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Abstract. Nowadays, green energy is considered as a viable solution
to hinder CO2 emissions and greenhouse effects. Indeed, it is expected
that Renewable Energy Sources (RES) will cover 40% of the total energy
request by 2040. This will move forward decentralized and cooperative
power distribution systems also called smart grids. Among RES, solar
energy will play a crucial role. However, reliable models and tools are
needed to forecast and estimate with a good accuracy the renewable
energy production in short-term time periods. These tools will unlock
new services for smart grid management.

In this paper, we propose an innovative methodology for implementing
two different non-linear autoregressive neural networks to forecast Global
Horizontal Solar Irradiance (GHI) in short-term time periods (i.e. from
future 15 to 120 min). Both neural networks have been implemented,
trained and validated exploiting a dataset consisting of four years of so-
lar radiation values collected by a real weather station. We also present
the experimental results discussing and comparing the accuracy of both
neural networks. Then, the resulting GHI forecast is given as input to a
Photovoltaic simulator to predict energy production in short-term time
periods. Finally, we present the results of this Photovoltaic energy esti-
mation discussing also their accuracy.

Keywords: Solar radiation forecast · Artificial neural networks · AR
· ARMA · Dynamic system · Photovoltaic system · Energy forecast ·
Renewable energy.

? This work was partially supported by the Italian project ”Edifici a Zero Consumo
Energetico in Distretti Urbani Intelligenti”.
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1 Introduction

Nowadays, to contrast negative effects of pollution, global warming and waste
of energy, green energy represents a very attractive solution, especially solar en-
ergy [13]. Indeed, applications like Photovoltaic (PV) systems are changing the
electrical energy production, consumption and distribution in our cities [21]. We
are witnessing the transaction of our society from centralized and hierarchical
power distribution systems to distributed and cooperative ones, generally called
Smart Grids. The technology introduced by this new philosophy is opening the
electrical marketplace to new actors (e.g. prosumers and energy aggregators). In
classic power grids, the stability is achieved by consolidated generation plants
using primary and secondary reserve at large-scale [14]. Whilst, in a Smart Grid
scenario, new actors can actively contribute to load-balancing by fostering novel
services for network management and stability. Demand/Response [40] is an ex-
ample of such applications for Smart Grid management. It permits to achieve
a temporary virtual power plant [45] by changing the energy consumption pat-
terns of consumers i) to match energy produced by renewable energy systems or
ii) to fulfil grid operation requirements. This process is generally done every 15
minutes. In these applications, the amount of available energy must be known in
advance to optimize the production of power plants [1] and to match energy pro-
duction with consumption. Thus, we need tools to forecast with a good accuracy
of solar radiation and, consequently, solar energy.

Several studies were proposed in the literature to find mathematical and phys-
ical models to estimate and forecast solar radiation, such as stochastic models
based on time-series [22], [46], [3]. Moreover, classical linear time-series models
have been widely used [8]. However, these studies have proven that these method-
ologies often are not sufficient in the analysis and prediction of solar radiation.
This is due to the non-stationary and non-linearity of solar radiation time-series
data [26], [31]. Furthermore, stochastic models are based on the probability es-
timation. This leads to a difficult forecast of the solar radiation time-series. To
overcome these limits, non-linear approaches, such as Artificial Neural Networks
(ANNs), were considered by many researchers as powerful tools to predict such
phenomenons [47]. Generally, ANNs do not require knowledge of internal system
parameters and they offer a compact solution for multiple variable problems [35].
However, also the use of an ANN to forecast a phenomenon introduces an error,
the so-called prediction error [53]. As a result, these models need optimizations
to reduce this error. With respect to presented literature solutions to forecast
solar radiation, the scientific novelty of our methodology consists of using Mul-
tilayer Perceptron, which is the artificial neural network most used for this kind
of applications [12]. Generally, most literature methodologies rely on the single
past value to perform the forecast [7]. Whilst, the proposed solutions allow to
reduce significantly the prediction error by using a set of regressors to perform
predictions, as discussed in our previous work [2]. However, differently from [2],
our goal is to better optimize the neural architecture by adding further levels
of difficulty. In particular, we used a more complex and larger dataset to better
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forecast the solar radiation in short-term, i.e. from future 15 minutes up to next
2 hours.

In this paper, we present and compare two Nonlinear Autoregressive neural
networks to forecast short-term solar radiation that is then applied to estimate
PV energy production. We trained and validated both neural networks with
a dataset consisting of four years of Global Horizontal Solar Irradiance (GHI)
samples collected by a real weather station. Both neural networks are Multilayer
Perceptron based and they exploit a certain number of regressors to predict GHI
in a range of next 15 minutes up to 2 hours. Then, GHI forecast is given as input
to our PV simulator [6] that exploits GIS (Geographic Information System) tools
to simulate energy production. We also provide an exhaustive comparison of this
work with our previous paper [2], highlighting differences and improvements.
Finally, we discuss advantages and disadvantages of choosing a neural network
rather than another, among those developed and analyzed.

The rest of the paper is organized as follows. Section 2 discusses the fol-
lowed methodology to define our neural networks for short-term solar radiation
forecast. Section 3 details all the steps performed to initialize, train and vali-
date both our neural networks. Section 4 presents the results of solar radiation
forecast given by the proposed ANNs. Section 5 briefly introduce our PV sim-
ulator [6] and, then, presents the estimation results on PV energy simulations
that exploit foretasted solar radiation output of the proposed neural networks.
Finally, Section 6 discusses our concluding remarks.

2 Methodology

Predicting the energy producuction of a PV system means being able to forecast
the level of GHI to which the PV system is exposed to. In turn, predicting the
values of GHI means working with time-series information. This kind of informa-
tion identifies a sequence of values chronologically ordered [16]. The study and
manipulation of time-series models brings different benefits. Mainly, it allows:
i) in understanding the underlying forces and structures that produced the ob-
served data and ii) in fiting a model and in proceeding to forecast and monitor
or even feedback and feed-forward control [34].

2.1 The Multilayer Perceptron

Nowadays, one of the most effective methods for prediction is based on neu-
ral networks [30]. This is due to their versatility and their ability to model a
wide range of systems reducing development time and offering better perfor-
mances [49]. In the study of systems based on time-series, the most powerful
and performing family of ANNs is the Multilayer Perceptron (MLP) [12]. These
types of neural networks are composed of units, called nodes or neurons, and
organized in a layer of inputs, one or more hidden layers and an output layer.
The MLP is a feed-forward architecture with fully connected layers. Connections
between units are characterized by adjustable parameters called weights. This
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refers to the strength of a connection between two nodes [23]. Each neuron com-
putes a function of the sum of the weighted inputs. This function is also called
activation function.

In this work, we used two different MLP-network architectures. Both are
characterized by i) an hidden layer of neurons with the hyperbolic tangent ac-
tivation function f and ii) an output layer with a linear activation function F .
The functional model is given by:

ŷi(w,W ) = Fi(

q∑
j=1

Wijhj +Wi0) = Fi(

q∑
j=0

Wijfj(

m∑
l=1

wjlul + wj0) +Wi0) (1)

Weights are specified by the matrices W = [Wij ] and w = [wjl]; where Wij scales
the connection between the hidden unit j and the output unit i and wjl instead
the connection between the hidden unit j and the input unit l. The corresponding
biases are Wi0 and wj0. These weights are vectorized in a vector θ. The input
units are represented by the vector u(t) while the vector h represents the hidden
neuron outputs. The outputs of the network, ŷi, are estimated by Equation 1.
The parameters are determined during the training process, which requires a
training set ZN , composed of a set of inputs, u(t), and corresponding desired
outputs, y(t), specified by:

ZN = [u(t), y(t)], t = 1, ..., N (2)

The training phase allows to determine a mapping from the set of training data
to the set of possible weights:

ZN → θ̂ (3)

the network can predict ŷ(t) that can be compared to the true output y(t). The
prediction error approach is instead based on the introduction of a measure of
closeness in terms of a mean square error criterion, as specified by:

VN (θ, ZN ) =
1

2N

N∑
t=1

[y(t)− ŷ(t|θ)]T [y(t)− ŷ(t|θ)] (4)

Weights are then found as:

θ̂ = argθminVN (θ, ZN ) (5)

by some kind of iterative minimization scheme:

θi+1 = θi + µi + f i (6)

where θi specifies the current iteration, f i the search direction and µi the step
size.
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2.2 System Identification

This section details the adopted methodology to use an ANN to predict solar
radiation in short-term. Based on the methodology presented in [33] and as
widely detailed in [2], the procedure to identify a dynamical system consists of
four steps: i) Experiment, ii) Model Structure Selection, iii) Model Estimation
and iv) Model Validation (see Fig. 1).

O
PT

IM
IZ

AT
IO

N

EXPERIMENT

SELECT MODEL STRUCTURE

ESTIMATE MODEL

VALIDATE MODEL

VALIDATION

Fig. 1. System identification procedure [2]

The Experiment represents the problem analysis, data sampling and collec-
tion phase. This phase is the keystone of the whole process. Some of the main
issues in this stage consist on: i) choosing the sampling frequency, ii) designing
suitable input signals, and iii) pre-processing the dataset. Data pre-processing
may include some non-linearity tests and disturbances removal. If the dataset is
well organized, all the next steps in Fig. 1 will have less chance to fail. Gener-
ally, a big and relevant amount of data is needed to train and validate a neural
network. Moreover, an higher number of data allows better forecasting perfor-
mance [42]. However, it is necessary to avoid overfitting. This means to avoid
unknowingly extract some of the residual variation (i.e. the noise) as if that varia-
tion represented underlying model structure. [51]. Then, the collected data must
be divided into two datasets: training-set and validation-set [19]. Both datasets
are used in training and validation phases of the neural network that are Estimate
Model and Validate Model in Fig. 1, respectively. The Model Structure Selection
phase identifies the correct architecture model and the number of regressors [33].
Generally, this selection is more difficult in nonlinear cases than in linear [9]. In
time-series, the regressors represent the previous samplings with respect to the
predicted ones [30]. Once the best network model and the appropriate number
of regressors are identified, in the Model Estimation phase, the network is first
implemented and then trained. In time-series scenario, training a neural network
is needed to provide: i) the vector containing desired output data; ii) the number
of regressors to define the prediction; iii) the vector containing the weights of
both input-to-hidden and hidden-to-output layers and lastly iv) the data struc-
ture containing the parameters associated with the selected training algorithm.
The training process produces a training error, which represents the network
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performance index [42]. The Model Validation allows validating the trained net-
work in order to evaluate its capabilities [29]. In time-series predictions, the most
common validation method consists of analyzing the residuals (i.e. prediction er-
rors) by cross-validating the validation-set [39]. This analysis provides the test
error [42], that is an index considered as a generalization of the error estimation.
This index should not be too high compared to training error, if this happens
the network could over-fit the training-set. This means that the selected model
structure contains too many weights. In this case, it is required to return in the
Estimate Model step to change and redefine some structural parameters by op-
timizing the whole architecture. For this purpose, the superfluous weights must
be pruned according to the Optimal Brain Surgeon, which represents one of the
most important optimization strategies [17]. Consequently, once new weights are
given, the network architecture must be re-validated.

3 Neural networks for short-term GHI forecast

The purpose of this work consists of forecasting short-term Global Horizontal
Solar Irradiance (GHI) for photovoltaic energy predictions. To deal with these
time-series data, we adopted, and then compared, two ANNs: i) Nonlinear Au-
toregressive neural network (NAR) and ii) Nonlinear Autoregressive Moving
Average neural network (NARMA). NAR belongs to the family of Nonlinear
Autoregressive Exogenous Model (NARX) [41]. It is generally considered as one
of the best tools for time-series analysis and does not suffer of stability prob-
lems [43]. This is due to its nonlinear autoregressive model which has exogenous
inputs. This neural network model bases its prediction on i) a variable range of
past values and also on ii) the current and past values of the driving exogenous
inputs of the time-series in analysis. However, this process produces a prediction
error that is the knowledge of the past. Indeed, the presence of this error as result
of prediction means that the future values of the time-series cannot be predicted
exactly. This family of ANNs is characterized by the following equation:

yt = F (yt−1, yt−2, yt−3, ..., ut, ut−1, ut−2, ut−3, ...) + εt (7)

where yt is the variable of interest; while ut represents the externally determined
variable at time t in Equation 7. Information about ut and previous values of u
and y helps on predicting yt with a prediction error εt.
On the other hand, NARMA belongs to the family of Nonlinear Autoregressive
Moving Average Exogenous Model (NARMAX) [11]. It represents a generaliza-
tion of the NAR model. However, this model realizes a feed-forward network
where a predictor will have a feedback when the regressors are selected. This
family is characterized by the following equation:

yt = F (yt−1, yt−2, yt−3, ..., ut, ut−1, ut−2, ut−3, ...) + C(q−1) + εt (8)

where yt and ut are the variable of interest and the externally determined vari-
able at time t, respectively; εt is the prediction error; C is a polynomial in the
backward shift operator expressed as:
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C(q−1) = 1 + c1q
−1 + ...+ cncq

−nc (9)

Consequently, the past prediction errors depend on the model output and they
are able to establish a feedback.

Comparing the two proposed models, the major difference is that NARMA is
a Recurrent Neural Network [28], while NAR is not. Thus, NAR has a predictor
without feedback while NARMA has feedback through the choice of regressors.
Hence, future network inputs will depend on present and past network outputs.
This might lead to instability of the ANN itself and it can be very difficult to
determine whether or how the predictor is stable. To avoid instability, NARMA
architecture uses a linear MA-filter to filter past residuals. This is a Low Pass
FIR (Finite Impulse Response) filter, commonly used for smoothing an array of
sampled data/signal. It takes a set of inputs at the time, it computes the average
of those samples and produces a single output [27].

To implement both NAR and NARMA, we exploit a dataset composed of
four years of real GHI values (from 2010 to 2013). These values are 15 minute
time sampled by the weather station in our University Campus. Differently to
the dataset that we used in our previous work [2], this is more complete and much
bigger because it also includes the GHI values in the time period between 6 p.m.
and 8 a.m., i.e. all evening and night values. In our previous work, we ignored
these values because they are less relevant in the GHI prediction procedure
leading to a simpler ANN architecture and avoiding over-fitting. However, in
this work we demonstrate that if ANN ignores the whole daily period, that is
the succession of night and day, the values of GHI predicted in the early hours of
the morning are significantly incorrect (i.e. oversized or undersized). A further
difference is the use of data to initialize both training set and validation-set. In
our previous work, we split the dataset symmetrically according to [33]. Whilst
in this paper, we divided the dataset asymmetrically into three years for the
training-set (2010-2012) and one year for the validation-set (2013), according to
the more recent approach described in [51]. This allows an even more accurate
training phase.

Progressively, we started analyzing the number of past signals used as re-
gressors for the prediction. Specifically, we used Lipschiz [38] to determinate
the lag-space. This methodology allows identifying the order of Input-Output
Models for Nonlinear Dynamic Systems. Given corresponding input and output
sequences, it calculates a matrix of indices that can be helpful for determining
a proper lag-space structure. However, as detailed in [20], this methodology is
not always effective but it represents a good starting point to define the more
suitable number of regressors, which will characterize the future neural networks
architectures. Consequently, we started the design of both our ANNs considering
a number of regressors in the range between 1 and 10. This arbitrary choice de-
rives from our previous work [2] that exploits 10 regressors. On the other hand,
ANNs proposed in this work aim at improving previous performances. Moreover
as previously described, we modified the pre-process of the input dataset, this
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allows designing an ANN with no more than 10 regressors. Fig. 2 details the
result of the applied lag-space investigation methodology.

Fig. 2. Evaluation of Order Index criterion for different lag-space

Fig. 2 suggests that good performance can be achieved with 6 regressors (i.e. 6
previous values for y and u in Equation 7, respectively). All previous values are
not computationally advantageous. Even, between 1 and 4, the result diverges to
infinity and therefore they are not displayed in the plot. On the other hand, all
values above 6, even if advantageous, would risk transforming ANN architecture
into a more complex and less performing structure. Thus, the best configura-
tion in the computation/performance ratio is achieved with 6 regressors (see
the knee-point of the plot in Fig. 2). Differently to what we did in [2], in this
work we adopted also a design space exploration approach [10]. As a result, we
decide to validate (or refute) the results given by Lipschitz. For this purpose, we
implemented all the possible network combinations (of both NAR and NARMA
models) from 1 to 10 regressors. This allows to evaluate and compare all the
obtained architectures’ performance and then find the best solutions for both
NAR and NARMA. Fig. 3 shows the NSSE error trends of the two ANNs based
on the number of regressors for each implemented architecture. NSSE error is a
network performance index. The lower NSSE the better ANN’s performance.
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Fig. 3. Evaluation of NSSE after pruning with regard to number of regressors

As shown in Fig. 3, NAR and NARMA give the best performance with 4
and 2 regressors, respectively. This also represents the best compromise between
ANN’s computation and performance. It is worth noting that these NSSE results
improve the indication given by Lipschitz methodology that suggested 6 as the
best number of regressors (see Fig. 2).

Once we found the optimal regressors for both NAR and NARMA, we imple-
mented the two final ANNs starting from two fully connected architectures with
one hidden layer of 30 hyperbolic tangent units. This large number of units could
be redundant, but it is justified by the pruning technique [44], which is used in
the next phases to optimize the network architecture themselves.

Before training, weights of both ANNs are initialized randomly. This allows also
to initialize i) weights, ii) their decay threshold and iii) the maximum number
of iterations. However, these parameters are overestimated during the very first
training iteration. Then, we proceeded with training phase for both NAR and
NARMA networks. Training is a minimizing technique to compute the best
weights. For both architectures, we used the Levenberg-Marquardt algorithm,
which interpolates between the Gauss-Newton algorithm and the method of
gradient descent using a trust region approach [33]. Progressively, we used the
methodology illustrated in [32] for validating both ANNs. This methodology
performs a set of tests including autocorrelation function of residuals and cross-
correlation function between controls and residuals to validate system outputs.
The result of this process gives the NSSE error. By definition, this error should
not be too large compared to training error. If NSSE is greater than the training



10 A. Aliberti et al.

error, the predicted results are over-fitting the training-set. Table 1 illustrates
the obtained results for both NAR and NARMA.

Table 1. NSSE comparison after the first and final validation

Neural Network
NSSE

after first validation

NSSE

after final validation

NAR 1.25× 10+3 1.24× 10+3

NARMA 1.23× 10+3 1.22× 10+3

A shown in Table 1, the validation process yields these indexes as detailed in
the column NSSE after first validation. The NSSE is equal to 1.25 × 10+3 and
1.23 × 10+3 for NAR and NARMA, respectively. These indexes will have to be
compared with those obtained after the optimization of the architectures. Then,
we proceeded to the optimization phase of both networks. Our purpose was to
remove excess weights and obtain a smaller error than the one given during the
first validation. To achieve this, we adopted the Optimal Brain Surgeon (OBS)
[18], which is a technique to prune superfluous weights. OBS computes the Hes-
sian matrix weights iteratively, which leads to a more exact approximation of
the error function. The inverse Hessian is calculated by means of recursion. This
method allows finding the smallest saliency Si as follows:

Si =
w2
i

2[H−1]]i,i
(10)

where [H−1]i,i is the (i, i)th element of the inverse Hessian matrix and wi repre-
sent the ith element of the vector θ containing the network weights. The saliency
identifies the quality of the connection between the various network units. This
methodology allows verifying the state of the saliency iteratively. If the saliency
Si is much smaller than the mean-square error, then some synaptic weights are
deleted and the remaining ones are updated. The computation stops when no
more weights can be removed from the network without a large increase of the
mean-square error. Once the new weights are given, we re-validated both result-
ing pruned NAR and NARMA.

Through the same methodology used in the first validation phase, we pro-
ceeded to the final networks validation using the new weights. The resulting
NSSE error indexes for both ANNs are illustrated in the column NSSE after fi-
nal validation in Table 1. NSSE error indexes are 1.24×10+3 and 1.22×10+3 for
NAR and NARMA, respectively. In both cases, the new NSSE values are lower
than the ones given after the first network validation. Thus, the optimization
for both ANNs succeeded. The resulting NAR with 4 regressors and NARMA
with 2 regressors are trained and validated. Hence, they are ready to forecast
GHI values in short-term time-periods and their results will be discussed in next
Section 4.
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4 Results on GHI forecast

The purpose of our work is to predict GHI in short time windows, i.e. 15 min-
utes. This is the minimum time interval on which many services for smart grid
management work (e.g. Demand/Response [40]). However, we moved further
predicting also GHI up to next two hours (again with 15 min time intervals). As
described in Section 3, we implemented two Non-linear Autoregressive Neural
Networks, i) NAR with 4 regressors and ii) NARMA with 2 regressors, that ex-
ploit the dataset described in Section 3. In this section, we present the obtained
results and we also compare and discuss the two different architectures.

To evaluate the performance of our networks, we compare the results of our
predictions with real measured values. To achieve this, we used a set of indicators
introduced by Gueymard et al. [15] and briefly presented in the following. Root
Mean Square Difference (RMSD) represents the standard deviation of differ-
ences between predicted and observed values. Mean Absolute Difference (MAD)
represents a measure of statistical dispersion obtained by the average absolute
difference of two independent values drawn from a probability distribution. Mean
Bias Difference (MBD) measures the average squares of errors between predicted
and measured values. Coefficient of determination (r2) represents the proportion
between the variance and the predicted variable. All these values are expressed
in percentage. Finally, we also considered two other indicators to evaluate the
overall network performance: Willmotts Index of Agreement (WIA) and Legat-
ess Coefficient of Efficiency (LCE). WIA represents the standardized measure
of the degree of model prediction error [50]. LCE is the ratio between the mean
square error and the variance in the observed data [24].

Fig. 4 and Fig. 5 show the results of predictions given by proposed NAR
and NARMA compared with real measured values sampled by weather station
(dashed and continuous lines, respectively). These results include predictions
with eight different time-steps, from k = 1 (i.e. next 15 min) to k = 8 (i.e
next 120 min). Both cases refer to the first seven days of June 2013. Prediction
trends of both architectures are very similar. Indeed, they follow with a good
accuracy the real meteorological trends: i) clear sky, ii) cloudy and iii) rainy
conditions, especially for 1 ≤ k ≤ 3. Instead for k > 3, the prediction accuracy
decreases. These aspects are better highlighted by Table 2 that reports the results
of GHI predictions in terms of performance indicators considering the whole
2013, which is our validation-set for both architecture. These indexes highlight
that the prediction performance worsens by increasing the predictive k-steps.
Indeed, GHI predictions for high values of k has a higher error compared with
real measurements. In both cases, the analysis of indexes highlights that the
best GHI predictions are given with smaller time intervals. For example, MAD
reveals that the forecast error grows as the prediction step k increases. Indeed, for
k = 1, the error is about 12.96% and 12.81% for NAR and NARMA, respectively.
Whilst for k = 8, the error exceeds the 55%. Also, RMSD has a similar trend.
A good performance of r2 is given when its values are closer to 1. In both cases,
this happens for lower k values. For k = 1 and k = 2, r2 is over 0.92 for both
ANNs. For k ≥ 4, it decreases down to about 0.70. This trend is also confirmed
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) k=5 (f) k=6

(g) k=7 (h) k=8

Fig. 4. NAR GHI prediction for 1 ≤ k ≤ 8 (June 2013)
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) k=5 (f) k=6

(g) k=7 (h) k=8

Fig. 5. NARMA GHI prediction for 1 ≤ k ≤ 8 (June 2013)
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by both LCE and WIA that highlight a decreasing of the overall performance
on high prediction steps. Under these circumstances, the performance indexes
for 1 ≤ k ≤ 3 are suitable to perform Photovoltaic energy estimations and
simulation results will be discussed in the next Section 5. With this configuration,
the maximum error rate for GHI prediction (expressed in MAD) is less than 25%.

Table 2. Performance Indicators for GHI predictions

NAR Neural Network NARMA Neural Network

Pred.

Steps

Time

[min]

MAD

[%]

MDB

[%]
r2

RMSD

[%]
LCE WIA

MAD

[%]

MDB

[%]
r2

RMSD

[%]
LCE WIA

k=1 15 12.94 0.16 0.95 35.31 0.89 0.99 12.80 0.36 0.95 35.03 0.90 0.99

k=2 30 19.47 0.81 0.92 46.80 0.84 0.98 19.15 1.06 0.92 46.07 0.84 0.98

k=3 45 24.87 1.80 0.89 54.41 0.80 0.97 24.67 2.23 0.89 53.65 0.80 0.97

k=4 60 30.16 3.06 0.86 61.05 0.76 0.96 30.23 4.09 0.86 60.24 0.76 0.96

k=5 75 35.67 4.77 0.83 67.29 0.71 0.95 36.35 6.86 0.83 66.82 0.71 0.95

k=6 105 41.78 7.23 0.79 73.93 0.66 0.94 43.30 10.46 0.79 74.16 0.65 0.94

k=7 115 48.90 10.65 0.75 80.94 0.60 0.92 50.61 14.57 0.74 81.88 0.60 0.92

k=8 120 56.90 15.23 0.70 88.51 0.54 0.90 58.18 19.01 0.69 89.89 0.53 0.90

To train and validate the proposed ANNs, we run our simulations in a server
equipped with a CPU 2x Intel Xeon E5-2680 v3 2.50 GHz and 128 Gb of RAM.
Table 3 reports the execution time for both ANNs considering the three main
phases: i) ANN initialization before Pruning, ii) Pruning and iii) ANN initial-
ization after Pruning.

ANN initialization before Pruning refers to the computational time needed
to initialize ANNs with random values for the first training and validation. It
includes all the steps needed before carrying out the network pruning. As shown
in Table 3, NAR with 4 regressors needs about 1 min. Whilst, NARMA with 2
regressors needs about 2:30 min because its overall architecture is more complex
with respect to NAR; hence, it needs more computational resources. This is
clearly highlighted during the Pruning in Table 3, which refers to computational
time to evaluate and eliminate unnecessary weights in order to optimize ANNs.
This procedure takes around 1 hour for NAR and about 1:48 hour for NARMA.
Thus, the optimization process is almost doubled for NARMA with respect to
NAR. Finally, ANN initialization after Pruning is the time needed to train and
validate the optimized ANNs. As highlighted in Table 3, it dropped to 1:22 min
for NARMA with respect to the previous ANN initialization before Pruning.
Whilst, it is almost constant for NAR.

Once both ANNs are pruned, the computation time to provide GHI forecasts
varies between 14 and 21 seconds for 1 ≤ k ≤ 8. This enables possible future
applications where these ANNs are trained, validated and pruned on servers or
cluster systems, since these phases need more computational resources. Then,
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Table 3. Computation time for both NAR and NARMA

NAR NARMA

E
x
ec

u
ti

o
n

T
im

e

[h
h
:m

m
:s

s]

ANN initialization before Pruning 00:01:13 00:02:24

Pruning 01:04:12 01:47:58

ANN initialization

after Pruning
00:01:07 00:01:22

Total 01:06:32 01:51:44
P

re
d
ic

ti
o
n

st
ep

k = 1 00:00:14 00:00:14

k = 2 00:00:13 00:00:14

k = 3 00:00:14 00:00:14

k = 4 00:00:16 00:00:18

k = 5 00:00:18 00:00:16

k = 6 00:00:19 00:00:19

k = 7 00:00:19 00:00:20

k = 8 00:00:20 00:00:21

the optimized ANNs can be deployed on embedded devices to provide GHI fore-
cast. In a smart grid scenario, examples of application that can benefit from
this forecast are: i) energy dispatching and load balancing [48], ii) battery man-
agement system [36], iii) Demand/Response services [40] and iv) vehicle-to-grid
applications [37], [52].

5 PV energy estimation

As already discussed in Section 4, the proposed ANNs forecast GHI in short-
term time windows with a good accuracy. This allows estimating in advance
energy produced by PV systems. To achieve this, we exploited the PV energy
simulator (PVsim) presented in [6] that takes as input the GHI forecast resulting
by both NAR and NARMA. The combination of both ANNs and PVsim unlocks
development of novel services and control policies for a better management of
future smart grids [40] that can also be tested and validated exploiting the
methodology in [4].

PVsim is a GIS software infrastructure that simulates PV production in real-
sky conditions. The inputs for these simulations are i) a Digital Surface Model
(DSM) and ii) GHI trends. DSM is a digital elevation model that represents
terrain elevation including all objects on it (i.e. buildings). It is used by PVsim to
identify rooftops and to simulate the evolution of shadows in clear-sky conditions
during the day. Then, this is combined with GHI trends to simulate solar incident
radiation and, consequently, PV production in real-sky conditions with a time-
resolution of 15 minutes. In a default configuration, PVsim retrieves real GHI
trends from a weather station in our University Campus. To forecast PV energy
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production in short-term time intervals, we interpose our ANNs between weather
station’s data-source and PVsim. So that, both ANNs get the last real GHI
measurements from the weather station and provide the resulting GHI forecast
to PVsim.

As mentioned in Section 4, results of our ANNs for 1 ≤ k ≤ 3 on GHI fore-
cast are suitable to perform PV energy estimations. Hereafter, we present results
obtained for these three time intervals, i.e. next 15, 30 and 45 minutes. To eval-
uate the error rate, we compared PVsim results of GHI forecast trends given by
NAR and NARMA with those of real GHI trends retrieved by weather station.
Fig. 6 shows PVsim results for three significant days in June 2013 with different
meteorological conditions: i) sunny, ii) cloudy and iii) rainy. Blue continuous-line
represents simulations given by real GHI trends, red dashed-line given by NAR
GHI trends and green dashed-dotted-line given by NARMA GHI trends. As
shown in Fig. 6, best performance is achieved when PVsim gets as input results
of GHI trends from both ANNs with k = 1. This is also confirmed by perfor-
mance indicators reported in Table 4 that considers the whole 2013. Indeed, the
accuracy of PV energy estimations decreases by increasing the prediction step k.
Regarding PVsim simulations preformed with NAR GHI trends, MAD increases
from 10.31% to 19.22% for k = 1 and k = 3, respectively. Also RMSD has a sim-
ilar trend, increasing from 27.96% to 44.65%. MDB varies from −0.61 to −2.65.
r2 for k = 1 is equal to 0.97. Whilst, the error increases with an r2 = 0.92 for
k = 3. Finally, LCE varies from 0.92 to 0.84 and WIA decreases from 0.99 to
0.97. Similar trends are achieved by PVsim simulations preformed with NARMA
GHI trends. MAD increases from 10.11% for k = 1 to 18.47% for k = 3. MDB
is −0.17 for k = 1, −0.74 for k = 2 and −1.55 for k = 3. r2 varies from 0.97 to
0.92. RMSD rises from 27.86% to 43.97%. Finally, LCE varies from 0.91 to 0.85
and WIA decreases from 0.99 to 0.98.

Table 4. Performance Indicator for PV simulation with NAR and NARMA

NAR Neural Network NARMA Neural Network

Pred.
Steps

Time
[min]

MAD
[%]

MDB
[%]

r2
RMSD

[%]
LCE WIA

MAD
[%]

MDB
[%]

r2
RMSD

[%]
LCE WIA

k=1 15 10.31 -0.61 0.97 27.96 0.92 0.99 10.11 -0.17 0.97 27.86 0.91 0.99

k=2 30 15.45 -1.58 0.94 38.15 0.87 0.98 14.93 -0.74 0.94 37.66 0.88 0.98

k=3 45 19.22 -2.65 0.92 44.65 0.84 0.97 18.47 -1.55 0.92 43.97 0.85 0.98

A comparison of these performance indicators highlights that NARMA GHI
trends give slightly better PV energy estimations than NAR GHI trends. We can
assert that both ANNs are able to simulate GHI trends in short-term periods
with a good accuracy. This is also confirmed when we use ANNs’ results to
estimate PV energy production.
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(a) k=1

(b) k=2

(c) k=3

Fig. 6. Simulations of PV energy production given by real NAR and NARMA GHI
trends for 1 ≤ k ≤ 3 (June 2013)
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6 Conclusions

In this paper, we presented a methodology to implement two artificial neural
networks for forecasting solar radiation in short-term time periods. In a smart
grid scenario, this forecast is needed to estimate in advance the energy production
of renewable energy sources enabling novel control strategies and services for grid
management, such as Demand/Response policies [40].

The proposed ANNs implement two non-linear autoregressive neural net-
works, NAR and NARMA respectively, that exploit time-series data. We also
analyzed their accuracy by comparing the obtained results with real values of
solar radiation sampled by a real weather station. This analysis highlighted an
overall good performance especially for a time horizon from future 15 to 120 min-
utes. We discussed strengths and weaknesses of both architectures, from both
neural and computational viewpoints. Then, the results of these ANNs have
been given as input to a Photovoltaic simulator (PVsim) [6] to estimate the
energy production of Photovoltaic systems. The accuracy of these results is also
acceptable especially for time horizon from future 15 to 45 minutes.

As future work, we will apply these ANNs together with PVsim to test ser-
vices for smart grid management in a distributed test-bed environment, as de-
picted in [5].
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