number of iterations was fixed equal to 30.  

A crucial step in the above-mentioned algorithm is the estimation of weights of components in 

the original signals. Once estimated the two components, their amplitudes were optimally 
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computed (by pseudoinversion) in each channel (the ith channel is here considered), by 

minimizing the following functional 

2

2
)(ˆ))1((ˆ)( tvBitvAtvE npipiii                                         (6) 

with respect to the weights Ai and Bi. 

Figure 1 shows how this iterated procedure (and the optimizations described in the following 5 

section) allows to improve the estimation of the two components.   

 

B.5 Optimizations  

Some optimizations were added to the algorithm described above. Notice that the non-

propagating components are reduced by averaging after spreading them. Indeed, equations (3) 10 

and (5) show perturbations (i.e., the last terms), which are averages of delayed non-propagating 

components. As the algorithm is iterated, the perturbation term includes waveforms that are 

further delayed and reduced in amplitude. This perturbation could be reduced if the non-

propagating components were subtracted before alignment of the propagating waveforms. 

Then, an improved estimation of the propagating component was obtained considering the 15 

following two steps. 1) After the alignment and averaging (Section B.2, equation (3)), the 

estimated signal was re-aligned and subtracted from each channel. 2) The samples for which 

this difference signal was larger than a threshold were removed and substituted by their cubic 

interpolation. A cleaner propagating component was then recovered again by aligning and 

averaging these new data. The threshold above which to select the samples to be removed was 20 

chosen by a fine-tuning on few signals: it was the standard deviation of the signal. It allowed 

to select only few critical points (less than 5% of the samples of the processed epoch), with a 

number decreasing with the iterations of the algorithm (as the non-propagating components are 

better removed for each iteration). Notice that this correction by interpolation is a nonlinear 

procedure, which removes the most important non-propagating components, reducing their 25 

spreading in the following iterations.  

A second optimization consisted in allowing shape variations across channels. After estimating 

the components (at the end of the iterations discussed in Section B.4), possible shape variations 

were compensated with causal FIR filters of order 2 (equivalent results were obtained using 

anti-causal FIR filter of order 2). The weights of the filters were estimated by imposing optimal 30 

reconstruction of the original signals considering also delayed data, i.e., minimizing, for each 

channel (the ith is here considered), the following functional with respect to the FIR filter 

coefficients Ai=[a0, a1, a2] and Bi=[b0, b1, b2]  
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Another optimization was applied to compute the final estimation of CV, defined as the ratio 

between the inter-electrode distance (IED) and the estimated time delay. After estimating the 

components with the method described in Sections B1-B4, the final delay and CV were close 

to the initial value, computed using DD signals. As the two components turned out to be 5 

estimated fairly well, an improved estimation of the delay was obtained by aligning them to the 

original data. Specifically, keeping fixed the estimated propagating and non-propagating 

components, the best delay allowing to get the minimum square error in reconstructing the 

original signal was computed (the quasi-Newton method was used with a cubic line search 

procedure and BFGS formula for updating the Hessian matrix [22]). 10 

 

C. Validation of the method  

The method was applied to both simulated and experimental data. Simulated signals were 

considered to study the effect of specific anatomies, detection or recruitment parameters. 

Experimental signals provided representative examples of application. 15 

 

C.1 Simulated signals 

A structure based, cylindrical model was used to simulate single fiber APs (SFAP), from which 

MUAPs were obtained. Then, the discharge pattern was generated to produce interference 

EMGs. The model is fully described in Appendix A and shown in Figure 2A.  20 

Propagating and non-propagating components were computed for each SFAPs. Specifically, 

for each considered SFAP, another one was simulated corresponding to the same configuration, 

but with very long fiber, in order to estimate the propagating component only. This waveform 

was aligned to the SFAP corresponding to finite length fiber and windowed (Tukey window 

with 10% of samples used for the tapered cosine for each side) in order to remove the signal 25 

before generation and after the extinction of the current source. In this way, the propagating 

component was estimated for each channel. It was then subtracted from the original SFAP, 

obtaining the non-propagating component (reflecting the contribution due to the finite length 

of the fiber). The propagating and non-propagating contributions of each simulated MUAP 

were obtained by summing the components of the corresponding SFAPs. An example of MUAP 30 

and its components is shown in Figure 2 (B and C for 2 values of the fat layer thickness of the 

volume conductor, respectively). 
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Different simulations of interference EMGs were considered. The following parameters were 

used: fat layer thickness of either 3 or 7 mm; muscle force levels in the range 20-100% of the 

maximal voluntary contraction (MVC); epochs of 0.1-1 s duration; a number of channels in the 

range 4 to 7; 10 different realizations of additive white Gaussian noise band-pass filtered 

between 10 and 350 Hz (Chebyshev Type II filter with 20 dB attenuation in the stop-band, used 5 

in both directions to remove the phase) with signal-to-noise ratio (SNR) of 15-35 dB. The total 

number of simulations was 8000 (2 fat layer thicknesses × 5 force levels × 4 epoch durations × 

4 arrays with different number of electrodes × 5 SNRs × 10 realizations of noise). 

 

C.2 Measure of the performances of the method 10 

The method was checked on simulations in terms of the accuracy of correctly estimating the 

two components and CV. Specifically, the cross-correlation between the estimated and 

simulated components was computed 
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where <·,·> stands for scalar product, ||∙||2 as L2normx indicates the mean value of x, v is the 15 

simulated component and v̂  its estimation. Notice that the mean value is subtracted. However, 

the non-propagating component recorded between IZ and a tendon is mainly positive [23], so 

that the mean value of many contributions in interference EMG is positive (and highly 

correlated to the force level). On the other hand, the estimated propagating component has a 

negative mean, which is the opposite of that of the non-propagating term. In an interference 20 

signal with high force level, the mean values of the two components are lost due to phase 

cancellations and cannot be estimated from model (1). 

In order to test the performance in estimating the time delay of propagating components, the 

CVs of active MUs were considered. A weighted average was computed as reference, 

considering the energy contribution of the MUAPs 25 








MU

MU

N

n

n

N

n

nn

REF

MS

CVMS

CV

1

1                                                 (9) 

where NMU is the number of active MUs, MSn is the mean square of the nth MUAP and CVn is 

the CV of the nth MU. The rationale of this choice derives from the definition of the method 

used to estimate CV. It is a multi-channel CV estimation algorithm that searches the delay that 

guarantees the optimal alignment by minimizing the energy of the error. This means that the 30 
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estimated delay is affected by MUAPs energy. This reference value is indeed very close to the 

one that could be estimated by the multi-channel CV estimation algorithm if applied to a 

simulated interference signal obtained by summing only the propagating components of the 

MUAPs (as if the muscle fibers were infinite, so that the bias introduced by the non-propagating 

components was removed; refer to the Results section, Figure 3).  5 

 

 

 

C.3 Experimental signals  

Three representative examples of experimental data were considered (all data were recorded 10 

following the tenets of the Declaration of Helsinki and provided by an institution acknowledged 

at the end of the paper). The first two examples are the same as those considered in [13] (to 

which the reader is invited to refer for the details). They include single propagating and non-

propagating components: the first is a single averaged MUAP obtained by decomposing 

monopolar EMG from the abductor pollicis brevis; the second is an M-wave recorded in single 15 

differential (SD) configuration during the transcutaneous electrical stimulation of the biceps 

brachii muscle. In both cases, 3 signals were considered (as the method discussed in [13] was 

implemented for 3 channels only). Thus, 2 double differentiations could not be computed: then, 

CV was estimated considering the 3 available signals (notice that 2 DD data could be obtained 

from the 3 M-waves in SD configuration, but they could not be obtained from the 3 monopolar 20 

signals from the abductor pollicis; thus, CV was computed in both cases using the 3 available 

channels). 

The last signal is an interference EMG recorded during a free voluntary contraction of the 

biceps brachii using a linear array of 32 electrodes with IED of 5 mm (from which 8 channels 

showing unidirectional propagation were selected). Signals were detected in monopolar 25 

derivation (referred to a remote reference on the wrist), amplified (183 V/V), band-pass filtered 

(3 dB bandwidth, 10–500 Hz), sampled at 2048 Hz and A/D converted with 16 bits resolution 

(multi-channel surface EMG amplifier, LISiN, Politecnico di Torino, Italy [24]). 

 

Results 30 

Figure 3 shows an example of application to simulated data. Propagating and non-propagating 

components were estimated and compared to the simulated ones in Figure 3A. Notice in Figure 

3B that the power spectral densities (PSD) of the two components (and mainly of the non-

propagating one) emphasize a low frequency peak (which is present, but small on the original 
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data) located at the average firing frequency of MUs. Different force levels were also 

considered in Figure 3C. The reference CV, defined in equation (8), is very similar to the one 

that could be estimated using the simulated propagating component. Accurate estimations are 

obtained also using the proposed method, whereas a small underestimation was found using 

DD signals.  5 

Figure 4 shows the distributions of the correlation between the estimated and simulated 

components, grouping the data in order to show the dependence on specific parameters. Better 

estimations of propagating and non-propagating components were obtained for thinner and 

thicker fat layers, respectively, i.e., in the case in which they are more evident (statistically 

significant differences, Wilkoxon rank sum test with p<0.01).  10 

Figure 5 shows the distribution of errors in estimating CV. In the average, they were lower for 

the new method, than for the standard one (even if the difference was not statistically 

significant; however, significant differences were obtained in the specific cases indicated in the 

figure). A volume conductor with a thick fat layer was considered, which is the worst case: 

when considering a thinner fat layer, propagating components were estimated better (as stated 15 

before, discussing Figure 4) and, as a consequence, also CV estimation was more accurate (and 

statistically better than that obtained using DD signals; Wilkoxon rank sum test with p<0.01).  

Figure 6 shows representative applications to experimental data. Only qualitative comments 

can be given, as there is no a-priori information on the two components and propagation 

velocity. However, reasonable results are obtained. Indeed, the non-propagating terms 20 

estimated from the single MUAP in Figure 6A include generation and end-of-fiber components. 

Moreover, when processing the M-wave shown in Figure 6B, the stimulation artefact is 

identified as the main non-propagating term. Notice also another contribution at the end of the 

wave, which is a residual of extinction effect still present in the considered SD signals. Larger 

non-propagating components can be seen in monopolar M-waves and found interesting 25 

applications in the recent literature [25]. It is worth noticing also that the estimated propagating 

component is less noisy than the raw data (beneficial effect of the averaging). 

The interference signal shown in Figure 6C was split into components that are clearly 

propagating and non-propagating. Looking at the raw data, the separation appears to be 

reasonable and qualitatively similar to the one obtained in simulations (refer to Figure 3A).  30 

The method was implemented and run in Matlab, using a PC with Intel(R) Core i7-7500U CPU, 

Double-Core (but only one core was used), clock frequency 2.7 GHz, 8 GB of RAM and 64 

bits operating system. It required in the average 450 and 720 ms to process epochs of duration 
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500 and 1000 ms, respectively, thus allowing in principle real time applications in which data 

are acquired and transferred in epochs that are processed while waiting for subsequent samples.  

 

 

Discussion  5 

Surface EMG recorded over muscles with fibers parallel to the skin from linear arrays of 

electrodes placed between the IZ and a tendon can be approximately split into propagating and 

non-propagating contributions. The first reflects the travelling of APs along muscle fibers and 

the second is related to their generation and extinction (or to common mode interference). Both 

components provide important information, so that their separation could open new 10 

perspectives in the study of surface EMG, with potential outcomes in basic physiology and 

applications. A few previous results were discussed in the literature [12-13][19], showing the 

possibility of applying such a separation to improve CV estimation [12], identify the stimulation 

artefact and measure automatically the fiber semi-length [13]. However, these methods were 

quite unstable and computationally intensive. Furthermore, they were limited to process single 15 

contributions (i.e., single MUAPs or M-waves). Probably, this important drawback limited their 

diffusion in applications.  

This paper describes a stable and efficient method, which is the first in the literature to separate 

interference EMG into propagating and non-propagating components. Stability and efficiency 

were improved with respect to previous methods, as the new algorithm is only based on 20 

alignments and averaging procedures (which are fast and stable). Indeed, preliminary tests on 

the single MUAP shown in Figure 6A corrupted with different levels of white Gaussian noise 

showed greater correlation of the two components with the ones obtained from the original data 

and lower variation of the estimated CV, when using the new algorithm. Moreover, the mean 

time to process a MUAP with the two methods [12-13] was more than 10 times larger than that 25 

taken by the new algorithm.  

However, the most important improvement is the extension of the range of applications to 

interference data. Interference EMG is very reach: Appendix B shows that each time sample 

may reflect the superposition of tens of MUAPs. The asynchronous summation of such MUAPs 

reflects into phase cancellations [26], which largely reduce the information content of the 30 

signal. However, the proposed algorithm showed in simulations to be able to split the original 

EMG into components that are highly correlated to the correct ones. Indeed, median 

correlations were about 98% and 90%, for propagating and non-propagating components, 

respectively.  
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CV estimations were always better than those obtained using the standard multi-channel 

method based on DD signals, when a volume conductor with thin fat layer was considered (as 

in that case the propagating component was estimated fairly well, with a median correlation 

with the simulated component of 98.7%). In Figures 4 and 5, the results are shown for a volume 

conductor with large fat thickness, which is the worst case. However, the new method still 5 

outperforms the standard one in the average. Moreover, being based on alignments and 

averages, the method attenuates random noise. This allowed to get better estimations of CV 

than the standard approach in the case of small SNRs. The accuracy was not affected by the 

simulated force level. However, notice that a constant SNR was simulated, whereas in 

experimental signals a larger SNR is expected to be found for increasing force. The method 10 

was also stable to the shortening of the epochs. Moreover, CV estimations were more accurate 

than those provided by the standard method when the number of electrodes decreased (the 

improvement was statistically significant with less than 6 electrodes).  

The method showed to have good convergence in separating the two components under 

physiological conditions. It can fail if the propagating component is too fast, as it is more 15 

difficult to separate it from the non-propagating one. Indeed, the alignment-averaging 

procedure (described in the Methods sections B2 and B3) assumes that the alignment of one 

component implies the misalignment of the other. If the propagating component is too fast, its 

alignment does not allow to misalign enough the non-propagating one to reduce its effect by 

averaging. Thus, the performances of the method are expected to decrease by increasing the 20 

average MU CV. Preliminary tests on simulations were run by rescaling MUAPs to simulate a 

distribution of MU CV which had mean value ranging from 1.5 to 20 m/s (using the same 

distribution described in the Methods section, but translating all MU CVs by a constant to center 

it around the new mean value). Simulation parameters were the followings: 4 electrodes, IED 

of 5 mm, force level 50% MVC, SNR of 25 dB, epoch duration of 1 s, fat layer thickness of 25 

either 3 or 7 mm. The estimated and simulated propagating and non-propagating components 

had high correlation coefficients (greater than 95 and 80% for the two components, 

respectively) from low values of average CV until 10 m/s (which is higher than physiological 

values), above which the correlation rapidly dropped. A similar problem could be experienced 

if IED is too small (e.g., lower than 2 mm, so that the average delay of MUAPs considering 30 

mean MU CV of 4 m/s will be the same as the one obtained considering IED of 5 mm and mean 

CV of 10 m/s).        

The new method is stable to possible detection problems. A misalignment of 20° between the 

array of electrodes and the muscle fibers was simulated, considering all cases already studied 
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in the ideal conditions. The median correlations between estimations and simulations were 

about 95% and 78%, for propagating and non-propagating components, respectively. The mean 

error in CV estimation were 0.13 and 0.29 m/s, considering the new and the standard methods, 

respectively (statistically highly significant difference for Wilkoxon rank sum test). Notice 

however that there are many important conditions in which the method cannot be applied, as 5 

the assumption that the EMG is the sum of two components is not a reliable approximation. For 

example, it cannot be applied in the case of muscles with fibers going deep [8] or when there 

are multiple directions of propagation (as in the case of distributed IZs [18], pinnate muscles 

[20] or in the external anal sphincter [21]).  

Many additional applications of the method can be addressed in the future, apart from the 10 

possibility of improving CV estimation. For example, non-propagating components are far-

field potentials providing information also on activity of deep MUs, thus collecting data from 

a large portion of the muscle. Moreover, their contributions are shorter (mainly corresponding 

to end-of-fiber components) than those of travelling APs. Thus, they convey information with 

higher longitudinal selectivity (i.e., in time [15]), allowing to better separate different 15 

contributions, than using propagating components. This property may help when studying inter-

muscle coherence and phase synchronization [27].   

The separation of the two components could also be useful to quantify crosstalk from nearby 

muscles. A preliminary test was done on a few simulated signals used for a recent study on 

crosstalk [11] (volume conductor with fat thickness of 7 mm). Two superficial and adjacent 20 

muscles were activated at 80% and 40% MVC, respectively, and EMGs were recorded over the 

two muscles, at 20 mm from the midline separating them. The discharge patterns of their MUs 

were independent, but cross-correlation and phase synchronization of signals recorded over the 

two muscles were about 60% and 48%, respectively, due to crosstalk. When considering the 

propagating component, cross-correlation and phase synchronization decreased to 42% and 25 

34%, whereas they increased to 74% and 61% when using the non-propagating components. 

Indeed, the propagating components are near-field potentials, providing information on the 

muscle under the electrodes, whereas non-propagating components reflect far-field potentials 

coming from both muscles. Thus, a combination of information derived from the two 

components could be useful to discern crosstalk and co-activation of nearby muscles.   30 

Non-propagating components are also expected to reflect the overall discharge rate of active 

MUs, as they are built–up by sharp contributions due to generation and extinction phenomena. 

This hypothesis was tested on a few simulated data from [5] (the first simulated library was 

considered). EMGs reflecting different adjustments of MU behavior during fatiguing 
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contractions were simulated in [5]. Variations of mean CVs, maximal firing rate, MU 

synchronization and variability of inter-spike interval were considered. Fractal dimension (FD) 

of EMG was found to be mostly related to central fatigue and only marginally affected by 

different mean CVs [5]. When estimated on non-propagating components, FD was still less 

affected by CV (as it mostly affects propagating components). Moreover, the PSD of non-5 

propagating components was about bimodal (whereas the PSD of original signals was 

unimodal). The low frequency peak was related to the firing statistics [28]: its amplitude 

increased with larger synchronism among MUs and its location reflected the mean firing rate 

(as also found in the specific example shown in Figure 3). The relation between the average 

MU firing rate and the PSD of the estimated non-propagating components in the low frequency 10 

range was recently assessed extensively in simulations [29]. A low frequency peak reflecting 

the average firing rate was found in the estimated non-propagating components also for high 

contraction levels, whereas it didn’t emerge when using the raw EMG (either rectified or not). 

Thus, the separation of the raw EMG into propagating and non-propagating components could 

help deepening the study of myoelectric fatigue, by better distinguishing among different 15 

manifestations (either peripheral or central, reflecting either firing rate modulation or MU 

synchronization).  

These are only preliminary examples of applications on crosstalk, phase synchronization, 

fatigue and MU firing rate, which, together with the reduction of bias in CV estimation, indicate 

that the separation of the two components in interference signal may have potential relevance 20 

that future investigation can assess.  

  

Conclusions 

This paper introduces a stable and efficient method to separate multi-channel interference 

surface EMG into propagating and non-propagating components. The two components provide 25 

different important information: propagating components reflect the travelling of APs along 

muscle fibers; non-propagating components are related to generation and extinction of APs and 

provide selective information on the MU firing statistics. This separation opens new 

perspectives in the study of surface EMG, with many possible applications, e.g., in the study of 

synergies, common drive and myoelectric manifestations of fatigue. 30 

 

Appendix 

A. Simulation model. The simulation model was the same as in [11] (to which the reader can 

refer for details). Specifically, a cylindrical model was used to simulate SFAPs [30]. The 
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volume conductor and simulated muscle are indicated in Figure 2. The following parameters 

were assumed: skin conductivity 2.2·10-2 S/m; fat conductivity 4·10-2 S/m; transversal and 

longitudinal conductivity of muscle tissue 9·10-2 and 40·10-2 S/m, respectively. Seven square 

electrodes (surface 1 mm2) with inter-electrode distance of 5 mm were placed over the skin, 

aligned to the fibers (Figure 2). Monopolar SFAPs were simulated for fibers with length and 5 

location of IZ randomly chosen with a range of variation of 10 mm, as indicated in 2A. 

Simulated density of muscle fibers was 20/mm2. It is about the fiber density of a MU, an order 

of magnitude lower than that of a muscle [31]. The same fibers were included in different MUs 

with superimposed territory, introducing an approximation. The number of fibers per MU was 

distributed exponentially between 15 and 300. The total number of simulated MUs was 400. 10 

Their locations were randomly chosen within the muscle with uniform distribution. The fibers 

closest to the center of a MU were selected to belong to it and the corresponding SFAPs were 

added up to simulate the MUAP. CV of MUs was chosen with a Gaussian distribution with 

mean 4 m/s and standard deviation 0.3 m/s. CV values were assigned in agreement to the size 

principle. 15 

Interference signals were simulated as in [31], with range of recruitment thresholds equal to 

70% of MVC, range of the firing rate (FR) 8-30 Hz (with linear increase with the force level 

with slope of 1 Hz per 1% MVC, after MU recruitment and until the upper limit of the FR) and 

10% random (Gaussian) jitter of the inter-spike interval.  

B. Estimation of MUAP number in interference EMG. Consider a contraction at an average 20 

force intensity, e.g., 50% MVC. Assume that 100 MUs are active and within the detection 

volume of the considered monopolar channels and that they are firing at an average frequency 

of 30 Hz. Those MUs fire 3000 times per s, which is about 4 times the sampling frequency 

required by Nyquist theory (considering for EMG a bandwidth of about 350-400 Hz). 

Moreover, each MUAP can have a duration of more than 15 ms (considering fiber length of 60 25 

mm, CV of 4 m/s and including the time needed for extinction of the AP). Thus, in this 

condition, each time sample of EMG in the average shows the asynchronous superposition of 

about 50 MUAPs. 
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Figure 1. Examples of separation of the two components. A) Propagating component is a doubly differentiated 

Gaussian function, the non-propagating one is a Gaussian function with different amplitude across channels. A1) 

Input data, A2) averaging process to get the first estimation of the components, A3) the two components estimated 

after the first step (reconstruction RMS errors 44% and 61%, for propagating and non-propagating components, 5 

respectively) and at the end (errors 17% and 24%). B) Same as in A), but adding a 50 Hz interference 
(reconstruction errors 102% and 78% after one step, 49% and 39% at the end of iterations). 
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Figure 2.  A) Volume conductor model used for the simulations (3D representation with the location of the 7 

electrodes, longitudinal section showing the spread of the IZ and tendon endings, cross-section with indication of 

center and cross-sectional area of MUs; the black circle indicates MU number 360). B)-C) Examples of a MUAP 

(of MU number 360) and separation into two components for a volume conductor with a fat thickness of either 3 5 

or 7 mm (B and C, respectively). 
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Figure 3. Example of simulated monopolar interference EMG (sampling frequency 2048 Hz, fat layer thickness 

of 3 mm, SNR = 20 dB). A) Simulated data and estimated components over time (mean and standard deviation of 

correlation across channels indicated). B) Power spectral density (PSD) of data and components (fourth channel; 

Welch method, averaging estimates from 7 sub-epochs of 250 ms, superimposed of 50%). C) Comparison of 5 

reference CV (weighted by energy of MUAPs of active MUs) and the estimation using either simulated or 
estimated propagating components or the standard multi-channel approach applied to DD signals (estimations and 

errors in the upper and lower panels, respectively).  
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Figure 4.  Cross-correlation of estimated and simulated propagating and non-propagating components, grouping 

data with respect to A) force, B) noise level, C) epoch duration and D) number of channels. The fat layer thickness 

was 7 mm. With a thickness of 3 mm, propagating component was estimated better and non-propagating 

components worst (median values 98.7% and 86.4% versus 97.4% and 90.6%, for propagating and non-5 

propagating components, respectively; statistical significance tested by Wilkoxon rank sum test with p=0.01). 
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Figure 5. Absolute error in estimating average CV weighted by MUAP energy, grouping data with respect to A) 

force, B) noise level, C) epoch duration and D) number of channels. The fat layer thickness was 7 mm. With a 

thickness of 3 mm, the median errors were always lower when considering the new method and the difference 5 

statistically significant (Wilkoxon rank sum test, p=0.01), with the only exception of the case of epoch duration 

0.1 s. 
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Figure 6.  Examples of applications to experimental data. A) Single MUAP extracted from the abductor pollicis 

brevis (monopolar configuration). B) M-wave induced by the transcutaneous electrical stimulation of the biceps 

brachii (single differential signals). C) Interference EMG during voluntary contraction of the biceps brachii. Eight 

signals showing propagation of action potentials were selected out of 32 monopolar EMGs recorded by a linear 5 

array aligned to the muscle fibers (and showing bi-directional propagation from the IZ region towards proximal 

and distal tendons; the distal portion was selected). 

 


