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A guiding vector field algorithm for path following
control of nonholonomic mobile robots

Yuri A. Kapitanyuk, Anton V. Proskurnikov and Ming Cao

Abstract—In this paper we propose an algorithm for path-
following control of the nonholonomic mobile robot based on the
idea of the guiding vector field (GVF). The desired path may be
an arbitrary smooth curve in its implicit form, that is, a level
set of a predefined smooth function. Using this function and the
robot’s kinematic model, we design a GVF, whose integral curves
converge to the trajectory. A nonlinear motion controller is then
proposed which steers the robot along such an integral curve,
bringing it to the desired path. We establish global convergence
conditions for our algorithm and demonstrate its applicability
and performance by experiments with wheeled robots.

Index Terms—Path following, vector field guidance, mobile
robot, motion control, nonlinear systems

I. INTRODUCTION

Many applications in industrial and mobile robots are built
upon the functionality of following accurately a predefined
geometric path [1], [2]. Path following is one of the central
problems in automatic guidance of mobile robots, such as
aerial vehicles [3], underwater [4] and surface [5] marine
crafts, wheeled ground robots and autonomous cars [6], [7].
Although the mathematical models of these robots may differ,
the principles of their path following control are similar and
can be classified in several major categories.

One approach to steering to the desired path is to fix its
time-parametrization; the path is thus treated as a function of
time or, equivalently, the trajectory of some reference point.
Path steering is then reduced to the reference point tracking
problem that has been extensively studied in control theory
and solved for a very broad class of nonlinear systems [8], [9].
An obvious advantage of the trajectory tracking approach is
its applicability to a broad range of paths that can be e.g. non-
smooth or self-intersecting. However, this method has unavoid-
able fundamental limitations, especially when dealing with
general nonlinear systems. As shown in [10], unstable zero
dynamics generally make it impossible to track a reference
trajectory with arbitrary predefined accuracy; more precisely,
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the integral tracking error is uniformly positive independent
of the controller design. Furthermore, in practice the robot’s
motion along the trajectory can be quite “irregular” due to
its oscillations around the reference point. It is impossible to
guarantee either path following at a precisely constant speed,
or even the motion with a perfectly fixed direction. Attempting
to keep close to the reference point, the robot may “overtake”
it due to unpredictable disturbances and then turn back.

As has been clearly illustrated in the influential paper [11],
these performance limitations of trajectory tracking can be
removed by carefully designed path following algorithms.
Unlike the tracking approach, path following control treats
the path as a geometric curve rather than a function of
time, dealing with its implicit equations or some time-free
parametrization. The algorithm thus becomes “flexible to use
a timing law as an additional control variable” [11]; this
additional degree of freedom allows to maintain a constant
forward speed or any other desired speed profile, which is
extremely important e.g. for aerial vehicles, where the lifting
force depends on the robot’s speed. The dynamic controller,
maintaining the longitudinal speed, is usually separated from
the “geometric” controller, steering the robot to the desired
path.

A widely used approach to path-following, originally pro-
posed for car-like wheeled robots [6], [12], assumes the
existence of the projection point, that is, the closest point
on a path, and the robot’s capability to measure the distance
to it (sometimes referred to as the “cross-track error”). The
robot’s mathematical model is represented in the Serret-Frenet
frame, consisting of the tangent and normal vectors to the
trajectory at the projection point. This representation allows
to design efficient path following controllers for autonomous
wheeled vehicles [6], [7], [12] that eliminate the cross-track
error and maintain the desired vehicle’s speed along the path.
Further development of this approach leads to algorithms for
the control of complex unmanned vehicles such as cars with
multiple trailers [13] and agricultural tractors [14]. Projection-
based sliding mode algorithms [7], [14] are capable to cope
with uncertainties, caused by the non-trivial geometry of the
path, lateral drift of the vehicle and actuator saturations.

The necessity to measure the distance to the track imposes
a number of limitations on the path-following algorithm. Even
if the nearest point is unique, the robot should either be
equipped with special sensors [7] or solve real-time opti-
mization problems to find the cross-track error. In general,
the projection point cannot be uniquely determined when e.g.
the robot passes a self-intersection point of the path or its
position is far from the desired trajectory. A possible way
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to avoid these difficulties has been suggested in [15] and is
referred to as the “virtual target” approach. The Serret-Frenet
frame, assigned to the projection point in the algorithm from
[6], [12], can be considered as the body frame of a virtual
target vehicle to be tracked by the real robot. A modification
of this approach, offered in [15], allows the virtual target
to have its own dynamics, taken as one of the controller’s
design parameters. The design from [15] is based on the path
following controller from [12], using the model representation
in the Serret-Frenet frame and taking the geometry of the
path into account. However, the controller from [15] implicitly
involves target tracking since the frame has its own dynamics.
Avoiding the projection problem, the virtual target approach
thus inherits disadvantages of the usual target tracking. In
presence of uncertainties the robot may slow down and turn
back in order to trace the target’s position [3].

A guidance strategy of a human helmsman inspired another
path following algorithm, referred to as the line-of-sight (LOS)
method [3], [5], [16] which is primarily used for air and marine
crafts. Maintaining the desired speed of the robot, the LOS
algorithm steers its heading along the LOS vector which starts
at the robot’s center of gravity and ends at the target point.
This target is located ahead of the robot either on the path
[3] or on the line, tangent to the path at the projection point
[5]. Unlike the virtual target approach, the target is always
chosen at a fixed prescribed distance from the robot, referred
to as the lookahead distance. The maneuvering characteristics
substantially depend on the lookahead distance: the shorter
the distance is chosen, the more “aggressively” it steers. A
thorough mathematical examination of the LOS method has
been carried out in the recent paper [5], establishing the
uniform semi-global exponential stability (USGES) property.

Differential-geometric methods for invariant set stabilization
[8], [9], [17] have given rise to a broad class of “set-
based” [18] path following algorithms. Treating the path as
a geometric set, the algorithm is designed to make it invariant
and attractive (globally or locally). Typically the path is
considered as a set where some (nonlinear) output of the
system vanishes, and thus the problem of its stabilization boils
down to the output regulation problem. To solve it, various
linearization techniques have been proposed [17], [19]–[25].
For stabilization of a closed strictly convex curve, an elegant
passivity-based method has been established in [18].

In this paper we develop a path following strategy, based
on the idea of reference vector field. Vector field algorithms
are widely used in collision-free navigation and extremum
seeking problems [26]–[29]; their efficiency in path following
problems has been recently demonstrated in [3], [30]–[32].
A vector field is designed such that its integral curves ap-
proach the path asymptotically. Steering the robot along the
integral curves, the control algorithm drives it to the desired
path. Unlike many path following algorithms that guarantee
convergence only in a sufficiently small vicinity of the desired
path, the vector field algorithm guarantees convergence of any
trajectory, which does not encounter the “critical” points where
the vector field is degenerate. In particular, in any invariant
domain without critical points the convergence to the path can
be proved.

Fig. 1. The structure of motion control systems

For holonomic robots described by a single or double inte-
grator model, a general vector-field algorithm for navigation
along a general smooth curve in an n-dimensional space has
been discussed in [33]. However, for more realistic nonholo-
nomic vehicles the vector-field algorithms have been studied
mainly for straight lines and circular paths [30], [31], [34],
where they demonstrate better, in several aspects, performance
compared to other approaches [3]. Unlike [3], [30], [31], in
this paper we propose and analyze rigorously a vector-field
algorithm for guidance of a general nonholonomic robot along
a general smooth planar path, given in its implicit form.

The paper is organized as follows. The path following prob-
lem is set up in Section II. In Section III we design the guiding
vector field and discuss the properties of its integral curves.
Section IV offers the path following control algorithm and
establishes its main properties. This algorithm is practically
validated by experiments with wheeled robots, as discussed in
Section V. In Section VI we give a detailed comparison of our
algorithm with several alternative approaches to path following
controllers design and also discuss its possible extensions.

II. PROBLEM SETUP

A widely used technique in path following control is to
decompose the controller into an “inner” and an “outer”
feedback loops [35]–[37] as illustrated in Fig. 1. The “inner”
dynamic controller is responsible for maintaining the vector
of generalized velocities (in the planar case, the longitudinal
speed and turn rate) by controlling the vector of forces and
moments. The design of the dynamic controller is based on
the robot’s mathematical model and may include rejection of
external disturbances, e.g. adaptive drift compensators [38].
When the dynamic controller is sufficiently fast and precise,
one may consider the speed and turn rate to be the new control
inputs, describing thus the robot with a simpler kinematic
model. The path following algorithm is typically implemented
in the “outer” kinematic controller, steering the simplified
kinematic model to the prescribed path.

The kinematic model of a mobile robot can be holonomic
or nonholonomic. A holonomic robot is not restricted by
its angular orientation and able to move in any direction,
as exemplified by helicopters, wheeled robots with omni-
directional wheels [2] and fully actuated marine vessels at low
speeds [16]. For nonholonomic robots only some directions of
motion are possible. The simplest model of this type is the
unicycle, which can move only in the longitudinal direction
while the lateral motion is impossible. Examples of robots
that can be reduced under certain conditions to the unicycle-
type kinematics, include differentially driven wheeled mobile
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robots [13], [39], fixed wing aircraft [30], [31], [36], marine
vessels at cruise speeds [35] and car-like vehicles, whose rear
wheels are not steerable [13], [20], [39]. The most interesting
are unicycle models where the speed is restricted to be
sufficiently high, making it impossible to reduce the unicycle
to a holonomic model via the feedback linearization [40]. The
lift force of a fixed-wing UAV, the rudder’s yaw moment of
a marine craft and the turn rate of a car-like robot depend on
the longitudinal speed; at a low speed their manoeuvrability
is very limited.

A. The robot’s model
In this paper, we consider the unicycle-type model where

the longitudinal velocity ur > 0 is a predefined constant

˙̄r =

[
ẋ
ẏ

]
= urm̄(α) ∈ R2, m̄(α) =

[
cosα
sinα

]
,

α̇ = ω.

(1)

Here r̄ is the position of the robot’s center of gravity C in the
inertial Cartesian frame of reference 0XY , α is the robot’s
orientation in this frame and m̄(α) is the unit orientation vector
(see Fig. 2). The only control input to the system (1) is the
angular velocity ω, and hence the system is underactuated.

0
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y∗

ϕ(x, y) = ϕ(x∗, y∗)

Fig. 2. The robot orientation and level sets of the function ϕ(x, y)

B. The description of the desired path
The desired curvilinear path P is the zero set of a function

ϕ ∈ C2(R2 → R), i.e. it is described by the implicit equation

P ∆
= {(x, y) : ϕ(x, y) = 0} ⊂ R2. (2)

The same curve P may be represented in the implicit form
(2) in many ways. The principal restriction imposed by our
approach is regularity [17]: in some vicinity of P one has

n̄(x, y)
∆
= ∇ϕ(x, y) =

[
∂ϕ(x,y)
∂x ; ∂ϕ(x,y)

∂y

]>
6= 0. (3)

As illustrated in Fig. 2, the plane R2 is covered by the
disjoint level sets of the function ϕ, that is, the sets where
ϕ(x, y) = c = const. If (3) holds, then the vector n̄(x, y) is
the normal vector to the corresponding level set at the point
(x, y). The path P is one of the level sets, corresponding to
c = 0; the value ϕ(x(t), y(t)) can be considered as a (signed)
“distance” from the robot to the path (differing, as usual, from
the Euclidean distance), or the tracking error [17], [22]. More
generally, choosing an arbitrary strictly increasing function
ψ ∈ C1(R → R) with ψ(0) = 0 (and thus ψ(s)s > 0 for
any s 6= 0), one may define the tracking error as follows

e(x, y)
∆
= ψ[ϕ(x, y)] ∈ R. (4)

By definition, e = 0 if and only if (x, y) ∈ P . Our goal is
to design a path following algorithm, i.e. a causal feedback
law (x(·), y(·), α(·)) 7→ ω(·), which eliminates the tracking
error |e(t)| −−−→

t→∞
0, bringing thus the robot to the predefined

path P . Upon reaching the desired path, the algorithm should
“stabilize” the robot on the path, which means that the robot’s
heading is steered along the tangent vector to the path.

The mapping ψ(·) in (4) is a free parameter of the algo-
rithm. Formally one can get rid of this parameter, replacing
ϕ by the composition ψ ◦ ϕ. However, it is convenient to
distinguish between the path-defining function ϕ(x, y) and the
tracking error, depending on the choice of ψ(s). The path
representation is usually chosen as simple as possible: for
instance, dealing with a straight line, it is natural to choose
linear ϕ(x, y), while the circular path is naturally described
by ϕ(x, y) = (x − x0)2 + (y − y0)2. At the same time,
some mathematical properties of the algorithm, in particular,
the region where convergence of the algorithm is guaranteed,
depend on the way the tracking error is calculated. As will
be discussed, it may be convenient to choose ψ(·) bounded
with |ψ′(s)| −−−−→

|s|→∞
0, for instance, ψ(s) = arctan sp or

ψ(s) = |s|p sign s/(1 + |s|p) with p ≥ 1. The mentioned two
functions, as well as the simplest function ψ(s) = s satisfy
the condition, which is henceforth assumed to be valid

sup
u∈R

ψ′(ψ−1(u)) <∞. (5)

C. Technical assumptions

Henceforth the following three technical assumptions are
adopted, excluding some “pathological” situations. Our first
assumption enables one to use of the tracking error e(x, y) as a
“signed distance” to the path P and implies that the asymptotic
vanishing of the error e(r̄(t)) −−−→

t→∞
0 entails the convergence

to the path in the usual Euclidean metric1 dist(r̄(t),P)→ 0.

Assumption 1. For an arbitrary constant κ > 0 one has

inf{|e(r̄)| : dist(r̄,P) ≥ κ} > 0. (6)

Our second assumption provides the regularity condition (3)
in a sufficiently small vicinity of P .

1As usual, the distance from a point r̄0 to the path P A is dist(r̄0,P) =
inf{|r̄0 − r̄| : r̄ ∈ P}. More generally, the distance between sets A,B is
defined as dist(A,B) = inf{|r̄1 − r̄2| : r̄1 ∈ A, r̄2 ∈ B}.
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Assumption 2. The set of critical points, where n̄ vanishes,

C0
∆
= {(x, y) ∈ R2 : ∇ϕ(x, y) = 0},

is separated from P by a positive distance dist(C0,P) > 0.

In the most typical cases where either P is a closed curve
or C0 is compact, Assumption 2 boils down to the condition
C0 ∩ P = ∅. Our final assumption is similar in spirit to
Assumption 1 and guarantees that the asymptotic vanishing
of the normal vector n̄(r(t)) −−−→

t→∞
0 is possible only along a

trajectory, converging to C0, i.e. dist(r̄(t), C0)→ 0.

Assumption 3. For an arbitrary constant κ > 0 one has

inf{|n̄(r̄)| : dist(r̄, C0) ≥ κ} > 0. (7)

Assumption 3 implies the following useful technical lemma.

Lemma 1. Consider a Lipschitz vector-function r̄ : [0;∞)→
R2 such that r̄(t) does not converge to C0 as t → ∞,
that is, lim sup

t→∞
d(t) > 0 where d(t) = dist(r̄(t), C0). Then∫∞

0
|n̄(r̄(t))|pdt =∞ for any p > 0.

Proof: It can be easily noticed that d(·) is a Lipschitz
function, since as can be easily shown, |d(t1) − d(t2)| ≤
|r̄(t1)− r̄(t2)| ≤M |t1 − t2| ∀t1, t2 ≥ 0, where M > 0 is the
Lipschitz constant for r̄(·). Since lim sup

t→∞
d(t) > 0, a number

ε > 0 and a sequence tk →∞ exist such that d(tk) ≥ 2ε and,
therefore, d(t) ≥ ε for t ∈ ∆k = [tk; tk + M−1ε]. Passing
to subsequences, one may assume without loss of generality
that tk +M−1ε < tk+1 and thus the intervals ∆k are disjoint.
Assumption 3 implies that for sufficiently small c > 0 one has
|n̄(r̄(t))| ≥ c whenever t ∈ ∆k. Hence

∫
∆k
|n̄(r̄(t))|pdt ≥

εM−1cp and therefore
∫∞

0
|n̄(r̄(t))|p dt =∞.

III. THE GUIDING VECTOR FIELD AND ITS PROPERTIES

In this section, we construct the Guiding Vector Field (GVF)
to be used in the path following control algorithm. We show
that the integral curves of this field lead either to the desired
path P or to the critical set C0. Furthermore, we give efficient
criteria, ensuring that the integral curves of the second type
are either absent or cover a set of zero measure on R2.

Besides the normal vector n̄(x, y) = ∇ϕ(x, y), at each point
we consider the tangent vector to the level set

τ̄(x, y) = En̄(x, y), E =

[
0 1
−1 0

]
. (8)

If the point is regular (3), the basis (τ̄ , n̄) is right-handed
oriented2 (Fig. 2). Our goal is to find such a vector field
v̄(x, y), where the absolute tracking error |e| is decreasing
along each of its integral curves (unless e = 0), and the curves
starting on P do not leave it. We define this vector field by

v̄(x, y)
∆
= τ̄(x, y)− kne(x, y)n̄(x, y). (9)

The integral curves of the vector field (9) correspond to the
trajectories of the autonomous differential equation

d

dt
ξ̄(t) = v̄(ξ̄(t)) ∈ R2, t ≥ 0. (10)

2In the subsequent constructions, one may replace τ̄ by −τ̄ and E by −E,
which leads the change of the path following direction.

A. Properties of the integral curves

We notice first that the vector field v̄ is C1-smooth, which
implies the local existence and uniqueness of solutions of the
system (10). Obviously, any point (x0, y0) ∈ C0 corresponds to
the equilibrium of (10), which is a trivial single-point integral
curve. The uniqueness property implies that non-constant
integral curves are free of the critical points; the corresponding
solutions, however, may converge to C0 asymptotically. In
general, a solution may also escape to infinity in finite time.

The following lemma establishes the principal dichotomy
property of the integral curves, stating that any curve leads
either to the desired path P or to the critical set C0.

Lemma 2. Let ξ̄(t), t ∈ [0; t∗) where t∗ ≤ ∞ be a maximally
prolonged solution to (10). Then two situations are possible

1) either dist(ξ̄(t),P) −−−→
t→t∗

0, that is, the solution con-
verges to the desired path,

2) or t∗ =∞ and dist(ξ̄(t), C0) −−−→
t→∞

0.

Proof: The proof is based on the Lyapunov function

V (x, y) =
1

2
e(x, y)2 ≥ 0. (11)

A straightforward computation shows that ∇e(ξ̄) =
ψ′(ϕ(ξ̄))∇ϕ(ξ̄) = ψ′(ψ−1(e(ξ̄)))|n̄(ξ̄)| and hence V is non-
increasing along the trajectory ξ̄(t) since its derivative is

V̇ (ξ̄) = e(ξ̄)ψ′(ψ−1(e(ξ̄)))n̄>(ξ̄)v̄(ξ̄)
(9)
=

(9)
= −kne(ξ̄)2ψ′(ψ−1(e(ξ̄)))|n̄(ξ̄)|2 ≤ 0.

(12)

In particular, there exists the limit e∗ = lim
t→t∗
|e(ξ̄(t))| ≥ 0.

If e∗ = 0 then, due to Assumption 1, statement 1) holds:
the solution converges to P . Suppose now that e∗ > 0. We
are going to prove that statement 2) is valid. Notice first
that ψ′(ψ−1(e(ξ̄(t))) is uniformly bounded and positive; the
same holds for V (ξ̄(t)). The equality (12) thus implies that∫ t∗

0
|n̄(ξ̄(t))|2dt < ∞. Since |v|2 = (1 + k2

ne
2)|n̄|2, (10)

implies that
∫ t∗

0
| ˙̄ξ(t))|2dt < ∞. If one had t∗ < ∞, the

Cauchy-Schwartz inequality would imply that

|ξ̄(T )−ξ̄(0)|2 =

(∫ T

0

| ˙̄ξ(t)|dt

)2

≤ t∗
∫ t∗

0

| ˙̄ξ(t)|2dt ∀T < t∗,

which contradicts the assumption that ξ̄(t) is a maximally
prolonged solution, escaping to infinity as t→ t∗. Therefore,
t∗ =∞; statement 2 now follows from Lemma 1.

A natural question arises on how “large” the set of trajecto-
ries is, converging to the critical set C0. In many practical ex-
amples, this set is finite. This holds, in particular if ϕ(x, y) 6= 0
when |x|+ |y| is sufficiently large and its Hessian matrix

H(x, y) = H(x, y)> =

[
∂2

∂x2ϕ(x, y) ∂2

∂x∂yϕ(x, y)
∂2

∂x∂yϕ(x, y) ∂2

∂y2ϕ(x, y)

]
(13)

is sign-definite at any point (x0, y0) ∈ C0, i.e. either
H(x0, y0) > 0 or H(x0, y0) < 0. In this situation C0 is
bounded (and thus compact) and all its points are isolated,
which implies that C0 is finite. If the set C0 is finite, the
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convergence dist(ξ̄(t), C0) −−−→
t→∞

0, obviously, means that the

solution converges to a critical point: ξ̄∗
∆
= lim
t→∞

ξ̄(t) ∈ C0.

Definition 1. Let ξ̄∗ ∈ C0 be an equilibrium point of (10).
The stable manifold of ξ̄∗, denoted by W (ξ̄∗), is the set of all
points ξ̄0 such that the solution of (10), starting at ξ(0) = ξ0,
exists for all t ≥ 0 and ξ̄∗

∆
= lim
t→∞

ξ̄(t).

We will use the following corollary of the central manifold
theorem (see e.g. Theorem 4.1 and Proposition 4.1 in [41]).

Lemma 3. If both eigenvalues of the Jacobian matrix J(ξ̄∗) =
∂
∂ξ̄
v̄(ξ̄∗) are strictly unstable Reλ1,2J(ξ̄∗) > 0, then W (ξ̄∗) =

{ξ̄∗}. If J(ξ̄∗) has at least one strictly unstable eigenvalue,
then W (ξ̄) is a set of zero measure.

Lemma 3 in turn has the following important corollary.

Corollary 1. Let the set C0 be finite and for any of its points
ξ̄∗ ∈ C0 the matrix e(ξ̄∗)H(ξ̄∗) has a negative3 eigenvalue.
Then the maximally prolonged solution of (10) (possibly,
existing on finite interval only) converges to P for almost all
initial conditions ξ̄(0). If e(ξ̄∗)H(ξ̄∗) < 0 for any ξ∗ ∈ C0,
this convergence takes place whenever ξ̄(0) 6∈ C0.

Proof: A straightforward computation shows that if
∇ϕ(ξ̄∗) = 0 then J(ξ̄∗) = (E − kne(ξ̄∗))H(ξ̄∗) and

TrJ(ξ̄∗) = −kne(ξ̄∗) TrH(ξ̄∗),

det J(ξ̄∗) = (1 + k2
ne(ξ̄∗)

2) detH(ξ̄∗).

It can be easily shown that a symmetric 2 × 2 matrix M
is non-negatively definite M ≥ 0 if and only detM =
λ1(M)λ2(M) ≥ 0 and TrM = λ1(M) + λ2(M) ≥ 0.
Here λi(M) stand for the eigenvalues of M . Since eH(e)
is not non-negatively definite, either det J < 0 or Tr J >
0,det J ≥ 0. In both situations, the matrix J(ξ̄∗) has at least
one strictly unstable eigenvalue. Furthermore, if eH(e) < 0
then TrJ > 0,det J > 0, i.e. both eigenvalues of J are strictly
unstable. The statement now follows from Lemma 3.

B. The GVF and the “ideal” motion of the robot

The main idea of the path following controller, designed in
the next section, is to steer the robot to the integral curve of
the field (9). In other words, when the robot is passing a point
r̄ = (x, y) ∈ R2, its desired orientation is

m̄d(x, y) =
1

|v̄(x, y)|
v̄(x, y). (14)

The field of unit vectors m̄d(x, y), henceforth referred to as
the guiding vector field (GVF), is defined at any regular point
(x, y), where n̄ 6= 0 and thus |v̄| =

√
1 + k2

ne
2|n̄| 6= 0. Fig. 2

illustrates the relation between the vectors r̄, m̄, τ̄ , n̄, v̄, m̄d.
Consider the desired motion of the robot, “ideally” oriented

along the integral curves of the GVF at any point. Its position
vector r̄(t) obeys the differential equation

˙̄r(t) = urm̄d(r̄(t)), t ≥ 0. (15)

3Recall that H is a symmetric matrix, so its eigenvalues are real.

The following lemma is a dual of Lemma 2.

Lemma 4. Let r̄(t), t ∈ [0; t∗) where t∗ ≤ ∞ be a maximally
prolonged solution to (15). Then two situations are possible

1) either dist(r̄(t), C0) −−−→
t→t∗

0,

2) or t∗ =∞ and dist(r̄(t),P) −−−→
t→∞

0 that is, the solution
converges to the desired path.

Proof: If t∗ <∞ then the limit r̄∗ = r̄(t∗− 0) = r̄(0) +∫ t∗
0
m̄d(r̄(t))dt exists and, since the solution is maximally

prolonged, one obviously has |n̄(r̄∗)| = 0, i.e. r̄∗ ∈ C0
and statement 1 holds. The case of t∗ = ∞ is considered
similar to the proof of Lemma 2. Introducing the Lyapunov
function (11), its derivative is shown to be

V̇ (r̄) = ure(r̄)ψ
′(ψ−1(e(r̄)))n̄>(r̄)m̄d(r̄)

(9)
=

(9)
= − urkne(r̄)

2√
1 + k2

ne(r̄)
2
ψ′(ψ−1(e(r̄)))︸ ︷︷ ︸

Ψ(e(r̄))

|n̄(r̄)| ≤ 0. (16)

There exists the limit e∗ = limt→∞ |e(r̄(t))|. If e∗ = 0,
statement 2 holds thanks to Assumption 1. Otherwise, e∗ > 0
and Ψ(e(r̄(t))) is uniformly positive. In view of (16), one has∫∞

0
|n̄(r̄(t))|dt <∞. Lemma 1 entails now statement 1.

Remark 1. The equation (16) implies that V̇ ≈ −knV |n̄|θ(e),
where θ(e) → θ0 > 0 as e → 0. Assumptions 2 and 3 imply
that |n̄(r)| ≥ κ as e ≈ 0. Therefore, the desired path P
is locally exponentially attractive: if |e(0)| ≤ ε, where ε is
sufficiently small, then |e(t)| ≤ e−knurβt|e(0)|, where β > 0
is a constant, depending on ψ(·) and the normal vector n̄(x, y)
in the vicinity of P . The coefficient kn corresponds to for the
attraction to P . In the limit case kn = 0, the path P is not
asymptotically stable; the higher kn > 0 one chooses, the
stronger is the attraction to the path P in its small vicinity.

Obviously, the integral curves of (15) are in one-to-one
correspondence with non-equilibrium integral curves of (10).
Corollary 1 can now be reformulated as follows.

Corollary 2. Let the set C0 be finite and for any of its points
ξ̄∗ ∈ C0, the matrix e(ξ̄∗)H(ξ̄∗) has a negative eigenvalue.
Then for almost all initial conditions r̄(0) the solutions of (15)
can be prolonged up to∞ and converge to P . If e(ξ̄∗)H(ξ̄∗) <
0 for any ξ∗ ∈ C0, this holds for any r̄(0) 6∈ C0.

Note that the conditions of Corollary 2 always hold for
strictly convex function ϕ(x, y) (that is, H(x, y) > 0 at any
point) since at the critical point (if it exists) the function ϕ
attains its global minimum. Therefore, at this point (x∗, y∗)
one has ϕ(x∗, y∗) < 0 and thus e < 0, which implies that
eH < 0. This is exemplified by the function

ϕ(x, y) =
(x− x0)2

a2
+

(y − y0)2

b2
− 1,

defining the elliptic path. Fig. 3 demonstrates the correspond-
ing GVF with the unique critical point at the center of ellipse.
This critical point is “repulsive” and no trajectory of (15)
converges to it. Fig. 4 illustrates the GVF for the Cassini oval,
being the zero level set of the non-convex function

(x−x0)4 + (y− y0)4− 2a2((x−x0)2− (y− y0)2) +a4− b4.
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Fig. 3. The GVF for an elliptic path
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Fig. 4. The GVF for a Cassini oval.

The corresponding set C0 consists of two “locus points”
(x0 ± a, y0) and the “center” (x0, y0). At all these points
e < 0. At the locus points one has H > 0, whereas at the
center H has one positive and one negative eigenvalue, so the
robot potentially can be “trapped” at the center, but the set of
corresponding initial conditions has zero measure.

IV. THE PATH FOLLOWING CONTROLLER DESIGN

In this section, we design the controller, steering the robot
to the GVF (14). This controller uses the GVF m̄d(x, y) at
the current robot’s position and the function ωd(x, y, α), mea-
suring the GVF’s “rotation rate” along the robot’s trajectory.

A. Preliminaries

We start with the following technical lemma.

Lemma 5. Let m̄d(t) = m̄d(x(t), y(t)) stand for the GVF
along a trajectory of the robot. Then its derivative ˙̄md(t) is

ṁd(t) = −ωd(x(t), y(t), α(t))Em̄d(t), (17)

where ωd : R3 → R is continuous and uniquely determined
by the functions ϕ(·), ψ(·) and the constant kn from (9).

Proof: Differentiating the equality |m̄d(t)|2 = 1, one has
that ˙̄md(t)

>m̄d(t) = 0, that is, ˙̄md(t) ⊥ m̄d(t). Therefore,
the vector ˙̄md(t) is proportional to the unit vector Emd(t), so
that ˙̄md(t) = −ωd(t)Em̄d(t) and the scalar multiplier ωd(t)

can be found from ωd(t) = − ˙̄md(t)
>Em̄d(t). It remains

to prove that ωd(t) in fact depends only on the trajectory
(x(t), y(t), α(t)), and this dependence is continuous.

Introducing the vector field (9) v̄(t) = v̄(x(t), y(t)) and the
tracking error e(t) = e(x(t), y(t)) along the robot’s trajectory,
a straightforward computation shows that

˙̄md =
d

dt

v̄

‖v̄‖
=

(
I2
‖v̄‖
− v̄v̄>

‖v̄‖3

)
˙̄v,

˙̄v = ur[E − kneI2]H(x, y)m̄(α)− knė n̄(x, y),

ė = urψ
′(ϕ(x, y)) n̄(x, y)>m̄(α).

(18)

Here I2 is the 2×2 identity matrix and H is the Hessian (13).
Since ϕ ∈ C2, ˙̄md and m̄d continuously depend on the triple
(x(t), y(t), α(t)), the same holds for ωd = − ˙̄m>d Em̄d.

To clarify the meaning of the function ωd, suppose for the
moment that the robot’s speed is ur = 1. If the robot is moving
strictly along the integral curves of the GVF, then ωd is the
signed curvature of the robot’s trajectory at its current position.
In general, ωd can be treated as the “desired” curvature of the
robot’s trajectory, which may differ from its real curvature.

B. The algorithm of GVF steering

As was discussed in the foregoing, the idea of the path
following algorithm is to steer the robot’s orientation along the
guiding vector field m̄d = m̄d(x, y). We introduce the directed
angle δ = δ(x, y, α) ∈ (−π;π] between m̄d and m̄ (see
Fig. 2). The function δ is thus defined at any point (x, y, α)
and C1-smooth at the points where m̄(α) 6= −m̄d(x, y).

The orientation vector’s derivative along the trajectory is

˙̄m(t) =
d

dt
m̄(α(t)) = ω(t)

[
− sinα(t)
cosα(t)

]
= −ω(t)Em̄(t).

(19)
On the other hand, m̄ may be decomposed (Fig. 2) as

m̄ = (cos δ)m̄d − (sin δ)Em̄d = [(cos δ)I2 − (sin δ)E]m̄d,
(20)

At any point where δ(t) < π and thus δ̇(t) exists, one obtains

−ωEm̄ (14)
= ˙̄m = −δ̇ [(sin δ)I2 + (cos δ)E]m̄d︸ ︷︷ ︸

=Em̄

+

+ [(cos δ)I2 − (sin δ)E] ˙̄md
(17)
= −δ̇Em̄−

− ωd [(cos δ)I2 − (sin δ)E]Em̄d︸ ︷︷ ︸
=Em̄

= −(δ̇ + ωd)Em̄,

entailing the following principal relation between δ, ω and ωd

δ̇ = ω − ωd. (21)

Furthermore, at any time the following equality is valid

d

dt
sin δ = − d

dt
m̄>Em̄d = (ω − ωd) cos δ. (22)

When δ(t0) = π and ω(t)−ωd(t) ≤ 0 for t ≈ t0, equation (22)
entails that sin δ ≥ 0 and hence δ = π

2 + arcsin(sin δ) for t ∈
[t0; t0 +ε), where ε > 0 is sufficiently small. In this situation,



7

the function δ(x(t), y(t), α(t)) has the right derivative4 δ̇ =
D+δ, satisfying (21) as t ∈ [t0; t0 + ε).

We are now in a position to describe our path-following
algorithm, employing the GVF “rotation rate” ωd and the angle
of discrepancy between the GVF and the robot’s orientation δ

ω(t) = ωd(x(t), y(t), α(t))− kδδ(x(t), y(t), α(t)). (23)

Here kδ > 0 is a constant, determining the convergence rate.
When δ(x(t), y(t), α(t)) < π, the equality (21) holds and

thus

δ̇ = ω − ωd = −kδδ. (24)

Furthermore, even for δ(x(0), y(0), α(0)) = π one has
ω − ωd = −kδδ < 0 as t ≈ t0 and hence (24) retains its
validity at t = 0, treating δ̇ as the right derivative D+f .
Thus, considering δ̇ as a new control input, the algorithm (21)
is equivalent to a very simple proportional controller (24),
providing, in particular, that δ(x(t), y(t), α(t)) < π ∀t > 0.

C. Local existence and convergence of the solutions

In this subsection we examine the properties of the solutions
of the closed-loop system (1), (23), rewritten as follows

ẋ(t) = ur cosα(t), ẏ(t) = ur sinα(t),

α̇(t) = ωd(x(t), y(t), α(t))− kδδ(x(t), y(t), α(t)).
(25)

The right-hand side of (25) is continuous at any point
(x0, y0, α0), where n̄(x0, y0) 6= 0 and δ0 = δ(x0, y0, α0) < π.
However, the discontinuity at the points where δ0 = π makes
the usual existence theorem [42] inapplicable. To avoid this
problem, we consider the equivalent “augmented” system

ẋ(t) = ur cosα(t), ẏ(t) = ur sinα(t),

α̇(t) = ωd(x(t), y(t), α(t))− kδδ∗(t),
δ̇∗(t) = −kδδ∗(t).

(26)

As was discussed in the previous subsection, any solution
of (25) satisfies (26) with δ∗(t) = δ(x(t), y(t), α(t)), and
vice versa: choosing a solution (x(t), y(t), α(t), δ∗(t)), where
δ∗(0) = δ(x(0), y(0), α(0)) ∈ (−π;π], one has δ∗(t) =
δ(x(t), y(t), z(t)) for any t ≥ 0 due to (24). Unlike (25), the
right-hand side of (26) is a C1-smooth function of (x, y, α, δ∗)
at any point where n̄(x, y) 6= 0. The standard existence and
uniqueness theorem [42] implies the following lemma.

Lemma 6. For any point ζ0 = (x0, y0, α0), such that
n̄(x0, y0) 6= 0, there exists the unique solution ζ(t) =
(x(t), y(t), α(t)) with ζ(0) = ζ0. Extending this solution to
the maximal existence interval [0; t∗), one either has t∗ =∞
or t∗ <∞ and (x(t), y(t)) −−−→

t→t∗
(x∗, y∗) ∈ C0.

Proof: Reducing the Cauchy problem for the closed-loop
system (25) to the Cauchy problem for (26), one shows that the
solution exists locally and is unique [42]. Let its maximally

4By definition, the right derivative of a function f(t) at t = t0 (written
f ′(t0 + 0) or D+f(t0)) is defined by D+f(t0) = lim

t→t0+0

f(t)−f(t0)
t−t0

.

prolongable solution (x(t), y(t), α(t)) be defined on ∆∗
∆
=

[0; t∗) with t∗ <∞. Since | ˙̄r(t)| = ur, the limit exists

r̄∗ = lim
t→t∗

r̄(t) = r̄(0) +

∫ t∗

0

˙̄r(t)dt.

We are going to show that r̄∗ ∈ C0, i.e. n̄(r̄∗) = 0. Suppose,
on the contrary, that |n̄(r̄∗)| > 0; therefore, |v̄(x(t), y(t))|
is uniformly positive on ∆∗. Using (18), this implies that
˙̄md(t), and hence ωd(x(t), y(t), α(t)) and ω(t) are uniformly

bounded on ∆∗. Thus there exists the finite limit

α∗ = lim
t→t∗

α(t) = α(0) +

∫ t∗

0

ω(t)dt,

enabling one to define the solution at t = t∗ and then to
prolong it to [t∗, t∗ + ε), i.e. the solution is not maximally
prolonged. This contradiction implies that n̄(r̄∗) = 0.

Note that if δ(0) = 0, that is, the robot was perfectly
oriented along the GVF at the starting moment, (21) implies
that δ(t) ≡ 0 so that the robot follows the integral curve of
the GVF. As was shown in Section III, in this “ideal” situation
the robot either approaches the desired path P or is driven to
one of the critical points. The latter situation is practically
impossible if the conditions of Corollary 2 are valid since the
set of integral curves, leading to the set C0, has zero measure.

One may consider (25) as a system with slow-fast dynam-
ics. Informally, the controller (24) provides the exponential
convergence of the robot to an integral curve of the GVF;
after this “fast” transient process, the robot “slowly” follows
this integral curve and approaches the desired trajectory,
unless it is “trapped” in a critical point. Ignoring the “fast
dynamics”, one may suppose that the statement of Lemma 4
remains valid for a general solution of the system (25). This
argument, however, is not mathematically rigorous. Recalling
the proofs of Lemmas 2 and 4, one may notice that the central
argument was the non-increasing property of the Lyapunov
function (11). Although the deviation of the robot from the
integral curve exponentially decreases due to (24), the non-
increasing property, in general, fails; as will be shown below,
even if the robot is positioned very close to the desired path,
the tracking error may increase. However, this effect does not
destroy the dichotomy property (any solution converges either
to P or to C0) under the following assumption, which usually
holds in practice, being valid e.g. if ϕ(·) is a polynomial.

Assumption 4. There exist θ ∈ (0; kδ) and C > 0 such that

|n̄(r̄)| ≤ Ceθ|r̄| as |r̄| → ∞. (27)

The latter condition can be relaxed in the case of a closed
path; however, we adopt it to consider both bounded and
unbounded paths in a unified way. Note that if ϕ(x, y) is a
polynomial function, then kδ > 0 can be arbitrarily small.

Henceforth all Assumptions 1-4 are supposed to be valid.
The following theorem, extending Lemma 4 to the case

where δ(0) 6= 0, is our first main result.

Theorem 1. For any maximally prolonged solution
(x(t), y(t), α(t)) of (25), defined for t ∈ [0; t∗), one of
the following statements holds:

1) either t∗ =∞ and dist(r̄(t),P) −−−→
t→∞

0, or
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2) dist(r̄(t), C0)→ 0 as t→ t∗.

In other words, for any initial condition the algorithm drives
the robot to either the desired path P or C0.

Proof: In the case where t∗ = ∞ statement 2 holds
due to Lemma 6. Suppose that t∗ = ∞. Differentiating the
function (11) along the trajectories, it can be shown that

V̇ = ureψ
′(ψ−1(e))n̄>m̄

(20)
=

(20)
= ureψ

′(ψ−1(e))n̄> [m̄d cos δ − Em̄d sin δ]
(14)
=

(14)
=

ureψ
′(ψ−1(e))

|v|
n̄> [v̄ cos δ − Ev̄ sin δ]

(9)
=

(9)
=
ureψ

′(ψ−1(e))√
1 + k2

ne
2
|n̄|(−kne cos δ + sin δ) =

= Φ(e)|n̄|(−kne cos δ + sin δ).

(28)

Here Φ(e) denotes the bounded, in view of (5), function

Φ(e)
∆
=
ureψ

′(ψ−1(e))√
1 + k2

ne
2

. (29)

Since | sin δ| ≤ |δ|, Assumption 4 entails that∫∞
0
|Φ(e(t))n̄(t) sin δ(t)| dt < ∞. Notice now that

(−Φ(e)e) ≤ 0 and cos δ(t) > 0 as t becomes sufficiently
large. Thus the integral I =

∫∞
0

(−eΦ(e)|n̄|) cos δ dt exists,
being either finite or equal to −∞. This implies, thanks
to (28), the existence of

∫∞
0
V̇ dt = lim

t→+∞
V (t) − V (0).

Since V ≥ 0, one has I > −∞ and therefore there exists the
limit e∗ = limt→∞ |e(x(t), y(t))|. If e∗ = 0, then statement 1
holds due to Assumption 1. Otherwise, eΦ(e) is uniformly
positive and thus, recalling that cos δ(t) → 1 as t → ∞,
one obtains that

∫∞
0
|n̄(x(t), y(t))|dt < ∞, which implies

statement 2 thanks to Lemma 1.

Corollary 3. If C0 = ∅, then for any initial condition the
solution of (25) is infinitely prolongable and the algorithm
solves the path following problem dist(r̄(t),P) −−−→

t→∞
0.

Corollary 3 is applicable to linear mappings ϕ(x, y) =
ax + by + c (with |a| + |b| 6= 0) and many other functions,
e.g. ϕ(x, y) = y + f(x). These functions, however, usually
correspond to unbounded desired curves, whereas for closed
paths the GVF m̄d is usually not globally defined.

The experiments show that under the assumptions of Corol-
lary 2 the robot always “evades” the finite set of critical
points and converges to the desired trajectory. This looks
very natural since after very fast transient dynamics the robot
“almost precisely” follows some integral curve, which leads
to P “almost surely”. We formulate the following hypothesis.

Hypothesis. Under the assumptions of Corollary 2, for
almost all initial conditions (x(0), y(0), α(0)) the robot’s
trajectory (x(t), y(t)) converges to the desired path P .

Whereas the proof of this hypothesis remains a challenging
problem, it is possible to guarantee the global existence of
the solutions and their convergence to the desired path in
some broad invariant set, free of the critical points. The
corresponding result, which does not rely on the assumptions
of Corollary 2, is established in the next subsection.

D. An invariant set, free of critical points
In this subsection we give a sufficient condition, guaran-

teeing that a solution of (25) does not converge to C0. This
criterion requires the initial condition (x(0), y(0), α(0)) to
belong to some invariant set, free of critical points. Similar
restrictions arise in most of the path following algorithms; for
example, in the projection-based algorithms the convergence
can be rigorously proved only in some region of attraction
where the projection to the desired curve is well defined [14].

Assumptions 1 and 2 imply the uniform positivity of the
error on C0, that is, the following inequality holds

ec = inf{|e(x, y)| : (x, y) ∈ C0} > 0. (30)

Consider the following set

M = {(x, y, α) : n̄ 6= 0, |δ| < arctan(knec), |e| < ec} .
(31)

Recall that kn is the constant parameter from (9) and δ =
δ(x, y, α) is the angle between the robot’s heading and the
vector field direction (see Fig. 2). By definition, M∩C0 = ∅.
The following lemma states that in factM is an invariant set,
i.e. any solution starting in M remains there.

Theorem 2. Any solution of (25), starting at
(x(0), y(0), α(0)) ∈ M, does not leave M, is infinitely
prolongable and satisfies the inequality

|e(t)| ≤ max{|e(0)|, k−1
n tan δ(0)} < ec. (32)

For such a solution, one has dist(r̄(t),P) −−−→
t→∞

0, i.e. the
algorithm (23) solves the path following problem in M.

Proof: Consider a solution (x(t), y(t), α(t)), starting at
(x(0), y(0), α(0)) ∈ M. Due to (24), one has |δ(t)| ≤
|δ(0)| < π

2 ∀t ≥ 0, and hence cos δ(t) > 0. By noticing that
Φ(e)e ≥ 0 and thus |Φ(e)| = Φ(e) sign e, one has

−V̇ (28)
= −ur|Φ(e)| sign e |n̄|(e cos δ + sin δ) =

= ur|Φ(e)||n̄|(|e|+ sign e tan δ) cos δ ≥
≥ ur|Φ(e)| |n̄|(|e| − | tan δ|) cos δ.

In particular, V̇ ≤ 0 whenever |e| ≥ | tan δ|.
Notice that if |e(t)| ≥ | tan δ(t)| for any t (where the solu-

tion exists), then, obviously |e(t)| ≤ |e(0)| and thus (32) holds.
Suppose now that |e(t0)| < | tan δ(t0)| at some t0 ≥ 0. We are
going to show that |e(t)| ≤ | tan δ(t0)| ≤ | tan δ(0)| for any
t ≥ t0. Indeed, had we |e(t1)| > | tan δ(t0)| at some point t1,
there would exist t∗ < t1 such that |e(t∗)| = | tan δ(t0)| and
|e(t)| > | tan δ(t0)| as t ∈ (t∗; t1]. Using (24), it can be easily
shown that | tan δ(t0)| ≥ | tan δ(t)| for t ≥ t0, and hence
|e(t)| > | tan δ(t)| is non-increasing when t ∈ (t∗; t1], which
contradicts the assumption that |e(t1)| > | tan δ(t0)| = |e(t∗)|.
We have proved that in both cases 1) and 2) the inequality (32)
holds at any point where the solution exists; thus the solution
stays in M. By definition (30) of ec, the vector r̄(t) cannot
converge to C0 in finite or infinite time, i.e. for the considered
solution the statement in Theorem 1 holds.

Remark 2. The condition (x(0), y(0), α(0)) ∈ M restricts
the robot to be “properly” headed in the sense that

|δ(x(0), y(0), α(0))| < arctan(knec) < π/2. (33)
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Since ec > 0, (33) is valid for sufficiently large kn whenever
|δ| < π/2. In other words, Theorem 2 guarantees convergence
to the path from any starting position with |e(0)| < ec and
|δ(0)| < π/2, choosing large kn. Furthermore, if the desired
path P is closed and the direction of circulation along it is
unimportant, the condition |δ(0)| < π/2 can be provided by
reverting the vector field m̄d 7→ −m̄d (which corresponds
to the replacement of ϕ 7→ −ϕ and |δ| 7→ π − |δ|) unless
δ(0) = ±π/2 (in practice it is never possible).

Remark 3. Even if (33) is violated at the starting time
t = 0, it obviously holds when t > t0 = k−1

δ [ln |δ(0)| −
ln arctan(knec)] thanks to (24). Thus, if one is able
to prove that the solution is prolongable up to t0 and
|e(x(t0), y(t0))| < ec, Theorem 2 provides the convergence
of the robot’s position to the desired path.

Remark 3 suggests the way to relax the restriction on the
initial robot’s orientation (33). Since the robot moves at the
constant speed ur > 0, it covers the distance urt0 until its
orientation satisfies (33). The path following is guaranteed if
urt0 is less than the viability distance of the initial position,
i.e. the distance from it to the set where |e| ≥ ec.

Definition 2. Given a point r̄0 = (x0, y0) with |e(r̄0)| < ec,
the number d0 = inf{dist(r̄0, r̄) : e(r̄) ≥ ec} > 0 is said to
be its viability distance.

Theorem 2 and Remark 3 yield in the following.

Corollary 4. Let the initial position of the robot r̄(0) =
(x(0), y(0)) with e(r̄(0)) < ec have the viability distance
d0 > 0. If this viability distance satisfies the condition

d0 >
ur
kδ

ln
|δ(x(0), y(0), α(0))|

arctan(knec)
, (34)

then the solution of (25) gets into the set M in finite time,
and is prolongable up to ∞ satisfying dist(r̄(t),P) −−−→

t→∞
0.

Note that (34) holds for any α(0) under the assumption

d0 >
ur
kδ

ln
π

arctan(knec)
. (35)

The condition (35) gives an estimate for the region, starting in
which the robot necessarily converges to the desired path P .
Taking the original orientation relative to the field into account,
this estimate can be tightened by using (34). Typically d0 is
uniformly positive in the vicinity of P (this holds, for instance,
when P is a closed curve). Thus (35) guarantees the algorithm
to converge in the vicinity of P , choosing kδ/ur sufficiently
large. As was mentioned, practical experiments with natural
trajectories, satisfying the assumptions of Corollary 2, show
that the robot is always attracted to the desired path, although
the mathematical proof of this remains a non-trivial task.

Remark 4. Although explicit calculation of the viability dis-
tance is complicated, conditions (34) and (35) in fact require
only its lower bound. Such a bound can be explicitly obtained,
for instance, if the error is Lipschitz

|∇e(r̄)| = ψ′(ϕ(r̄))|n̄(r̄)| ≤ c = const ∀x, y. (36)

Fig. 5. The E-puck robot with marker on top, used in experiments

If the condition (36) holds, then |e(r̄)−e(r̄0)| ≤ c|r̄− r̄0| and
hence the viability distance of r̄0 is estimated as follows

d0 ≥ (ec − e(x0, y0))/c.

Condition (36) can often be provided under an appropriate
choice of ψ(·). For instance, when ϕ(x, y) = (x−x0)2 +(y−
y0)2−R2 (circular path), one can choose ψ(s) = arctan s so
that ψ′(s) = 1/(1 + s2). More generally, if |ϕ(r̄)| ≥ C1|r̄|β
and |∇ϕ(r)| ≤ C2|r̄|γ as |r̄| → ∞, then ∇e is globally
bounded; we choose ψ(s) = arctan(sp), where p > 0 is
sufficiently large so that p− 1 + γ ≤ 2βp.

V. EXPERIMENTAL VALIDATION

In this section the experiments with real robots are reported.
In one of these experiments, the desired path is an ellipse,
and the other experiments deals with the more sophisticated
Cassini oval (see Section III).

We test the results using the E-puck mobile robotic plat-
form [43]. The experimental setup consists of the differential
wheeled E-puck robot, a server computer, an overhead camera
and a communication module. The robot is identified by a
data matrix marker on its top (see Fig. 5). The position
of the central point and the orientation of the marker are
recognized by a vision algorithm running at a control computer
connected to the overhead camera. The available workspace
is a planar area of 2.6x2 meters covered by the image of
1280x720 Px (henceforth the acronym Px is used for pixels).
For convenience we operate with pixels as coordinates. The
PC runs real-time calculation of the control actions based on
the pose information of the robot and computes the control
inputs for the robot. The results of computation as the desired
angular and linear velocities of the robot are translated into
the commands for its left and right wheels. The commands
from the control computer to the robot are sent via Bluetooth
at the fixed frequency of 20 Hz.

We verify the guidance algorithm for two closed trajectories,
followed by the robot in the clockwise direction. In both cases
the forward velocity was set to ur = 50 Px/s, and we set the
parameters of the algorithm kn = 3 and kδ = 2. We choose
ψ(s) = s, so that e(x, y) = ϕ(x, y). Below we describe the
trajectories and show the numerical data from the experiments.
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A. Circulation along the ellipse

For our first experiment, we choose the elliptic trajectory,
defined by the function

ϕ(x, y) = ks

(
(x− x0)2

p2
+

(y − y0)2

q2
−R2

)
. (37)

Obviously, the level curves of ϕ are ellipses. The path P
corresponds to the ellipse with semiaxes pR and qR, centered
at the point (x0, y0).

For the experiment we choose x0 = 600Px, y0 = 350Px,
R = 400Px, and the semiaxes scale factors p = 1, q = 0.5 (see
Fig. 6). To provide ϕ(x, y) ∈ [−5; 5] in the working area, we
choose the scaling factor ks = 10−5. The robots’s trajectories
(labeled a, b, c and d) under four different initial conditions
are shown in Fig. 6. The respective starting conditions are

a : (x = 472, y = 311, α = 0.0768),

b : (x = 30, y = 555, α = 0.0278),

c : (x = 408, y = 369, α = 2.1515),

d : (x = 78, y = 133, α = 4.0419)

(38)

(the coordinates x, y are in pixels, and α is in radians). Fig. 7
illustrates the dynamics of the tracking error ϕ(x(t), y(t)).
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Fig. 6. Elliptical path: the vector field and robot’s trajectories.

Fig. 7. Elliptical path: the dynamics of the tracking error e = ϕ(x, y).

In this example the set of critical points is C0 = {(x0, y0)},
which corresponds to e(x0, y0) = −ksR2 and hence ec = R2.
The set {(x, y) : |e(x, y)| < ec} consists of all points, where

0 <
(x− x0)2

p2
+

(y − y0)2

q2
< 2R2. (39)

Theorem 2 guarantees that if the robot starts at any of these
points and (33) holds, then it converges to the desired path.
Using the geometry of the specific set (39), Remark 3 allows
to prove convergence for many other initial conditions: it is
clear, for instance, that if the robot starts from some point,
lying outside the ellipse and sufficiently far from it, then
it enters into the domain (39) with a “proper” orientation,
satisfying (33), and thus the problem of path following is
solved. The practical experiments, however, show that the
robot converges to the path from any point, except for the
ellipse’ center, independent of the initial robot’s orientation,
whereas the mathematically rigorous proof remains an open
problem.

B. Circulation along the Cassini oval

For our second experiment the path chosen is referred to as
the Cassini oval (Fig. 8) and determined by the function

ϕ(x, y) = ks

[(
∆x2 + ∆y2

)2 − 2q2
(
∆x2 −∆y2

)
− p4 + q4

]
,

∆x = (x− x0), ∆y = (y − y0).

We choose here ks = 10−10, p = 330Px and q = 300Px. The
oval is centered at (x0, y0) = (600, 350)Px.

Fig. 8 illustrates four trajectories (labeled a, b, c and d),
corresponding to the initial conditions

a : (x = 233, y = 184, α = 2.9287),

b : (x = 106, y = 202, α = 4.2487),

c : (x = 355, y = 343, α = 5.4071),

d : (x = 503, y = 619, α = 0.1022).

(40)

(the coordinates x, y are in pixels, and α is in radians). The
corresponding tracking errors are displayed in Fig. 9.
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Fig. 8. Cassini oval: the vector field and robot’s trajectories.

As discussed in Section III, the set of critical points is C0 =
{(x0 ± q, y0), (x0, y0)}. If q2 < p2 < 2q2 (such inequalities
are valid in our example) then it can be checked that ec =
|e(x0, y0)| = p4− q4, and the set {(x, y) : |e(x, y)| < ec} is a
domain, shown in Fig. 10. Theorem 2 guarantees that starting
at any of these points with the orientation satisfying (33), the
robot converges to the desired path. Similar to the case of the
elliptic path, Remark 3 allows to prove convergence for many
other initial conditions; experiments show that in fact the robot
converges to the desired path from any non-critical point.
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Fig. 9. Cassini oval: the dynamics of the tracking error e = ϕ(x, y).

Fig. 10. Cassini oval: the set {(x, y) : |e(x, y)| < ec}.

VI. DISCUSSION

In this section, we compare the proposed method with the
existing path following control algorithms. Potential exten-
sions of the proposed method are also discussed.

A. The GVF method vs. other path following algorithms
It should be noticed that many approaches to path follow-

ing, discussed in Introduction, are not applicable to general
smooth paths of non-constant curvature and nonholonomic
robots; for example, various virtual target approaches [15]
typically require to control the robot’s velocity. We compare
the GVF method with two commonly used algorithms [3]: the
projection-based line-of-sight (LOS) method [5], [16] and the
“nonlinear guidance law” (NGL) [3], [44].

The LOS approach assumes the existence of the unique
projection of the robot location r̄ onto the path P , that is, the
point P closest to r̄ in the Euclidean metric. The distance to
the path d = d(r̄, P ) serves as the tracking (or “cross-track”)
error. The desired robot’s orientation αLOS is the absolute
bearing to the unique point P∆ (Fig. 11), such that the vector−−−→
PP∆ has length ∆ > 0 and is tangent to P at the projection
point. The direction of this vector is the desired direction of
path following (in our example, the robot circulates along the
path clockwise). The controller (23) is replaced by

ωLOS = c(P )ur − kLOS (α− αLOS) ,

where kLOS > 0 is a constant gain and c(P ) is the curvature
of the curve P at the projection point P . The parameters of the
algorithm are the lookahead distance ∆ and the gain kLOS .

The second path following algorithm to be compared with
the GVF method is the “nonlinear guidance law” (NGL) [3],
[44]. At the current robot position r̄, draw a circle of radius
R. The circle intersects the path P at two points q, q′. It is
supposed that the robot moves sufficiently close to the desired
path and the direction of the path following is fixed, so it is
always possible to choose the intersection point, lying ahead
of the robot on the path P (in Fig. 11, this is point q). The
absolute bearing αR to this point is the desired direction of
motion. The angular velocity controller is designed as

ωR = −kR (α− αR) .

The constants R > 0, kR > 0 are the algorithm’s parameters.
For the sake of comparison, we will use the same elliptic

path, determined by the function (37) and the same parameters
of the GVF algorithm as in Subsect. V-A. The initial position
and heading of the robot are

x = 200; y = 450;α = 0.0278.

It is clear that any path following controller is very sensitive
to the parameter choice, and varying the parameters one can
always make the convergence rate faster or slower. To compare
the behavior of different algorithms, one thus needs to choose
parameters, providing approximately the same convergence
rate; in our situation, the dynamics of the Euclidean distance
d(t) = dist(r̄(t),P) is similar to the GVF method, choosing
kLOS = 2 and ∆ = 70 in the LOS method and kR = 2
and R = 40 in the NGL algorithm (Fig. 12). As one can
see, the GVF method gives much better transient behavior
than the other algorithms, which have visible overshoots. To
eliminate the overshoot of the LOS method, one has to increase
the lookahead distance, but in this case the convergence to
the desired path becomes slower. The NGL method has the
largest overshoot; using this method, it is also impossible to
eliminate completely the tracking error since the controller
has no information about the changing curvature of the path.
To decrease the overshoot, one has to increase the radius R;
this however amplifies the oscillations in the tracking error d.
Thus the GVF method demonstrates better performance than
the considered alternative methods.

Fig. 11. Geometric objects, employed by the LOS (red) and the NGL (blue)
path following algorithms
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Fig. 12. The dynamic of the euclidean distance d

B. The previous works on GVF algorithms

The vector-field path following algorithms have been mainly
considered for straight lines and circular paths [3], [31]. The
GVF designed for these paths is the same as constructed in
Section III; the only difference is the path following controller:
unlike [31], in this paper we do not consider sliding-mode
algorithms and confine ourselves to simple linear controllers.
A general approach to the Lyapunov-based GVF design has
been suggested in [30]. The desired path is supposed to be the
set of the global minima of some predefined Lyapunov func-
tion; e.g. for the path (2), our usual Lyapunov function (11)
can be chosen. Departing from this Lyapunov function, a
broad class of GVF has been suggested, including (14) as
a special case. The paper [30] also offers a methodology of
proving the convergence of integral curves to the desired path
(considered in our Section III) and design of path following
controllers. For the case of unicycle-like robot the control
algorithm, suggested in [30, Eq. (35)], is equivalent to our
controller (24). Describing a general framework, the paper [30]
focuses however on some specific problems of flight control,
namely, following a loiter circle (planar circle at the fixed
altitude) or some other planar path, which can be obtained
from a loiter circle by a smooth “warping” transformation,
preserving the vector field’s properties. Many assumptions
adopted in [30] are restrictive, e.g. the Lyapunov function
should be radially unbounded, excluding straight lines and
other unbounded paths from the consideration. The analysis
of the closed-loop system in [30] is not fully rigorous as it
completely ignores the problem of the solution existence up
to ∞, which becomes non-trivial when C0 6= ∅.

Unlike the previous papers [3], [30], [31], we consider a
general smooth path (2), which can be closed or unbounded;
for closed trajectories, we do not restrict the Lyapunov func-
tion to be radially unbounded. We provide a mathematically
rigorous analysis of our algorithm and specify an explicit set
of initial conditions, starting at which the robot evades the
critical points and converges to the desired trajectory.

C. Further extensions of our GVF method

The results presented in the paper can be extended in several
directions. First, the idea of GVF steering can be applied
to more general models than the simplest unicycle robot,
considered in this paper.

Second, the algorithm can be extended to the three-
dimensional case. Some special results in this direction have

Fig. 13. The desired path as the intersection of two surfaces

been reported in [24], [30]. The desired curvilinear path
P in the three dimensional space can be describing as an
intersection of two surfaces (Fig. 13)

P ∆
= {(x, y, z) : ϕ1(x, y, z) = 0 ∧ ϕ2(x, y, z) = 0} ⊂ R3,

where ϕi ∈ C2(R3 → R), i = 1, 2. The main design idea
is that if the robot simultaneously approaches both surfaces,
eventually it will be brought to the prescribed path P . Thus,
we may define the guiding vector field by

v̄ = τ̄ − kn1e1n̄1 − kn2e2n̄2, τ̄ = n̄1 × n̄2

where n̄i = ∇ϕi and ei = ϕi(x, y, z) are the “tracking errors”
(i = 1, 2). Subsequent design of the controller, steering the
robot to the GVF, is similar to the planar case (two angles are
controlled instead of a single angle). The technical analysis
of this algorithm requires however some extra assumptions of
non-degeneracy and is beyond the scope of this paper; the
convergence rate of the path following algorithm appears to
be very sensitive to the choice of ϕ1 and ϕ2.

Third, the results can be extended to time-varying vector
fields [30], allowing to work with some types of transfor-
mations (such as translation, rotation and scaling) of the
predefined trajectory and enabling to use the GVF approach
for stand-off tracking of slowly moving targets [45]. For
instance, it is possible to formulate the problem of moving path
following, that is, steering a mobile robot to a curvilinear path
attached to a moving frame. Using the change of coordinates,
one can transform the original task to the form considered
in this paper; however, the longitudinal velocity with respect
to the moving frame does not, in general, remain constant.
Whereas the case of time-varying speed is uncovered by this
paper and requires further analysis, the practical experiments
with a fixed-wing UAV [46] have demonstrated satisfactory
performance of the proposed path following control algorithm
in this situation.

Fourth, it is important to consider external disturbances,
unavoidable in practice and leading, in particular, to the lateral
drift of the robot. Some preliminary results on using draft
compensators in parallel with the path following controller
are reported in the works [34], [47].

VII. CONCLUSIONS

In this paper, we have proposed a new algorithm for path
following control of nonholonomic robots exploiting the idea
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of a guiding vector field. Unlike the existing results, the
desired path can be an arbitrary smooth curve in its implicit
form, i.e. the zero set of a smooth function. We have examined
mathematical properties of the algorithm and given global
conditions for following asymptotically the desired path. The
results have been experimentally validated, using the E-puck
wheeled robots.
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