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Summary

In the era of Information Society, where people, objects, spaces and vehicles are
rich of sensors able to acquire bites of data and to share them through an inter-
connected communication network to provide numerous services, it is fundamental
to link these information and these sensors with their global position in the world.
Location Based Services (LBSs) consist in a widespread panorama of applications,
tasks, and services in which the position is the fundamental information to provide.
Some examples are search and rescue operations, autonomous navigation, impaired
assistance, geospatial analysis, Intelligent Transport System (ITS) and behaviour
characterization. This wide panorama of applications requires robust and reliable
estimation of the position, both indoor and outdoor, and in the transition between
them. Since sensors performances are strictly bound to the type of environment,
the research effort must be driven to the ubiquity of the solution which means
integrating different sensors to reach the seamless positioning and navigation.

Nowadays, the location information is usually provided by a constellation of
satellites that communicate with a receiver on the earth i.e. the Global Naviga-
tion Satellite System (GNSS). Thanks to this technology it is possible to estimate
the global position, velocity and time of the receiver with high accuracy. Un-
fortunately, as people spend most of their time indoor and in urban areas, their
positioning devices experience huge limitation. Indoor, the GNSS signals are atten-
uated or blocked by objects in line of sight and the positioning is highly degraded
or unavailable. Moreover, urban environment presents some challenges that make
GNSS vulnerable to a range of threats: multipath caused by the presence of build-
ings and trees, decreased satellite visibility and received signal strength, due to
no open-sky condition, interferences from anthropogenic radiofrequency emissions
over the GNSS bandwidths and more. Overcoming all these issues requires meth-
ods, technologies and sensors able to enhance the system performances in term of
accuracy, reliability and continuity, both indoor and outdoor. For this purpose,
multi-sensor integration and data fusion must be adopted to exploit the benefits
of several complementary technologies and to limit their weaknesses. Moreover,
the market demands for ubiquitous solutions embedded in low-cost devices. This
requirement introduces further challenges related to the noise affecting low-cost
sensors and to the seamlessness of the solution, i.e. the continuity of the navigation
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estimation in the passage from outdoor to indoor spaces and vice versa. In this
panorama, the present work aims to investigate on low-cost sensors integration for
positioning and navigation in challenging environments. Based on the literature re-
view and focusing the interest on the urban environment, the most suitable sensors
have been selected, tested and validated in different scenarios. The characterization
of these systems (i.e. technology, methodology, algorithms) has been used to imple-
ment an hybridized navigation solution which integrates Ultra-wideband (UWB),
visual sensors, and Inertial Navigation System (INS). The results of this integra-
tion have been applied in one of the most challenging environment: an underground
mine.
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Chapter 1

INTRODUCTION

Locating our position and moving in an unknown neighbourhood are relatively
simple activities we execute making use of our sight and memory. This is true when
we perform simple tasks in familiar environment such as finding an exit in a public
infrastructure or locating the stairs to go up one floor. When the task is more
challenging, like finding the route to a certain place or piloting an intercontinental
flight, our memory is no longer useful and we need to estimate our position with
external data. In order to do this, several types of data are required, such as
geometrical, semantic and topological information of the surrounding space. We
need sensors able to capture data from the external environment allowing us to
respond properly to inputs, in view of different purposes. Moreover, when we want
to know the location of objects or vehicles we acquire data transmitted from these
objects and we estimate their position in relation with our own. Is interesting to
observe how, for the world population, knowing always their own position is an
obvious task, although the estimation procedures are complex.

With the appearance of Global satellite Positioning Systems (GPS), the po-
sitioning and navigation operations have become common features, necessary for
the conduction of everyone’s daily activities. The development of GPS technology
enabled to locate objects, means of transport, people and to track and direct their
movements, assuring accurate data exchange, excellent performances and proper
responses in term of safety. Still, if satellites-based positioning and navigation
technologies has reached a sufficient degree of development and widespread avail-
ability outdoor, equally efficient solutions are needed when positioning data fails
caused to low satellite view. Furthermore, assessing the GNSS signal integrity in
complex urban environment is not easy, not only for the visibility of the constella-
tion but also for other challenges like electromagnetic interferences, atmospherics
factors, reflective surface and more. Moreover, as people live in a continuous transi-
tion from indoor spaces to open areas, these solutions need to be seamless and able
to provide location information both indoor and outdoor. In this context raised
the interest of the academic community to investigate and develop methods and
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techniques to obtain positioning, navigation and tracking estimation with higher
level of accuracy from different data and sensors integrated in a unique solution.
A multi-sensor positioning system that allows the data continuity and integrity
in the passage from external environments to indoor environments and vice versa.
The urban areas represent a meaningful environment in which test the proposed
solutions and develop innovative applications.

The plethora of sensors integrated in seamless positioning systems are based on
electromagnetic and mechanic waves measurements or inertial navigation. There
are imaging sensor acquiring visible and infrared light. Inertial navigation systems
acquiring accelerations and angular rotation of a body. Ultrasound-based sensors
and radiofrequency systems including radars, cellular networks, wireless sensor net-
works, Radio-Frequency IDentification (RFID), Bluetooth and Ultra-wide band.
When a single or an integrated technology is implemented for a particular ap-
plication meeting users requirements, arises LBS which has become increasingly
important in a large number of applications in recent years.

1.1 Research objectives
In this thesis the focus has been pointed on the environment, typical scenarios

like indoor offices and underground infrastructures where the positioning is par-
ticularly challenging. Although numerous researchers have investigated this topic,
solutions able to face the problem of ubiquitous positioning no exist at the current
state of the art. Moreover, low-cost sensors causes further challenges in solve es-
timation procedures and requires additional effort. The proposed solutions, based
on multi-sensor integration algorithms, are able to perform robustly and accurately
in particular environment with a controlled context. Interferences, kinematic con-
dition, scalability, working rate becomes site-dependent variables that prevent to
reach the objectives of seamless navigation.

In order to identify the most suitable technologies and methods to perform
multi-sensor positioning and navigation in urban environment, the most common
self-contained sensors used in pedestrian navigation has been tested in real case
studies. The acquired data have been analysed in term of performances and be-
haviour characterization in relation with the surrounding. In particular, after a
deep analysis on the state of the art, the sensors has been compared and evaluated
in function of different parameters like accuracy, integrity, cost, energy consump-
tion and more. The panorama is huge and the main technologies has been elected
according to the following requirements. Any urban city can be divided in function
of the characteristic of the surrounding environment. One characteristic is the size
in which users or vehicles should operate and navigate. A room or a building floor
represent different environmental characteristics with respect to an infrastructure
or an open city park. Moreover, the operational scale is also one of the parameters
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of any positioning system and define its capability to provide position and naviga-
tion information within a certain area. Trying to give a structure to this concept,
the urban environment has been classified in Floor scale spaces, Infrastructure scale
spaces and District scale spaces.

Therefore, the UWB technology has been chosen to perform positioning in floor
scale environment, the vision-based positioning and navigation has been elected as
best technology for an infrastructure-like building and the new-generation GNSS
smartphone chipset has been used in the district scale spaces.

These three technologies has been used, analysed and validated in real urban
areas corresponding to the characteristics previously described, and algorithms and
methods have been developed to estimate the user location. These tests allowed
to define limits and advantages of these sensors, to characterize their behaviour in
terms of accuracy, integrity, noise, and finally to propose a navigation system. The
proposed solution, composed by an integration of low-cost sensors and a developed
fusion algorithm, has been tested in one of the most challenging environment: an
underground mine.

1.2 Motivation
According to the World Urbanization Prospects 2018 provided by the Depart-

ment of Economic and Social Affairs of the United Nations by 2050, the world
population is expected to reach 9.6 billion, increasing by 68% the inhabitants of
the urban areas. In Europe, the 80% of the total population is expected to live in
cities and this will generate profound changes in the urbanization process from the
social-economic, climatic and environmental point of view. The disaster risk, the
security, the safeguard of the cultural heritage, the vulnerability of the historical
centers, the social innovation and the needs of the citizen to taking part to the
decision-policies, are fundamental topics that need to be investigated.

With sensors becoming part of our buildings, transportation systems and per-
sonal communication devices, urban areas are increasingly producing digital data
of the surrounding environment, flooding the urban digital space of geo-referenced
information. In this scenario, providing innovative methods and approaches trough
technological tools, which use all these data and allow to better understand the
world, becomes essential. The location-aware computing, i.e. the ability of a tech-
nological system to define the position of objects and persons, offers innovative tools
in supporting policy-makers with their emergency tasks, as well as first responders
in the post-disaster scenarios, and citizen with the learning of the urban spaces. Not
only, these systems could also be useful as navigation tools or awareness devices.
In this context, positioning technologies can make the difference in managing emer-
gency situations in large buildings and underground structure where the possibility
to localize and track objects and people is compromised. For example, being aware
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of the team location can increase safety and decrease mission time in a first response
scenario; moreover, a navigation system reduce the possibility of disorientation and
failure to locate victims. Also the same victim could collect information and take
action under the possibility to orient himself. As the world continues to urbanize,
sustainable development depends increasingly on the successful management of ur-
ban activities and therefore on development of smart tools able to rely on accurate
and robust location. In last years, smart mobility applications and ITS are becom-
ing also relevant especially for those urban agglomeration with million inhabitants.
Safety, security, advertising, health, monitoring and management are few examples
of applications have been object of study in the last years [1]. For instance, tracking
position of medicines and workers into an hospital can be significantly relevant in
order to act in emergencies [2]. In case of fire, locating victims and firemen can
improve rescue operations [3]. People suffering from visual, auditory and cerebral
deficits could move more autonomously in closed and crowded environments [4],
etc. Nowadays, problems related to indoor positioning or indoor navigation have
found solutions with the development of several applications conceived for specific
buildings as airports or commercial centres. These pioneering experiments, com-
bined with the increasing interest by the industries, are opening to new scenarios
and opportunities for applications assisting users in their activities.

Beyond the large number of applications for private and public interest, recent
widespread of low-cost mobile devices and ceaseless development of hardware tech-
nologies and computational algorithms raised interest from scientific community,
which faced the indoor positioning problems using different approaches and tech-
nologies. In the last few years common technologies includes sensors related to
images, infrared rays, radiofrequencies, ultrasounds, inertial measurements, mag-
netic fields and atmospheric pressure.

Ten-year research efforts in developing indoor positioning products and services
made clear that different solutions are available and they can be based on a com-
bination of technologies. Each system reveals advantages and limits which make it
more or less convenient according to the final application. Consequently, the ad-
ditional effort requested from the scientific community is experimenting integrated
systems which compensate limits typical of such technology with advantages deriv-
ing from another [5].

1.3 Applications of LBS
The importance of positioning capabilities in our modern way of life is supported

by the numerous applications of services and researches based on the location.
Looking at the urban environment, the first relevant applications have been

developed for commercial purposes. Mass market applications, which make use
of the geographical position, deliver context-dependent information accessible with
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mobile device. For example, providing safety information or topical information
on cinemas, concerts or events in the vicinity. LBS applications include navigation
to the right store in a mall. Products detection, location-based advertisements,
location-based billing and local search services have a high commercial value. Ap-
plications in train or bus stations include the navigation to the right platform or
bus stop. Further examples of LBS are proximity-based notification, profile match-
ing and the implementation of automated logon/logoff procedures in companies.
There is also added value for the positioning provider, e.g. by resource tracking,
fleet management and user statistics.

Context detection and situational awareness are also fundamental services for
the citizens of a large city. Personal mobile devices can provides large variety of
useful functions when it is desirable to have an automated adaptation of the mobile
device depending on a change of the users context. Such functionalities spares the
user additional effort by providing assistance in individual situations. To enable
such an automatic adaptation the users context needs to be determined by the
mobile device itself. The most significant criteria to determine the users context
is the current geographical location. For example a smart conference guide can
provide information about the topic discussed in nearby auditoriums.

In hospitals the location tracking of medical personnel in emergency situations
has become increasingly important. Medical applications in hospital also include
patient and equipment tracking, e.g. fall detection of patients. Precise positioning
is required for robotic assistance during surgeries [6].

Observing some phenomenon such as heat, pressure, humidity, air pollution and
deformation of objects and structures is fundamental for environmental monitoring.
To this end multiple sensor nodes can be located in the environment and connected
to a communication network. The data, acquired in real time and correctly geo-
referenced can be used by policy makers and researchers.

Positioning capabilities, both outdoor and indoor, provide important benefits
in law enforcement, rescue services, and fire services, i.e. location detection of
firemen in a building on fire. The police benefits from several relevant applications,
such as instantaneous detection of thieves or burglaries, detection of the location
of police dogs trained to find explosives in a building, detection and recovery of
stolen products for post-incident investigations, crime scene recovery, statistics and
training but also crime prevention, e.g. with tagged devices for establishing so-
called geofencing i.e. alarm systems which can detect whether a person or an asset
has left a certain unauthorized area.

Intelligent transportation is another emerging field thanks to the users expec-
tations for greener, safer and leaner mobility. Autonomous driving is the leading
aims but mass user application for indoor navigation in parking are already exper-
imented.

Several applications have been developed in museums, such as visitor behaviour
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characterization, visitor tracking for surveillance, location based guiding and trig-
gered based on context aware information.

Structural health monitoring consist in sensors incorporated into steel reinforce-
ments within concrete to perform strain measurements with high resolution. Strain
sensing systems based on passive sensor and integrated RFIDs can measure strain
changes and deformation caused by loading and deterioration.

Strict positioning requirements are needed in tunneling [7] and longwall [8] where
dusty, darkness, humid and space limited environments generates more challenges.

Scene modelling and mapping, i.e. the task of building digital 3D models of
natural scenes,requires the precise orientation of the optical sensor. Indoor mapping
systems need to know the camera position in order to merge multiple views and
generate 3D point clouds. Scene modelling is beneficial for several applications such
as computer animation, notably virtual training, geometric modelling for physical
simulation, mapping of hazardous sites and cultural heritage preservation.

1.4 Author’s contribution
The main contributions of the thesis are:

• Provide a comprehensive overview of the GNSS positioning in outdoor envi-
ronment, along with the wide panorama of Indoor Positioning System (IPS)
and their hybridization.

• Define systems requirements based on different applications and meaningful
scenarios.

• Select the core technologies in function of three operational scale (floor scale,
infrastructure scale and district scale) and assess their performances in real
environments.

• Contribute in research and develop of an indoor vision-based positioning sys-
tem implemented in several Korean sub-way stations.

• Develop of one of the first RINEX parser for smartphone GNSS raw measure-
ments.

• Study of the feasibility and applicability of Loosely Coupling integration al-
gorithm between GNSS, UWB, INS and visual sensor and propose of a frame-
work for low-cost seamless pedestrian navigation.

• Test and analysis of the proposed solution in a challenging environment: an
underground tunnel in Otaniemi - Finland.
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The research made during the Ph.D. and the work presented in this thesis
have led to some peer-reviewed journal papers [9], [10] and to some proceedings in
different national [11] and international conferences [12] [13]. Furthermore a book
chapter have been published in [14].

1.5 Structure of the thesis
In Chapter 2, “Background on seamless navigation”, the definition of the po-

sitioning and navigation both in indoor spaces and in seamless condition is given.
Then the estimation problem is presented and the principles and algorithms for
pose estimation, outlier rejection and quality control are described. The preva-
lent methods and technologies for navigation are presented in Chapter 3 from the
theoretical pointy of view. In particular, the GNSS positioning with smartphones,
the image based positioning, the ultra-wide band networks and the integration of
GNSS and INS in a loosely coupling approach. Chapter 4 presents methodology,
test performed and results of the previous technology in three different real case
study. A floor scale test for the UWB positioning, an infrastructure scale test for
the image-based positioning and a district scale test for the GNSS positioning with
smartphones. In Chapter 5 a proposed navigation solution for underground mines
is presented. The data acquisition, the sensors characteristics, the measurements
integration and the fusion algorithm are deeply described together with the results
of the experiments. The feasibility is demonstrated. Chapter 6 provides conclusions
and recommendations for future research.
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Chapter 2

BACKGROUND ON SEAMLESS
NAVIGATION

In the literature, the process of determining the position and the movement
of a body over the time have no universally agreed definition. Numerous techni-
cal therms are used to express the same concept or concepts with slightly different
meanings. For example, “positioning”, “localization”, “geolocation”, “location sens-
ing” and more, are all terms used in different research fields to express the same
estimation problem.

In general, positioning is the capability to define the location of a person, an
object, or a mean of transportation in a given time with respect to a reference grid
or system.

In [15] navigation is defined as “. . . the determination of the position and ve-
locity of a moving body with respect to a known reference”. In general, is possible
to define navigation as the set of methods and techniques that allow the determi-
nation of one or more states (position, speed and attitude) of an object in motion
in a predetermined reference system. These states allow the determination of the
trajectory made by a body from one point to another of the space. Coordinates,
angles, translation vectors, directions, etc. are information which express the states
of the body in relative or absolute systems. This state is estimated from a set of
measurements acquired by different sensors and related by linear or non linear de-
pendences. Absolute positioning refers to a global reference system realized with a
constellation of satellites, allowing to define position in geographic or cartographic
coordinates. Relative positioning systems are based on the computation of the
position or direction starting from a point with known coordinates. The term “lo-
calization sensing” is used in computer science to express information about the
location of devices by employing the internet.

Another term used to describe the process of repeated positioning of a moving
object over the time is “tracking”. In contrast with navigation, tracking is used
when the infrastructure is determining the location of a passive mobile device,
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where the current position is not necessarily known at the mobile device. In [2],
Mautz provides a complete list of prevalent terms for positioning and navigation.

GNSS is the main technologies for positioning and navigation. It is based on
the computation of the distance between a GNSS receiver on the earth and various
constellation of artificial satellites in known orbit. The distance computation is
based on radio frequency transmission; if an obstacle shields the signal, the mea-
surement is significantly degraded and the position is no more available. This is the
typical situation of the indoor spaces and urban environment, where the presence of
obstacles like buildings, trees and walls generates heavy multipath and attenuation
of the GNSS signal. Research on alternative technologies and methods may pro-
duce more efficient algorithms, sensor systems and applications in this challenging
environment.

Indoor positioning defines the process that attempt to provide an accurate posi-
tion in a covered structure where the GNSS technology is ineffective. The presence
of an infrastructure allows the use of pre-installed sensor networks in the environ-
ment providing the position of a target sensor. Moreover, the possibility to inject
map information, like floor plan from architectural CAD drawings, enhance the
possible positioning solutions. Another scenario is the urban one (or the so-called
urban canyons), where the presence of high surfaces such as tall buildings and trees
generates multipath effects in the transmission of satellite signals and the GNSS
positioning is lost. In this case, other types of active and passive sensors may be in-
tegrated with the measurements obtained from the GNSS receiver. In this scenario,
the present work aims to investigate on methodologies, technologies and integrated
systems which guarantee the positioning and navigation solutions in both outdoor
and indoor environments; a solution robust to the vulnerabilities of the GNSS,
which works regardless to the environment (i.e. anytime/anywhere). This solution
is known under the definition of “seamless positioning and navigation”.

2.1 Classification of Indoor Positioning Systems
In previous paragraph, the indoor positioning definition has been given in con-

trast with the outdoor GNSS positioning. This duality does not express the wide
and heterogeneous panorama of the present research field. close spaces and out-
door environments are not separate boxes but a continuum of the urban spaces
with interfaces areas where people move and live. Unfortunately, most of the effort
in the academic research was given to the investigation of indoor positioning and
navigation. It is clear that the research on seamless navigation need to start from
the knowledge of the indoor positioning systems.

There are a certain numbers of prevalent technical terms for positioning in lit-
erature and all of them define a process of localization that could greatly change
according to the type of technology used, to the ultimate aim of the location and
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to the type of measurements performed. An initial survey on the literature con-
cerning IPSs has revealed an heterogeneous systems panorama, in which the type
of sensors, the location technology, the physical quantity measured, etc. generate
different classification methods and different hierarchical levels between systems.
Other factors, like the ranging methods and the positioning-navigation technics,
characterize the indoor positioning field [16].

Daek et al. in [17] classifies the localization processes in active and passive sys-
tems where “active” means that the tracked persons or objects participate actively
through an electronic device which sends information to a positioning system help-
ing it to infer that people position. In the passive localization case, the position
of the person is estimated on the variation of a measured signal or video process.
Thus, the tracked person is not carrying any electronic devices to infer the user’s
position (Figure 2.1).

Figure 2.1: Classification of active and passive indoor localization systems.

Jorge Torres-Solis et al., in their Review of indoor localization technologies [4]
propose a classification of these technologies according to physical quantity mea-
sured in the process of localization. In particular, radio frequency waves, photonic
energy, sonic waves, mechanical energy, magnetic fields and atmospheric pressure
are the quantity grouping the technologies (Figure 2.2).

11



2 – BACKGROUND ON SEAMLESS NAVIGATION

Figure 2.2: Classification of indoor positioning according to the physic quantity
measured.

The physical quantity that allows the location must be measured by a sensor,
a measuring instrument, or a technology and this enables a further classification of
indoor positioning systems. The different technologies are:

• Cameras

• Infrared

• Tactile and Polar system

• sound

• Wlan/Wi-Fi

• RFID

• Ultra-wideband

• High sensitive GNSSs

• Pseudolites

• Other radio-frequencies

• Inertial Navigation

12
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• Magnetic systems

• Infrastructure-based systems

Camera-based localization systems are methods based on the visual information
extracted by the camera sensors. These systems can be classified depending on the
specific technique used to perform the localization. In fact, they can be based on the
comparison with some a-priori information like reference from 3D or 2D building
models [18], reference from images [19], reference from deployed coded target [20].
Among vision systems, there are also systems able to tracking objects, humans
or animals directly by a fixed camera system without the necessity of external
references [21]. Finally, some systems can incrementally compute their position in
real time from a known staring point using the visual odometry algorithms.

The positioning systems based on infrared technologies (IR) are among the
most common wireless methods used to localize objects or people through infrared
emitters and receivers. These systems can use active beacons, natural infrared
radiation or artificial light sources. In [22] the authors use fixed active beacons
(infrared receivers) placed in known position in the indoor environment to locate
mobile beacons.

Similarly, ultrasound localization systems are based on Time of Arrival (ToA)
measurements of ultrasound pulses that travel between the emitter sensor and the
receiver. In particular, the object to locate has an emitter sensor whose position is
estimate by the measured distances from three or more fixed receive (multilateration
technique).

Wi-Fi technologies, as the methods analyzed till now, consist of a system that
sends data on networks using electromagnetic waves. The main advantage provided
by Wi-Fi, apart from the high rates of transmission, is the ability to provide cov-
erage in a wide range of distance (till 100m). Moreover, the main disadvantage of
these networks concerns security and privacy. There are some programs that can
capture sent packets and calculate the network password, and thus access it.

RFID systems are based on RFID reader, equipped with an emitter/receiver
antenna which interrogates nearby active or passive radiofrequency transceivers
(i.e. tags). The tags can be active, i.e., powered by battery, or passive, drawing
energy from the incoming radio signal. Usually in these systems, the RFID tags
send positon information (by an unique ID) to the RFID reader (also known as
RFID scanner) that estimates its position by some procedure of proximity (Cell of
Origin) or by the measurement of the Received Signal Strength Indicator (RSSI)
[23]. The accuracy of an RFID system is directly related to the density of tag
deployment and reading range.

Inertial sensors refer to systems that exploit the inertia to measure linear ac-
celeration or angular velocity (i.e. accelerometer and gyroscope). In this regards,
an INS is a navigation aid to use motion sensors and rotation sensors to contin-
uously calculate the position, orientation and velocity (i.e., direction and speed

13



2 – BACKGROUND ON SEAMLESS NAVIGATION

of movement) of a moving object. Since inertial sensors yield relative positioning
information only, an absolute reference is required to specify the displacement re-
ported by an inertial measurement in absolute coordinates. Therefore, to provide
absolute positioning information it is necessary to combine inertial sensors with
different localization technologies.

2.2 Seamless positioning and navigation
As already state, the seamless navigation can’t be achieved using a single tech-

nology solution but requires a multi-sensor approach, where the integration of the
sensors and the design of the fusion algorithm could benefits of the different be-
haviour of the measurements. The idea is to integrate already existing solution
that perform well in different scenarios, mainly in outdoor and indoor environ-
ments. Therefore, derive the need to identify the location context in order to adapt
the navigation filter and to switch between sensors. In outdoor, GNSS coupled
with other sensors should be preferred over others systems, while indoor should be
avoided. Moreover, also the behavioural context is an important information. A
sensor used to define the number of steps during a run or a walk, can’t be used
when the user take the bus. The capability of the system to adapt itself to the sur-
rounding environment is called context awareness or adaptive sensor fusion. Seeing
the huge panorama of systems, the choice of the best technology is not an easy task
and require a deep investigation on the characteristics of the final application, of
the context, of the requirements and about the cost. The main aspects to analyse
and requirements to guarantee in order to obtain a seamless system are:

• accuracy

• availability

• robustness

• floor identification

• estimation rate

• scalability

• cost

• maintenance
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2.3 – Estimation problem in positioning and navigation

2.3 Estimation problem in positioning and navi-
gation

The positioning and navigation rely on the estimation of the parameters that
define the location of an object, person or vehicle with respect to the local en-
vironment or to a global reference frame. The first step to approaching the es-
timation problem is to define the unknown parameters to estimate i.e. the state
vector x. When the objective is to find the position, the unknown are usually the
three-dimensional coordinates of the object and his attitudes angles. In trajectory
estimation, useful for real time navigation, the parameters are usually the position
coordinates in the reference frame, the velocity and the attitudes angles. In GNSS
navigation, the unknown are the three Cartesian coordinates plus the clock offset
between satellites clocks and receivers clocks.

GNSS positioning Indoor positioning Trajectory estimation
x = (X, Y, Z, dt)T x = (X, Y, Z, ω, ϕ, κ)T x = (X, Y, Z, vx, vy, vz, ω, ϕ, κ)T

After defining the state vector, the estimation problem consist to known which
is the relation between the output of the sensors and how these outputs relate to
our known through a mathematical model or so called estimator. Considering this,
the problem consist on the definition of the more suitable estimator that put in
relation the acquired measurements with the searching unknown. It is important
also to be aware that all measurements are effected by errors. Being these errors
random variables, also our measurements have to be considered like random vari-
ables. Consequentially, the unknown are also randomic and therefore statistic and
probability must be applied on the estimation procedure to validate the results.
Considering:

state vector that has to be estimated x
measurement vector modelled by y = h(x)
noise vector affecting the measurements y = (h(x) + n)
estimator x̂ = g(y)

Estimator are obtained by defining a criteria function C(x) and minimizing
this criteria. This criteria function is often related to the estimation error so is
minimizing the variance of the estimation error. The estimate value x̂ is also
random therefore one must characterize the quality of this estimate using statistical
parameters like the accuracy and the variance.

x̂ = argmin
x

C(x)

There are two class of techniques of estimation:
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2 – BACKGROUND ON SEAMLESS NAVIGATION

• Classical estimation, where no assumption on the parameters to estimate is
made. An example is the Least Square Estimation (LSE).

• Bayesian estimation, where is assumed that the variable to estimate is random
variable. An example is the Kalman Filter (KF).

In Bayesian estimator, assuming that the estimate parameters are random vari-
ables, it is possible to attach to this the Probability Density Function (PDF), for
example a Gaussian distribution. This assumption provide more information to de-
sign the right minimize cost function and to obtain a more accurate estimator. The
problem is that not all the measurements reflect information about the unknown
and so classical estimators are usually more robust in this sense. As the estimate
value x̂ is a random variable therefore one must characterize the quality of this esti-
mate using statistical parameters like the accuracy and the variance. The accuracy
is the discrepancy between the estimated value and the reference one, while the
variance or precision is the estimation dispersion with respect to the mean value
of the set. In positioning and navigation, these concepts are usually translated in
level of confidence, availability, continuity, coverage and reliability.

2.3.1 Linear Least Square Estimation
The least square estimation is a classical estimation technique for overdeter-

mined systems that can be used if there is a linear relationship between unknown
and measurements, y = Hx+n. The measurements must not be affected by biases
and must have gaussian distribution ε(n) = 0. In this case, LSE consist to minimize
the Least Square Residual (LSR) i.e. the sum of the squared differences between
the modelled measurement vectors and the observed measurements (measurement
error) Σ(h(x)− y)2 = Σv2 (in matrix form is y = Hx; y −Hx = v). The computa-
tion of the minimum value of Σv2 consist in taking its first derivative and equating
the resulting function with zero. From this definition is possible to set a system
of linear equations that in matrix form is Ax = b or Nx = Tn. with N = HTH
pseudoinverse and Tn = HTy. Then the LSR estimator is:

x̂ = (HTH)−1HTy (2.1)

If the covariance matrix of the noise is known Cyy or R, is possible to predict
the covariance matrix of the estimation error and so the covariance matrix of the
estimator x̂:

Cx̂x̂ = (HTH)−1HTCyyH(HTH)−1 (2.2)
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On the other hand, if the covariance matrix of the measurement error Cvv is
known is possible to weight the measurements depending on their variance. In this
case the estimation technique is called Weighted Least Square Estimation (WLSE):

x̂ = (HTC−1
yy H)−1HTC−1

yy y (2.3)

The covariance matrix of the estimation error x− x̂ is:

Cx̂x̂ = (HTC−1
yy H)−1 (2.4)

with:

C−1
yy =

⎡⎢⎢⎣
σ2

1 . . . 0
... . . . ...
0 . . . σ2

n

⎤⎥⎥⎦ (2.5)

2.3.2 Non-Linear Least Square Estimation
In some cases the measurement model may not be linear, as for example in

the case of range measurements. The linear LSE cannot be used directly in this
situation but the model must be linearised around a supposed state vector x̂0. If an
approximate value of x is known. Is possible to re-write the function as a first order
derivative of Taylor series. The Non Linear Least Square Error (NLLSE) model is:

Non linear measurement model y = h(x) + n
Linearisation of the model inx̂0 h(x) = h(x̂0) + δh

δx(x̂0)(x− x̂0)
Definition of the Jacobian matrix H = δh

δx(x̂0)
Rewriting of the measurement model y = h(x̂0) + H(x− x̂0) + n
The transformed measurement ∆y = y− h(x̂0)
The transformed state ∆x = (x− x̂0)
The Least Square Estimation ∆x̂LS = (HTH)−1HT∆y
The final estimate x̂ = x̂0 + ∆x̂LS

Usually this method is applied iteratively in order to refine the linearisation
point. The Least Squares estimators are quite easy to implement, and provide
generally good results. The main advantage is the lack of assumptions that have
to be done in the estimator design.

2.3.3 Kalman Filter
Nowadays, when a navigation system is design, the measurements acquired in

real-time are combined with dinamic motion models (velocity, acceleration, etc.)
to define the predicted position of the body. The most used approach to perform
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this integration is the KF. KF is a recursive estimator means to estimate the state
of a process, in a way that minimizes the mean of the squared errors [24]. The set
of equations used in KF are based on two estimation models, the state transition
model and the measurements model. The recursive nature of the filter provide
means of incorporating information about the past state and predict the new state
adding new measurements. The assumptions of the KF are the gaussian stochastic
model and the linear relation between subsequent state equations:

state transition model xk+1 = Fkxk + wk (2.6)
measurement model yk = Hkxk + vk (2.7)

where:

• Fk is the transition matrix

• wk is the state noise vector (Cvv or Q) follows a known normal distribution
N(0, Q)

• Hk is the observation matrix

• vk is the measurement noise vector (Cww or R) follows a known normal
distribution N(0,R)

The principle of the Kalman Filter for a dynamic system is shown in Figure 2.3.
It is based on two main steps, the state prediction and the measurements update,
used in a recursive iterative process. During the prediction, a predicted estimate
x̂k|k−1 is obtained by applying the state transition matrix. In the update step, this
prediction estimate is corrected by the measurement information.

Prediction:
x̂k|k−1 = F(x̂k−1|k−1) (2.8)

Update:
x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1) (2.9)

where K is the Gain matrix or Kalman matrix. The factor (yk − Hkx̂k|k−1)
inside the brackets is called innovation state or predicted residual and represent
how much the new measurements yk are "good" for the predicted estimator x̂k−1.
The K matrix is computed as:

Kk = Σk|k−1HT
k (HkΣk|k−1HT

k + Rk)−1 (2.10)

For both step is possible to compute the state covariance prediction 2.11 and
the state covariance update 2.12:

Σk|k−1 = FkΣk−1|k−1FT
k + Qk (2.11)
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Σk|k = (I−KkHk)Σk|k−1 (2.12)

Figure 2.3: Kalman filter principles.

In case the transition model is based on non linear functions, the KF is called
Extended Kalman Filter (EKF). In this case the state and measurements models
(2.7) becomes:

state transition model xk = fk(xk−1) + wk−1 (2.13)
measurement model yk = hk(xk) + vk (2.14)

This need to be linearised around the last estimated state x̂k|k so that a linear
system is obtained and the previous procedure can be applied. The validity of he
EKF solution depends from the uncertainty associated to the linearisation points
and from the non-linearity. The EKF usually operates in a closed-loop mode which
means that, every epoch the state vector is updated, it is used to correct the current
state. Therefore the state vector prediction in equation 2.8 is no longer necessary
and only the covariance propagation must be performed in prediction step. Details
about KF and EKF can be found in [24], [25] and [26].

2.4 Outlier rejection
In the previous sections the measurements have been considered affected by

noise, i.e. some accidental errors which follows a gaussian distribution. Unfortu-
nately, when one perform numerous measurements is possible to find and observa-
tion that clearly differs from all the others. In this case is said that this observation
is an outlier [27]. These ouliers can severely disturb the estimation procedure and
so must be detected. When this difference is not so clear and affect an huge sam-
ple of measurements, it is necessary to use some robust outlier rejection method.
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There are many types of robust algorithms that can be chose in function of the
specific case study [28]. Among the many, the most interesting algorithm for this
work is the RANdom SAmple Consensus (RANSAC) of Fischler and Bolles [29]. In
general, the algorithm consists in robustly fitting a chosen model to a set of data
that contains outliers. This is done in an iterative procedure of re-estimation and
minimization of the chosen model starting from a random selection of minimal sub-
set of data, sufficient to determine the model. Minimal subset means the number
of sample N sufficiently high to ensure with a probability p that at least one of
the random samples of s points is free from outliers. If the model is a line, the
minimal subset consist in two points while if the model is a 2D projective trans-
formation between two correspondent images, the minimal subset is represented
by four correspondences. The reason is that the computational requirement to
try every possible samples is often infeasible for large datasets. Usually a squared
spatial distance of all the dataset with respect to this random model estimation is
minimized and therefore, the best model from all the possible trial is selected in
function of the number of outliers detected.

Given a set of data S containing outliers, estimate a variable that robustly fit
a model. Procedure:

• Randomly select a sample of s data points from S and instantiate the model
from this subset.

• Determine the set of data points Si which are within a distance threshold t
of the model. The set Si is the consensus set of the sample and defines the
inliers of S.

• If the size of Si (the number of inliers) is greater than some threshold T ,
re-estimate the model using all the points in Si and terminate.

• If the size of Si is less than T , select a new subset and repeat the above.

• After N trials the largest consensus set Si is selected, and the model is re-
estimated using all the points in the subset Si.

This algorithm is a fundamental procedure for any estimation problem which
cope with a large quantity of outliers.
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Chapter 3

METHODS FOR POSITIONING
AND NAVIGATION

This Chapter gives an overview on basic principles and theoretical aspects of
positioning and navigation estimation from different technologies and systems. In
particular, the thesis combines different scientific disciplines connected to the navi-
gation problem which are considered the prevalent in the field and the most suitable
for the purpose of the work: the seamless navigation in challenging environments.

These are:

1. UWB positioning and navigation;

2. Image based positioning and navigation;

3. GNSS positioning with smartphone technology;

4. Inertial Navigation;

5. Other hybridization systems;

Each section of this chapter introduce the fundamental concepts, the methods
and the algorithms of the related systems together with advantages and drawbacks
in the localization task. The panorama is huge and includes disciplines like Com-
puter Vision, Photogrammetry, Signal processing and Navigation. The motivation
is that achieving robust positioning and navigation in challenging environments re-
quires a large number of subsystem. In fact to overcome errors and noises, different
sensors must be integrated to obtain a robust and reliable solution. Moreover, these
systems needs fusion algorithms not only able to provide the optimal estimate for
the single subsystems but also manage the relative interaction and the input/output
priority. All this demonstrate the multidisciplinarity of the navigation problem and
the expertise required to manage all the issues that any single system can inject in
the overall solution.
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3.1 Ultra-wide band systems
UWB is a radio technology for short-range, high-bandwidth communication,

born for military purpose and used in distance estimation, localization and track-
ing. The use of this technology for positioning has increase a lot from 2002 when
the United States FCC has regulated its use for communication, navigation and
safety applications in mainstream markets [30]. Before 2002 the communication
technologies providers started to be interested in commercial applications of this
new technology due to his spectrum characteristics. In fact, the band allocated
to this radiofrequency is 7.5 GHz wide, enormously greater than any other license
given to the primary allocation groups (UTMS and IEEE 802.11 a / b / g). Fur-
thermore, the use of this band is totally free. This regulation has therefore served
to respond to the concerns and needs of hostile groups worried about the impact
of this new market in their sectors. The details on this regulation are reported
in figure 3.1 where the main point is the limitation of the power spectral density
emission at the very low value of -41 dBm/MHz, in order to avoid interferences
with other RF transmissions.

The definition and standardization of the UWB transmission systems is reported
by the FCC and ITU-R which define it as “. . . a transmission from an antenna for
which the emitted signal bandwidth exceeds the lesser of 500 MHz or 20% of the
center frequency.” In 2002, the 3.1 -10.6 and 22–29 GHz bands were opened to
UWB by FCC, and the power spectral density emission for UWB transmitters was
limited within −41.3 dBm/MHz (respectively 6.0 GHz 8.5 GHz in accordance to
the European Communications Committee (ECC)).

Figure 3.1: UWB spectrum regulation by FCC and ECC
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In very general, an UWB transmission is a radio wave signal spread in the en-
vironment from a transmitter and received by an antenna receiver. These signals,
defined as impulse radio Ultra-wideband (UWB-IR), are time-modulated ultra-
wideband communications based on discontinues emission of very short pulses
rather than continuous RF wave. In fact, combining multiple signals with a slightly
different frequency, its possible to create a pulse with high defined timing, i.e., the
peak of the pulse. Sinusoidal signal are narrow in frequency and wide over time
while a pulse is narrow in time with a wide bandwidth in the frequency domain
(Figure 3.2).

Figure 3.2: Narrowband vs Ultra-wide band communication behaviour. Time and
frequency domain.

These characteristics gives to UWB-IR signal some important advantages in
both the telecommunication and the positioning field. In telecommunication, the
UWB-IR noiselike allows the signal to be shielded by interception and detection.
Then due to these very short duration pulses, the UWB signal characteristic allows
to mitigate multipath reflections. The huge bandwidth allocated permits to achieve
high data rates communications. Moreover, due to the low-power spectral density
assigned by law, UWB signals cause very little interference with existing narrow-
band radio systems like WiFi and Bluetooth and can be emitted with very low
power consumption. All these advantages are reflected in the ease implementation
and in the low cost of these systems. It will shows later in this chapter, that
some of these UWB signal characteristics will be also useful in the development of
positioning and navigation solutions.

3.1.1 Principles of UWB positioning
Since this recent regulation, both the scientific community and the industrial

sector have promoted the research and development of new systems that exploit
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the physical characteristics of this technology. Indeed, the very short time-domain
pulses of UWB systems make them ideal candidates for positioning application. As
it was shown, the duration of a pulse is inversely proportional to the bandwidth of
the transmitted signal. In UWB positioning the antenna receiver try to estimate
the ToA of a pulse that, being very short, allows very little uncertainty on the
time measurements. Knowing signal reception time with little uncertainty, then it
is possible to estimate accurately the value of the distance travelled by the pulse
between the two antennas simply multiplying the time of flight measurement by
the speed of radio waves ( speed of light c = 299792458 m/s). By combining this
distance estimates at multiple receivers, it is possible to use simple triangulation
techniques to estimate the position of the source. In general, knowing the position
of some fixed tag and measuring a certain distance, it is possible to state that the
unknown point will be in a circle of that radius around the anchor. The range
between sensor i and the antenna receiver is given by:√

(x− xi)2 + (y − yi)2 + (z − zi)2 = c (ti − t0) i = 1,2, .., n (3.1)

Where (x, y, z) and (xi, yi, zi) are the coordinates of the tag and the sensor
respectively, c is the speed of light, ti is the signal ToA at sensor i, and t0 is the
unknown transmit time at the tag/device. Making distance measurements with 3
anchors, the position is uniquely determined by the intersection of the three circles
(Figure 3.3). This is a general approach but many techniques of positioning based
on signal time measurements are used in literature (Signal strength, Angle of Arrival
(AoA), ToA, Time Difference of Arrival (TDoA)). For practical applications, the
tag position should be estimate with a robust non-linear optimization algorithm.

Figure 3.3: General triangulation example.
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The use of large frequency bandwidth (>500 MHz) imposed by the regulation
permit high resolution in time and consequently in range. In fact, in a single
nanosecond, a wave travels almost 30 cm. Determinate the peak of a wide pulse ac-
curately, is very hard and moreover the reflections coming from the signal scattered
onto object (wall, ceilings, closets, desk, etc.) are also captured by the receiver
and may overlap with line of sight pulse. With pulse of 4ns wide, (∆f = 20MHz)
any object within 1.2 m of the receiver or the transmitter will cause an overlapping
pulse. Because of this, ranging with Wi-Fi using Time of Flight (ToF) is not suit-
able for indoor applications. In the Ultra-Wideband systems, the duration of the
pulse is in the order of nanoseconds or even less, that means a bandwidth of more
than 500MHz and the capability to distinguish reflections of the signal.

Figure 3.4: Waveform at the receiver of transmitted pulse. Analysing the peaks it
is possible to discretize the reflections.

The achievable range resolution, in the case of UWB can be approximated with:

rr ≈ c

2b (3.2)

Where c is the speed of the wave front and b the bandwidth. E.g. for 500
MHz band and propagation in free space (assuming speed of light) it is rr ≈
0.5c0/500MHz = 299mm. Whit any UWB systems, therefore, it is potentially
possible to achieve sub-metre accuracy in poisoning. In the UWB systems, the
high resolution time is measured with different techniques like ToA, Two Way
Ranging (TWR), TDoA. All these techniques relies on time measurements and
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has different advantages and disadvantages. The technique used in the systems
analysed is the TWR.

The TWR methods can be described as follows. A transceiver (from now on
Anchor) transmits a UWB radio message at a certain time (recorded timestamp
t1) Another transceiver (form now on Tag), usually moving in the environment,
receives the message and transmits a response back to the anchor after a particular
fixed time delay treplay. The anchor then receives the tag response at a certain time
and records it (recorded timestamp t2). Thanks to the two timestamps t1 and t2,
the anchor is able to calculate the so called round trip time troundtrip. Theoretically,
subtracting to this time, the time delay of the tag response and dividing this by 2
(due to the rroundtrip) it is possible to determinate the ToF of the message. Being
the radio wave a very short pulse, the time accuracy will be very high. Then,
assuming the speed of a radio wave through the air equals to the speed of light c,
then the distance between the anchor and the tag can be calculated. It is important
to note that the only reference time for the TWR computation is the one of the
anchors timestamps which means that the non-synchronizations of the transceivers
inner clocks is not a problem (Figure 3.5).

troudtrip = t2 − t1 (3.3)

TOF = troundtrip − treplay
2 (3.4)

Figure 3.5: Two-Way Ranging description.
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3.1.2 Source of UWB positioning errors
Propagation of UWB signal suffer from environmental condition while physical

implementation of the sensor can affect the measurements. In general, the sources
of positioning uncertainty in UWB systems are:

• oscillator accuracy and drift;

• walls and obstructions that increase path length;

• received signal strength;

• accuracy of delay estimation technique;

• false readings from interference and multipath;

• saturation of the communications.

For very high accuracy in positioning these sources of errors should be avoided,
in particular in Non Line of Sight (NLOS) conditions. In these situations, the
estimation procedure must be supported by other techniques like weighting error
region based on confidence levels or logarithmic likelihood measure based on signal
to noise ratio.

3.2 Image-based systems
The interest in digital images as primary data for positioning and navigation

purpose raise from the possibility to extract not only spatial information simulating
human perception, but also the geometry of the three-dimensional real word and
the spatial relation with it. With such information is possible to produce accurate
topographic maps, to reconstruct the reality in three dimensional models (from an
architectural scale till the industrial metrology), to define the pose of sensors that
acquires such images and calibrate them, to recognize and track objects in the scene
and much more.

In the following sections, the principles and the mathematical techniques useful
to understand the proposed algorithms for image-based positioning are presented.
These are basic principles useful for the algorithm implementation in further chap-
ters. In Chapter 4 and 5 will be presented two case studies of image-based posi-
tioning and navigation based on two different approaches.

The first is a problem of camera pose estimation exploiting photogrammetric
principles while the second is a visual odometry problem in which computer vision
methods were used. The reason of this dual approach is inherent to the academic
background of the author which has been influenced from the Geomatics research
group of Politecnico di Torino (for the photogrammetric approach) and from the
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Sensor and Indoor Navigation (SINA) research group of Finnish Geospatial Re-
search Institute (FGI) (for the computer vision approach).

Although both fields have considerable overlap, is possible to define different
goals between them, in particular computer vision has evolved under the central
theme of achieving human level capability in the extraction of information from
image data [31] while photogrammetry found his main core in the accuracy. More-
over, while computer vision express the basic camera model as a linear mapping of
homogeneous coordinates, in photogrammetry this is usually expressed in terms of
collinearity equations.

It is not topic of this work going in deep on this comparison, what is important
to state is that whit the information technology revolution, complex and heavy
computational procedure have become more fast and accurate, allowing real-time
applications. Moreover, uncalibrated low-cost sensors has been introduced in a field
that before was restricted to tools of higher value.

To understand better this duality of the problem and how it will be correlated
with the present work, let’s consider two different situations:

• A camera moves while acquiring a static scene (singular view);

• Two pictures of the same scene taken at different time (stereo view).

These two scenarios represent the same geometric problem but in this Thesis repre-
sent also the two different procedures made to perform positioning and navigation
with images. Figure 3.6 shows better this concept: in the so called "Computer Vi-
sion approach", a monocular camera moves while acquiring a static scene. Knowing
simply some initial information is possible to perform a Visual Odometry procedure
to estimate the navigation path of the camera. This means updating the pose of the
camera iteratively from the previous position. Moving on the "Photogrammetric
approach", a camera acquire an image of an object which is already documented
in a complete database of geolocated images. From the collinearity equations and
knowing the distance of the database images from the object is possible to estimate
the position of the new camera.
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Figure 3.6: Schema of computer vision vs photogrammetric approach.

3.2.1 The computer vision approach
This Section explain the principles of computer vision and how this research

field is related to the navigation problem. In very general term computer vision is
the study of visual data acquired by mechanical and digital sensors that simulate
the human vision. This discipline has enormously increased his importance in
the last years as a result of the large number of camera sensors spread all over
the world. Nowadays everyone carries around smartphones with one, two or maybe
even three cameras mounted on it. This means that billions of sensors are acquiring
continuously a large massive amount of visual data that need to be analysed and
processed for different purpose. Computer vision is an interdisciplinary field that
operates on different areas of science, engineering and technology. It touches areas
like physics, biology, psychology, computer science, mathematics and more. (Figure
3.7)

The first step to automatically understand the content of visual data is to un-
derstand optics and image formation. The history of computer vision born exactly
with the tentative to reproduce mechanically the human vision, in particular the
eyes image formation, through a camera obscura based on pinhole camera theories.
The second fundamental step in computer vision was understanding the animals
visual perception mechanism. Hubel and Wiesel in late 50s discovered that the
cats brain can recognize the complex visual world from oriented edges and simple
structure observed in the real world [32]. This gave the intuition to simplify the
real world in simple geometric shape and to relate it with complex interpretation
and reconstruction of the three-dimensional reality. From the 60s on, researcher
start to investigate on algorithm able to perform object detection and recognition
in digital images and use it as information for modelling the geometry of multiple
views cameras [33] [34]. The third challenging step in computer vision was to esti-
mate the motion from the camera images as an animal or an human do with their
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Figure 3.7: The computer vision interdisciplinarity.

eyes. Thank to the visual perception of the brain is easy for humans to understand
the perspectives, to retrieve missing information from occluded parts in the scene
and to estimate distances to the objects. The earliest form of motion estimation
in computer vision is “optical flow”, a concept arises from many studies performed
on bees in a wind tunnel [35]. After that, the robotic community has investigated
on navigation systems based on Visual Odometry, the field of investigation that
try to retrieve the trajectory of a camera or of a stereo camera rig using the visual
information acquired in the images. Deduction of motion information and position
from images is the main goal of this chapter. In particular, estimating camera
trajectory in 3D and the 3D position of the feature point based on the apparent
motion of 2D correspondences is a problem in numerous filed of investigation like:

• camera tracking;

• structure from Motion;

• photogrammetric mapping;

• simultaneous Localization and Mapping (SLAM).

3.2.1.1 Pinhole camera model

An image sensor in a camera is an array of light sensitive detectors that converts
3D world information in 2D pixels on an image plane. This image i.e. the pho-
tographs, contains digital information like colours and intensity value inside each
pixel and can be used as input data in computer vision algorithm. The relation
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between the 3D scene in the real world and the recorded image in the 2D image
plane is called camera model. Each three-dimensional point in the field of view of
the camera is mapped into a two-dimensional feature using a projective transforma-
tion. The mathematical model that allow to describe this projection is composed
by a sequence of transformation between different coordinate frames and projective
space expressed by matrix equations. The following schema is an overview on all
these equations seen both as forward projection from 3D scene to 2D camera fea-
tures then as backward projection from 2D pixel coordinates to 3D world points.
This second case is what CV is usually interested in as allow to recover 3D scene
structure simply from image sequences.

Figure 3.8: Camera projections

The simplest camera model is the pinhole camera model (Figure 3.9) which
correspond to the central projection where a point in space X = (X, Y, Z)T ∈ R3

is projected onto an image plane along a ray that connect this point to the camera
centre of projection C. The 2D point in the image plane is called image point
x = (x, y)T ∈ R2 . The general name of the pinhole camera model is the “3D to
2D perspective projection”.

Figure 3.9: Pinhole camera model [34].

If C is the origin of an Euclidean coordinate system with the Z axis in the
direction of the camera view, the point where Z axis meets the image plane (at
distance f from C) is called principal point pp. f is the physical focal length,
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the distance between C and the image plane. In this Euclidean geometry called
camera frame, the 3D scene point Xcam = (X, Y, Z) correspond to a 2D image point
xcam = (x, y) by similarity rules of the triangles composing the geometric model
of the pinhole cameras (central projection, dimension of an object in an image is
inversely proportional with the depth or distance Z):

x = f
X

Z
y = f

Y

Z

(X, Y, Z)T −→ (fX/Z, fY/Z)T (3.5)

In order to represent these relations as matrix equations is necessary to introduce
the homogeneous coordinate that allow us to define every 2D points (x, y)T ∈ R2

as a 2D triple point (kx, ky, k)T in P2 adding a fictional third coordinate (k = 1).
Reversely, for a given triple (x̃, ỹ, z̃)∈ P2 in homogeneous coordinate we can recover
his Cartesian form (x, y) ∈ R2 as x = x̃/z̃ and y = ỹ/z̃. The same is valid for 3D
scene point (X, Y, Z)T ∈ R3 which can be expressed as (X, Y, Z,1)T ∈ P3. In this
context, the perspective transformation 3.5 can be expressed:

⎛⎜⎝x̃ỹ
z̃

⎞⎟⎠ =

⎡⎢⎣f 0
f 0

1 0

⎤⎥⎦
⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ ;

⎛⎜⎝x̃ỹ
z̃

⎞⎟⎠ =

⎛⎜⎝fXfY
Z

⎞⎟⎠ (3.6)

that express the 3D to 2D forward projection⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ ∈ P3 −→

⎛⎜⎝fXfY
Z

⎞⎟⎠ ∈ P2

The matrix in this expression is a (3 × 4) and may be written as M3×4 =
diag (f, f,1) [I | 0] and the expression 3.6 has the concise form:

x = diag (f, f,1) [I | 0]Xcam (3.7)

Then is possible to recover back the cartesian coordinates (x, y) in R2 by dividing
the point by his last value:

x = f
X

Z
y = f

Y

Z
∈ R2

Until now it has been assumed that the origin of the image plane coordinates
coincides with the principal point but this in practice may not be. In real case,
what it possible to measure on images are pixel values which have their own origin
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of coordinate system, usually in the top-left corner of the sensor. The actual pixel
values are:

xpix = x

dx
+ u0 ≡ u and ypix = y

dy
+ v0 ≡ v

With dx and dy pixel size in world unit, O = (u0, v0) shift of the top-left origin
with respect to the camera center and u and v pixel coordinate of the point in the
image frame. In matrix form and homogeneous coordinate equation 3.6 becomes:⎛⎜⎝x̃pixỹpix

z̃pix

⎞⎟⎠ ≡
⎛⎜⎝ ũṽ
w̃

⎞⎟⎠ =

⎡⎢⎣
1
dx

0 u0
0 1

dy
v0

0 0 1

⎤⎥⎦
⎛⎜⎝x̃ỹ
z̃

⎞⎟⎠ ;

⎛⎜⎝ ũṽ
w̃

⎞⎟⎠ =

⎛⎜⎝
1
dx
x̃+ u0

1
dy
ỹ + v0

z̃

⎞⎟⎠ (3.8)

The matrix in this expression is a (3 × 4) representing an affine transformation.
Summarizing, between a point expressed in the image plane expressed in camera
coordinate and the same point expressed in pixel coordinate there is a 2D-to-2D
Affine transformation, while a 3D point in homogeneous coordinate is mapped into
a 2D point in homogeneous coordinate, (both expressed in camera frame) with a
3D-to-2D Projective transformation. Joining the two transformation is possible to
express the projective transformation that maps scene points in camera frame to
image point expressed in pixel coordinates:

⎛⎜⎝x̃pixỹpix
z̃pix

⎞⎟⎠ ≡
⎛⎜⎝ ũṽ
w̃

⎞⎟⎠ =

⎡⎢⎣
1
dx

0 u0
0 1

dy
v0

0 0 1

⎤⎥⎦
⎡⎢⎣f 0

f 0
1 0

⎤⎥⎦
⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ (3.9)

⎛⎜⎝ ũṽ
w̃

⎞⎟⎠ =

⎡⎢⎢⎣
f
dx

u0 0
f
dy

v0 0
1 0

⎤⎥⎥⎦
⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ =

⎛⎜⎝
1
dx
fX + u0

1
dy
fY + v0

Z

⎞⎟⎠ (3.10)

The concise form for this expression is:

xpix = M3×3 ·M3×4Xcam (3.11)

Then is possible to recover back again the Cartesian coordinates xpix = (u, v)T
in R2 by dividing the point by his last value:

=⇒ u = ũ

w̃
= 1
dx
f
X

Z
+ u0

Z
v = ṽ

w̃
= 1
dy
f
Y

Z
+ v0

Z
∈ R2

Is possible to observe that all the parameters related to the inner characteristic
of the camera are expressed inside this two matrix. In fact the projective trans-
formation express the zooming effect of the lenses in the image formation while
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the affine transformation take into account the main mechanic proprieties of the
camera sensor. Notice that from 3.2.1 it is possible to define a matrix that not
depend at all from the scene observed by the camera:

K =

⎡⎢⎣fx u0
fy v0

1

⎤⎥⎦ (3.12)

This (3× 3) matrix is called camera calibration matrix and is composed by the
internal parameters of the camera.

Then the pinhole camera model can be expressed as:

x = K [I | 0] Xcam (3.13)

With x and Xcam both expressed in homogeneous coordinates. The Euclidean
coordinate system centered in the camera centre with the principal axis of the cam-
era pointing down the Z-axis is called camera coordinate frame and in the previous
equations the 3D scene points were expressed in this coordinate system (Xcam). In
general, the point in the object space are expressed in a different Euclidean coor-
dinate frame, the world coordinate frame. As is known, two frames are related via
a rigid transformation composed by rotation, translation and scaling.

Xcam = RXworld + t (3.14)⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠
cam

=
[
R t
0 1

]⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠
world

(3.15)

⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠
world

=
[
R t
0 1

]−1

⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠
cam

(3.16)

where R is a 3×3 rotation matrix and t is a 3×1 column vector. So from Equation
3.13, the relation between the scene points in the world frame and the image points
in the camera frame can be written now:

x = K [R | t] X (3.17)

⎛⎜⎝ ũṽ
w̃

⎞⎟⎠ =

⎡⎢⎣
1
dx

0 u0
0 1

dy
v0

0 0 1

⎤⎥⎦
⎡⎢⎣f 0

f 0
1 0

⎤⎥⎦ [R t
0 1

]⎛⎜⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎟⎠ (3.18)
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Where X now is expressed in the world coordinate frame. The parameters
of the camera calibration matrix are called internal camera parameters and are
independent form the real word, while the parameters of the roto-translation matrix
are called external parameters or exterior orientation and relate the camera center
position and orientation to a world coordinate system. The combination of these
two transformation is expressed in the (3× 4) camera matrix P :

P = K [R | t] (3.19)

from which the pinhole camera model is:

x = PX (3.20)

Remember that all the equation matrix expressed above are up to scale equiv-
alence and in order to make the theoretical description more light the following
equivalence has been used: x̃→ x = (ũ, ṽ, w̃)T .

3.2.1.2 Lens Distortion

In real cameras, the pinhole model is not respected as the lenses and mechanic
characteristic of the camera sensor introduces some deviations in this model. In
particular, the wide angles of the lenses result in a radial distortion in the images
which cause straight lines in the scene to show up as curved lines in the image
(Figure 3.10).

Figure 3.10: Distortion due to optics.

The amount of this distortion on the radial distance from the centre of the image
is expressed as follow:[

x̃dist
ỹdist

]
=
(
1 + k1 · r2 + k2 · r4 + k3 · r6

) [x̃und
ỹund

]
(3.21)
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With ki distortion value function of the specific camera and r = x̃2
und + ỹund.

Moreover the camera can also be affected by tangential distortion caused by physical
elements in a lens not being perfectly aligned:

x̃und = xdist + [2p1ydist + p2
(
r2 + 2xdist2

)
] (3.22)

ỹdist = ydist + [p1
(
r2 + 2ydist2

)
+ 2p2xdist] (3.23)

With p1 and p2 tangential distortion coefficients of the lens. To determinate the
distortion parameters (k1, k2, k3, p1, p2) useful to correct the lens distortions, one
may use several procedures which exploit images of a known calibration object
such as a chequerboard or a calibration field.

3.2.1.3 Camera Calibration

Camera calibration procedure is the process that allows to estimate intrinsic
and extrinsic camera parameters from a set of 3D to 2D-points correspondences
(resectioning), including the distortion coefficients, using non-linear least-square
minimization. In section 3.2.1 the intrinsic parameters of an ideal camera were
saved in the K matrix. For real CCD cameras, there is the possibility to have
non-square pixels which introduce a unequal scale factor (αx αy) in the calibration
matrix. Moreover, in some cameras could be presented a skew coefficient between
the image plane axis (S). Taking into account also these parameters, the camera
calibration matrix is composed by focal length (fx, f y), principal point (u, v), skew
coefficient (S) and aspect ratio (αx αy). The camera external parameters are six
parameters, three for the rotation and three for the translation. To calibrate a
camera there are different state-of-art procedure that can be classified in linear and
non-linear approaches. Starting from linear problem:

From equation 3.20, if a set of points in the world reference frame is known
(for example from a calibration rig or a checkerboard) and the same point can be
detected in the image, it is possible to set up a linear system of equations from n
correspondences Xi ↔ xi:

[
0T −ωiXT

i yiXT
i

ωiXT
i 0T −xiXT

i

]⎛⎜⎝p1
p2
p3

⎞⎟⎠ = 0 (3.24)

Ap = 0 (3.25)

where each pTi is a 4-vector for the i-th row of P This system has 2n equation from a
set of n correspondences between object points and image points and 12 unknowns
as P is a (3× 4) matrix. When the homogeneous linear system is overdetermined
(2n > 11) and there is the presence of noise in the point coordinates, there is no
exact solution to the equations Ap = 0 but an approximate solution that minimize
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a suitable cost function (algebraic or geometric distance). This is the Direct Linear
Transformation procedure and is valid also to compute the projective transforma-
tion between 2D-to-2D image point correspondences. One possible solution of this
minimization problem can be stated as follow:

given a matrix A with at least as many rows as columns, find x that minimize
||Ax|| subject to ||x = 1||, the approximate solution x is the last column of V , where
A = UDV T is the singular value decomposition of A. The obtained solution is P ,
the camera projection matrix that best fit the points correspondences. Therefore
is possible to find the camera center,the orientation of the camera and the internal
parameters of the camera.

Having P like in 3.19, it is possible to write:⎡⎢⎣p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎤⎥⎦ =

⎡⎢⎣fx u0
fy v0

1 0

⎤⎥⎦
⎡⎢⎣r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

⎤⎥⎦ (3.26)

And linearly solving the equations to find all the unknown. This is the full Cam-
era calibration process which estimates the values of the intrinsic parameters, the
extrinsic parameters, and the distortion coefficients from P .

A more common procedure to estimate intrinsic and extrinsic parameter from
a camera matrix is based on the Plane Based Calibration. It is based on the use
of a calibrated checkboard as scene for the multiple acquisition of a single camera.
(Figure 3.11) where the world frame is on the plane such that XY-plane correspond
to a plane π in the scene.

Figure 3.11: Plane induced homography.

When all the object 3D points lie on a plane (Z = 0) and the camera centre
don’t correspond to the scene plane, the mapping of this points on the image plane

37



3 – METHODS FOR POSITIONING AND NAVIGATION

can be expressed as:

x = PX =

⎛⎜⎝p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎞⎟⎠
⎛⎜⎜⎜⎝
X
Y
0
1

⎞⎟⎟⎟⎠ = [p1 p2 p4]

⎛⎜⎝XY
1

⎞⎟⎠ (3.27)

This projective camera matrix is an planar homography transformation (a plane
to plane projective transformation) represented by Hp a 3 × 3 matrix. For a cali-
brated camera of the type in eq. 3.12, the homography between a world plane at
Z = 0 and the image is:

H = K[r1 r2 t] (3.28)
Where ri are the column of R. As we have an homography projective transfor-

mation between 3D coordinate points and 2D image point for every camera position,
and as the camera internal parameter are the same for each image acquisition its
valid the relation:

H = λK[r1 r2 t] (3.29)
Making the inverse:

[r1, r2, t] = 1
λ
K−1[h1 h2 h3] (3.30)

As r1 and r2 are column vectors of a rotation matrix, the norm ∥ r1 ∥=∥ r2 ∥= 1
and (r1)

T · r2 = 0. Using these as constrain it is possible to estimate R and t as
follow:

r1 = λK−1h1 (3.31)
r2 = λK−1h2 (3.32)
r3 = r1 × r2 (3.33)
t = λK−1h3 (3.34)

Using this as initial parameter, at the end of a refinement procedure a cali-
brated camera is obtained. The refinement procedure consist in compute distortion
coefficient and optimize initialization parameters using non-linear least square min-
imization:

p̂ = argmin
p

| x− f(p) |

where p are the camera parameters and the function f project the known planar
3D points X onto 2D image plane with argument p. The iterative method which
minimize the chosen cost function is the Sparse Levenberg-Marquardt algorithm
[36] which update the parameters starting from the initial estimate p̂0.

This estimation problem has many feature in common with two other important
estimation procedure that will be described later: the 2D homography estimation
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and the Fundamental matrix computation. If another image acquiring the same
scene plane is considered, then it is possible to affirm that point correspondences xi
and x′

i in the two images are also related by a homography H. This special case is
fundamental for the navigation solution proposed and will be presented in section
3.2.1.

3.2.1.4 Two-View Geometry background

The camera image acquisition can be considered to a first approximation, as
a central projection where a point in the scene is mapped to the correspondent
point in the image plane along a ray that connect the object point to the centre
of projection (camera centre). If no information about the three-dimensional real
world is given, it is possible to reverse the problem and say that the 3D point in
the scene can lie everywhere in the straight line (or projecting ray) that starts from
the camera centre and pass through the image point. If the same scene is framed
by another image, the projection of the straight line generated by the first image
on the second image represent the place where the object point can lie. This mean
that for an image point x in the first view, the search of the correspondent x′ point
in a second image viewing the same 3D-space, can be constrained to a single line
called epipolar line. This constrain increase the accuracy in the identification of
image correspondences and decrease the computational cost of the process.

Suppose now a 3D-space point X viewed by two camera and projected to a 2D
point x in the first view, and x′ in the second. These three points are coplanar, and
all lie on the same plane. The intersection between this plane and the two-image
plane correspond exactly with the previous epipolar line. For each image point
correspondences there is a plane defined by a line between the two-camera centre
C and C ′ (baseline) and the object point X.

If one camera is in the view of the other camera, the baseline intersects the
image plane in a point called epipole. All these geometric relations are called
epipolar geometry. (Figure 3.12)

Figure 3.12: Epipolar geometry.
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The epipolar geometry is represented by an algebraic relation called Fundamen-
tal Matrix expressed in homogeneous coordinates: “For any set of correspondent
points {xi ↔ x′

i} in the two images, x′T Fx = 0”.

∀ (x, y)↔ (x′, y′) x′T Fx = 0 (3.35)

Where the fundamental matrix is a (3 × 3) matrix of rank 2. Assuming fixed
(x, y) in the first image:

[
x′ y′ 1

]T
F
[
x y 1

]
= 0

[
x′ y′ 1

]T
F
[
a b c

]
= 0 (3.36)

ax′ + by′ + c = 0 is the Epipolar line in the second image and vice versa a′x +
b′y + c′ = 0 is the Epipolar line in the first image. Therefore, the Fundamental
matrix maps a 2D point in the image plane of the first view to a 2D line in the
image plane of the second view:

x→ l′ l′ = Fx (3.37)

Faugeras and Hartley in 1992 introduces the algebraic relation between the
fundamental matrix and the ordered camera matrix pair {P, P ′}. The fundamental
concept to state is that:

“Given the ordered camera matrix pair {P, P ′} there is an unique (up to scale)
associated matrix F while given a matrix F there is a family of camera matrices
{PW,P ′W}. Moreover: ”A non-zero matrix F is the fundamental matrix corre-
sponding to a pair of camera matrices P and P ’ if and only if P ′TFP is skew-
symmetric.” From all this is always possible to bring one of the camera matrix to
the form P = [I | 0] through and SVD decomposition and so assume the second
camera matrix as P ′ = [B | b] = [R | t] =

[
[e′]× F | e′

]
.

The standard algorithm used to compute the fundamental matrix from point
correspondences will be presented in next paragraph (8-point algorithm).

Certain case of motion or particularly favourable case allow to simplify the
fundamental matrix computation. It has been already shown how to calibrate a
camera and knowing camera parameter, normalized image coordinates may be used
to compute the Fundamental Matrix. In this case the computed matrix is called
Essential matrix E and it satisfy .

∀ (x, y)↔ (x′, y′) x′T Ex = 0 (3.38)

With:
E = K ′TFK. (3.39)
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3.2.1.5 Estimating the Fundamental Matrix

To estimate the fundamental matrix F having a pair of real images there are
several procedures relying on linear and non-linear methods based on different cost
functions or algebraic distances. In this paragraph will be described the general
method based on a least-square solution of a set of linear equations (8-point algo-
rithm). This estimation can be considered a first approximate solution that have
to be introduced in an iterative procedure to consider noise on the measurements
and outliers. To automatize and refine the estimation of the initial fundamental
matrix an iterative method that rely on non-linear minimization and on robust
outlier rejection should be used (RANSAC).

Given a set of image point correspondences {xi ↔ x′
i}, determinate the funda-

mental matrix F such that xii
T
Fxi = 0. Procedure:

• Normalization: Apply to the point correspondences a transformation to have
image coordinate with zero mean and standard deviation equal to 1, (xi, x′

i)→
(x̂i, x̂′

i);

• Linear equation: Each correspondence gives one constrain on F . With i,
number of correspondences:

⎡⎢⎣x
′
i

y
′
i

1

⎤⎥⎦
T ⎡⎢⎣F11 F12 F13

F21 F22 F23
F31 F32 F33

⎤⎥⎦
⎡⎢⎣xiyi

1

⎤⎥⎦ = 0 (3.40)

⇒

⎡⎢⎢⎣
x′

1x1 x′
1y1 x′

1 y′
1x1 y′

1 x1 y1 1
... ... ... ... ... ... ... ...

x′
nxn x′

nyn x′
n y′

nxn y′
n xn yn 1

⎤⎥⎥⎦
⎡⎢⎢⎣
F11
...
F33

⎤⎥⎥⎦ = 0 (3.41)

(n× 9)(9× 1)

AF = 0

• SVD of A: compute the singular value decomposition of A as A = UDV T

and set F̂ as the smallest singular value of A (last column of V ) reshaped in
a (3× 3) matrix. As the singular value of A could be not zero the SVD of F̂
have to be computed in order to obtain the correct F ;

• Denormalization: apply to the previous result a back-transformation in order
to obtain the final fundamental matrix F .

A similar procedure, called five-point algorithm (Li and Hartely 2006) can be
used to estimate the Essential matrix.
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3.2.1.6 Degeneracy case: Planes and Homography

In chapter 3.2.1 it has been already introduced the concept of plane induced ho-
mography, when the world scene acquired by a camera views is a planar surface (Eq.
3.28). Let’s suppose now that another camera with the same parameters acquire
the same planar scene of the previous one (i.e. the camera has moved). The pose
of the second camera with respect to the first one is define by the transformation:

T =
[
R t
0 1

]
(3.42)

where R is the rotation matrix and t is the translation vector. This paragraph
want to demonstrate the relation between this physical parameters expressing the
motion of the camera, with the 2D-to-2D projective transformation which relate
feature points in two correspondent images.

Figure 3.13: Scene planes and homographies relations.

As shown in the Table 3.1 the planar homography contains inside both the
internal and external camera parameters and could provide the information about
the position of the camera in the world reference frame. The 2D-to-2D homography
on the other hand is linearly obtained from homogeneous 2D coordinate in P2

expressed in pixel and don’t express inside any information related to the camera
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sensor and pose of the image. For this reason, HDLT
x′→x is called 2D uncalibrated

homography G.
Knowing the camera calibration matrix K is possible to obtain an homography

that relates points in calibrated coordinate: H = K−1GK At this point this cali-
brated homography can be decomposed to find the rigid (Euclidean) transformation
R and t between the two cameras. It’s important to underlie that this decompo-
sition is not so straightforward as the 2D-to-2D uncalibrated homography could
not be compatible with another concept of multiple view geometry: the epipole
constrain.

Table 3.1: Homographies

3D-to-2D projective
transformation

Plane induced ho-
mography

2D-to-2D projective
trasformation

General 3D scene in CCS Planar 3D scene in CCS Two images acquiring the
same scene

x̃ = P3×4Xcam x̃ = H3×3Xcam x′ = Hx
P = K[I | 0]3×4 H = K[I | 0]3×3 HDLT

x′→x

x̃ = K [I | 0]Xcam x̃ = K[i1 i2 0]cam x = (u, v, w)
x′ = (u′, v′, w′)

General 3D scene in
WCS

Planar 3D scene in WCS

x̃ = P3×4Xworld x̃ = H3×3Xworld

P = K[R | t]3×4 H = K[R | t]3×3
x̃ = K [R | t]Xworld x̃ = K[r1 r2 t]Xworld

A planar surface in a 3D scene induces a unique projective transformation, called
planar induced homography, that relates the projections in two views of any
point belonging to a plane. The epipolar geometry between the two images could
be seen as a point transfer via plane geometry which involves that since the set of
2D points in both images are projective equivalent to the 3D planar point set X,
so they are also projective equivalent between each other. Mathematically:

x = HX and x′ = H ′X
The point x in the first image is forward projected to meet the plane π in

X = H−1x. This point is then backprojected in the image plane of the second
image x′ = H ′X. The composition of the two homography is an homography
between the two images:

x′ = H ′H−1 x = Hx
x′ = Hx

So, if a plane is given (defined by his normal vector) is possible to express the
homography induced by the plane as follow: Given the camera matrix for two
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views acquiring the same planar scene: P = K[I | 0] and P
′ = K[R|t], and given

a plane π = (nT , d)T it is possible to parametrize a point X as a ray that intersect
the plane π with the condition πTXπ = 0, with point Xπ = (xT , ρ)T .

πTXπ = 0 (nT , d)T
(

x
ρ

)
= 0 nTx + dρ = 0 ρ = −nT

dx

Then Xπ = (xT ,−−nT

d
x)T

x′ = P ′Xπ = K[R | t]Xπ = K[R | t](xT ,−nT
d

x)

x′ = KRK−1x−KtK−1 nT
d

x

⇒ H = K

(
R− tnT

d

)
K−1x (3.43)

Determining this homography allows to compute the following parameters:

• the normal n to plane;

• the rotation R;

• the ration t
d

of the translation to the distance of the plane.

This is not an unique homography but a three-parameter family of homogra-
phies. From what has been shown before, since the point correspondences arise from
images of the scene plane, they obey also to the Epipolar geometry i.e. x′T

i Fxi = 0.
This means that the homography H is compatible with F . To summarize, there are
two relation between two views acquiring the same planar scene, first the Epipolar
geometry and second the homography relation:

x←→ x′ = Hx

And
x′TFx = 0

Then:
(Hx)TFx = 0 xTHTFx = 0 (3.44)

This is true for all points x. Unfortunately, the estimation of F from point
correspondences is degenerative in this case and we are not able to compute it. To
assure that an homography H is compatible with a fundamental matrix F one must
verify that the matrix HTF is skew-symmetric with HTF + F TH = 0.
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3.2.1.7 Homography Decomposition

It has been demonstrated how a plane induced homography between two view
can be parametrised in order to express the camera transformation and the induc-
ing plane (H is function of R, t and n/d. It has been also demonstrate as from a
compatible H to F is possible to decompose the homography in a straightforward
way and obtain a compatible configuration. Unfortunately, retrieve the real config-
uration is more complicate as there is an ambiguity in the solution. The problem
to recovering the possible configurations of the cameras from a compatible homog-
raphy is known as the homography decomposition problem. In the particular
case of a calibrated camera moving frame by frame it turns out that there are only
finite number of possible decomposition and adding some external information by
some geometric assumption is possible to extract the correct camera configuration.
Faugueras and Lustman in [37] describes the decomposition methods used in the
present work. Other methods are used in [38] and [39].

3.2.1.8 Visual Odometer

As already said in the introduction to this chapter, one of the most impor-
tant task for which computer vision algorithm has been developed is the Visual
Odometry (VO). This is the process of estimating the ego-motion of a vehicle, hu-
man, robot and more, using the information contained in the frames acquired by a
camera sensor. In this work the monocular visual odometry problem (information
from a singular camera with scale factor unknown) is addressed. Monocular visual
odometry operates by incrementally estimating the camera pose through exami-
nation of the changes that motion induces on the images acquired on each step.
The introduced estimation error in each frame position accumulate over time and
generate a drift from the real path in the estimated trajectory [40]. This drift can
be reduced optimizing the frame-to-frame pose overt the last cameras or combining
other sensor measurements in the solution estimation (GNSS, LiDAR , IMU) [41]
[42]).

Assuming a set of images Ik acquired sequentially at time k, between two sub-
sequent frame there is a three-dimensional rigid transformation Tk that represent
the motion of the body.

Tk =
[
Rk,k−1 tk,k−1

0 1

]
(3.45)

This transformation brings the camera center coordinate of the first image to
the camera center coordinate of the second image:

Cn = Cn−1Tn (3.46)
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Or:
x′
k = λ(Rk,k−1xk + tk,k−1) (3.47)

Taking into account equation 3.8, the relation expressed in 3.47 becomes

x′
k = K ′Rk,k−1K

−1xk + tk,k−1/d) (3.48)
where d is the distance between the coordinates of object point in the real word

and the coordinates of the camera center. Knowing d means solving the scale
problem. It can be done mainly in three ways:

• stereo camera approach: knowing the pose of the two cameras and the baseline
between them give the distance d by triangulation;

• monocular camera approach: knowing a-priori information of the object (size,
coordinates) allows to compute the distance d;

• monocular camera approach: using external sensors to measure the distance
d;

• monocular camera approach: camera facing down with fixed height gives the
Z coordinate of the camera center and consequently the d value by geometry
relations.

The requirements to apply the equations previous described, for Two-View Ge-
ometry estimation, are the capability to identify, extract and match the best pos-
sible features from the frames. This concept brings to the following assumption for
the efficiency of the visual odometry procedure:

• sufficient illumination in the environment;

• dominance of the static scene over moving objects;

• enough texture to allow apparent motion to be extracted;

• sufficient scene overlaps between consecutive frames.

Under this assumption is possible to perform feature extraction and matching
with state of art procedures [33], [43], [44]. Then the estimation of the relative cam-
era pose can be performed with the decomposition algorithm previously presented.
As reported in [40] the complete VO algorithm is the following:

• capture new frame Ik;

• extract and match features between Ik−1 and Ik;

• compute essential matrix for image pair Ik−1, Ik;
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• decompose essential matrix into Rk and tk, and form Tk;

• compute relative scale and rescale tk accordingly;

• concatenate transformation by computing Ck = Ck−1Tk;

• repeat the procedure.

3.2.2 The photogrammetric approach
In the last years, photogrammetry has becomes enormously important in nu-

merous applications, different from the survey for which is born, thanks to the
digitalization and miniaturization of the camera sensors and the automatization of
the computation process. “Photogrammetry is the science of obtaining reliable in-
formation of physical objects and environment through registration, measurement
and interpretation processes of photographic and digital images formed by electro-
magnetic radiant energy and other physical phenomena.” [45]. The definition intend
to highlight the photogrammetry as a set of techniques based on the analysis and
processing of digital or analog photographs (or frames) that, to a first approxima-
tion, can be considered as a central perspective (as shown in Figure 3.14).

Figure 3.14: Example of central perspective.
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3.2.2.1 Collinearity equation

To reconstruct the position and the shape of the objects from photographs one
must know the geometric relationships according to which the images are formed.
The cameras used in photogrammetry produce frames that, in first approximation,
can be considered central perspective, geometrically strict, of the object. When a
frame is acquired, the object point P , the shooting center O and the image point
P ′ lie on a same straight line, as shown in Figure 3.14. Suppose to introduce a
new land system X ′, Y ′, Z ′, parallel and rotated in the space to the image system
ξ, η, ς (ς = 0 for the image points and ς = c for the shooting center), but with the
origin coincident to the system X, Y, Z. The collinearity conditions that express
the alignment between the points in the system X ′, Y ′, Z ′ can be expressed in the
following way:

ξ − ξ0

c
= X ′ − X ′

0
Z ′

0 − Z ′ (3.49)

η − η0

c
= Y ′ − Y ′

0
Z ′

0 − Z ′ (3.50)

The coordinates X ′, Y ′, Z ′ of the point P and the coordinates X ′
0, Y

′
0 , Z

′
0 of

the projection center may be related in the system X, Y, Z by the spatial rotation
matrix R: ⎛⎜⎝X − X0

Y − Y0
Z − Z0

⎞⎟⎠ =

⎛⎜⎝r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞⎟⎠ ·
⎛⎜⎝X

′ − X ′
0

Y ′ − Y ′
0

Z ′ − Z ′
0

⎞⎟⎠ (3.51)

So, multiplying the matrix above for the matrix RT = R−1 , and replace in
the equations, explicit the image coordinates, the relationship between the image
coordinates and the ground ones are obtained:

ξ = ξ0 − c
r11 (X − X0) + r21 (Y − Y0) + r31 (Z − Z0)
r13 (X − X0) + r23 (Y − Y0) + r33 (Z − Z0)

= ξ0 − c
Zx
N

(3.52)

η = η0 − c
r12 (X − X0) + r22 (Y − Y0) + r32 (Z − Z0)
r13 (X − X0) + r23 (Y − Y0) + r33 (Z − Z0)

= η0 − c
Zy
N

(3.53)

Because the system X ′, Y ′, Z ′ is parallel to the image system ξ, η, ς, the terms
rik represent:

• the cosines of the angles between the coordinate axes of the image system
and the ground system, or

• the functions of the angles ω, ϕ, k of which the frame was rotated, respect
to the ground system, when the frames were taken.
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Now is possible to express the collinearity equations from image coordinates to
object coordinates, as follows:

X = X0 + (Z − Z0)
r11 (ξ − ξ0) + r12 (η − η0)− r13c

r31 (ξ − ξ0) + r32 (η − η0)− r33c
(3.54)

Y = Y0 + (Z − Z0)
r21 (ξ − ξ0) + r22 (η − η0)− r23c

r31 (ξ − ξ0) + r32 (η − η0)− r33c
(3.55)

In conclusion, any object point corresponds to an image point while to each im-
age point may correspond infinite object points, due to the presence of the Z to
the second member. This explains why it is impossible to reconstruct the spatial
geometry of an object from only one frame. In the paragraph Two-view geometry,
this problem has been be presented.

3.2.2.2 The Syntetic Solid Image

A Solid Image or and RGB-D image (Red,Green,Blue and Distance channel)
(Figure 3.15) is a classical RGB digital image with known internal and external
orientation parameters, where a distance between the projection center and the
acquired objects are recorded for each pixel. Therefore, distance values are stored
in an additional matrix with the same pixel size, number of columns, and number
of rows as the RGB matrix.

Figure 3.15: Solid Image structure.

To generate a RGB-D image the following information are needed:

• the external orientation parameters corresponding to the position and orien-
tation of the camera (X0, Y0, Z0, ω, φ, κ);

• the internal orientation parameters corresponding to focal length, the prin-
cipal point position of the camera (c, ξ0, κ0) and distortions (the generated
images are synthetic and are considered without distortion);
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• the number of pixels in the columns and the rows of Solid Images (nrow, ncol)
and the image pixel size dpix.

The external orientation parameters and the distance information can be ob-
tained from any a-priori information of the object acquired. It can be an active
sensor which measure directly the distance from the image plane to the object or
a realistic 3D model of the area of interest, with both geometric and color infor-
mation, obtained from a LiDAR survey. The internal orientation parameters can
be selected by the user to generate a synthetic camera or taken from a calibrated
one. The interest in this kind of image is that gives all the information useful for
applying collinearity equations in a multiple-view geometry problem. Moreover,
this kind of image can be automatic generated from a 3D model in a fast way to
populate a database with all the information of a real object scene. These informa-
tion are not only pixel colors and distance but also the exact position in the real
word of this synthetic image.

3.2.2.3 The IRBL positioning

Let’s imagine an user acquiring an image of a real 3D world object already doc-
umented by a RGB-D database of images. If through any image retrieval procedure
one is able to extract the correct correspondent image from the database previous
described, is possible to estimate the position and the attitude of the user camera
applying simply the collinearity equations. In fact from any central projection,
if the internal orientation parameters (ξ0, η0, c) are known is possible to define a
direction in the space as:

α = arctan
ηI√
c2 + ξ2

i

(3.56)

θ = arctan
ξI
c

(3.57)

Knowing this direction means knowing the line on which the 3D object point
belong. There are infinite possible points reprojected in the image plane. The
correct 3D point can be retrieved from the distance information stored in the RGB-
D image pixel:

X0 = d cosα sin θ (3.58)
Y0 = d sinα (3.59)

Z0 = −d cosα cos θ (3.60)

Once all the 3D object points are computed from a RGB-D image with previous
procedure the information of the real word can be used for any new image acquired.
So, if an user acquire a new image from a different position, is possible to apply the
collinearity equations (Eq. 3.55) and estimate position and attitude of the camera.
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3.3 GNSS positioning with smartphones
In recent years the surprising increase in computing, memory and data connec-

tion capabilities of mobile phones has allowed the spread throughout the world of
these smart devices, making them indispensable tools not only for communication
but also for carrying out very complex tasks. Therefore are not surprising the data
appeared in the Global Digital 2018 report [46], which states that in the world, the
number of connected smartphones is about 5.13 billion. All these users have access
to a powerful technology rich of micro-electromechanical systems (MEMS) sensors
inside it, able to acquire huge amount of data and information continuously, in every
moment of the day, in every corner of the world. These sensors are RFID, cameras
sensors, GNSS chipset, Inertial Measurement Unit (IMU) platforms, barometer,
altimeter and more, that empower customers to plan their activities, to interact
with others, to share their moments, to navigate in unknown environments.

In this chapter, smartphone technology and its relation with the field of navi-
gation and positioning will be analysed. It has been already shown in section 3.2.1
how the camera sensor installed in new generation smartphones can be a powerful
tool for acquiring image data to process in computer vision algorithms and retrieve
positioning information. The focus in this section will be on the GNSS positioning
with smartphone. The GNSS chipset installed on new generation devices is able to
provide positioning coordinates in global reference system (the other sensors, like
IMU, in local frames) while other sensors like inertial system can also monitor the
human body motion. State of art research have demonstrated that both pedestrian
and vehicle navigation can be performed very well with the Assited GPS (A-GPS)
algorithms and the cellular based station triangulation.

As well known, the GNSS positioning is only useful in outdoor scenario because
it needs the satellite visibility. When outdoor scenarios are considered, smartphone
technology can provide positions with a quite good level of accuracy also thanks
to the aiding of correction models and clock data. These methods have improved
ranging accuracy to some meters, leaving the dominant sources of error in current
consumer devices dependent from multipath and front-end-noise-induced. Under
good multipath conditions, 2-to-3-meter-accurate positioning is typical; under ad-
verse multipath, accuracy degrades to 10 meters or worse. This is the typical case of
an urban environment, where an user can be inside a buildings or in urban canyons.

Numerous research have been made in order to obtain better performances
in these unfavourable environments and to reach sub-metric level of accuracy with
smartphone devices. Unfortunately, to apply signal processing algorithms and post-
processing procedure the raw data acquired by the front end must be used. This
was almost impossible till some years ago as the smartphone developers allowed to
extract directly the PVT solution from their chipsets. Fortunately, in May 2016,
Google announced the realise of a new Operating System (OS), the Android Nougat
7.0, from which the GNSS raw data extraction is possible. This announcement
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caused a resumption of research in the field of mobile positioning and opened the
way to the attempt centimeter positioning. Moreover, on September 2017, Broad-
com announced the world first mass-market, dual frequency GNSS receiver device,
the BCM47755. This strong technology innovation can also open new scenarios in
the field of positioning and navigation with smartphones.

The following section will presents basic concepts of GNSS positioning with
smartphone. The procedure used for perform positioning are the ones used in
geodetic application so the focus will be on the structure of these smartphone
information and how to access to these raw data with the new Android OS.

3.3.1 Principles of GNSS positioning
The GNSS positioning relies on distance measurements (pseudoranges) between

a receiver antenna and a constellation of satellites in orbit around the earth. Thus,
knowing one satellite position, the receiver position lies somewhere on a sphere
around the satellite with a radius equal to the range. If the range measurements
of three satellites are available, the three spheres intersect at two points. Since one
point is not located close to Earth surface, the second point is the true position of
the receiver. Usually at least four satellites of the same constellationare needed to
account for the time difference between satellites clocks and receiver clock [47] [48].

There are currently four GNSS constellations in operation or in deployment
phase: GPS (USA), GLONASS (Russia), BeiDou (China) and Galileo (Europe),
that are integrated by different augmentation systems, at local or global scale.
For estimating the geometric range, all GNSS signals are modulated with a Pseudo
Random Noise (PRN) code, a few milliseconds long sequence that allows to uniquely
identify the satellite that transmits the signal. The receiver is able to reply the same
signal in order to compare and align the replied copy of the PRN code with that
received by the satellite. The distance between receiver and satellite is proportional
to the signal propagation time, if the transmitter and receiver clocks are perfectly
synchronised.

GNSS signals are affected by errors, including thermal noise, uncompensated
biases, multipath, and propagation effects. In particular, atmospheric propaga-
tion is the biggest error source, inducing ionospheric and tropospheric delays and
ionospheric scintillations. If these biases are not estimated and compensated, the
positioning error can achieve up to 50 m, making the GNSS positioning useless for
most of applications. In order to obtain a position fix, three different techniques
can be followed: to differentiate, to model or combine the so called GNSS observ-
ables, pseudoranges and carrier phase measurements (Eq. 3.62). Considering this
last kind of measurements, another variable affects the quality of positioning: the
phase ambiguity, indicated with N in Eq. 3.62, that must be estimated as inte-
ger value if a centimetre level of accuracy is required. The range observation are
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expressed as:

P j
k (i) = ρjk − cdTk + cdtj + αiI

j
k + T jk +mj

i,k + Ej
k + cLjk + εji,k (3.61)

φjk(i) = ρjk − cdTk + cdtj − αiIjk + T jk +Mijk + Ej
k + λiNi

j
k + εjk (3.62)

where P j
k (i) and φjk(i) represent the pseudorange and carrier-phase measure-

ments on the i-th frequency, respectively. ρjk is the geometric range between the
satellite j and the receiver k, cdTk and cdtj ate the biases related to receiver and
satellite clocks multiplied by the speed of light. The ionospheric propagation delay
is represented by αiIjk (with a known coefficientαi = f 2

1 /f
2
i that depends on the i-th

frequency). T jk is the tropospheric propagation delay, Mijk is the multipath error,
Ej
k is the ephemeris error. The carrier-phase ambiguity multiplied by the frequency

length is λiNijk and, finally, the random errors εjk. As widely described in litera-
ture, GNSS positioning can be realized adopting two different approaches: using
post-processing techniques or real time methods. Post-processing techniques are
usually focused when a high level of accuracy is required or when it is not possible
to estimate and to apply a model of biases in real time. This generally happens
considering the typical receivers used for positioning purposes, such as geodetic or
GIS ones [49].

With the advent of mass-market devices, GNSS positioning has become more
common because the cost of GNSS receivers and antennas has been decreased up
to few US dollars. This has made possible to insert these chipset into mobile
phones also for positioning and geo-localization, even if some limitations persist.
Most GNSS chipsets installed inside smartphones or tablets are single-frequency
receivers: it means that they provide only measurements related to one frequency
(the L1 band). In these cases, it is not possible to apply the double or triple
differences approach [50] or to combine different observations [51]. So, the two
possible approaches are to compute single differences (considering one receiver and
a reference satellite) or to model the GNSS biases (e.g. Iono and tropospheric
delays, satellite and receiver clock drifts) using mathematical models.

3.3.2 Assisted GNSS
The spread of GNSS positioning in smartphones has been pushed mainly from

the use of Assisted GNSS (A-GNSS) techniques [52]. A-GNSS is based providing
certain information that the GNSS receiver would ordinarily have received from
the satellites themselves, through an alternative communication channel. A-GNSS
is then a complementary technology, which enables two key aspects of GNSS for
smartphones: speed and sensitivity. A-GNSS reduces the time required to perform
a position fix, i.e. the Time To First Fix (TTFF) [52]. GNSS receivers designed
for geodetic, survey and military purposes have no strict requirements in terms
of TTFF. This is the reason why GPS was originally developed to provide a fix
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in around 1 minute of processing. It is obvious that when moving to the mobile
world, the TTFF must significantly decrease down to few seconds as maximum
to guarantee the usability. At the same time, open-sky and ideal propagation
conditions, which are typically available for certain GNSS professional applications,
are usually not fulfilled when moving to the mass-market. Receivers for phones must
deal with signals received at lower power and quality. The two main objectives of
A-GNSS are to reduce the TTFF and to improve the receivers sensitivity.

The core idea is to provide an aid to the device via a wireless network. Such aid
includes the content of the navigation message (ephemeris, almanacs, ionospheric
corrections), which can then been obtained in a few milli-seconds, rather than
demodulating a full navigation message. In addition, advanced information can be
downloaded, such as precise ephemeris, approximate user position and time, precise
ionospheric corrections, and estimated signals acquisition parameters (estimated
Doppler shift, estimated delay, navigation message). The Systems Of Chip (SOC)
inside the smartphones integrate the entire GNSS technology in a single device and
manage all the previous data to provide Position, Velocity and Time (PVT) solution
in National Marine Electronics Association (NMEA) format or as direct information
for the user application. Then, the OS manage the calls for data processing and
sensors integration. Considering the Android environment, when an application
requests location update without accessing raw measurements, it performs some
callback from the different chipset of the microprocessor in charge of acquiring
GNSS, cell or Wi-Fi information (NETWORK_PROVIDER call). As the SOC is a
black box, the user can directly control just the access to the fine or coarse location.
This means that the NETWORK_PROVIDER call can be enabled or disabled
and the positioning can move from the assisted to the GNSS only. The developers
instead, are able to manage the workflow to retrieve the user location i.e. when and
for how long the chipsets should listen and update the information. Moreover, the
new smartphone generation integrates numerous motion and orientation sensors
for cross aiding with A-GNSS. The Android sensor framework provides several
classes and interfaces able to determine the performances, the minimum rate, the
maximum range, the power requirements and more.

3.3.3 The GNSS raw measurements architecture
Accesing to the raw data acuqired by the GNSS chipset could gives several

advantages increasing positioning performances and allowing the use of more ad-
vanced processing techniques that till now have been restricted only to geodetic
receivers. During Google I/O 2016, Android experts announced the possibility to
access raw data from GNSS chipsets inside smartphones. On the Andorid developer
website [53], the list of smartphones providing GNSS raw measurements is contin-
uously updated. Information also include the latest available Android version,
the presence of an Automatic Gain Control (AGC), the availability of both the
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decoded navigation message and of the phase measurements (accumulated delta
range), information about the clock, and the support of multi-constellation and
multi-frequency signals. The first available devices running the Android N OS were
the Nexus 9 tablet, Nexus 5x phone, Nexus 6p phone, Pixel phone and the Pixel XL
phone. The Nexus 9 was the only one able to provide dual constellation (GPS and
GLONASS) pseudorange and carrier-phase measurements. Although the Nexus 5x,
Nexus 6p and Pixel phones supported GPS and GLONASS, only GPS raw pseudo-
range measurements were available. Furthermore, the Nexus 9 tablet was the first
device with duty cycling disabled, starting from Android N 7.1 release. Therefore,
it is suitable for collecting continuous carrier-phase measurements over periods of
many minutes.

The Android OS is composed by packages of APIs, which are a collection of pro-
tocols allowing users to access the system’s functionalities. The primary API that
manage the location framework in android devices is the Fused Location Provider
(FLP), available in com.google.android.gsm.location package, which combines
GNSS, Wi-Fi, cell, accelerometer, gyroscope and magnetometer in order to provide
an integrated PNT solution. This solution is used by all the google app environ-
ment to show the position (Google Maps) or to pop-up location related information
(Google Event). The FLP manage autonomously which sensor to turn on based on
the accuracy and frequency requirements of the app developer. The inner sensor-
fusion algorithm developed by Google have to satisfy the huge panorama of final
users which requirements are usually different from the ones of the best accuracy
in positioning. In particular, Google software engineers put their effort on find the
best balance between coverage, accuracy, latency and power consumption. The
algorithms implemented can be considered as a black-box for the users.

Another package which contains location-based API is com.google.android.-
location which manage all the classes related to the GNSS chipset. This API was
firstly released in API level 1, the base framework of the android operating system
without allowing the access to the source code and to the measurements acquired by
the chipset. Numerous classes and methods have been added during the various OS
release till 2016 when Android 7.0 Nougat and the related API level 24 introduces
the direct access to the classes that provides the raw data measurements of the
GNSS chipset. Until API level 23, the access was limited to C/No, azimuth, NMEA
sentences, some satellite elevation and PVT solution with related timestamp. All
this usually referred to the GPS constellation alone.

From API Level 24, developers have access to numerous classes that extract
raw and computed GNSS information directly from the chipset. Although the
recent features introduced, Google push the developer’s community to use the FLP
framework for developing location and context application. On the other hands, the
great interest raised from the new location API in the GNSS community, has pushed
Google and the OEMs to invest more and more in the development of hardware and
software for positioning. The direct access to the raw data in fact allows to apply
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directly positioning and navigation algorithms to the satellites measurements and
to move the attention on the accuracy of the positioning and navigation solution
more than on the performances of the smartphone. Figure 3.16 shows the software
architecture comparing the two packages provided by Google:

Figure 3.16: android.gsm.location package vs android.location package after API
level 24. Ref: GSA GNSS Raw measurement task force – White paper:“Using
GNSS raw measurements on android devices”.

In order to use raw measurements for testing and post-processing procedure,
GNSSs experts needs to convert data fields provided by the API classes into stan-
dard format readable from state-of-art processing software. Unfortunately, the
understanding of the measurements obtained by the different location classes is not
straightforward, java developer are usually unfamiliar with the details of the GNSSs
and vice versa positioning expert are not totally aware of the API structure. In
this chapter will be described the most important data fields obtainable from the
location API and how from this is possible to obtain GNSS data in RINEX format
and navigation message in NMEA format.

In the Android Developers webpage, there is a list of the classes in the an-
droid.location API with a brief description of the services that each one provides
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[54]. The two most important classes from which all the interesting raw data are
extracted are:

• GnssClock: the class contains a GPS clock timestamp;

• GnssMeasurement: the class represents a GNSS satellite measurement,
containing raw and computed information.

The data fields obtained from these two classes are the primary information
from which is possible to compute a PNT solution. Table 3.3.3 describes the data
fields of the raw measurements.

Table 3.2: Description of GNSS raw measurements

Raw data field Description
ElapsedRealtimeMillis Returns milliseconds since boot, in-

cluding time spent in sleep
TimeNanos GNSS receiver internal hardware clock

value in nanoseconds. This value is ex-
pected to be monotonically increasing
while the hardware clock remains pow-
ered on

LeapSecond The leap second associated with the
clock’s time

TimeUncertaintyNanos The clock’s time Uncertainty (1-Sigma)
in nanoseconds

FullBiasNanos The difference between hardware clock
getTimeNanos() inside GPS receiver
and the true GPS time since 0000Z,
January 6, 1980, in nanoseconds. This
value is available if the receiver has esti-
mated GPS time. If the computed time
is for a non-GPS constellation, the time
offset of that constellation to GPS has
to be applied to fill this value

BiasNanos The clock’s sub-nanosecond bias
BiasUncertaintyNanos The clock’s Bias Uncertainty (1-Sigma)

in nanoseconds
DriftNanosPerSecond The clock’s Drift in nanoseconds per

second. A positive value indicates that
the frequency is higher than the nomi-
nal (e.g. GPS master clock) frequency
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Table 3.2: Description of GNSS raw measurements

Raw data field Description
DriftUncertaintyNanosPerSecond Uncertainty of DriftNanosPerSecond
HardwareClockDiscontinuityCount Count of hardware clock discontinuities
Svid Satellite ID
TimeOffsetNanos The time offset at which the measure-

ment was taken in nanoseconds. The
reference receiver’s time from which
this is offset is specified by getTime-
Nanos()

State Gets per-satellite sync state
ReceivedSvTimeNanos The received GNSS satellite time, at

the measurement time, in nanoseconds
ReceivedSvTimeUncertaintyNanos Gets the error estimate (1-sigma) for

the received GNSS time, in nanosec-
onds

Cn0DbHz Carrier-to-noise density
PseudorangeRateMetersPerSecond Gets the Pseudorange rate at the

timestamp in m/s
PseudorangeRateUncertainty Me-
tersPerSecond

Uncertainty of PseudorangeRateMe-
tersPerSecond

AccumulatedDeltaRangeState It indicates whether getAccumulated-
DeltaRangeMeters() is reset or there is
a cycle slip (indicating ’loss of lock’)

AccumulatedDeltaRangeMeters The accumulated delta range since the
last channel reset, in meters

AccumulatedDeltaRangeUncertainty
Meters

Uncertainty of Accumulated-
DeltaRangeMeters

CarrierFrequencyHz Carrier frequency at which codes and
messages are modulated

MultipathIndicator Gets a value indicating the ’multipath’
state of the event

SnrInDb Gets the (post-correlation and integra-
tion) Signal-to-Noise ratio (SNR) in dB

ConstellationType Constellation type
ConstellationType Gets the Automatic Gain Control level

in dB

The official Android application developed with the aim of provide all the raw
data described above is called GnssLogger [53]. It logs the measurement data in
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comma-separated-value (csv) text format (Figure 3.17). Other third part applica-
tions utilizing GNSS raw measurements has been developed in the last years. A
list of devices capable of providing raw measurements data is maintained at [53].
The class android.location.GnssNavigationMessage allows to receive GNSS satellite
Navigation Message from the GNSS engine. The Gnsslogger app logs the decoded
ephemeris data in decimal representations of the bytes defined by the respective
constellation Interface Control Documents (ICDs). The data field with relative
description are reported in the documentation of Android Developer.

Figure 3.17: Example of log txt file provided by the GnssLogger application, in-
cluding GNSS raw measurements.

Deriving standard format
In order to produce Radio Technical Commission for Maritime Services (RTCM)

or Receiver-Independent Exchange (RINEX) formats, the raw measurements pro-
vided by the smartphone receiver need to be managed, disposed and combined to
obtain the data at the design of the standard require. For each satellite the iden-
tification code, the code phase, the carrier phase, the Doppler shift and the signal-
to-noise ratio C/N0 have to be reported together, along with the correspondent
satellite identification and GNSS epoch. In the following paragraph the analytic
computation to obtain this data from the smartphone raw measurements will be
described.

1 Constellation and Satellite ID: The ConstellationType data fields provide
an identification value for each constellation as reported in Table 3.3, while
the Satellite ID is provided in the Svid field and follows the identification
standards for the satellites.
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Table 3.3: Constellation type values

Constellation Type
STATUS VALUE
CONSTELLATION BEIDOU 5
CONSTELLATION GALILEO 6
CONSTELLATION GLONASS 3
CONSTELLATION GPS 1
CONSTELLATION QZSS 4
CONSTELLATION SBAS 2
CONSTELLATION UNKNOWN 9

2 UTC Time: The Universal Time Coordinated (UTC) time of each epoch of
observation is computed from the measured time of the GNSS chipset. Every
time that a full set of observation is acquired, the time of the first observation
is used to define the change in the epoch. As this time is provided in GPS
time, this has to be converted in UTC time.

3 Pseudoranges: The pseudoranges measurement are not provided directly from
the GNSS chipset but have to be computed from the difference between the
time of the measurement at the receiver and the time of transmission of the
signal:

ρ = (tRx − tTx) · c (3.63)

Where tTx is the received GNSS satellite time in ns at the measurement time,
i.e. the GNSS reference time when the signal was transmitted, tRx is the
measurement time and c is the speed of light in vacuum. These two times
terms need to be reconducted to the same GNSS reference time. Figure 3.18
shows how tTx and tRx are obtained from the Android API and which classes
need to be calls. If class getReceivedSvTimeNanos() return directly the GNSS
satellite time in ns for tRx location.clock classes return values from which the
measurement time can be reconstructed and reconducted to the GNSS time:

tRxGNSS = TimeNanos+ TimeOffsetNanos (3.64)
−(FullBiasNanos(1) +BiasNanos(1)) (3.65)

Where TimeNanos is the time of the measurement from the switch on of
the internal GNSS hardware clock. FullBiasNanos is the difference between
TimeNanos inside the GNSS receiver and the true GPS time since 0000Z,
6 January 1980. As the time transmitted is provided for each GNSS system
in his own time reference,tRxGNSS must be aligned to each frame in order to
obtain the correct pseudorange or alternatively all the tTx must be align to
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the tRxGNSS. The complete approach is provided by Google in [16] and Figure
3.18.

Figure 3.18: Flowchart of the different classes necessary to retrieve pseudoranges

4 Carrier Phase: The getAccumulatedDeltaRangeMeters() class returns the dis-
placement of range from the last channel reset, in meters. At the end of a
given interval of observation, a whole number of cycles will be counted usually
together with a fraction of a cycle. This fractional phase is the carrier phase
measurement:

CarrierPhase = −AccumulatedDeltaRange
k

(3.66)

If a cycle slip occur, the receiver loses this count, for this reason the class
AccumulatedDeltaRangeState() provide a flag that assure the validity of the
measurement. (ADR_STATE_VALID if VALUE=1)

5 Doppler shift: To obtain Doppler shift value, the line of sight velocity of
the satellite vLOS that the location API provide in the PseudoRangeRateMe-
tersPerSecond data field is needed. Knowing the relations:

λ = c

f0

fD = vLOS
c

f0

the Doppler shift is obtained as:

DopplerShift = −PseudoRangeRateMetersPerSecond

k
(3.67)
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6 Signal to Noise ratio C/N0: The C/N0 is measured at the antenna input and
provided inside the Carrier-to-noise density value (dBHz) which is obtained
from the getCn0DbHz call.

3.4 Inertial Navigation Systems
Inertial Navigation Systems (INS) refers to a sensor platform able to sense the

movement of a body and to process the acquired information to obtain position,
velocity and attitude angles. It is composed by an Inertial Measurement Unit
(IMU) and a central processing unit. The IMU are composed by accelerometers,
which measure specific forces f and gyrometers, which measure the rate of rotation
along specific axes ω. Inertial navigation is based on Dead Reckoning which means
that the displacement of the body on which the INS is attached is computed by
sensing how much it has move in a specific time period from the previous known
position. This is accomplished by using the kinematic relation between acceleration,
velocity and position. In particular, knowing acceleration measurements is possible
to integrate once to obtain velocity and integrate once again to yield position. If one
compute this displacement, then the direction of the movement is needed in order
to extract the new position. An INS, where a stable platform is rigidly mounted on
the body and move integrally with it is known as strapdown system. On the other
hand, a system mechanically isolated from the host vehicle is known as gimballed.
In function of their level of performance, INS suffers of instability in the processing
which cause a fast drift to the position estimation. This well known drawback
is usually compensate by hybridizing the INS architecture with a complementary
technology, the GNSS [55]. The strong point of GNSSs is the long-term accuracy
which compensate the fast error drift of the INS, while the strong point of the INS
is the immunity from perturbation and the high update rate, which compensate the
susceptibility of GNSS to interferences. Figure 3.19 express the navigation problem
in INS where f̃pb/i is the measured inertial specific force of the body in the platform
coordinate frame, ω̃pb/i is the platform angular velocity with respect to the inertial
frame, expressed in platform coordinate frame.

Figure 3.19: Schema of Inertial Navigation System process.
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3.4.1 Principles
Inertial navigation is based on the the principle that, inside a Inertial reference

frame, is possible to define the motion of a body with constant mass, observing
the external forces acting on it (1st Newton Law). Inertial sensors are composed
of accelerometers and gyroscopes usually combined along the 3-axis in an IMU.
Accelerometers measure inertial acceleration as specific force f acting on the body
assimilated to a single point. This is not the actual acceleration a but is composed
by the acceleration of the body minus the local gravity acceleration component
g. To extract the correct acceleration value is require to know the gravity force
aligned with the local vector along the vertical component at the specific time. This
requires knowledge of the orientation or attitude of the accelerometers axis (along
with f is measured) relative to the local g vector. This is done observing the relative
rotational motion of the body with respect to the inertial reference frame using the
rate of the gyroscopes. If an error is made in this rotation matrix estimation, the
gravity compensation is not made properly. The attitude information is obtained
from the gyros using the kinematic relationship between angular parameters (Euler
angles) and angular velocity. After this, the double integration of the acceleration
value in time allows to compute the position variation of the body with respect
to the previous one. All these concepts are mathematically formalized by some
equations of motion parametrized in the navigation frame and usually known as
mechanization equations. Before to describe the mechanization process is important
to define all the coordinate frames to take into account in the inertial navigation
algorithms. It is possible to distinguish in:

• Inertial frame: the inertial frame is assumed fixed with respect the fixed
stars;

• ECEF frame: reference frame based on an ellipsoid. The position is ex-
pressed in this frame;

• Navigation frame: n-frame o t-frame. Geographic frame or ned frame,
is define locally and have d is normal to the plane tangent to the ellipsoid
in the point. (P, n, e, d). the local reference frame have to be define time by
time. The tangential frame or t-frame is defined by tangent plane to reference
ellipsoid at a fixed point P0 (P0 is the origin of the local frame);

• Body frame: The body frame is attached to the vehicles (G, xb, yb, zb);

• Platform frame: is attached with the IMU. All the measurements will be
referred to the platform frame (0p, xp, yp, zp);

• Instrument frame: it is aligned with the axes of orientation of the inner
sensors itself and could be deviated from the platform frame;
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• Computing frame: there is also a digital resolution of the pc that extract
value from digital number measured by the sensors.

In order to represent a vector into different coordinate system the rotation
between two coordinate system need to be computed:

va = Ca
b v

b (3.68)

The rotation matrix from the e-frame to the n-frame is:

Cn
e =

⎡⎢⎣− sinϕ cosλ − sinϕ sin λ cosϕ
− sin λ cosλ 0

− cosϕ cosλ − cosϕ sin λ − sin λ

⎤⎥⎦ (3.69)

with ϕ and λ geodetic latitude and longitude. The rotation matrix from the
b-frame to the n-frame is:

Cn
b =

⎡⎢⎣cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cos θ + sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ

⎤⎥⎦
(3.70)

where θ, ψ and φ are the roll, pitch and yaw.

3.4.2 Mechanization equations
The mechanization equations are the kinematic equations representing the iner-

tial navigation systems. These equations consist in three main steps: body position,
body velocity and attitude computation:

ṗ = T v̇n (3.71)
v̇n = Cn

b f
b − [(2ωnie + ωnen)×]vn + gn (3.72)

Ċn
b = Cn

b ([(ωbib)×]− [(ωbin)×]) (3.73)

Where:

• Cn
b is the rotation of the body frame to the navigation frame;

• the T matrix converts the linear velocity values to angular changes in latitude
and longitude:

T =

⎡⎢⎣
1

RN +h 0 0
0 1

(RE+h)cosL 0
0 0 −1

⎤⎥⎦ (3.74)

where RN and RE are radii of curvature of the reference ellipsoid.;
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• the position vector expressed in geographic coordinates:

p =

⎡⎢⎣ L
λ
h

⎤⎥⎦
• the velocity vector expressed in the navigation frame:

v =

⎡⎢⎣ vN
vE
vD

⎤⎥⎦
Implementing these equations consist in three steps: updating the attitude,

updating the velocity and updating the position. Figure 3.20 illustrate the entire
3D INS mechanization procedure. More details about the implementation of the
inertial mechanization are given in [55]. What is important to state is that such
implementation requires an initialization of the parameters, this can be made from
another sensor like GNSS. The hybridization of the INS navigation with GNSS will
be presented in section 3.4.4.

Attitude computation
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Figure 3.20: INS mechanization schema.

3.4.3 Source of INS position error
The double integration in mechanization equations makes the error following a

second order polynomial function. That means that the estimation will drift very
easily in few seconds. The deterministic errors affecting INS are due to manufactur-
ing defects like misalignments, temperature dependent errors, etc. These errors can
be minimized by calibration procedures [56]. The stochastic errors affecting INS
are random noises on the measurements. In general, the errors in the instantaneous
computed position at the INS output can arise from:

• Instruments errors: accelerometers and gyroscopes have noise;

• Alignment errors: between sensors and their platform. But also from com-
putational process of frame transformation;
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• Environment errors: model for the local gravity that sometimes is deviated
from the true value;

• Computational errors: in the equation model and in the numeric integra-
tion;

• Initialization errors: assumed state vector;
Table 3.4 summarize the performances of different class of Inertial navigation

systems. To qualify the quality of these sensor is possible to observe the magnitude
of their biases. These biases are mainly constant over some times and changes only
due to change of the vehicle so that the use of aiding sensors like GNSS receiver
allows to estimate these biases and compensate for them.

Table 3.4: Classes of INS and relative performances.

Class Position
perfor-
mance

Gyro
technol-
ogy

Acc tech-
nology

Gyro bias Acc bias

Military
Grade

1 nmi/24 h ESG,
RLG, FOG

Servo
accelerom-
eter

<0.005°/h <30 µg

Navigation
grade

1 nmi/h RLG, FOG Servo
accelerom-
eter,
Vibrating
beam

0.01°/h 50 µg

Tactical
grade

< 10
nmi/h

RLG, FOG Servo
accelerom-
eter,
Vibrating
beam,
MEMS

1°/h 1 µg

AHRS NA MEMS,
RLG,
FOG,
Coriolis

MEMS 1-10°/h 1 µg

Control
System

NA Coriolis MEMS 10°-
1000°/h

10 µg

3.4.4 GNSS/INS integration concepts
In this section the integration between GNSS technology and Inertial Naviga-

tion Systems will be presented. This integration is particularly important in the
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development of this work for two reason. First, it allows to demonstrate the moti-
vation of hybridizing sensors and fusing data for better navigation estimation with
respect to stand-alone systems. Secondly its mathematical integration will be the
basis for the fusion algorithm developed in this work.

Looking at the errors behaviours of INS platform and GNSS receivers is possible
to observe the complementarity of the two technologies. As stated in 3.4.3, the
INS output errors are time-correlated and drift very soon especially using low-
cost sensors. A GNSS receiver, on the other hand has a long therm accuracy. The
problem is that satellite signal is susceptible to interferences or jamming and the use
of INS measurements, which are immune, can help to increase the robustness of the
GNSS receiver. Another advantages of the INS is that it not requires any interaction
with the environment. This is particularly useful in the situation where the GNSS
can’t rely on signals transmitted by the satellite constellation. This is typical in
urban canyon or in indoor environment. Talking about the reference system in
which the solution is provided, the GNSS gives absolute positioning in contrast
with the relative estimation of the inertial platforms. In terms of data rates, INS
work at higher frequency (usually more than 100 Hz) while GNSS receivers have a
data rates on the order of 1-20 Hz.

In general, the integration of GNSS and inertial sensors is performed in three
different hybridization architecture depending on the type of GNSS measurement
used and the level of integration. These are loose, tight and ultra-tight or deep
integration architectures. Figure 3.21 shows a schematic of these three integrations.

Figure 3.21: GNSS/INS integration architecture.

In the loose architecture, the INS and GNSS receivers works as independent
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navigation systems. The outputs of the two systems are blended to estimate a final
solution. In the tight architectures, the two sensors provides their basic measure-
ments (pseudoranges, accelerations, angular velocity) to generate a single naviga-
tion solution. Finally in the deeply coupling the integration is made at level of
the signal tracking loop. The GNSS receivers is no longer an independent sensor
but INS is an integral part of the GNSS. Among the three, the loosely coupling is
presented more in details in next section as it will be the basis for the navigation
algorithm implementation.

3.4.5 Loosely coupling
The loose integration of GNSS and INS has been extensively investigated and

consolidated during last decades and reported in several researches [57],[26],[58] and
[25]. As already said, in loosely coupling integration, IMU measurements are used
to compute a Position, Velocity, Attitude. This is done in a sub-system called the
Inertial Navigation System (INS). The state estimate by this systems is subject by
some some inertial drift or error

x̂INS = x+ δxINS

The GNSS measurements (position and velocity) are used in order to estimate the
inertial mechanization error, within a Kalman Filter.

δx̂INS

Additionally, the IMU sensor systematic errors (bias, scale factor) are also estimated
and corrected for future mechanization update.

The state vector is composed of:
• INS position error;

• INS velocity error;

• INS attitude error;

• IMU errors (bias, scale factor).
In the INS sub-system, every time one get a new measurement, the mecha-

nization equations are used to estimate the new outputs of position velocity and
attitude. As these are effected by errors which increments in time, the GNSS po-
sition and velocity are used in the filter to estimate this particular error. This
correction are used to update the old state that will become new input in the INS
mechanization. The measurement vector is composed of

• difference between GNSS and INS positions;

• difference between GNSS and INS velocities;
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3.5 Other aiding sensors
Numerous other sensors can be integrated in the previous described methods

for navigation and positioning. Some information acquired by these sensors can
be aided in order to support other main technologies. The following sensors are
particularly interesting in the present Thesis and their basic operating principles
are reposted.

3.5.1 Magnetometers
A magnetometer sensor is able to "sense" the component of the magnetic field

vector. It is a constant vector with direction and magnitude depending on the
position of the body on the earth. Having the x axis of our sensor in the direction
of the body movement, the magnetometer measure the component of the magnetic
field vector along the x and y axis. What one want to know then is the angle between
the magnetic measurement along the direction of the motion Hx and the horizontal
component of the magnetic vector in the north direction HN . To determinate this
angle equation 3.75 is used. However, this is true only if the body has not any
inclination with respect to the local plane, otherwise it will be affected by the
residual inclination error 3.76.

α = arctan(Hy/Hx) (3.75)
εψmag = arctan(tan(δ) sin(τ)) (3.76)

where τ is the inclination error. Other sources of errors are magnetic interfer-
ences which can deviate easily the magnetic field. These can be easily compensate
with a field calibration of the sensor.

3.5.2 Baroaltimeter
Baroaltimeter, estimate the altitude as function of the pressure. The temper-

ature decrease by knowing the physical law of the gasses and the temperature
behaviour along the altitude, we can put in relation pressure measurements with
altitude. The transformation from pressure to altitude is not a linear transforma-
tion but follow the International Standard Atmosphere Model (referred to P0 at
sea level):

ĥB = T0

λ
·

⎡⎣1− Pm
P0

λR
g

⎤⎦ , for ĥB < 11km (3.77)

Where:

• ĥB is estimated altitude above h0,
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• Pm is measured pressure

• T0 (default 288K)

• P0 default 101325Pa

• λ = 0.0065◦C/m is lapse rate or temperature gradient

• R is the universal gas constant (287J/(Kg.K))

• g is accel. Of gravity (9.80665m/s2)

The barometer low cost are very accurate in changing elevation. The estimated
altitude is estimated above the referenced altitude.
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Chapter 4

URBAN ENVIRONMENT
APPLICATIONS

Positioning and navigation in urban areas suffer from different environmental
issues leading to poor performances of state-of-art location systems. In harsh con-
ditions, the quality of the navigation decrease in term of accuracy, availability, con-
tinuity and integrity until it is no longer usable for LBS. In critical domains (mar-
itime, transport, civil aviation, military) , the main technology used for positioning
is the GNSS thanks to the development of tools and models able to guarantee the
requirements of the previous four criteria. These critical applications are usually
performed in outdoor spaces and in no-constrained environments where the absence
of obstructions and local phenomena doesn’t affect the GNSS measurements. In
urban cities, applications based on the location, are performed in both indoor and
outdoor environments, usually navigating continuously in the passage from a closed
space to an open sky area and in urban canyons i.e. outdoor areas with restricted
satellite Line of Sight (LOS). Of course, when the user is located inside a building
or underground, the GNSS technology is no longer available and other IPS must
be used. Typical scenarios are the underground cities where numerous private and
public services are located underground.

Outdoor dense populated cities presents man-made structures which affect the
GNSS. In particular, the presence of trees and buildings decrease the satellite
visibility inducing NLOS signal reception on the receiver (only reflected signal). Tall
structures can also generate masking issues i.e. the total block of the GNSS signal.
The presence of obstacles near the antenna can generate local multipath errors
which degrades the quality of the direct received signal. Moreover intentionally and
unintentionally radiofrequency interferences are typical of dense populated areas
like urban cities.

In the interface areas i.e. in the conjunction between open and closed spaces
all the issues presented above are mixed and combined so that the GNSS can be
used in favourable situations while IPS must be used in other conditions. When
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the objective is to perform seamless navigation none of previous methodology is
able to sole the problem in stand-alone configuration but a multi-sensor integration
approach must be used. It is evident that, in order to perform seamless naviga-
tion, all issues and local conditions must be taken into account for selecting the
most suitable positioning methodology. This is not an easy task which requires
to consider not only the positioning performances but also criteria of complexity,
optimization, coverage, scalability, cost and more.

The main principle is that, in order to obtain an acceptable solution in term
of accuracy, availability, integrity and continuity, a multi-sensor multi-technology
approach must be considered. Due to the huge panorama of indoor and outdoor
positioning technology an approach based on requirements and criteria comparison
should be used to chose the bests technology given the application field. It is
a multidimensional optimization problem which requires to search the best match
between the parameters and the user requirements. The most important parameters
are:

• accuracy and measurements uncertainty (from mm to dm level);

• coverage area i.e. the scale of the environment (single room, building, city,
etc.);

• environment i.e. characteristics of the surrounding (indoor/outdoor, dark
light, temperature, ect.);

• cost (cost of the sensor or total cost of the infrastructure);

• Infrastructure i.e. the required and the complexity of the sensors network
(none, markers, RF sensors, GNSS);

• reference frame (local or global);

• vulnerabilities (interferences, noise, multipath, privacy, etc.);

• update rate (real time, on request, at which rate);

• power consumption ;

• number of user (single or multiple users);

• computing i.e. the memory usage and the CPU requirements.

Under these assumptions, a criteria should be selected in order to define which
technology could be investigated for the aims of the research: the seamless position-
ing and navigation in urban environment. Observing the characteristic of the urban
environment and the parameters overview characterizing the positioning systems
(Section 2.2) results that the most limiting parameter for selecting a positioning
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method is the coverage area of system functionality. Some infrastructure-based
systems are more suitable for performing positioning in limited spaces of some
hundreds of square meters like rooms, floors, plants. Other systems, which perform
relative or absolute positioning can operates in larger structures like public offices,
hospitals, airports and train stations. Finally, the GNSS systems is still reliable
in all those situation where the user moves in large open areas, moving between
interest points and in the city. Therefore, is possible to define the operational scale
as the elected criteria. It has been divided in:

1. floor scale;

2. infrastructure scale;

3. district scale.

For each scale of application a positioning and navigation technology has been
tested in real scenarios in order to validate the proposed solutions and to enhance
limits and advantages. In particular, from the overview on related works and from
the analysis on the performances of different positioning systems, the three selected
technologies are UWB positioning for floor scale, Image-based localization for in-
frastructure scale and GNSS positioning with smartphones for infrastructure scale
(Figure 4.1).

Figure 4.1: The three applications scale of urban positioning and navigation with
relative selected technologies.
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In this chapter three positioning methodology for urban environment appli-
cations will be presented. Regarding the “Floor Scale” an application of Ultra-
wideband Indoor positioning and tracking will be presented. The reference envi-
ronment is a typical office floor, with office rooms, narrow corridors, stairs. In
this kind of man-made space, there are numerous interferences sources like people,
furnitures or electronic devices.

Figure 4.2: Comparative analysis on requirements parameters to performing posi-
tioning and navigation. Colors denotes advantages (green) and disadvanatges (red).
Number of markers gives a comparative scale.

In the “Infrastructure Scale” an application of indoor positioning based on Imag-
ing sensors and photogrammetric procedure is presented. Here a metro-station of
a huge city and a big office building have been used as test sites. The usabil-
ity of images for positioning in such crowd and repetitive environment has been
investigated.
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Finally, for the “District Scale” the GNSS chipsets installed in new-generation
smartphones has been investigate in a urban-canyon like environment. The possi-
bility to directly access to raw measurements has allowed to implement and perform
geodetic algorithms. What is important to highlight is that these three technologies
are complementary in term of coverage area and so are perfect to be integrated.
Figure 4.2 shows the resulting comparative analysis made on these three systems.

4.1 UWB positioning in floor scale environment
The advantages of using UWB positioning techniques in indoor spaces are re-

lated mainly to the signal characteristics which gives to UWB-IR signal some im-
portant advantages both in telecommunication and positioning field. Firstly, as
seen in Chapter 3 the UWB-IR noise-like signal makes the communication resis-
tant to interception and detection. Then due to the very short duration pulses,
the UWB signal allows to mitigate multipath reflections. The huge bandwidth al-
located permits to achieve high data rates communications. Moreover, due to the
low-power spectral density assigned by law, UWB signals cause very little inter-
ference with existing narrow-band radio systems like WiFi and Bluetooth and can
be emitted with very low power consumption. All these advantages are reflected
in the ease implementation and in the low cost of these systems. The very narrow
time domain pulses mean that UWB are potentially able to offer timing precision
much better than other radio systems. And this very good time domain resolution
allows location and tracking applications.

In literature, there are several example of UWB technology applied in indoor
environment for positioning, navigation and tracking. Ubisense, for example, de-
veloped several hardware and approaches to enhance the performances of UWB
systems in different application fields. Real-time vehicle tracking [59], tracking for
personnel safety in industry [60], LBS for parking [61] and more. Personnel local-
ization for coal mines is presented in [62] while object tracking system on hospital
environment is implemented in [63].

Innovative algorithms and new methodologies are investigated to improve UWB
positioning performances and solve limitations like NLOS, scalability, cost and
power consumption. In [64], the authors compares the performance of UWB-IR
tracking systems using different positioning algorithms like weighted least square,
trilateration, particle filter and Kalman filter. An extended Kalman filter approach
is used in [65] to improve the navigation accuracy in highly complex indoor scenario.

More recently, the emerging interest in ITS services has increased the R&D effort
on cooperative positioning. Vehicles navigation in urban environment suffer from
GNSS signal interference, blockage and multipath, shortcomings that must be com-
pensate. Extra observations transmitted from other vehicles via UWB collaborates
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to improve the positioning performances. In [66], authors demonstrated a peer-to-
peer cooperative localisation method able to achieve decimetre-level accuracy, by
combining GNSS and terrestrial ranging measurements. A cooperative positioning
algorithm to improve localisation accuracy of vehicles is presented in [67] while a
distributed location estimate algorithm has also been proposed in [68]to improve the
positioning accuracy by extracting inter-vehicle distance from GPS pseudo-range
measurements.

In this research, low cost UWB positioning systems has been analysed and
compared to evaluate the positioning and navigation performances in the floor
scale previous defined.

4.1.1 UWB hardware
Numerous commercial solutions and research hardware based on UWB have

been developed in last years (TimeDomain, DecaWave [69], BeSpoon[70], Ubisense
location system [71], UWB-IR System of Zebra Enterprise Solutions [72]). During
the present research, three different UWB sensors have been tested in several con-
dition and compared in specific applications. Although is not the aims of this work
to describe the performance characteristics and compare different commercial so-
lutions, some performances test has been made to define the statistical parameters
useful for the tuning of positioning estimation algorithms. These sensors are:

• Pozyx accurate positioning system;

• Time Domain PulsON OEM system;

• DecaWave TREK 1000 Evaluation Kit.

4.1.1.1 Pozyx System

Pozyx accurate positioning is an UWB-based hardware solution able to provide
position and motion information (Figure 4.3). The system consist in a network of
radiofrequency E/R modules with a very low power consumption. The 500MHz
bandwidth used by this system permit range measurements with an accuracy of
about 30 cm. The network is composed by one TAG transmitting the package
of data, and a series of anchors with well-known position. Another TAG can be
added to this configuration in order to set a master-rover configuration for the
emitter module. This system transmit with a power spectrum density below -
41.3dBm/MHz a train of pulse that, once accumulated, permit to the signal received
to rise above the noise level. The maximum update rate for a single TAG is 80Hz
(with a single TAG configuration) or around 40Hz (with base-rover configuration).
Adding more TAGs decrease theis time.

Pozyx TAGs are also equipped with an IMU composed by three axis accelerom-
eter, gyroscopes and magnetometers. With these sensors is possible to obtain the
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orientation of the device. The TAGs can be connected to any computational exter-
nal device, like a Raspberry Pi or Arduino boards, permitting to interact with the
microcontroller unit (MCU) that manage the position algorithm. Figure 4.4 shows
the hardware architecture of the Pozyx tag UWB module. The on-board UWB is
a Decawave DW 1000. The systems can be controlled thank the provided libraries
in ROS, Python and Arduino language.

Figure 4.3: Pozyx system TAG and ANCHOR.

Figure 4.4: Device diagram. https://www.pozyx.io/Documentation/Datasheet.
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4.1.1.2 Time Domain System

Time Domains PulsON® OEM (Original Equipment Manufacturer) system is an
UWB technology hardware used to be integrated in existing product to augmented
the capacity of performing ranging, tracking and positioning. It is composed by a
network of UWB radio transceiver called P440 modules (Figure 4.5). It operates
between 3.1 and 4.8 GHz. This system transmit with a power spectrum density
below -41.3dBm/m and with a maximum update rate for ranging measurements of
125 Hz. This network operates using either the ALOHA (randomized) or TDMA
(Time Division Multiple Access) protocols. Moreover the system can also operate
as radar. In the UWB components there are also two connectors for the UWB
antennas (Two Broadspec Antenna are provided).

Figure 4.5: Time Domain P440 UWB module and Broadspec Antenna.

Figure 4.6 shows the hardware architecture of the P440 UWB module. It is
composed by three main parts respectively the User interface, the Non-UWB com-
ponents and the UWB components. The user interface part is composed by a
variety of tols to physically interface every computational machine to the P440
board. Then, processor controls the UWB front end through a Digital Baseband
FPGA interface. More specifically, the FPGA acts as a digital baseband to con-
figure and control Time Domain’s Fully Integrated Front End (FIFE) UWB ASIC
such that it is possible to transmit and receive packets to measure range and to
send/receive data.
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Figure 4.6: Hardware block 320-0317E P440.

4.1.1.3 DecaWave TREK 1000 Evaluation Kit

DecaWave company product used in this work is the TREK 1000 evaluation Kit,
a TWR location system based on the UWB transceiver module DWM1000 (Figure
4.7). The sensor is compliant with the IEEE802.15.4-2011 technical standard. The
6 RF supported bands spans from 3.5 GHz to 6.5 GHz. The board is composed by
an ARM STM Microprocessor on which a proprietary sourcecode run to perform
positioning. An Application Interface is provided to control the system from any
other computational unit via USB connection. Figure 4.7 shows the UWB sensors.
The producer claims that accuracy of this sensor working with 1.3 GHz bandwidth
is ±10cm. The maximum range is 290 meters with an update rate of 6.8 Mbit/s.
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Figure 4.7: TREK1000 board details.

Figure 4.8: TREK1000 board schema.

4.1.1.4 Specs Comparisons

Table 4.1 compares the hardware characteristics of the three sensors presented.
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Table 4.1: Hardware characteristics of UWB systems.

UWB system
specs

Pozyx PulsON P440 TREK1000

Physical Parameters
Board Dimen-
sions

60 x 53 mm 89 x 56 mm 70 x 70 mm

Weight 12 grams 45 grams 14 grams
Power

Min Input Volt-
age

3.3 V 5.0 V with <100
mV ripple

2.8 V

Rx Power Con-
sumption

n.a. 1.800 – 2.882 Watts n.a.

Tx Power Con-
sumption

n.a. 1.999 – 3.000 Watts n.a.

RF Characteristics
Operating Band 3.5-6.5GHz 6 Chan-

nel (500 MHz wide)
Compliant with
U.S. FCC mask.
No certification

3.1 to 4.8 GHz
11 Channel Compli-
ant with U.S. FCC
mask. Certifica-
tion has been re-
ceived. Designed
for compliance to
ETSI 302065 mask

3.5-6.5GHz 6 Chan-
nel (500 MHz wide)
Compliant with
IEEE802.15.4-2011.

Center Fre-
quency

6 channel
(500 MHz wide)
Ch1 : 3494.4MHz
Ch2 : 3993.6MHz
Ch3 : 4492.8MHz
Ch4 : 3993.6MHz
Ch5 : 6489.6MHz
Ch7 : 6489.6MHz

4.3 GHz min 3244 MHz -
max 6999 MHz

Power spectral
density

-41 dBm/MHz max -41 dBm/MHz max -41 dBm/MHz max

Antenna Onboard Decawave
DW1000

External Broadspec
antenna

External Decawave
DW1000

Ranging Performances
Ranging Tech-
niques

Pulsed Two-Way
Time-of-Flight
(TW-TOF) defined
as TWR (Two-Way
Ranging)

Pulsed Two-Way
Time-of-Flight
(TW-TOF) and
Coarse Range
Estimation (CRE)

Pulsed Two-Way
Time-of-Flight
(TW-TOF) defined
as TWR (Two-Way
Ranging)

Max Range LOS: 100 m (30 m
typical)

LOS: 240 m LOS:290 m
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Table 4.1: Hardware characteristics of UWB systems.

UWB system
specs

Pozyx PulsON P440 TREK1000

Precision 10 cm (typical) Outdoors: 1 cm
(typical) Indoors: 2
cm (typical)

10 cm

Bias error 2.5 cm (typical) 1 cm (typical) n.a.
Range Meas
Rate

Max 80 Hz 14 – 125 Hz 50 Hz

Localization Performances
Localization
Technique

UWB only vs
Tracking (No
more information
provided)

Non-Linear Least
Squares Fit during
a short initializa-
tion period. After-
wards a Kalman
Filter-based local-
izer incorporating
a motion model
and GDOP calcula-
tions or Geometric
Non-Linear Least
Squares Fit

n.a.

Network proto-
cols

TDMA n.a. TDMA and
ALOHA

Max Positioning
update rate (4
anchor)

140 Hz (see table
slide)

n.a. 10 Hz

Localization Ac-
curacy (Bias &
Precision):

Average horizontal
error in LOS = 9.2
cm and NLOS = 14
cm

Max accuracies
achieved of +/-1
mm

30 cm

4.1.2 Experimental setup
In order to evaluate the positioning capabilities of UWB technology in Room

Scale environment, numerous tests have been performed on the previous presented
sensors changing the environment, the network configuration, the kinematic con-
dition and other parameters. The aim of this test is evaluate the performances
in ranging measurement and positioning estimation of the UWB sensors in real
case study. For Pozyx system, which implement an IMU platform, also the iner-
tial measurements sensibility has been evaluated. All tests have been made at the
Politecnico di Torino - (Italy) during several experimental campaign.
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The tests can be classified in outdoor and indoor. Signal reflection has been
avoided in outdoor testing while it has been stressed in crowded indoor spaces. In
outdoor scenario, the maximum range measurable by a single anchor was checked
together with the performances of the inertial sensors. In typical office room, the
maximum positioning capability was evaluated and the sources of errors analysed.
Finally in a narrow corridor, position estimation and tracking have been analysed
in an unfavourable geometry configuration. In general, the algorithms provided by
the sensors has been used as first check for the positioning performances. After
that, more robust algorithm has been developed and tested in order to have more
control on the positioning estimation.

4.1.2.1 Ranging performances

UWB sensors manufacturer declares ranging capabilities of their systems that
usually don’t reflects real case applications. On the Pozyx UWB system and on
the TREK100 system, line-of-sight (LOS) ranging test have been performed in an
open area ensuring no obstacle between two UWB sensors and sufficient distance
to evaluate maximum ranging capabilities. For this test, an anchor was placed on a
fixed position while a person holding the tag upwards in his hand has moved far from
the anchor. The true distance between the anchor and the tag was continuously
measured with a measurement tape. Fixed steps were established to acquiring some
minutes of measurement in static condition. The steps were increased till reaching
the maximum measurable distance which correspond to the interruption of signal
communication.

From the data acquired, outlier rejection has been performed to remove re-
cursively the measurements away from a fixed threshold. The number of samples
acquired in each step ranged from a minimum of 200 to a maximum of 1200 in
function of the data rates and packets loss. For each step the distribution of the
measurements has been plotted as shown in Figure 4.9 and Figure 4.10.
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(a) 5m
µ − 0.214 - σ 0.020

(b) 6m
µ − 0.223 - σ 0.023

(c) 7m
µ − 0.226 - σ 0.019

(d) 8m
µ − 0.249 - σ 0.0212

(e) 9m
µ − 0.239 - σ 0.025

(f) 10m
µ − 0.248 - σ 0.024

(g) 20m
µ − 0.279 - σ 0.108

(h) 30m
µ − 0.339 - σ 0.083

(i) 40m
µ − 0.265 - σ 0.096

(j) 50m
µ − 0.333 - σ 0.051

(k) 60m
µ − 0.290 - σ 0.057

(l) 70m
µ − 0.285 - σ 0.041

(m) 100m
µ − 3.496 - σ 0.408

Figure 4.9: Ranging errors distibution for different reference distances expressed in
meters - Pozyx UWB system.
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(a) 5m
µ 0.010 - σ 0.013

(b) 6m
µ 0.020 - σ 0.012

(c) 7m
µ 0.036 - σ 0.011

(d) 8m
µ 0.061 - σ 0.012

(e) 9m
µ 0.084 - σ 0.015

(f) 10m
µ 0.101 - σ 0.016

(g) 20m
µ 0.047 - σ 0.023

(h) 30m
µ − 0.002 - σ 0.027

(i) 40m
µ 0.007 - σ 0.040

(j) 50m
µ 0.041 - σ 0.030

(k) 60m
µ − 0.034 - σ 0.038

(l) 70m
µ − 0.207 - σ 0.0531

(m) 100m
µ −0.1083 - σ 0.0514

Figure 4.10: Ranging errors distibution for different reference distances expressed
in meters - TREK1000 UWB system.

Observing these distributions is possible to state that the behaviour is mainly
gaussian in contrast with no-line-of sight condition, where the error distribution is
a gaussian mixture. The statistical values of the test are plotted in Figure 4.11 for
the Pozyx system where is possible to observe the ranging error with respect to
the real value at different distances. The results shows that both the error and the
standard deviation increases with the distance, although not in a linear way. The
maximum error is always less than 40 cm while the maximum standard deviation of
± 20 cm. Similar results are obtained for the TREK 1000 sensor as shown in Figure
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4.13. In this case the system perform better with a mean error of maximum 20 cm
(at 70 meters distance) and standard deviation always under few centimetres. For
both sensor the distance from which the data communication is completely lost has
been measured. The maximum operational range in LOS for Pozyx UWB system
is 120 m while for TREK1000 is 157 m.

Figure 4.11: Ranging error at different distances. Pozyx UWB system.

Figure 4.12: Ranging error at different distances. Pozyx UWB system.
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Figure 4.13: Ranging error at different distances. TREK1000 system.

4.1.2.2 Pozyx IMU performances

A comparing test on the inertial measurements has been conducted to check
the internal competence of the accelerometers and gyroscopes. The comparison
was made between the Pozyx system and a MicroStrain IMU (model 3DM_GX3-
35). These two systems were fixed together to the telescope of a total station which
is used as reference for both systems. Figure 4.14 shows the test setup. The main
objective of this test was to compare orientation information acquired from both
systems in terms of precision, accuracy and sensitivity.

Figure 4.14: Inertial sensors fixed on a total station.
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Acquiring different raw angle measurements each 50 deg, it was observed that
both systems use different scale for Roll and Heading. So, after aligning the orienta-
tion angles to a common scale, the maximum absolute difference in the orientation
for Roll, Pitch and Heading is computed and compared (Table 4.2. Following,
the measurements comparisons between Pozyx IMU, MicroStrain IMU and TS are
presented for roll (Figure 4.15), pitch (Figure 4.16) and heading (Figure 4.17).

Table 4.2: Inertial measurements.

Pozyx MicroStrain
Roll 1.7 deg 0.8 deg
Pitch 4.63 deg 4.43 deg
Heading 4̇ deg 21.6 deg

Figure 4.15: Roll estimation from inertial measurements.
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Figure 4.16: Pitch estimation from inertial measurements.

Figure 4.17: Heading estimation from inertial measurements.
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4.1.2.3 Indoor Room positioning results

Testing the positioning capabilities of different UWB sensors consist in evaluate
the response of the system in different environmental conditions. The parameters
that influences the response of these systems are:

1. geometry configuration: Isotropic or anisotropic configuration of the UWB
network changes the geometric precision as for the GNSS system;

2. number of Anchors: The number of anchors can both increase the position-
ing accuracy of the systems or in same cases inject noise and decrease the
performances;

3. type of environment: The presence of furnitures, the passage of people, re-
flective or absorbing surfaces and more are environmental conditions that can
affect the range measurements ans consequently the positioning behaviour;

4. motion: Also the motion is a variable to take into account as the system could
perform differently in static or in Kinematic condition.

Several tests have been made changing the previous parameters and analysing
the results obtained. In order to give in a glance all the tests performed Table 4.3
present the list of the experiments characteristics.

Table 4.3: List of tests performed in indoor environment. Algorithm number cor-
respond to: 1 = UWB_ONLY, 2 = TRACKING, 3 = NLLSE, 4 = Inner.

Environment Indoor Office Room Indoor Geomatic Lab
Sensor Pozyx Pozyx TREK 1000
Motion Static Kinematic Kinematic

Anchor number 4 6 4 6 4
Algorithm 1 2 3 1 2 3 1 2 1 2 1 4

In the office room, test were performed within an office space of 6.44 m x 4.91
m. Four anchors were placed with different height in the four corner of the room
and this position was measured with a total station. One of the four anchor has
been fixed as origin of the coordinate system (0 0Z). The room was selected to
avoid obstacles in order to assess maximum positioning capabilities of the system.
On the floor of the office several points were materialized that maintains line-of-
sight (LOS) from all the anchors in order to verify the variations in precision and
accuracy changing the position. Also a 6-anchors configuration was tested.

All the reference points and the anchor position has been measured with a mil-
limeter level of precision raised from a topographic survey. The data acquired from
the sensors are both positioning estimation from the inner algorithm computation
and raw ranges from each anchor receiver. On these data several analysis have been
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made both for static and kinematic applications. Figure 4.18 and 4.19 shows the
floor plan of the testsite, the local coordinates of anchor fixed sensors and static
position of the Tag. Table 4.4 summarize all the test performed in the office room.

Figure 4.18: Room floorplan with 4-
anchors configuration.

Figure 4.19: Room floorplan with 6-
anchors configuration.

Table 4.4: List of tests performed in the office room.

Motion Static Static Kinem. Kinem. Kinem. Kinem.
N. of
Anchor

4 Anchor 6 Anchor 4 Anchor 6 Anchor 4 Anchor 4 Anchor

Pos.
Error

2D and
3D

2D and
3D

- - - -

Pos.
be-
haviour

- - 2 walking
path

2 walking
path

Random
Walk

Outside
Network

1. Configuration 4-anchor in Static condition
This test was performed acquiring data for some minutes standing on eight
different points spread around the room. These points, measured with high
accuracy, has been used to perform statistic evaluation on the inner algorithms
provided by the commercial sensor. Moreover, with the acquired raw data,
a Least Mean Square estimation of the position has been performed. Figure
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4.20, 4.21 and 4.22 shows the eight points true position and the estimated
coordinates with the relative XY errors. Figure 4.23 and 4.24 compares the
positioning error estimation both in 2D and 3D for all the points. 80 samples
has been compared for the three estimation algorithm. The simmetry of the
network is well described by the bias behaviour of the eight points.

Figure 4.20: True vs estimated position of eight points for UWB-ONLY algorithm.
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Figure 4.21: True vs estimate position of eight points for TRACKING algorithm.

Figure 4.22: True vs estimated position of eight point for LMS algorithm.
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Figure 4.23: Positioning error comparison in 2D.
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Figure 4.24: Positioning error comparison in 3D.

Table 4.5 summarize the statistical parameters of the three algorithms in 2D
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while Table 4.6 compares it in three dimensions. The accuracy is interpreted
as the difference between the true value of a certain point (measured with
the total station) and the computed one obtained by the system. On static
condition is possible to observe how the three algorithm gives almost the same
results with a three-dimensional error of around 30 cm. Moreover is possible
to observe how the use of the TRACKING algorithm in the static positioning
estimation, inject noise on the observables so that the standard deviation in-
crease of about 10 cm. As the localization accuracy of the considered systems
are largely dependent of the number of device and their spatial configura-
tion, the reported accuracy is intended as the typical achieved accuracy of
the system.

Table 4.5: Statistic analysis on 2D positioning error.

STATISTIC UWB-ONLY TRACKING LMS
Min [mm] 4.47 3.33 3.26
Max [mm] 293.88 2743.61 218.55
Mean [mm] 119.53 130.11 123.05
Median [mm] 127.97 110.00 133.87
St.D [mm] 52.67 159.71 50.31

Table 4.6: Statistic analysis on 3D positioning error.

STATISTIC UWB-ONLY TRACKING LMS
Min [mm] 103.71 103.32 99.10
Max [mm] 502.18 2837.50 415.19
Mean [mm] 303.97 257.38 307.06
Median [mm] 317.48 235.36 322.24
St.D [mm] 63.66 164.38 63.98

Finally Figure 4.25 shows the CDF comparison of the three algorithms.
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Figure 4.25: CDF of the positioning error in 2D and 3D.

Figure 4.25 shows the results obtained by the two inner algorithms provided
by the sensor itself. As already said, the "TRACKING" algorithm integrate
inertial measurements in the estimation of the position of the TAG. As one
can expected in static condition, the figures shows the convergence of both
the algorithm to the same estimation.

2. Configuration 6-anchor in Static condition
The same tests have been performed upgrading the number of anchor from 4
to 6 in order to verify an increase on the positioning accuracy. The results
shows that the discrepancies between the real value and the computed one
for both the configurations, follow a quite random behaviour. In some of the
point the accuracy is improved while in other it remains almost the same or
is reduced. Keeping the same configurations and adding two more anchors
does not significantly change the accuracy of the system.
This test was performed acquiring data for some minutes standing on eight
different points spread around the room. These points, measured with high
accuracy, have been used to perform statistic evaluation on the inner algo-
rithms provided by the commercial sensor. Moreover, with the acquired raw
data, a Least Mean Square estimation of the position has been performed
to verify the inner algorithms and to have more control on the estimation
procedure. Figure 4.26, 4.27 and 4.28 shows the eight points true position
and the estimated coordinates with the relative XY errors.
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Figure 4.26: True vs estimated position of eight points for UWB-ONLY algorithm.

Figure 4.27: True vs estimate position of eight points for TRACKING algorithm.

100



4.1 – UWB positioning in floor scale environment

Figure 4.28: True vs estimated position of eight point for LMS algorithm.

Figure 4.29 and 4.30 compares the positioning error estimation both in 2D
and 3D for all the points. Table 4.7 summarize the statistical parameters of
the three algorithms in 2D while Table 4.8 compares it in three dimensions.
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Figure 4.29: Positioning error comparison in 2D.
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Figure 4.30: Positioning error comparison in 3D.
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Table 4.7: Overall 2D statistic results.

Statistic UWB ONLY TRACKING LMS
Min [mm] 2.49 3.33 11.73
Max [mm] 324.68 2860.19 192.33
Mean [mm] 107.71 137.64 102.77
Median [mm] 113.90 114.77 108.14
St.D [mm] 53.60 176.87 45.16

Table 4.8: Overall 3D statistic results.

Statistic UWB-ONLY 3D TRACKING_3D LMS_3D
Min [mm] 126.46 111.821 115.68
Max [mm] 489.70 2955.35 370.87
Mean [mm] 278.74 292.44 265.69
Median [mm] 288.5318 295.66 288.72
St.D [mm] 57.96 170.19 62.10

Figure 4.31 shows CDF of the three algorithms.

Figure 4.31: CDF of the positioning error in 2D and 3D.

3. Configuration 4 and 6-anchor in Kinematic condition
In the same environment, a kinematic test was performed. The rover is moved
on the marked points to assess the system for kinematic positioning. Two
different path has been follow for both "UWB_ONLY" and "TRACKING"
algorithm. Again, the test has been made both for 4 and 6-anchor configura-
tion.
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Figure 4.32 shows the results in 2D positioning. Along the line AB it is
possible to observe the deviation from the true track which could be due to
the presence of a thick glass wall along this path that causes reflections thus
reduces the accuracy. Moreover, in kinematic condition, the integration of
the inertial measurements allows a smoothed path estimation.

Figure 4.32: Positioning estimation with 6 anchor configuration in kinematic mode.

4. Kinematic condition walking outside the network
Finally, the positioning performances of the system when the tag goes outside
from the network has been observed and reported in Figure 4.33. Together
with the increase of the errors in the 2D positioning for both algorithms, is also
interested to observe the variation on the vertical axis. Both solution diverges
from the ground truth but with an opposite sign. While "UWB_ONLY" al-
gorithm estimate a Z coordinates minor than the real one, the "TRACKING"
algorithm increase these estimates. Figure 4.34 shows the results in 3D visu-
alization.
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Figure 4.33: Moving outside the network of anchors.

Figure 4.34: Moving outside the network of anchor.
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4.1.2.4 Indoor narrow corridor positioning results

In this test, system is examined in a narrow corridor in the presence of numerous
interferences such as glass windows, metallic rail, power socket and narrowness of
the passage to check its competence in a harsh environment. In this site, 4 anchors
are installed in a short network of 1.8 m x 6.8 m dimension (Figure 4.35). Five
different points are marked in the test field for positioning. This was a static test on
which the UWB_ONLY algorithm provided by the Pozyx system has been tested.
After that, also a non linear least square approach has been performed to obtain
the position estimation on the five points.

Figure 4.35: Floor Plan of the narrow corridor for UWB positioning test.

The results are shown in the following Figures and summarized in Tables 4.9
and 4.10.

Table 4.9: Statistic analysis on 2D positioning error.

STATISTIC UWB-ONLY LMS
Min [mm] 12.04 1.71
Max [mm] 494.69 340.70
Mean [mm] 145.58 142.52
Median [mm] 143.99 146.62
St.D [mm] 69.78 78.58
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Table 4.10: Statistic analysis on 3D positioning error.

STATISTIC UWB-ONLY LMS
Min [mm] 23.87 25.79
Max [mm] 499.62 426.82
Mean [mm] 191.82 183.37
Median [mm] 191.61 182.52
St.D [mm] 85.56 91.22

Figure 4.36: Floorplan representation of 2D positioning.
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Figure 4.37: Positioning error comparison in 2D.
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Figure 4.38: Corridor positioning error comparison in 3D.

Again the CDF of the positioning error is reported:
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Figure 4.39: CDF of the positioning error in 2D and 3D

4.1.2.5 Outdoor positioning results

The final positioning test was performed in outdoor space with the TREK 1000
evaluation kit. In an area of 100 square meters on a rooftop of Politecnico di Torino,
4 anchors has been located above some tripods forming a network inside which a grid
with 2 meters step has been materialized. On the intersection of the grid, 32 points
has been accurately measured with a Total Station. The TREK 1000 UWB sensor
has been located in static condition for about 2 minutes on each of these points
and ranging measurements from the four anchors has been acquired. On these
measurements a non linear least square minimization procedure has been used to
perform accurate positioning from the range measurements and then to compare
the results with the ground truth positions. Figure 4.40 shows the obtained results
for this configuration, enhancing the Z component estimation error. Figure 4.41
shows the 2D positioning estimation with respect to the real values measured with
the total station.

What is interesting to investigate in this test is the geometric variation of the
estimation in function of the position of the UWB receiver. In order to do this, for
each of the 32 points of the test, the GDOP value has been computed and then
plotted to generate a 2D geometric map (Figure 4.42).

4.1.3 Conclusions
To validate the accuracy and precision of UWB ranging capability and posi-

tioning estimation, several tests have been performed with two commercial UWB
sensors (Pozyx and DecaWave).

In particular, two sensors has been used to acquire several ranging samples at
different distances for both the Pozyx and the TREK 1000 systems. From the
analysis of the ranging measurements acquired, it possible to affirm that under
100 meters distance, both systems have a ranging accuracy of about 10 cm with
a standard deviation of few centimetres. The distribution of the measurements is
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Figure 4.40: NLLS positioning estimation for TREK 1000 outdoor test.

mainly gaussian for LOS condition, while moves to a gaussian-mixture in NLOS
conditions.

The Pozyx UWB systems integrates an IMU platform which allows to perform
navigation algorithms taking into account the motion of the board. The sensitivity
of the IMU has been evaluated comparing the attitude estimates with an higher
grade IMU platform and a Total Station as reference solution. The results have
shown that the system estimate angles with the typical errors of a consumer grade
platform and therefore usable to increment the positioning estimation for example
in a Kalman Filter implementation.

The Pozyx system has been used also in indoor scenarios to estimate the po-
sitioning capabilities changing the anchor configuration, the type of environments,
the surrounding conditions. Several tests has been performed and both inner and
proposed algorithms has been used and compared. In general, the positioning per-
formances respect the ones present by the manufactures (accuracy of 10 cm ± 5
cm). The challenging encountered are mainly related to the presence of strong noise
from metallic surfaces or strong reflections from glass walls.

Finally the TREK 1000 system has been evaluated in outdoor condition with a
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Figure 4.41: NLSS 2D positioning estimation compared with true values from Total
Station survey.

proposed positioning algorithm and the GDOP of the geometry has been computed.
Thanks to all these tests is possible to affirm that UWB technology is a suitable

solution for positioning and navigation in indoor spaces, like rooms and office floors.
This not only thanks to the characteristics of the UWB signal but also thanks
to the possibility of scaling the system. A main advantages is the possibility to
georeferencing the Anchor infrastructure in order to estimate the receiver position
in a geographic reference frame as the GNSS.

Further research on UWB performances should evaluate the multifloor position-
ing capabilities and the characterization of the NLOS in the signal received by the
sensor.

4.2 IRBL in infrastructure scale environment
In the previous section it has been demonstrated how is possible to solve the

positioning and navigation problem in indoor environments with a relative low
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Figure 4.42: GDOP 2D map.

cost and with high accuracy. The seamless positioning requires to estimate the
pose of the user in every situation, also when an infrastructure based system like
the UWB system cannot be used. Moreover, UWB can’t be used in very large
environment where the dislocation of the Anchor could requiring numerous sensors
and increasing the cost. Image based positioning is a suitable solution for these
situations. In particular the proposed solution has been tested in the Infrastructure
Scale Environment as defined before. The characteristics of these environments are
the large scale, the presence of numerous people and the indoor condition. This
section presents an Image based positioning solution developed by the Geomatics
Lab’s researchers of Politecnico di Torino and validated by the authors in real case
studies. Some concept about the procedure has been already presented in Chapter
3 "Image Recognition Based Location (IRBL) Positioning" section.

The IRBL positioning system presented in this work has been applied during
two research projects called "A solution of Image Recognition Based Positioning
using database of solid images" and "App 4 IRBP Application for Image Recogni-
tion Base Positioning". These research projects have been made in collaboration
with the Positioning/Navigation Technology Research Section of Electronics and
Telecommunications Research Institute (ETRI) Daejeon – Republic of South Ko-
rea . The aim of the collaborative project was to implement, test and validate the
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Image Recognition Based positioning methodology in Korean indoor test-beds.
The proposed approach of IRBL positioning is based on the use of a single

mobile camera as acquiring sensor, under this constraint, in order to estimate the
camera parameters (position and orientation), a prior knowledge of 3D environment
must be available, in the form of a database of images with associated spatial
information. A Terrestrial Light Detection and Ranging (LiDAR) Survey (TLS)
with an integrated camera can be used to acquire the 3D model of the environment
which is used to generate the images database. The database of synthetic images
contains all the information useful to estimate the position and orientation of any
camera sensor acquiring the same scene. This thanks to the geometric relations
already presented in Section 3.2.2. One of the main challenges of the procedure
is to retrieve the correct correspondent image from a database containing millions
of images. In this context MPEG algorithms for visual search play an important
role in defining light and interoperable solution for processing and comparing the
query and database images. The retrieval of the correspondent DB image permit
to apply the IRBL algorithm and finally to extract the position and attitudeof the
mobile camera image with a photogrammetric approach (Figure 4.43). In contrast
with other IPS, the IRBL provides also the camera orientation, a fundamental
information for numerous applications like Augmented Reality.

Figure 4.43: The three main core of the IRBL procedure. The DB generation, the
server based communication network and the Location algorithm.

The location methodology proposed in this work consists of the following three
parts (Figure 4.44):

1. A methodology for the generation of a RGB-D image DB for object
area description: accurate and exhaustive survey with different techniques
in order to generate a 3-dimensional model of the area where the positioning
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service is offered. The model is used as input data in an algorithm for the
generation of a synthetic images database with related 3D information;

2. A visual search technology: in this study, a mobile phone takes a query
picture used for locating the camera and so the user; a reference image, that
is the most similar to the query one, is extracted from the database thanks to
the Compact Descriptors Visual Search (CDVS), patented by TELECOM;

3. A proposed algorithm for image recognition based location: IRBL
algorithm is based on a sequence of feature matching and robust outlier rejec-
tion able to extract a set of 2D feature, homologous points between reference
and query images. This 2D features can be transformed in 3D using Solid
Image data for a final photogrammetric space rejection.

Figure 4.44: The IRBL approach workflow.

The proposed procedure was implemented in a LBS in the form of a smartphone
application. The developed application allows the user to acquire an image with
his smartphone and receive in real time his position within the selected area. The
application was developed by ETRI developers for the Korean territory and is
represented in Figure 4.45.
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Figure 4.45: Smartphone application based on IRBL procedure.

4.2.1 The 3D model and the synthetic images database
The database of RGB-D images containing image feature with related 3D in-

formation is created processing a coloured 3D model of the environment. This
model could be extracted from an existing 3D model, generated by a terrestrial or
aerial survey, or obtained through a mobile mapping system. In this work the 3D
model has been generated with a Terrestrial Laser Scanning (TLS) system, that
also allows the acquisition of images using an integrated camera. The acquired
point cloud are coloured using the camera associated to the LiDAR instrument. A
plurality of different scans are acquired and co-registered. As result of the process,
a geo-referenced RGB point cloud of the environment is made, on which is pos-
sible to directly read 3D coordinates/color of object points. Once the 3D model
is generated, the RGB-D images can be automatically realised by means of the
software ScanToRGBDImage developed by the Geomatics group of the Politecnico
di Torino.

A RGB-D image is a classical RGB digital image with known internal and
external orientation parameters, where a distance between the projection centre
and the acquired objects are recorded for each pixel. Therefore, distance values are
stored in an additional matrix with the same pixel size, number of columns, and
number of rows as the RGB matrix. Additional radiometric information such as
NIR, MIR, TIR, multispectral, or hyperspectral bands can be added in other matrix
levels. Figure 3.15 in Chapter 3contains a schema of the RGB-D structure. With
the generation of a database of RGB-D of an indoor environment, it is possible to
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correctly represent the reality.
The software can generate an RGB-D image that needs to contain the following

information:

• The external orientation parameters corresponding to the position and orien-
tation of the camera (X0, Y0, Z0, ω, ϕ, κ), which are derived from the position
of the point cloud.

• The internal orientation parameters corresponding to focal length, the prin-
cipal point position of the camera (f, ξ0, η0) and distortions (the generated
images are synthetic and are considered without distortion).

• The number of pixels in the columns and the rows of RGB-D (nrow and ncol)
and the image pixel size dpix.

As input parameters, the realised program requires the focal length of the images
that will be realised, nrow and ncol, the pixel size of the generated images, and the
number of images that need to be extracted according to the vertical (nV) and
horizontal (nH) steps (Figure 4.46).

Figure 4.46: An example of definition of RGB-D axis directions for each position.

Once the input parameters are fixed, the process executes the next steps:

1 An empty image (RGB and range matrix levels) is generated using (nrow, ncol);

2 A subset of coloured points (Xi, Yi, Zi) with I = 1 : n, (n = number of selected
points) can be extracted from the original RGB point cloud according to a
selection volume that can be defined by a sector of a sphere (Figure 4.47)
with:

– the centre in the location of the generated RGB-D image;
– the axis direction coincident with the optical axis of the synthetic image;
– the radius R;
– the amplitude defined by an angle (≤ 90◦) that is half of the cone angle

measured from the direction axis.
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3 For each selected coloured point, a distance di with respect to the location of
the generated image is calculated:

di =
√

(Xi −X0)2 + (Yi − Y0)2 + (Zi − Z0)2) (4.1)

4 Each selected RGB point is projected on the synthetic image defining its
image coordinates (ξi, ηi) by means of the internal and external orientation
parameters inside the collinearity equations 3.2.2, where rik are the coefficients
of a 3×3 spatial rotation matrix depending from the camera attitude (ω, ϕ, κ);

5 The image coordinates (ξi, ηi) are converted into pixel coordinates (ci, ri)
using:

ci = ξi
dpix

+ ncol
2 (4.2)

ri = ηi
dpix

+ nrow
2 (4.3)

6 The RGB values of each point are written inside the cells of the image matrix
in the position (ci, ri);

7 The distance value di is written inside the cell of the range image matrix in
the position (ci, ri).

At the end of the procedure, pixels that are still void are filled by means of an
interpolation algorithm based on the nearest filled pixels.

Figure 4.47: The selection sphere for RGB-D image generation.
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After the process, ScanToRGBDImage generates a set of synthetic images with
the information regarding the position, attitude and ranges i.e. the RGB-D images
database.

4.2.2 The Compact Descriptor Visual Search
The goal of the retrieval procedure is to select a reference image out of the

images DB with the highest level of similarity with the image acquired by the
terminal camera, target of positioning procedure. For the retrieval procedure we
adopt the solution defined by MPEG7 CDVS (Compact Descriptors for Visual
Search) [73] with minor optimization. To select out of a DB the most similar image
the following operations have been defined by MPEG7:

1. local descriptors in query and database images are extracted and compressed;

2. the images are preliminarily ranked based on global descriptor [74] similarity
scores between the query image. Global descriptors provide a statistical rep-
resentation of a set of the most significant local descriptors extracted from
the two images. As a result of the global descriptor preliminary screening,
several potentially similar images are then selected out of the DB;

3. for the selected best ranked images by the global descriptor similarity test,
the pairwise matching procedure between the extracted key points in a couple
of images is executed, trying to match similar key points present in both
images. For each feature descriptor of the query image, one and only one
similar feature descriptor is searched in each single image part of the DB;

4. the matched key points are validated through a geometry check based on
the concept that the statistical properties of the log distance ratio for pairs
of incorrect matches are distinctly different from the properties of that for
correct matches.
Based on a statistical model, a set of good matches can be ranked using a
similarity score given by:

5. the number of correct pairwise key points from the DISTance RATio coherence
(DISTRAT) check; and

6. the reliability of each selected match is given by the distance ratio between
the first and the second closest descriptors detected in the reference image.

Due to the potential large number of images in the DB, to speed up the retrieval
process, CDVS uses compressed descriptors [75]. For this reason, only a limited
number of key points are used in the image search procedure. Moreover, the CDVS
gives more priority to the points located in the centre of the image. It is evident
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that, in some common view, the centre of the picture represents the infinite point
of the prospective view so the selected points could be far away from the camera,
causing a loss of accuracy in the next step of location. To enhance the accuracy
level of the location procedure, the criteria for ranking and selecting the key points
should be modified. There is a need for homogeneous distribution of key points in
the overall picture, not giving priority to those concentrated in the image centre.

4.2.3 The IRBL algorithm
Once the retrieval of the reference image is completed, it is possible to extract

the 3D information of the selected features from the image to estimate the external
parameters (position and attitude) of the query image. In details, the 3D infor-
mation of the reference image is stored inside the DB of RGB-D images where, for
each pixel, the distance (range) of the obstacle depicted in the image is reported,
together with internal and external orientation parameters (IO/EO). After the ex-
traction of the reference image, the key points and related features are extracted
from the query and reference image using a state-of-the-art solution [33] that allows
a preliminary association between key points of the two images. After that, a high
percentage of outliers rejection is executed according to a new proposed two-step
approach. At first, good matches are selected using the DISTRAT algorithm [76],
[77] using a geometric check based on the distances ratios between pairs of points in
the two analysed images. Then, a RANdom SAmple Consensus (RANSAC) check
is executed over a quality improved set of matches. The proposed outlier rejection
approach, when applied to real working conditions, reduces the processing time
by a factor of 10, with respect to the use of a standard RANSAC approach [34].
Finally, camera parameters are estimated based on 3D information available on the
reference image for the selected set of key-point pairs according to the collinearity
equations [78]. To analyse the detail of the processing, the next list specifies each
step of the IRBL algorithm:

1. extraction of features from query and reference images using scale-invariant
feature transform (SIFT) detector;

2. key-point matching procedure where the only query image key points that
have one and only one similar descriptor among key points in the reference
image are selected, according to SIFT or ORB algorithms;

3. a geometric check (DISTRAT) is used for a coarse preliminary rejection of
matched outliers, the use of DISTRAT is required to speed up outliers re-
jection procedure. On recent implementation of IRBL in C++ version, the
DISTRAT is not computed;

4. given the set of common features selected out of the DISTRAT geometric
check, the fundamental matrix between the query image and reference image
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is estimated with a RANSAC procedure, allowing exclusion of the remain-
ing outliers from the DISTRAT check. The RANSAC is a robust iterative
method to estimate the parameters of a mathematical model from a set of
observed data that contains outliers, as in the DISTRAT output, a small per-
centage of outliers are present in the selected set of common features. The
RANSAC is a non-deterministic algorithm in the sense that it produces a rea-
sonable result only with a certain probability, with this probability increasing
as more iterations are permitted. The preliminary use of DISTRAT reduces
the percentage of outliers from 70% to just a few per cent, this allows us
to dramatically reduce the RANSAC execution time, by approximately 100
times (at this stage, the focal length is assumed to be similar in both images
from the retrieval step, and the camera distortion model is not considered);

5. the common features between the query and reference image are transformed
into 3D information using the Solid Image derived from the three-dimensional
3D model of the scene;

6. to improve the initial external and internal orientation parameters of the
query image, a direct linear transformation (DLT) could be estimated using
the 3D features extracted in the previous step [79]. In recent optimized solu-
tion of IRBL, the approximate solution can chose according to the external
orientation parameters of extracted Solid Image of DB;

7. rejection of outliers not detected by Steps 3 and 4 are processed by a data
snooping process [80]. For the given 11 DLT estimations, the post-fit residuals
are calculated in terms of the distance between the projection of the solid
point on the query image pair and the matched key-point coordinates. If the
largest residual exceeds a threshold, the worst point is discarded and the DLT
parameters are estimated again. In recent optimized solution of IRBL, this
part is not realized;

8. using the collinearity equations in a least square estimation and the Leven-
berg-Marquardt method the EO parameters are refined.

The reliability of the final estimated location can be validated using the variance
covariance matrix of least square adjustment [81] and checked against the post-fit
residuals. This algorithm has been implemented in the MATLAB environment.

4.2.4 3D model generation
The research project between Politecnico di Torino and Electronic and Telecom-

munication Research Institute is based on the validation of the proposed procedure
on two different test sites that have been chosen to have two different indoor scenar-
ios with some specific issues. The first environment, the Bangbae metro station of
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Seoul (Republic of Korea), is an important public infrastructure of interest, where
an LBS can better express its usefulness. It presents various indoor spaces with
different furniture but also a very repetitive railway floor. It is also very populated,
which is an important issue in a IRBL system. The second test site is the research
department of the ETRI building in Daejeon (Republic of Korea) where, according
to the function (research office), the internal areas are repetitive. Each floor has
the same aisle with the same colour and the same furniture. The reason for the
different scenario is based on the evaluation of the procedure of indoor localisation
in noisy areas (very popular with a lot of people), and in similar areas where, from
a first view, is difficult to find differences between the different floors (Figure 4.48).

(a) (b)

Figure 4.48: (a) An indoor Bangbae station view; and (b) a typical aisle in the
ETRI building.

From the operative point of view, the first step of the work was the realisation
of a complete and accurate reference model of the two test areas using a traditional
topographic survey and LiDAR acquisition techniques [82]. The topographic sur-
vey allows to co-registered the LiDAR scans and to georeference them in a global
reference system with cm-level of accuracy. Unfortunately, this procedure has been
used only in Bangbae metro-station case study. The ETRI building survey was
performed directly with LiDAR acquisition in relative reference system. In this
case, the analysis on the following test are still valid as the positioning estimation
of the IRBL algorithm will be compared with a ground truth in local coordinate
frame. To guarantee continuity of the data in all the environments, several images
for a typical photogrammetric approach based on structure from motion (SfM)
algorithms were acquired with the idea of combining the data in case of loss of
information. As the LiDAR acquisition was suitable for the entire representation
of the two environments, the photogrammetric elaboration was not used for the
generation of the RGB-D database.
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1.2.4.1 Bangbae metro-station

The Bangbae station is a two level metro sation on the Seoul Subway Line
2. It is an underground structure located in Bangbae-dong, Seocho-gu, Seoul.
For his 3D model geo-referencing, a mixed GNSS and total station (TS) survey
strategy was employed. The network was realised on three main levels of the
subway station. The GNSS measurements were acquired outdoor on two vertices
connected to Levels -1 and -2 with traditional TS measurements. For the GNSS
survey, two Geomax Zenith 35 receiver were employed, and for the TS network, a
Leica TS06 was used. In post-processing, the network has been adjusted with Leica
Geo-office and Microsurvey Starnet software using the GNSS permanent station of
Suwon (a station of the International GNSSs Service network) as reference point
4.49. According to the achieved accuracy on each vertex (less than 1 cm), the next
step was the survey of the markers positioned on the station area. This operation
was performed with the TS using traditional side-shot measurements. The markers,
in this case, black and white checkerboards, are commonly used for the registration
of scans and for geo-referencing the final model.

Figure 4.49: The topographic network on floor -1 with errors ellipses after post-
processing.

Then two Faro Focus3d X130 Laser scanners were employed. The instrument
is a phase shift laser that allows to acquire 3D point clouds with an accuracy of
±2 mm in the range of 0.30–130 m. During the point cloud acquisition, due to the
included digital camera, it is possible to acquire the images of the scanned area as
well. In the test field, the acquisition was performed with a resolution of 1/5 (a
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point each 9 mm at 10 m) and a quality of 4× (points measured four times). For the
complete LiDAR survey of the Bangbae subway station, 114 scans were acquired
(55 at Level -1 and 59 at level -2). According to the aforementioned setting of the
scanner, each scan contains approximately 26 million points, and about three billion
points were measured. The LiDAR data were processed using Scene software by
Faro.The workflow consist in the following main steps: point cloud colouring, scan
registration, and scan geo-referencing. Naturally, using the markers, it is possible
to evaluate the accuracy of the geo-referencing according to the residual on the
measured point. The mean RMS on the measured markers (85 were employed) was
1.56 cm. Figure 4.50 shows the scan positions while Figure 4.51 shows two views
of the complete point cloud (114 merged point clouds).

Figure 4.50: Floor plan of Bangbae metro-station and scan position.

(a) (b)

Figure 4.51: An indoor Bangbae station view of the Laser scanner point clouds.
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1.2.4.2 ETRI building

The Electronics and Telecommunications Research Institute is a Korean re-
search institution in Daedeok Science Town in Daejeon, Republic of Korea. The
headquarters is an office building of 5 floors above the gorund level and one floor
underground. The ETRI building was only surveyed by the LiDAR in a local
reference system. All the acquisitions were realised without the usually required
topographic network and without the markers for the registration of the clouds. As
a consequence, the final point cloud is not located in a known cartographic reference
system.

As for the Bangbae station, the LiDAR acquisitions have been performed using
the aforementioned Faro Focus 3D X130 that was used at a quite higher resolution:
1/4 (a point each 5 mm at 10 m) with the same quality (4×) of the Bangbae settings.
The complete building (seven floors) was completely scanned with 111 scans that,
according to the setting of the scanner, delivered each scan with 40 million points
approximately. Approximately 4.5 billion points were measured (Figure 4.52).

In the case of the ETRI building, the data were processed using Scene software
by Faro, but the scan registration was realised using the cloud-to-cloud approach
[83]. This approach, based on the well-known iterative closest point (ICP) algorithm
[84], has been implemented starting from Version 5.5 of the Scene software and,
nowadays is working very well in the pipeline of the Scene LiDAR data processing.
Using this approach, it is first important to define an initial setting of the several
scan positions. After the initial position, the algorithm allows us to improve the
position of the adjacent scans using the shape of the different clouds. In terms of
accuracy, in this case, it is possible to understand only the discrepancy between the
adjacent clouds that, in the case of the ETRI building, were for all the registered
scans under 1 cm. Naturally, as is reported above, with the cloud-to-cloud approach,
the geo-referencing was not allowed since no ground control points (GCPs) were
measured on the area. All the point clouds were referenced to a local system that
started from an arbitrary position of the first achieved scan in the building. In
Figure 4.52, a views of the complete point cloud is shown.
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Figure 4.52: LiDAR 3D point cloud of ETRI building.

4.2.5 Synthetic Solid Image database generation
Once obtained the 3D point cloud of the two environment, an ASCII file in

.xyz format has been extracted. This data type contains the X, Y, and Z coordi-
nates of each point and the R, G, and B values extracted from the LiDAR internal
camera. This file represent the input file for the generation of the RGB-D im-
ages. The synthetic RGB-D image can be automatically generated by means of
ScanToRGBDImage software tools (developed by the Geomatics research group of
the Politecnico di Torino in Intel Visual Fortran) starting from the LiDAR point
cloud. The ScanToRGBDImage software generates a set of “synthetic” .JPG im-
ages with correspondent range images (Figure 4.53 and 4.54). For each image an
orientation file (.ori) is generated with the information about internal and external
parameters. This parameters must be set as a-priori information to obtain the best
possible image in term of pixel size, field of view and image dimension. For each
scan position, 96 images have been generated: 32 horizontal directions for three
different inclinations of 0°, 10°, and 20° with respect to the horizontal plane with
2500×1600 pixels, 3µm pixel size, and a focal length of 4.667 mm. For the Bangbae
DB, almost 9700 RGB-D images have been produced in about 36 hours of batch
processing time with a desktop computer (i7 5600 U 2.66 GHz 32 Gb RAM), while

127



4 – URBAN ENVIRONMENT APPLICATIONS

for the ETRI building, 10.700 images have been produced in about 40 hours with
a computer with the same characteristics.

Figure 4.53: (a) Example of six RGB-D images generated with the software ScanT-
oRGBDImage in RGB visualization; and (b) example of six RGB-D images in a
depth map visualisation.

Table 4.11: camera center position and attitude for the previous six images.

Image Name Position [m] Attitude [gon]
X Y Z ω ϕ κ

S01 322920.858 4150175.414 45.967 100 0 0
S02 322920.858 4150175.414 45.967 100 -25 0
S03 322920.858 4150175.414 45.967 100 -50 0
S04 322920.858 4150175.414 45.967 100 -75 0
S05 322920.858 4150175.414 45.967 100 -100 0
S06 322920.858 4150175.414 45.967 100 -125 0
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Figure 4.54: (a) Example of six RGB-D images generated with the software ScanT-
oRGBDImage in RGB visualization; and (b) example of six RGB-D images in a
depth map visualisation.

Table 4.12: The position and attitude information of the camera center for the
previous six images.

Image Name Position [m] Attitude [gon]
X Y Z ω ϕ κ

S085_04 -67.20840 -20.76387 97.35983 100 -36 0
S085_05 -67.20840 -20.76387 97.35983 100 -48 0
S085_06 -67.20840 -20.76387 97.35983 100 -60 0
S085_07 -67.20840 -20.76387 97.35983 100 -72 0
S085_08 -67.20840 -20.76387 97.35983 100 -80 0
S085_09 -67.20840 -20.76387 97.35983 100 -92 0
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4.2.6 Smartphone image retrieval procedure
The RGB-D images generated with the above automatic procedure has been

uploaded in a server machine to form the reference database. Through a client-
server internet communication is possible to connect any device to the DB and
extract the required information. In particular, the user located in an unknown
environment, can acquire an image with the smartphone camera and send it to the
correct storage space in the server. The data management and the user interaction
is a crucial part of the LBS design as the user must have the access to the correct
DB related with his own location. This means that the image acquired with the
smartphone camera should be sent to the server together with the information
regarding the relative database. Moreover, the IRBL algorithm, running on the
server machine, need the internal parameters information of the camera which has
shot the query picture. In this case, the data packet should contain also the focal
length and the pixel size of the camera. More in details, the code has been designed
in order to acquire all this information from the query image name (light approach)
which structure is the following:

ExecutionMode_DataBaseName_FocalLength_DimPixel_FileName.jpg
Where:

• ExecutionMode is 1 for simplefied procedure, 2 for full IRBL;

• DataBaseName is a two characters string corresponding to the name of a
Data Base containing the reference images (e.g. BB for Bangbae, EB for
ETRI building);

• FocalLength is the focal length of the camera used to acquire the image;

• DimPixel is the pixel size of the acquired image.

As stated in Section 4.2.2, the visual search technology allows us to retrieve the
best reference images form the RGB-D images database and ranked them with a
priority score. This procedure was applied on a selected number of query images
for both the test sites (20 images for Bangbae and 10 images for ETRI building),
and the results of the extraction are shown in Table 4.13 for the Bangbae metro
station and in Table 4.14 for the ETRI building. In these tables, the obtained
scores of the 1st ranked image selected by the CDVS server are reported. This is
the best solutions from the three possible candidates proposed by CDVS. As shown
in Table 4.13, the score is always greater than 3, indicating quite good solutions.
In most cases, the score is greater than 5, indicating a good solution. The time
for the query retrieval process is estimated at about three seconds. In the second
test site, 10 check images have been acquired by the smartphone Samsung S7. The
results of the reference image extraction using CDVS are greater than 3, indicating
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quite good solutions, excluding Image No. 2 (score = 2.54) that was ignored since
the resulting IRBL solution was incorrect.

Table 4.13: CDVS image retrieve score. Reference and Query images of Bangbae
subway station.

Smartphone image Reference image 1 Score 1
query/1.jpg dataset/b022_i___+0_+0_24_02 8.39
query/2.jpg dataset/b012_i___+0_+0_09_01 8.91
query/3.jpg dataset/b002_i___+0_+0_10_01 7.43
query/4.jpg dataset/b004_i___+0_+0_10_01 17.76
query/5.jpg dataset/b006_i___+0_+0_07_03 15.39
query/6.jpg dataset/b013_i___+0_+0_27_01 31.93
query/7.jpg dataset/b013_i___+0_+0_25_01 9.56
query/8.jpg dataset/b007_i___+0_+0_16_03 4.52
query/9.jpg dataset/b011_i___+0_+0_15_02 48.76

query/10.jpg dataset/b011_i___+0_+0_18_02 20.26
query/11.jpg dataset/v004_i___+0_+0_15_02 42.23
query/12.jpg dataset/v020_i___+0_+0_09_01 4.51
query/13.jpg dataset/v008_i___+0_+0_10_01 3.14
query/14.jpg dataset/v008_i___+0_+0_25_02 12.05
query/15.jpg dataset/v006_i___+0_+0_11_01 3.36
query/16.jpg dataset/v040_i___+0_+0_22_01 6.08
query/17.jpg dataset/v038_i___+0_+0_04_02 59.79
query/18.jpg dataset/v038_i___+0_+0_07_01 11.72
query/19.jpg dataset/v039_i___+0_+0_25_02 3.21
query/20.jpg dataset/v023_i___+0_+0_26_02 8.83

Table 4.14: CDVS image retrieve score. Reference and Query images of ETRI
building.

Query images Reference Image 1 Score
query/1_01.jpg dataset/s020_i___+0_+0_25_01.jpg 7.27
query/1_02.jpg dataset/s021_i___+0_+0_12_02.jpg 2.54
query/2_03.jpg dataset/s011_i___+0_+0_12_03.jpg 4.54
query/3_03.jpg dataset/d011_i___+0_+0_31_01.jpg 6.02
query/3_05.jpg dataset/d008_i___+0_+0_29_01.jpg 8.51
query/4_01.jpg dataset/s066_i___+0_+0_18_01.jpg 6.46
query/4_03.jpg dataset/d008_i___+0_+0_17_01.jpg 6.56
query/5_01.jpg dataset/d012_i___+0_+0_03_01.jpg 9.6
query/5_04.jpg dataset/d011_i___+0_+0_19_01.jpg 6.25
query/5_06.jpg dataset/d012_i___+0_+0_03_01.jpg 8.10
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4.2.7 IRBL validation
The same pictures used to evaluate the CDVS image retrieval has been used

as ground truth to validate the IRBL algorithm pose and attitude estimation. For
this purpose the, camera center position and orientation must be known. As no
location information was acquired during the smartphone image acquisition, the
external orientation parameters of these images has been estimated with an ac-
curate photogrammetric procedure. It consist in estimate the internal orientation
parameter of each smartphone used in the test (five parameters: ξ0, η0, c,K1, and
K2) by a camera calibration algorithm and then evaluate the external orientation
parameters (six parameters: X0, Y0, Z0, ω, φ, κ) using a single image adjustment
(based on pyramid vertex). The camera calibration allows the evaluation of the
effects of the radial and tangential distortion of the sensors that are involved in the
definition of the camera internal orientation using the collinearity equations. How-
ever, as an approximation, it is possible to consider only the effects of the radial
distortion, expressed in this case by two parameters K1, and K2.

Knowing the object coordinates of some points acquired by the camera, it is
possible to obtain the unknown parameters by solving the bundle-adjustment cal-
culation. The object on which the calibration is usually made is a calibration grid
where the coordinates of the grid points are known with high precision. This proce-
dure is known as the self-calibration of the camera sensor. The “Camera Calibrator”
tool of MATLAB was used. The application requires the use of a specific checker-
board pattern that must not be square. The images of the pattern must be acquired
with a fixed zoom and focus. The calibration requires at least three images, but it
is suggested to use 10–20 images from different distances and orientations to obtain
the best results. A reference system is also defined using the different numbers of
squares in the two directions. The calibration algorithm assumes a pinhole camera
model, and after processing the applications, displays the results and the accuracies
of the process. In this work, the self-calibration was made on the three different
smartphones used for the data acquisition and the results are shown in Table 4.15
.
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Table 4.15: Internal calibration parameters

Parameters Samsung
Galaxy A5

Samsung
Galaxy S5

Samsung
Galaxy S7
Edge

Pixel size (µm) 1 1.14 1.4
Focal lengths fx (pixels) 3706.0 4290.8 3168.7
Focal lengths fy (pixels) 3722.6 4282.8 3178.9
Princ. Point ξ0 (pixels) 2070.1 2667.8 1995.3
Princ. Point η0 (pixels) 1135.4 1477.8 1204.4

Radial distortion K1 0.1386 0.1148 0.3444
Radial distortion K2 -0.2587 0.0100 -0.6117
Focal length (mm) 3.714 4.801 4.446

Princ. Point ξ0 (mm) 0.006 0.014 -0.087
Princ. Point η0 (mm) 0.026 0.018 -0.179

After the internal calibration, to define the position and attitude of the acquired
smartphone images and then use it as “ground-truth”, a photogrammetric process
was employed. In the case of single-shot acquisition, it is possible to perform single
image adjustment (or pyramid vertex) that allows us to evaluate the coordinates of
the acquisition point (X0, Y0, and Z0) and the orientation of the camera (ω, φ, andκ).
For this task, at least six collinearity equations must be written i.e. three plano-
altimetric GCPs are required. The coordinates of the GCPs were extracted directly
from the previous LiDAR point clouds using Scene. First, a visible point was
selected on the smartphone image. Afterwards, the same point was measured on
the point cloud, and the coordinate were extracted. These values (coordinates)
were used as GCPs in the employed photogrammetric software (Figure 4.55). Erdas
Imagine by Hexagon Geospatial was employed for the process. The final precision
for all the analysed images was around 5 cm for the position and around 10 mgon
for the angular values. Twenty Query images were used for the check for Bangbae
station (10 images for each floor) and 10 images were used for the ETRI building.
Tables 4.16 and 4.17 shown the absolute position and orientation of the smartphone
images acquired in different location at Bangbae station. For the ETRI building,
the results in local reference system are reported in Table4.18.
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Figure 4.55: (a) GCP coordinate extraction from LiDAR data (a), GCP measure-
ment in ERDAS (b).

Table 4.16: Reference solution with photogrammetric approach. Bangbae subway
station main floor.

Image n. X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]
1 2988,26 50172,61 45,99 98,327 304,094 200,612
2 2992,38 50174,64 45,94 -75,445 286,702 -174,609
3 3001,95 50175,94 46,02 -15,986 -107,949 -113,858
4 3007,43 50177,38 46,12 -59,216 -110,713 242,225
5 3011,35 50178,21 46,29 137,069 286,305 36,825
6 3021,94 50179,75 46,14 100,344 135,506 -1,131
7 3020,70 50180,34 46,17 219,952 96,320 -120,909
8 3020,95 50175,47 45,76 305,100 -45,201 204,819
9 3020,07 50177,55 46,23 301,999 224,816 201,002
10 3019,666 50177,06 46,101 299,053 172,266 -199,123

Table 4.17: Reference solution with photogrammetric approach. Bangbae subway
station train floor.

Image n. X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]
11 3034,38 50175,28 41,55 306,159 -53,700 206,084
12 2965,49 50160,10 41,04 -102,177 -116,424 198,612
13 2991,07 50166,68 41,24 -108,802 -111,284 192,534
14 2998,33 50167,47 41,35 122,299 107,500 -219,836
15 3015,30 50171,82 41,43 -85,782 -89,015 214,500
16 2960,70 50171,93 41,02 -244,879 74,385 196,816
17 2984,19 50177,20 41,32 101,869 -55,630 0,233
18 2984,98 50178,40 41,31 76,021 -97,877 -23,253
19 2978,58 50177,46 41,29 99,294 131,964 2,216
20 2900,44 50149,40 40,79 108,389 122,153 391,479
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Table 4.18: Reference solution with photogrammetric approach. ETRI building.

n. Image X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]
1 1_01.jpg -72,288 -17,302 110,250 -60,191 105,643 160,590
2 1_02.jpg -71,776 -17,120 110,283 303,925 -95,921 203,879
3 2_03.jpg -61,701 -17,518 114,367 310,067 -79,841 211,176
4 3_03.jpg -61,844 -1,883 117,386 97,494 2,214 -0,013
5 3_05.jpg -61,769 -10,470 110,196 94,362 6,305 2,316
6 4_01.jpg -61,560 0,879 110,219 -96,539 31,940 200,618
7 4_03.jpg -61,961 -9,080 118,367 -99,984 32,258 199,211
8 5_01.jpg -61,738 4,402 118,608 97,693 -33,397 0,052
9 5_04.jpg -61,675 4,541 118,626 -97,587 30,747 200,608
10 5_06.jpg -61,634 2,853 118,621 93,111 -42,916 0,373

Thanks to this procedure, the IRBL positioning and attitude estimation results
can be compare with the real camera pose obtained by the more accurate pho-
togrammetric procedure. For the validation, the last version of IRBL code in C++
has been used. In this implementation is possible to select between two different
feature extractors (SIFT or ORB).

4.2.7.1 Results and Validation

In this section the results and validation of the IRBL algorithm are reported.
The results are referred to the IRBL procedure using SIFT algorithm. The ORB
implementation has given similar results and therefore reported only for processing
time comparisons. For each test site (Bangabe subway station main floor, Bangbae
subway station train floor, ETRI building) the position and attitude of the Query
images obtained by the IRBL procedure are presented together with the processing
time required. Using the reference solution obtained from the photogrammetric
procedure, the discrepances in positioning and orientation along the three axis has
been computed and reported. The results shown that:

1. Bangbae subway station main floor.

• The discrepancies ∆X,∆Y are always lower than 1.6 m in absolute value.
Excluding the greater values (∆Y for image n. 10), the discrepancies
are lower than 1.2 m (4.20);

• The angular values are estimated with a precision of about 10 gon (mean
value).

• The standard deviations of the discrepancies ∆X,∆Y are of about 70
cm, this is the precision of IRBL positioning in XY using SIFT;

• The discrepancies ∆Z are always lower than 0.53 m in absolute value;
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• The standard deviations of the discrepancies ∆Z are of about 15 cm,
this is the quality in Z of the estimated location.

Table 4.19: IRBL estimation for Bangbae subway station main floor.

Time
[s]

Image n.
points

X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]

4,953 1 156 2988,09 50173,46 45,77 85,620 334,978 209,424
4,755 2 161 2993,43 50174,99 45,63 125,088 315,314 25,894
4,781 3 148 3001,18 50176,02 45,69 185,527 308,452 87,842
4,985 4 142 3007,10 50176,92 45,60 147,638 309,179 49,148
4,703 5 153 3011,21 50178,08 45,79 348,510 283,578 249,019
4,781 6 131 3021,94 50179,70 45,94 301,536 135,809 198,105
4,922 7 142 3021,82 50179,73 46,09 198,937 95,956 300,138
4,890 8 121 3020,84 50175,42 45,96 101,725 373,332 198,649
4,781 9 133 3020,85 50177,42 45,96 100,220 224,143 0,044
4,875 10 147 3020,84 50175,45 45,95 97,580 170,248 0,539

Table 4.20: Discrepances between reference solution and IRBL estimation. Bangbae
subway station main floor.

Image n. ∆X [m] ∆Y [m] ∆Z [m] ∆ω [gon] ∆ϕ [gon] ∆κ [gon]
1 -0,174 0,855 -0,214 -12,707 30,885 8,813
2 1,048 0,352 -0,310 0,533 28,612 0,503
3 -0,778 0,079 -0,333 1,513 16,401 1,701
4 -0,323 -0,462 -0,522 6,854 19,891 6,922
5 -0,138 -0,132 -0,503 11,442 -2,727 12,195
6 0,000 -0,057 -0,201 1,192 0,303 -0,764
7 1,125 -0,609 -0,071 -21,016 -0,364 21,047
8 0,11 0,05 -0,20 -3,375 18,533 -6,170
9 0,785 -0,129 -0,272 -1,779 -0,673 -0,959
10 1,172 -1,605 -0,150 -1,473 -2,018 -0,338

The results obtained are summarize with their statistical parameter in Table
4.21

2. Bangbae subway station train floor.

• From results reported in Table 4.23 is possible to observe a discrepancy
of about 6 meters in X position for image 12. Observing the images is
evident that the CDVS procedure has extracted a wrong image which
is quite far from the smartphone Query image (Figure 4.56). Although
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Table 4.21: Statistical parameters results

∆X [m] ∆Y [m] ∆Z [m] ∆ω [gon] ∆ϕ [gon] ∆κ [gon]
min -0,778 -1,605 -0,522 -21,016 -2,727 -6,170
max 1,172 0,855 -0,071 11,442 30,885 21,047
mean 0,283 -0,166 -0,277 -1,881 10,884 4,295
st.d. 0,693 0,649 0,145 9,228 13,367 7,998

the retrieving score is good due to the similarity of the environment, the
Reference image used in the IRBL procedure is wrong an the result is
not correct. In this case, the importance of the DB density in term of
images has been highlighted.

Figure 4.56: Wrong images correspondence due to the CDVS retreivial.

• The discrepancies in X and Y are always lower than 1.5 m in absolute
value, excluding the gross error of image n. 12 in X coordinate. The
shape of train floor (long and narrow) can be underline some critical
problem of uncorrect geometry of feature points;

• The standard deviations of the discrepancies in X is about 1 m and in
Y is about 50 cm, this is the XY quality of DB (Table 4.24);

• The discrepancies in Z are always lower than 1.20 m in absolute value;
• The standard deviations of the discrepancies in Z are of about 40 cm,

this is the Z quality of DB;
• The angular values are estimated with a precision of about 10 gon;
• The estimated averages are not significant for all the parameter, than

there are not any systematic error estimation: precision and accuracy
are substantially coincident.
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Table 4.22: IRBL estimation for Bangbae subway station train floor.

Time
[s]

Image
n.

n.
points

X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]

4,953 11 176 3034,11 50175,72 41,61 306,67 -52,10 206,417
4,755 12 22 2971,81 50161,54 41,16 -107,60 -115,10 190,24
4,781 13 17 2989,89 50167,71 41,43 -127,79 -105,94 174,47
4,985 14 62 2999,42 50167,70 41,31 115,98 108,61 -

214,394
4,703 15 16 3014,39 50172,31 41,98 -72,85 -85,93 228,197
4,781 16 19 2959,18 50171,22 42,29 -226,35 84,37 177,549
4,922 17 314 2983,93 50177,03 41,33 101,54 -56,28 -0,14
4,890 18 76 2984,25 50178,24 41,26 87,32 -97,25 -12,488
4,781 19 17 2979,17 50177,72 41,23 98,47 131,52 2,63
4,875 20 39 2901,22 50149,82 40,79 107,39 122,51 391,983

Table 4.23: Discrepances between reference solution and IRBL estimation. Bangbae
subway station train floor.

Image
n.

∆X [m] ∆Y [m] ∆Z [m] ∆ω
[gon]

∆ϕ
[gon]

∆κ
[gon]

11 -0,271 0,433 0,062 0,51 1,60 0,33
12 6,313 1,448 0,118 -5,43 1,33 -8,37
13 -1,186 1,03 0,192 -18,99 5,34 -18,06
14 1,084 0,23 -0,048 -6,32 1,11 5,44
15 -0,912 0,492 0,555 12,93 3,09 13,70
16 -1,526 -0,715 1,272 18,53 9,99 -19,27
17 -0,263 -0,164 0,008 -0,33 -0,65 -0,37
18 -0,734 -0,161 -0,05 11,30 0,62 10,76
19 0,592 0,269 -0,053 -0,82 -0,45 0,41
20 0,781 0,418 0,001 -1,00 0,35 0,50

Table 4.24: Statistical parameters results. Bangbae subway station train floor.

∆X [m] ∆Y [m] ∆Z [m] ∆ω [gon] ∆ϕ [gon] ∆κ [gon]
min -1,526 -0,715 -0,053 -18,99 -0,65 -19,267
max 6,313 1,448 1,272 18,53 9,99 13,697
med 0,388 0,328 0,206 1,04 2,23 -1,492
dev.st 0,917 0,612 0,417 10,85 3,24 10,95

3. ETRI building
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• The discrepancies in X are always lower than 1 m in absolute value
(Table 4.25);

• The standard deviations of the discrepancies in X is about 34 cm (Table
4.27);

• The discrepancies in Y are always lower than 1.5 m in absolute value for 6
images but the errors are of about 3 m (gross errors) for images 1_01.jpg,
2_03.jpg and 4_01.jpg. The shape of corridors of ETRI Building (long
and narrow) and the poor geometry distribution of feature points due
to the man-made environment decrease the IRBL accuracy;

• The standard deviations of the discrepancies in Y is about 2.1 m but it
decreases to approximately 88 cm when poor solutions are not consid-
ered;

• The discrepancies in Z are lower than 0.90 m in absolute value for 7
images, but the errors are very large (over 8 m) for 2 images (3_05.jpg,
4_01.jpg): these mistakes are produced by erroneous extraction of ref-
erence images from DB because of the similarity of various floors in the
ETRI building;

• The standard deviations of the discrepancies in Z, excluding gross errors,
are of about 42 cm;

• The angular values are estimated with a precision of about 4 gon, but
there is an image (2_03.jpg) where the angular external orientation pa-
rameter have a very poor solutions;

• There is an image (1_02.jpg) where it is not possible to obtain a so-
lution according to the incorrect matching from reference image and
smartphone image;

• The estimated averages are not significant for all the parameter, than
there are not any systematic error estimation: precision and accuracy
are substantially coincident.
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Table 4.25: IRBL estimation for Bangbae subway station train floor.

Time
[s]

Image n.
points

X [m] Y [m] Z [m] ω [gon] ϕ [gon] κ [gon]

4,953 1 23 -71,648 -14,740 109,688 -62,857 104,906 163,858
4,755 2 12 No Solution
4,781 3 12 -61,468 -21,254 115,179 365,816 -92,020 275,560
4,985 4 13 -61,005 -0,775 117,392 106,908 -0,668 -0,372
4,703 5 21 -61,426 -11,196 118,875 94,065 4,023 3,759
4,781 6 21 -61,495 4,457 101,737 -95,855 30,306 196,172
4,922 7 17 -61,641 -8,106 118,266 -

100,077
33,273 197,913

4,890 8 24 -61,568 4,183 118,566 99,710 -31,692 4,989
4,781 9 18 -61,566 4,473 118,732 -96,552 31,133 198,673
4,875 10 27 -61,977 1,817 118,347 92,559 -46,902 -3,911

Table 4.26: Discrepances between reference solution and IRBL estimation. Bangbae
subway station train floor.

n. Image ∆X
[m]

∆Y
[m]

∆Z
[m]

∆ω
[gon]

∆ϕ
[gon]

∆κ
[gon]

1 1_01.jpg -0,640 -2,563 0,561 2,666 0,737 -3,267
2 1_02.jpg No Solution
3 2_03.jpg -0,233 3,736 -0,812 -55,750 12,179 -64,385
4 3_03.jpg -0,839 -1,108 -0,006 -9,414 2,882 0,359
5 3_05.jpg -0,343 0,726 -8,679 0,297 2,283 -1,443
6 4_01.jpg -0,066 -3,578 8,482 -0,684 1,634 4,446
7 4_03.jpg -0,320 -0,974 0,101 0,093 -1,015 1,298
8 5_01.jpg -0,171 0,219 0,042 -2,017 -1,705 -4,938
9 5_04.jpg -0,109 0,067 -0,106 -1,035 -0,386 1,935
0 5_06.jpg 0,343 1,036 0,274 0,553 3,986 4,284

The results obtained are summarize with their statistical parameter in Table
4.27

Table 4.27: Statistical parameters results. ETRI building.

∆X [m] ∆Y [m] ∆Z [m] ∆ω [gon] ∆ϕ [gon] ∆κ [gon]
min -0,839 -3,578 -0,812 -9,414 -1,705 -4,938
max 0,343 3,736 0,561 2,666 3,986 4,446
med -0,264 -0,271 0,008 -1,193 1,052 0,334
st.dev. 0,340 2,136 0,423 3,593 1,995 3,379
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4.2.7.2 Reliability of the IRBL algorithm

In the proposed procedure, the Fundamental Matrix estimation which express
the epipolar geometry between query image (smartphone) and reference image
(RGB-D) used a robust estimation algorithm based on RANSAC which insert a
certain variability in the final estimate. This is function of the number of features
samples extracted by SIFT. For each images and each test site,the IRBL procedure
has been run many times to define the reliability of the solution. The results (Ta-
ble 4.28) shown that the average values of discrepancies between different launches
are small, always less than 2 cm. It is possible to affirm that the procedure is
not affected by estimation biases. The standard deviation of discrepancies between
different launches are small, always less than 18 cm. These values are less than 1

4
standard deviation of IRBL solutions, then they are not significant respect to the
IRBL precision (Figure 4.57).

Table 4.28: Statistical parameters of launch repetitions of IRBL code

X [m] Y [m] Z [m]
mean -0,016 -0,005 -0,004
st.d. 0,171 0,157 0,082

Figure 4.57: Distribution of estimation discrepancies for several runs of the IRBL
algorithm.
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4.2.7.3 Processing time

As stated before, the algorithm can be set in order to use SIFT or ORB feature
extraction and matching algorithm. Although the pose estimation is similar, is
interesting to observe the processing time required by the two procedure in relation
with the different steps of IRBL. Table 4.29 shows the required time for each step
of the workflow and the influence that they have on the overall time required. For
SIFT-based procedure, IRBL requires about 5-6 seconds on a standard PC but
the larger part (72%) is necessary to perform SIFT feature extraction. Looking at
ORB-based algorithm, the total time is around 1.6 seconds with the 56% spent for
the features extraction. These results shown the capability of the IRBL to perform
in real time applications.

Table 4.29: IRBL processing time with SIFT and ORB algorithm.

SIFT ORB
Steps Time [s] % Time [s] %
CDVS 0,875 16,512 0,875 54,82

Read/rescale 0,5 9,435 0,5 31,32
Sift / Orb 3,86 72,843 0,14 8,77
Matching 0,031 0,585 0,016 1
ratio test 0,001 0,018 0,001 0,06
Ransac 0,015 0,283 0,047 2,94

2Dto3D features 0,001 0,018 0,001 0,06
LevMarquard 0,016 0,301 0,016 1

total 5,299 100.000 1,596 100.00

4.2.8 Conclusions
The IRBL procedure is an image based indoor/outdoor positioning system based

on the assumption that some a-priori information of the environment is provided.
The advanteges of this procedure in urban application are numerous. First, the
estimation can provide positioning both in absolute and local reference frame. Un-
like numerous other positioning solution, the IRBL procedure provides not only
position coordinates but also attitude of the camera with a good level of accuracy.
These capability allows the use of these solution for Augmented Reality applica-
tions. The image based procedure is robust to noise produced by moving objects
and people on the image view as demonstrated by the real case studies presented.
On the other hand, the repetitiveness of some man-made environments could lead
to an incorrect extraction of the reference image in the database. The presence of a
database rich of information is a valuable features for other urban applications even
if it requires a major effort in the survey of the environment and in the realization
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of the 3D model. Looking at the results parameters of the proposed solution, a
validation on accuracy, precision reliability and processing time has been made.
The results shown meter level accuracy of the solution with sub-meter accuracy
obtained excluding wrong correspondences. The precision is always under 70 cm.
The reliability of the solution has been verified defining the nominal standard de-
viation of the IRBL procedure, as the same order of magnitude of the standard
deviation obtained from ground truth comparison. The C++ implementation of
the procedure requires 5 seconds to retrieve the position of the camera in real ap-
plication. The validity of the proposed solution has been also demonstrated by
the implementation of this C++ code in an application based service as shown in
Figure 4.45.

4.3 GNSS smartphone positioning in distrisct
scale environment

In Section 4.1 and 4.2 two positioning and navigation systems has been pre-
sented for two different urban spaces characterized by the scale of the environment.
These two systems (UWB and IRBL) are mainly indoor systems which perform bet-
ter in closed environment like office rooms or public buildings and infrastructures.
In the following section of this work, the focus will move on outdoor positioning.
Among the numerous systems the main technology used in this kind of situations is
the GNSS. As seen in chapter 3.3, the miniaturization of the GNSS SoCs and their
capability to perform accurately in adverse condition has increase the interest of the
scientific community in smartphone positioning and navigation. The interest raise
from the possibility to access directly to the raw measurements of these devices and
to apply real-time and post processing algorithms used in geodetic applications or
signal processing methods used in telecommunication. Previous research on smart-
phone positioning have demonstrated that, under good multipath condition, some
meters accuracy is typical while in adverse condition it becomes around 10 meters.
In general, the accuracy of the latest GNSS navigation messages is approximately 1
meters, making the main sources of errors, the front-end antenna and the receiver-
dependent noise. For example Pesyna et al. in 2014 [85] deviates the analog signal
acquired by the inner smartphone antenna directly to an external radio frequency
front-end and GNSS receiver. This approach permitted to apply well-defined signal
processing algorithm avoiding the limitation of the internal chipset. Whit this test
a decrease of 11 dB in carrier to noise ratio with respect to a survey-grade antenna
was observed. After the API level 24 implementation, first empirical test were
focused on the evaluation of the smartphone raw observables. In [86] static mea-
surements have been acquired with a Nexus 9 tablet and post-processed performing
code phase single differences. The comparison with a reference solution have shown
an error of around ± 20 meters, a pseudorange rate noise within ± 10 m/s and a
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C/N0 average value of approximately 10 dB-Hz lower than geodetic receiver used
in the same place. At the same time, advanced post-processing algorithms have
been applied with the aim of achieving centimeter positioning with smartphones.
To do this, the first step was the development of parsers capable of extracting the
raw measurements in a format more suited to geodetic post-processing. In [87]
the authors were able to reach sub-meter accuracy with on board doppler filtering
algorithm and SBAS augmentation. In [88] decimeter level accuracy positioning
has been achieved using post processing relative positioning i.e. by double differ-
encing raw smartphones observation with those coming from a GNSS Continuously
Operating Reference Stations (CORS) network.

In this section, a similar approach has been made in order to evaluate the per-
formances of two commercial smartphones with an embedded multi-constellation
GNSS chipset. In particular, the interest has been pointed on the challenges of
urban environments. Multipath effects in urban canyons, voluntary and uninten-
tionally interferences in crowded areas, no satellite visibility in shielded spaces.

4.3.1 Experimental setup
To consider all the previous aspect the proposed test consist in the data acquisi-

tion of GNSS measurements from different new generation smartphones on a known
georeferenced point in Politecnico di Torino. The quality of these data has been
analysed. Thanks to the knowledge of the reference point, different positioning
procedures has been validated. In order to do this, as the raw data are provided in
a no-standard format, a RINEX parser has been developed in matlab following the
procedures already presented in Section 3.3.3. The different post-processing results
has been compared and validated.

The smarpthone hardware used in the present application are two new gen-
eration devices whit installed the Android Nougat 7.0 Operating System (OS):
Huawei P10plus and Samsung Galaxy S8+ (Figure 4.58). All the devices have a
single frequency multi-constellation GNSS chipset installed, the Broadcom Lim-
ited Galileo-enabled BCM4774 GNSS chipset, able to collect GPS, GLONASS,
Galileo and BEIDOU satellites data. No technical specifications are provided by
the producer companies in order to define the exact location of the antenna in the
smartphone body. Table 4.30 shows the main characteristics of the tested tools.
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Figure 4.58: On the left Huawei P10 plus smarphone. On the right Samsung Galaxy
S8+ smartphone.

Table 4.30: Specification of the tested smartphones.

Name Huawei P10 plus Samsung Galaxy S8+
OS Andorid 7.0 Android 7.0
Chipset Exynos 8895 Octa - EMEA HiSilicon Kirin 960
CPU Octa-core (4x2.3 - 4x1.7 GHz ) Octa-core (4x2.7G - 4x1.8 GHz)
GPU Mali-G71 MP20 Mali-G71 MP8
GNSS A-GPS, GLONASS, BDS, Galileo A-GPS, GLONASS, BDS, Galileo
Sensors Accelerometer, gyro, proximity,

compass, barometer, heart rate,
SpO2

Accelerometer, gyro, proximity,
compass

Quality of the measurements

The first test consisted in acquiring 20 minutes of GNSS measurements with
the two smartphones (same observation period) and observing the quality of the
observation and the accuracy of the positioning obtained with a stand-alone post-
processing. In order to do this, the smartphones has been located outdoor, near a
fixed point with known absolute coordinate position. Having the real coordinates is
possible to characterize the accuracy and precision of the smartphone relying only
on the satellites measurements of the GNSS chipset. Figures 4.59 and 4.60 shows the
pseudorange measurements for all the visible satellites and their orbital variation
during the time acquisition. The number of visible satellites change between the
different smartphones, in particuar 9 for Huawei P10 plus and 8 for Samsung Galaxy
s8+.
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Figure 4.59: Raw pseudorange measurements acquired by Huawei P10plus smart-
phone.

Figure 4.60: Raw pseudorange measurements acquired by Samsung S8+ smart-
phone.

On the same dataset, the Signal to Noise Ratio (SNR) has been plotted to verify
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the quality of the signal. From Figure 4.61 and 4.62 is possible to note that some
satellites exceed the limit under which the measurement is too noisy to be used (25
dB-Hz). Moreover the C/N0 raise over 40 dB-Hz rarely.

Figure 4.61: Signal to Noise Ratio (C/N0) of Huawei P10plus smartphone.

Figure 4.62: Signal to Noise Ratio (C/N0) of Samsung S8+ smartphone.
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Figure 4.63: Differential pseudorange measurements acquired by Huawei P10 plus
smartphone.

Figure 4.64: Differential pseudorange measurements acquired by Samsung S8+
smartphone.

Finally, the acquired pseudorange measurements has been used in an iterative
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estimation procedure in order to validate the stand-alone position. In order to do
this, a non linear weighted least square estimation (Equation 2.3) has been imple-
mented and the obtained results are reported in Figure 4.65 for Huawei P10 plus
smartphone and in Figure 4.66 for Samsung Galaxy S8+. For both the obtained
values have been validated with the real position of the point. Considering the
median value of the pose estimated, the 2D error for Huawei P10 plus is 2,7 meters
with around the 50% of the points with 8,1 meters deviation. For the Samsung
smartphone the 2D error is 4 meters with 50% of the point having 9.6 meters de-
viation. The accuracy and precision of the solution is reported in Figure 4.67 and
4.68 where is possible to observe for both devices a bias on the estimation along
the Z component.

Figure 4.65: Weighted Least Square Positioning estimation from Huawei P10plus
smartphone.
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Figure 4.66: Weighted Least Square Positioning estimation from Samsung S8+
smartphone.

Figure 4.67: Three components WLS estimation from Huawei P10 plus smartphone.
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Figure 4.68: Three components WLS estimation from Samsung S8+ smartphone.

NRTK positioning

Among the numerous real-time and post-processing procedure to increase the
accuracy in positioning of the smartphone devices, the NRTK technique is certainly
one of the most interesting as permit to correct the stand-alone estimation with
the use of aiding informations. In fact, the RTK network is a network of GNSS
permanent stations spread all over the territory whose data are used to generate
real-time correction for any rover receiver located inside the working area. With
geodetic instruments, NRTK positioning allows high accuracy and precision perfor-
mances in real time. Today, NRTK operates in several countries, such as Germany,
Spain, England, Italy, China, some areas of the United States, Australia, and so
on. Networks can have different extensions from small local networks with a mean
inter-station distance of about 40-50 km to networks covering entire countries with
mean inter-station distances of about 100-150 km. Generally, the network infras-
tructure consists of three segments. The first is composed of the so-called GNSS
Continuously Operating Reference Station (CORS) networks, well-known located
receivers spread across the territory to generate a distributed web. The second seg-
ment is the control centre, which collects and processes the data captured by the
CORSs and broadcasts the differential corrections and saves the raw data for post-
processing activities. Specifically, it fixes the ambiguity of all satellites for each
permanent station and calculates ionospheric and tropospheric delays. Through
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different interpolation models, it can provide calculated corrections to every point
within the network. Such corrections can be sent in real time or can be used to
create a virtual RINEX for a post-processing approach. The third part of this sys-
tem is composed of the products generated by the control centre that can be sent
to the users that rely on the service. The users, after a subscription, obtains RTK
corrections that can be generated by several methods:

• Virtual reference station (VRS);

• Multi-reference station (MRS);

• Master-auxiliary corrections (MAX or MAC);

• Flächen-Korrektur-Parameter (FKP);

• Nearest station (NRT).

• DGPS/DGNSS

Among them,considering carrier phase measurements, only the VRS and the
NRT services allow performing NRTK positioning with single-frequency receivers.

The idea on which the following test is based is to simulate a NRTK positioning
using the smartphone measurements and the stream of RTK differential corrections
acquired by an external device. To this purpose an u-blox LEA-M8T GNSS receiver
coupled with a Gramin GA-38 antenna has been used and located in the fixed
point near the smartphones. The u-blox receiver was setted to provide also raw
GNSS measurements on L1 frequency. Using the RTKLIB v.2.4.3 b29 open-source
software, NRTK solution considering VRS differential correction and stream of RTK
differential correction have been acquired. The GNSS Raw measurements have been
collecterd for 10 minutes considering a sampling rate of 1 Hz. Figure 4.69 shows the
setup of the test. The image shows the different location of the smarpthone with
respect the antenna position. For the result analysis, this lever arm is considered
both for horizontal (23.6 cm) and up (13.7 cm) components (considering the mean
position between two smartphones). Thus, the results shown in the following section
refer to the same point, that is, where the Garmin antenna is installed.
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Figure 4.69: Rover test site: on the left, the external GNSS Garmin GA38 antenna
installed on the roof of a building with the two different smartphones considered,
while on the right, the smartphone app is running.

For these tests, the Servizio di Posizionamento Interregionale GNSS Piemonte –
Lombardia (SPIN) GNSS CORS network [89] was considered. This network is man-
aged by Leica GNSS Spider software and allows obtaining differential corrections
for a user through the network transport of RTCM via Internet protocol (NTRIP)
authentication after a free registration. This network, as shown in Figure 4.70,
has a mean inter-station distance of about 50 km and is used for real-time and
post-processing applications. The coordinates of all stations are obtained from a
network adjustment computed with the Bernese GPS 5.0 software in the ETRF2000
reference frame.
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Figure 4.70: The SPIN GNSS network used for NRTK positioning.

In order to compare the performances of smartphones GNSS receivers with
those obtainable with the u-blox, the application used for smartphone positioning
considers the same algorithm for the ambiguity resolution that is available inside
the RTKLIB software. This algorithm is based on the on-the-fly (OTF) integer
ambiguity resolution method, where the values of integer ambiguities are obtained
by solving an ILS (integer least square) problem thanks to a well-known efficient
search strategy LAMBDA [90] and its extension MLAMBDA [91]. Moreover, a ratio
factor of “ratio test” for standard integer ambiguity validation strategy has been
considered. This factor, that can be considered also as threshold, means the ratio
of the squared sum of the residuals with the second best integer vector to with the
best integer vector. So, when the inequality (σ2

0)2nd

(σ2
0)1st

is satisfied, the ambiguities are
defined as integer values, so it is possible to define that solution as “FIX”, otherwise
as “FLOAT”. For these first experiments, the threshold value is set equal to 3.

The results of the NRTK positioning are reported in Figure 4.71 and Figure
4.72 where the trend of the difference between NRTK and reference solution is
shown.The green points refer to solutions in which the phase ambiguities can be
declared as ‘fixed’. In these cases, the differences with respect to the reference
coordinates are greater than the ‘float’ solutions. When the algorithm tries to fix
the phase ambiguities, the solution becomes worse. This is maybe due to the quality
of the smartphone measurements, that are more noisier than those obtainable with
the u-blox receiver. Indeed, the software encounter some difficulties to fix the phase
ambiguities in a correct way, and this is also confirmed if the time series analysis of
the ratio value is analysed: as shown in Figure 4.73, it is possible to see both the

154



4.3 – GNSS smartphone positioning in distrisct scale environment

high variability in time of this estimation and the few cases where the ratio value is
greater than the threshold if compared to those obtained with the u-blox receiver.

Figure 4.71: Positioning performances of P10 plus; from the top to the bottom of
the figure represents the behaviour of the East, North, and Up components with
respect to the reference values.
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Figure 4.72: Positioning performances of Samsung Galaxy S8+; from the top to
the bottom of the figure represents the behaviour of the East, North, and Up
components with respect to the reference values.
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Figure 4.73: Time series analysis of the ratio value considering smartphone and
u-blox receivers.

Increasing the threshold value, the percentage of the ‘fix’ solution decreases close
to zero, but the quality in terms of differences between estimated and reference
coordinates increases. In Table 4.31, the most significant statistical parameters are
summarised.

Table 4.31: Statistical parameters related to the differences between estimated
(NRTK) and reference coordinates considering GPS and GLONASS constellations.

Samsung S8+ Huawei P10 plus
Mean [m] Std [m] Mean [m] Std [m]

East -0.200 0.078 -0.741 0.043
North 0.923 0.061 1.517 0.040

up 2.336 0.092 2.604 0.071

Table 4.31 shows that the two different smartphones provide quite different
results. If the Samsung Galaxy S8+ gives a mean 2D value less than a meter, the
differences related to the P10 plus are over 1.50 m. In both cases, the standard

157



4 – URBAN ENVIRONMENT APPLICATIONS

deviations are about few centimetres; therefore, there are no gross errors and the
solution is precise even if inaccurate.

Table 4.32: Statistical parameters related to the differences between estimated
(NRTK) and reference coordinates, considering only the GPS constellation.

Samsung S8+ Huawei P10 plus
Mean [m] Std [m] Mean [m] Std [m]

East -0.260 0.037 -0.686 0.023
North 0.532 0.026 0.616 0.036

up 2.452 0.046 2.853 0.052

Table 4.33: Statistical parameters related to the u-blox NRTK solutions with re-
spect the reference coordinates.

u-blox
Mean [m] Std [m]

East 0.002 0.004
North -0.001 0.004

Up 0.009 0.006

Considering the GPS-only solution, it is possible to improve the accuracy and
precision. Table 4.32 shows that both smartphones obtain a 2D accuracy around
60 cm with a standard deviation of a couple of centimetres. Thus, for these kinds
of receivers, the multi-constellation approach does not provide any benefit if NRTK
positioning is computed. Comparing these results with those obtainable with the
u-blox receiver and Garmin antenna, it is possible to note a completely different
behaviour in terms of accuracy. The u-blox provides excellent results, comparable
to those available in the literature as seen in Table 4.33.

4.3.2 Conclusions
From this study, it is confirmed that it is possible to perform NRTK positioning

with smartphones. It is not so easy to reach an accuracy of a few centimetres be-
cause in addition to some problems such as multipath and imaging effects, one of
the main issues is still to know where the GNSS antenna is inside the smartphone.
In most cases, this information is unavailable. Thus, the real problem is to know
the exact position of the smartphone antenna. While the chipset position is quite
well represented in the manufacturer schemas, the antenna position is usually not
highlighted. Therefore some assumptions should be made. One could be to ap-
proximate the position on the centre of the smartphone. The assumption made in
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this work is to consider the size of the smartphone as the tolerance for the precision
of positioning. The phase-centre identification of the smartphone GNSS antenna
will be a subject of other research. In this context, it does not make sense to try
to fix the phase ambiguities. It is better to have a good ‘float’ solution rather than
a bad ‘fix’ solution. Two different smartphones, with different internal chipsets
have been tested in a CORS network with a mean inter-station distance of about
50 km, considering both VRS and nearest corrections. The results have shown
satisfactory performance in terms of precision but not from the accuracy perspec-
tive. Even if the two smartphones provide slightly different results, the accuracy
obtainable today is greater than 1 m with a precision of few centimetres, especially
if only the GPS constellation is considered. These results will open new frontiers in
terms of real-time positioning with portable devices, especially for rapid mapping
or emergency situations. In the future, it will be interesting to test single-base RTK
positioning, considering a mass-market master station, to analyse what happens if
the rover user is located where the NRTK positioning is not available due to the
lack of a CORS network.
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Chapter 5

UWB/INS/VISION HYBRIDIZA
TION FOR UNDERGROUND
NAVIGATION

In this chapter a low-cost multisensor solution for pedestrian navigation is pre-
sented. The solution utilize as primary sensor technologies the ones presented in
Chapter 3: Imaging sensors, UWB radio communication systems, GNSS smart-
phone positioning and inertial navigation systems. The reasons why these sensors
have been selected are related with the challenges of the indoor navigation and will
be discussed later in this Chapter. The solution proposed is the result of a research
project named "Kaivos project" which has the aims to navigate in an extreme chal-
lenging environment: an underground mine. For this reason, this chapter will start
with the description of the project and the objectives of the same. Then, the issues
of this critical environment and their relation with the choice of the sensors will be
discussed. The chapter will continue with the description of the data acquisition in
a real mines and the analysis of the collected data. After this, the proposed fusion
algorithm, based on the Extended Kalman Filter, will be discussed and finally the
validation of the system will be presented. The proposed approach is based on the
fusion of different kind of data (ranges, pressure, features, estimated position, ve-
locity and attitude) to exploit the advantages and benefits of each acquiring sensor
and to limit their issues in stand-alone configuration.

5.1 The Kaivos Project
The action plan [92] of the Ministry of Employment and Economy for promoting

sustainable extractive industry in Finland, aware of the importance of the avail-
ability of natural resources, aims . . . " to assure sufficient raw material supply by
more intensive exploration and mapping of new mineral resources and by recycling
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of metals, mineral products and waste materials". Currently, during the waste ma-
terial flow in mining sector, a significant amount of valuable precious and critical
materials are lost. There is therefore a need for more efficient and rapid determi-
nation of mineralogical composition of excavated rocks, in order to optimize both
the selective mining extraction and the reuse of geometallurgical elements instead
of wasting [92]. To accomplish these requirements researchers have focused their
effort in developing smart underground technologies exploiting several scientific sec-
tors, from robotics, image processing, surveying to navigation and positioning. The
research related to the mining industry, not only have the aims to enhance the prof-
itability of mining companies improving the production efficiency but also to face
with occupational safety, environmental protection and emergency management
[93]. In this panorama, ones of the main state-of-art technologies used in mines
are the laser scanner techniques which are currently used for acquire information
relative to the hyperspectral response of the rocks related to their mineralogical
composition [94]. This technology can provide a dense tridimensional model of
the mine useful for spatial analysis, process management, volume computation and
more. This spatial information can be generated by the light detection and ranging
technology in absolute reference system if the accurate position of the LiDAR in-
struments is known. For this purpose, a positioning system should be integrated in
the laser acquisition platform. Under these conditions, the Kaivos project has been
funded with the aims of "developing active 3-dimensional hyperspectral imaging
combined with multi-sensor positioning and integrated in autonomous platforms in
order to automatic identify and mapping minerals for efficiency and safety of the
mining industry" [95]. The investigation related to Hyperspectral LiDAR (HSL)
developed by the SINA research group of the Finnish Geospatial Research Insti-
tute (FGI HSL) has been already presented in [96] and [97] as well as the work in
progress related to the multi-sensor positioning [98]. Staring from the already im-
plemented procedure based on an INS/GNSS integration, this work will present a
new framework that could provide both accurate positioning in underground mines
to the FGI HSL and seamless navigation solution of vehicles in the transition from
an open space to an indoor mine. The advantages of the new solution with re-
spect to the previous one will be the possibility to achieve centimeter accuracy in
static condition also in a GNSS denied environment and the possibility to define a
seamless solution for navigation with integration of different low cost sensors.

5.1.1 Challenges in underground mine
Accurate positioning of the laser sensors is essential for the usability of the

technology. Unfortunately the systems based on GNSS, which are the most used
in machinery navigation and tracking, are not available in indoor situations and
underground environments. Therefore, the main challenge in these type of scenar-
ios is provide location information using other sensors and methods rather than
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GNSS. In the last years, the IPS research field has provided numerous solutions
mostly based in integration or hybridization of different sensors in order to over-
come the singular limitation of each stand-alone technology. These research have
proven that the multi-sensor fusion is the right way to follow in order to provide
the better possible solution for navigation. Inertial sensors, magnetometers, ra-
diofrequency networks, imaging and vision sensors, ultrasounds and more has been
used in different integration techniques and with different purpose. Which sensor
should be selected depends mostly on the environment on which the system have
to operate. Mines or underground environments in general are quite challenging
as the surrounding can influence the sensors performances and consequently the
solution estimation (Figure 5.1). In order to approaching the positioning problem
in mines, the previous issues and how the sensor are affected has been analysed:

1. Indoor environment. As is known, in indoor spaces the GNSS signal
can’t reach the receivers and the satellite positioning can’t be applied. Un-
derground, the most used technologies are based on radiofrequency sensors
spreads in the environment able to define position of a receiver with ToF,
ToA, RSSI measurements and more. The sensors are usually based on Wi-
Fi signals, infrared, ultrasound, Bluetooth and UWB. In this work UWB
systems are chosen. As described in Section 3.1, UWB is a radio communica-
tion technology which thanks to the principle of the “two way time of flight”
(TW-TOF) allows to measure multiple ranges between fixed anchor and mo-
biles tag and define the accurate position with trilateration algorithms. UWB
systems, compared to other indoor navigation systems, have a high time reso-
lution that allows to measure ranges with accuracy of some centimeters. Their
signal characteristics make it also resistant to multipath and interference.

2. Light condition. Several papers have shown that positioning and navigation
systems based on camera sensors and computer vision or photogrammetric
algorithms can provide very accurate solution respect to other state of art
technologies [99]. Most of the benefits of these kind of systems depends on
the possibility to extract salient information from RGB digital images. These
unique points on the images are the fundamental information for the subse-
quent positioning algorithm. Unfortunately, the detection of these features
on the images is based on intensity and color information of the pixels. This
means that in a dark environment, like a mine, it is difficult to extract suf-
ficient features to apply the estimation procedures. Although these vision
sensors seem to be not suitable for mines, they have the big advantages to
provide attitude information. Therefore it has been chosen to test thermal
and infrared cameras which functionality in dark environment has been al-
ready demonstrated [100] [101]. Using these sensors is possible to extract user
motion in a vision-aided positioning systems with visual odometry algorithms.
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3. Magnetic effects. Precise heading information is vital for various opera-
tions in underground mines. Getting absolute heading relative to some local
or global reference can be difficult due to the circumstances and lack of avail-
able infrastructure. Local infrastructure dependent methods require sufficient
amount of movement and consequently tend to suffer from low precision. Gy-
rocompassing techniques are not yet suitable for low-cost portable systems.
Magnetometer based methods fulfill the precision and portability require-
ments, but suffer from distortions due to ferrometallic and magnetic objects
in the vicinity of the system. The amount of magnetic field distortions can
vary depending on the type of mine. For example, in ferrochrome rich mines
the distortions can be significant enough to render magnetometer based head-
ing unreliable. To alleviate the effect of these distortions, could be interesting
to examine the use of multiple magnetometers in different configurations.
The use of multiple magnetometers allows easier distinction of distorted field
readings in addition to providing statistical improvements to sensor noise.

Figure 5.1: Measurements affected by the mine environment.

5.2 Proposed estimation framework
Starting from preliminary studies for a seamless positioning system based on

a plethora of sensors, this work present a new framework for defining accurate
positioning and vehicle navigation even in extreme environment such as under-
ground mines. The main investigation fields composing the proposed solution are
the multi-sensor navigation and positioning platform and the fusion algorithms with
particular attention to the context awareness and the accuracy requirements. Let’s
imagine the FGI HSL mounted on a vehicles operation in a mine site. Assume that
the task is to acquire spectral sign information from a perimeter wall of an open
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pit. Firstly, the vehicle should navigate in the mine and reach a specific points.
One arrived in the designated point, the absolute position of the HSL should be
estimated. For both these tasks, in the case that sufficient number of satellites are
visible, the standard GNSS procedure can be used to perform a complete position,
velocity and timing (PVT) solution. If some obstacle or some short tunnel blocks
the GNSS signal for few moments, an INS/GNSS integration can make the system
immune to momentary GNSS outages. Now suppose that the HSL has to be moved
to a specific point in an underground mine, moving from an open place to a closed
tunnel. In this case,tThe GNSS/INS integration could provide a reliable naviga-
tion solution only for few minutes if a navigation grade inertial measurement unit
(IMU) is used. This time will be even shorter if the IMU is a low cost Micro Electro-
Mechanical System (MEMS) sensor. Moreover, once that the HSL is on the target
point, there is no way to provide a precise position. The proposed framework can
be perfectly suitable to face this typical situation in mining site as different sensors
are selected to go towards a seamless solution integrating measurements adaptively
based on availability and reliability of the different systems. Another interesting
aspect of this framework, which is not object of the thesis, is the possibility to
exploit RADAR capability of UWB sensors to implement a personnel tracking sys-
tem. Implementing this feature in a hyperspectral LiDAR survey procedure could
be very useful to increase the safety level of the operation (Figure 5.2).

Figure 5.2: The proposed framework illustrated in a hypothetical scenario where
means of transport and workers moves in a mining site both outdoor and in under-
ground environment.

5.2.1 Low-cost multisensor platform description
In previous sections the operational framework related to the challenges of un-

derground navigation has been presented. In this section the low-cost sensors cho-
sen to be integrated in a single multisensor platform are described. Some has been
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already presented in chapter 4 while others have been selected for the specific case
study and will be briefly described. The measurements obtained from each sensor
and how they are fused is deeply explained in section 5.2.2. The platform im-
plementation has moved from a preliminary setup to a final one on which, data
analysis, measurements characterization and positioning estimation validation has
been made.

1. GNSS. With the purpose to provide a trajectory solution in favourable open
sky environment a consumer grade single frequency receiver installed on a
new-generation smartphone (i.e. BROADCOM GNSS chipset mounted on a
Huawei P10) has been implemented in the platform 5.3. As demonstrated
in Chapter 4 with this kind of low-cost System of Chipset (SOC) is possi-
ble to obtain a sub metrical accuracy in Near-Real Time Kinematic (RTK)
navigation. Although the presence of the smartphone in the platform, no
data have been acquired during the test performed in the underground mine.
This due to the fact that there was no direct connection between the outdoor
environment and the section of the tunnel on which the test has been made.
Section 4.3 has given already an overview on the use of this technology in
urban canyon and results for positioning. Further test in using this mass
market devices for outdoor/indoor navigation are not object of this chapter
and could be investigated in future research.

2. INS. The three-dimensional inertial sensors used for the test was an Xsense
MTi-G-710 GNSS inertial sensor unit. It is composed by 3 axis accelerome-
ter, 3 axis gyroscope measuring specific forces and rotation rates of a body
on which the sensors is installed. There is also a 3 axis magnetometer and
a baroaltimeter. These forces are used in INS mechanization to firstly de-
duce acceleration of the body and consequently to estimate position, velocity
and attitude of the same. In literature, one of the most beneficial form of
hybridization is the integration of GNSS with inertial sensors, also known as
GNSS/INS integration. This integration allows to the GNSS system to pro-
vide attitude information otherwise not measured, can give more robustness
to the navigation solution and can correct INS drift errors. The Xsense is able
to cope with multi-constellation GNSS outages. The baroaltimeter estimates
the altitude as function of the pressure. The limitation of barometer sensors
is their noisy behavior due to rapid changes in pressure in the environment
unrelated with the altitude. Table 5.1. shows the product characteristics as
reported from the vendor [102].
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Table 5.1: Sensor specification provided by the manufacturer.

Specification Gyroscopes Accelerometers
Standard full range +/- 450 º/s* +/- 20 g
Initial bias error 0.2 º/s 5 mg
In-run bias stability 10 º/h 15µg
Bandwidth (-3 dB) 415 Hz 375 Hz
Noise density 0.01deg

√
Hz 60µg

√
Hz

g-sensitivity (calibrated) 0.003 º/s/g N/A
Non-orthogonality 0.05 deg 0.05 deg
Non-linearity 0.01% 0.1%

Magnetometer Barometer
Standard full range +/- 8 G 300-1100 hPa
Total RMS noise 0.5 mG 3.6 Pa
Non-linearity 0.2% N/A
Resolution 0.25 mG 8 cm (sea level, 15 °C)

3. Ultra-wide band. This radio technology is based on a network of trans-
ceivers able to send and receive very high temporal resolution and bandwidth
signal from which is possible to estimate accurate range measurements (usu-
ally from 30 cm to 1 cm accurate). The two way time of flight measurement
principle allows to overcome the synchronization problem between the clocks
of the different devices as the time is always referred to the same receiver
that is also the mobile tag of which the position have to be estimated. In
the present work, the TimeDomain P440 PulsON solution has been used for
accurate static positioning and high rate navigation. The characteristic of
this sensor has been already presented in Chapter 4 (Table 4.1).

4. Thermal Camera. The commercial FliR One PRO camera has been se-
lected in the first implementation of the platform (Figure 5.3). The aims of
using a thermal camera is to apply classical visual odometry approach, usu-
ally made with RGB camera, in a dark environment, where image features
are difficult to detect with the use of classical vision cameras. The FliR One
PRO camera has two different imaging sensor, an RGB camera of 1,5 MPx
and a passive thermal sensor with a resolution of 160x120 pixels. The pixel
size of the thermal sensor is 12 micrometers while the spectral range is from 8
to 14 micrometers. The maximum frame rate of both sensor is 8.7Hz. Finally,
the cost of this commercial sensor is 500 €.

5. Infrared Camera. The vision sensor used in the dark areas of the mines
and implemented in the final version of the platform is a 5 Megapixel OV5647
Raspberry Pi Camera. It is composed by a sensor of 25mm x 24 mm with a
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maximum resolution of 1080p. It can be used in daylight condition thanks to
an embedded infrared-cut filter and in dark environment thanks to 2 attached
infrared LEDs. The cost of this sensor is around 50$. Table 5.2 shows the
sensor characteristics.

Table 5.2: OV5647 imaging sensor characteristics.

pixel size 1.4 micron x 1.4 micron
sensor size 1/4" equal to
focal length 3,6 mm

active array size 1592 x 1944 pix
image transfer rate 1080p: 30 fps

The experimental setup of the two platform are reported in Figure 5.3.

Figure 5.3: Multisensor platform setup 1: a) Thermal camera, b) UWB P440, c)
Xsense IMU, d) smartphone with GNSS chipset. Mutisensor platform final setup:
The thermal imaging camera and the smarthpone is substitute by the e) infrared
camera sensor and a raspberry.
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5.2.2 Fusion algorithm
The proposed methodology for underground navigation (Figure 5.4) is com-

posed by two main cores: one based on the Computer Vision field, in particular
the visual odometry navigation, and the other that follows the classical navigation
algorithms, the hybridization of inertial and GNSS measurements. This two core
are integrated to obtain an unique navigation solution providing positioning, ve-
locity and attitude information of the platform previous presented. The currently
proposed solution could be easily obtained with better performances from available
commercial solution and previous researches which exploit high grade sensors with
an high cost. When low-cost sensors are used, the feasibility of the navigation
becomes more challenging and the quality of the estimated solution decrease. In
this scenario, the proposed fusion algorithm takes into account all the issues of
the underground navigation as well as the noise introduced by the low-cost sen-
sors and propose a new estimation solution. In particular, for what concern the
Computer Vision core, the main problems to face with are the low resolution of the
imaging sensor and the low-light condition of the environment. The first problem
generate blurring effect to the images acquired during the motion, the second make
impossible the use of RGB cameras in mines. Regarding the GNSS/INS hybridiza-
tion, is evident that in an underground mine, the GNSS receiver can’t receive any
satellite signal and so no output solution can be produced for the classical Kalman
Filter integration. In this case the proposed methodology proposes to replace the
GNSS positioning technology with an UWB-based positioning system. This allows
to perform an UWB/INS hybridization with the same theoretical principles of the
GNSS-based but aiding an important advantage: the seamlessness of the naviga-
tion in the transition from outdoor to indoor environment. In fact, ensuring an
accurate georeferencing of the UWB network located in the mine, it is possible
to switch from the GNSS/INS integration to the UWB/INS integration through a
geofencing algorithm that recognize when the platform enters in the sensor network
[103].

The procedure of the proposed algorithm is presented in Figure 5.4.
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Figure 5.4: UWB/INS/VISION Hybridization algorithm.

The estimation state is composed by position (latitude, longitude, altitude),
velocity vectors along the north, east and down axis, attitude (roll, pitch, heading),
acceleration and gyroscopic bias. An EKF is used to perform prediction and update
state estimation, the velocity vector provided by the UWB is augmented with
the velocity estimation obtained by the visual odometry procedure. The filter is
used in feedback form so that when a measurement is available from a sensor,
the error is computed using the Kalman filter which is then used to correct the
inertial sensor measurements and navigation parameters. On top of this algorithm
is also possible to introduce relative altitude estimation from a barometer sensor
and heading compensation from magnetic measurements.

5.2.2.1 GNSS/INS hybridization and UWB/INS Hybridization

The GNSS receiver and the MTi-G-710 GNSS inertial sensor unit are the sys-
tems that integrated in a loosely coupled algorithm represent the starting navigation
solution for the open pit. The GNSS receiver provide measurements at 1 Hz, while
the IMU works at 400 Hz. This high rate is fundamental to fill the gap between
two subsequent GNSS measurements. The GNSS position and velocity are used
to estimate the INS error. The barometer and the magnetometer integrated inside
the Xsense sensor provides measurements respectively at 100 Hz and 40 Hz. When
the systems moves underground the GNSS receiver is no more able to provide mea-
surements so it has been substituted by the UWB receiver that enters in the UWB
network of fixed anchor nodes. Also the UWB can work at 1Hz providing posi-
tioning in the mines. The previous loosely coupled integration is used in this case
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simply using the UWB data to update the INS navigation. Theoretically, the al-
gorithm follows the procedure presented in Section 3.4.4 and summarize in Fugure
5.5.

Figure 5.5: UWB/INS Data Fusion algorithm.
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5.2.2.2 IRsensor-based visual odometry

However, the performances of these system suffers from noise and biases that
results in large position errors increasing with time. Moreover, a data packet loss
from the UWB network increase the errors in the estimation procedure. Such error
can be mitigated using information about the system motion obtained from con-
secutive images acquired by a vision sensors. Unfortunately, as it has been said
before, there usually is not enough light in mines for using normal camera so a very
cheap infrared camera with 2 infrared LED attached to it has been used (Figure
5.3). The visual odometry (VO) algorithm used in this case is based on [8] where
the classical scale problem is solved by pointing the camera sensor downwards at a
fixed known height. The procedure start with the camera sensor acquiring a video
during the motion of the pedestrian user. The camera looks at the ground during
the motion acquiring frames at a fixed rate and features of the mine floor. These
features are matched at each epoch with the correspondent features of the sequent
image. With the assumption that all these features correspond to the reprojection
of real 3D points belonging to the same planar surface (mine floor) is possible to
affirm that an homography transformation relates the points in the two images.
This homography can be computed using the DLT algorithm and has been already
demonstrated his relation to the geometric parameters representing rotation and
translation of the images. To estimate the correct homography transformation,
the image correspondences must be cleaned by the presence of outliers i.e. wrong
matches between features point. To do this, the DLT alogorithm is wrapped in a
RANSAC framework and used to estimate the correct matrix. This matrix is used
then as initial estimate to provide a staring point for a non-linear iterative mini-
mization procedure based on the Sampson error. The homography matrix respect
the relation in 3.2.1 and can be decomposed to find R and t between the images.
Once that a new images is added the same procedure is repeated to estimate the
new transformation. Then the procedure expressed in 3.2.1 is iteratively applied.
All the processed is summarized as:

• Feature extraction in consecutive images with Speeded up robust features
(SURF) approach [43].

• SURF descriptors, are match, namely identify the corresponding features in
the consecutive images. i.e. the descriptors with minimum Euclidean dis-
tance.

• Mismatched features have to be discarded from the computation in order to
avoid errors in the resulting motion and therefore Random Sample Consen-
sus (RANSAC) [29] method deleting the match outliers is used during the
homography matrix estimation.
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• Finally, the resulting set of matched points are used for computing the motion
from the homography rule with Levenberg-Marquardt’s algorithm [36].

The visual odometry results are position and attitude of the camera center in
each acquisition time (15 Hz). This information can be used then in a fusion algo-
rithm that integrate the camera measurements with the INS/GNSS or INS/UWB
implementation. The fusion algorithm is based on the Extended Kalman Filter
implemented in a loose coupling approach, where estimates of the visual odom-
etry phase are used for the measurements update. The state vector in this case
will be composed by position, attitude, camera scale factor (solved knowing the
fixed height of the camera) and IMU biases. The measurement vector instead is
composed by VO position and attitude, and vision based velocity.

Figure 5.6: Extended Kalma Filter time update.

5.3 Case study: Otaniemi tunnel
The data acquisition has been performed in two different campaign during spring

2018 in Otaniemi, Helsinki (Finland). In the first test, the platform setup 1 has
been used while in the second campaign the final platform setap has been tested
(Figure 5.3). The test site was a tunnel of about 200 meters long and 5 meters wide.
The path followed was a round trip path along a straight line. The pedestrian user
has walked along the path holding the platform with the sensors in his hand. A
backpack with a tactical grade inertial sensor on it has been put onto the user’s
shoulders. The data acquired by this sensor have been used as a reference solution.
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In order to have a georeferenced reference solution, the sensor was initialized outside
the tunnel and then brought to the test start point where the user was waiting.
Before starting the acquisition, the network of UWB has been located in the tunnel
and measured with a measurement tape. Images, inertial measurements, ranges and
magnetometer information have been acquired during this path for post-processing
(Figure 5.7).

Figure 5.7: Test performed in Otaniemi tunnel - Helsinki - Finland.

The test acquisition can be summarized in:

1. a network of UWB is located in an underground mine ensuring an accurate
measurement of the antenna phase center position. This can be made with a
integrated topographic survey made with geodetic GNSS receiver and a Total
Station. In this way, the UWB network can be georeferenced in a geographic
reference system. In the presented test, the topographic survey was avoided
due to time constrains and the network was measured with a measurement
tape;

2. when the UWB tag enter inside the network receive as first message an initial
approximate position in the global reference frame (or local) and an initial
approximate orientation defined a-priori;

3. the platform, composed by the previous described sensors, acquires range
information, inertial measurements and infrared images during the pedestrian
motion of the user;

4. all the measurement are integrated in post-processing combing the two algo-
rithms core: the visual odometry and the navigation hybridization.
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Particularly important for the set-up of the entire experimental test was the
choice of the UWB TAG location along the tunnel. An optimal distribution should
take into account both the ranging capability of the system and the geometry of
the network. In the presented test, taking into account the coverage of the UWB
network evaluated in previous tests, 8 anchors have been located along the tunnel
(4 anchor for each side). Figure 5.8 shows the UWB network.

Figure 5.8: Otaniemi Tunnel. Helsinki, Finland.

What is evident from this network configuration is that the anisotropic geometry
doesn’t allow a good conditioning of the parameter estimation. This situation is
reflected mathematically from the difficulty to invert the design matrix which can
be proximal to the singularity. Unfortunately, this problem is not avoidable as it
require the increase of the number of anchor located along the tunnel, anchor that
wasn’t available during the test. Therefore the UWB positioning performed with
classical minimization problem could lead to bad estimates as will be shown in
next section. An alternative to this problem is performing other kind of estimation
procedure as will be shown later.

Table 5.3 summarize the characteristics of the two test performed during the
data acquisition in Otaniemi tunnel.
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Table 5.3: Tests parameters.

Test n° 1 Test n° 2
UWB

Acquisition time 534,739 sec = 08:91 min 537,80 sec = 08:96 min
N. of estimates 1912 1893
Positioning rate 3,57 Hz 3,52 Hz
N. of anchor 8 8
Algorithm 2D Kalman Filter 2D Kalman Filter

INS
Acquisition time 548,98 sec = 09:15 min 578,13 sec = 09:63 min
Measurements rate 400 Hz 400 Hz
N. of estimates 219595 231252

Videos
Acquisition time 437 sec = 07:17 min 426,13 sec = 07:06 min
Frame rate 15 Hz 15 Hz
N. of frames 6555 6391
Video resolution 1920× 1080 1920× 1080

5.4 Fusion algorithm validation and results
In this section, the details of the algorithm implementation and the relative

problems will be discussed. Starting from the IR-based Visual Odometry algorithm,
the issues and the solutions adopted will be presented. At the end, the validation
of the algorithm and the results will be discussed in therm of navigation quality.
Then the section will move on the discussion about the UWB/INS hybridization
algorithm. The problems related to the data synchronization, measurements errors
and integration will be deeply analysed. The obtained results will be presented
and the navigation solution will be estimated. In conclusion, the fusion of this two
main cores will be discussed and final results will be validated.

5.4.1 IR-based visual odometry results
This section discuss the the visual odometer algorithm and especially the chal-

lenges in estimate the translation between consecutive images in underground mines.
As stated in Section 5.1.1 the main challenge in an underground environment con-
sist in extract features from images acquired in low-light condition. As the RGB
imaging sensors can’t acquires visible light in this condition, the first proposed
sensor to overcome this issue was the low-cost thermal imaging camera Flir ONE
PRO. The idea was that, if the mine presents some temperature gradient, the ther-
mal camera can register this variation as pixel radiometric variation (i.e. features).
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Unfortunately this assumption was wrong. In fact the images acquired during the
first test don’t present any usable features. The reason is that the variation of tem-
perature on the mine floor is mainly constant or under the sensibility level of the
thermal sensor. Figure 5.9 shows the difference between a thermal image acquired
outdoor vs an image acquired in the mine.

Figure 5.9: Comparison between thermal camera outdoor acquisition vs under-
ground acquisition (Flir ONE Pro).

For this reason, the imaging sensor has been changed with a low-cost infrared
camera (Night Vision "IR-CUT", Figure 5.3) already described in Section 5.2.1. The
camera sensor is composed by two active IR led which illuminate the environment
at a distance between 3m to 5m. The back-projected light illuminate the sensor and
a gray-scale images can be acquired. Figure 5.10 shows the sensor and an image
acquired in the mine. In this case is evident that a sufficient number of image
features has been acquired. These informations are the primary data for the visual
odometer procedure.
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Figure 5.10: Raspberry Pi camera Night Vision "IR-CUT" and an example of image
acquisition in mine.

To extract and describe features from infrared images, the Speeded up robust
features (SURF) has been used. Unfortunately, as shown in Figure 5.11 after the
motion start the images extracted by the video frames results heavily blurred. This
is due to the fact that the sensor acquires frames while it is in motion. Ideally, if
the video frame were acquired instantaneously allowing sufficient light to enter in
the optic sensor, this problem could be avoided. In reality the characteristic of the
sensor and the optics mounted doesn’t allows this. Looking to them is possible to
estimate roughly which is the expected motion blurring effect on the image pixels
with the following relation:

λ = ν · τ · c
H

(5.1)

Figure 5.11: Blurring effect during the camera motion.

where λ is the velocity of the camera in its translation motion, τ is the exposure
time, c is the focal lenght and H is the distance between the image plane and the
ground plane.

Assuming a walking velocity of 1 meter per second, with the camera sensor
distant 1 meter away from the ground and given the characteristics of the sensor
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shown in table 5.2, Equation 5.1 shows that on the floor, the expected image blur-
ring effect correspond to 38 cm. In the image sensor it correspond to 94 pixel which
is an extremely high value of pixel blurring. Having no possibility to reacquire the
images changing some of the previous parameters, a pre-processing procedure for
image enanchement and motion de-blurring has been investigated and evaluated.
This procedure, based on the work of [104] allows to operate on the pixel value and
obtain a better image. Figure 5.12 shows four different algorithm applied on the
images and how they increase the capability of SURF to detect and extract a suf-
ficient number of features. Applying a simple contrast enhancement algorithm the
number of features increase from 5 to 354, while using also the motion de-blurring
algorithm the number of detected features increase up to 909 (for the tested image).

(a) Greyscale - 5 points (b) Motion de-blurring - 104 points

(c) Contrast enhancement - 354 points (d) Both - 909 points

Figure 5.12: Image enanchement pre-processing. a) grayscale image, b) motion
de-blurred image, c) contrast enanchement image, d) constrast enanchement plus
motion de-blurring image.

This filter is applied iteratively at each epoch of visual odometry estimation in
order to assure sufficient starting information for apply the procedure. The first
epoch of acquisition requires an initialization procedure for further pose estima-
tion. It consist in defining initial parameters (R0, t0, C0, attitude) and identify
the starting epoch of motion with an automatic procedure. For the first, the UWB
initialization can be used as starting localization point. For the second, a median
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of squared root distance between features points in two consecutive images is com-
puted and compared to a starting motion threshold set to 5 pixels. Although this
pre-processing procedure, the heavy blurring effect on the images acquiring during
the motion doesn’t allows to extract sufficient features to apply the proposed al-
gorithm. This represent an important limit on the proposed procedure, a second
data collection campaign is required to acquire better frames but unfortunately it
was not possible.

5.4.2 UWB/INS hybridization results
In this section the UWB/INS Hybridization is analysed. As discussed in Chap-

ter 3.4.4 the idea is to use UWB output instead of the GNSS PVT solution in a
loosely coupling with the INS. For this reason the first step of this integration
consist in analysing the PVT solution estimated by the network of UWB sensors.
The Time Domain PulsON 440 UWB system is able to provide a real time estima-
tion of the position using Nonlinear Least Square solver or a Kalman Filter-based
solver. To this purpose the user should determinate the position of the network
tag in X, Y, and Z dimensions. The parameters definition and the acquisition
test has been made using the dedicated application programming interface called
RangeNet. Then the onboard micropocessor installed in the UWB platform handles
the communication, compute the position and send the results along the network.
The two test made during the data collection campaign has been made setting the
Kalman-filter solver in the UI.

Following section will shows the results obtained with this provided algorithm.
As result of the estimation procedure, RangeNet software provides two main data
files: a) the estimated position along the three local coordinates for each estimation
epoch and b) a list of range measurements for each epoch of communication between
the receiver TAG and the fixed anchors. The range measurements has been used
to improve the navigation solution in an EKF procedure. This solution is later
integrated in the UWB/INS hybridization (Figure 5.13).

Figure 5.13: Workflow to obtain the UWB/INS navigation solution.
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UWB-only Positioning Results from TimeDomain
Looking at the results, the first parameter to observe is the time of the estimation.
Figure 5.14 reports on the X axis the number of estimation epochs of the UWB
inner algorithm while on Y axis is reported the embedded clock time in first plot
and the delta time in the second. From these plots is possible to observe some time
gaps where the solution is not provided. In particular, during the Test n° 1, there
are two peaks around estimation epoch number 800 and 1900 where the solution
is provided after about 10 seconds. Moreover from the secon plot is possible to
observe how the data rate is not constant with a mean value of about 3.57 Hz.

Figure 5.14: Time of the provided position and rate. Test n° 1.

Together with the results the software retrieve some flags to indicate if commu-
nications, ranging and positioning has been performed correctly or not, as well as
Geometric Diluition Of Precision (GDOP) values and timing. Figure 5.15 shows
four parameters to evaluate the quality of the result for the Test n° 1. Regarding
the estimation method, the system indicates how far from the initialization the cho-
sen solver has progressed. In this case, the Kalman Filter updating (blue diamond
marker) has fail several times during the walking path. When this happens, the
system re-initialize the estimates with a Non Linear Least Square (NLLS) approach
(red diamond marker). Moreover, the system provide a Solver Error Code which
indicates when the geometry of the anchor is to poor to support a NLLS solution
(CODE 130 blue marker) and when the error estimation of the KF is too large
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(CODE 132 red marker). The third plot of Figure 5.15 shows the GDOP while the
forth plot shows the number of anchor used to estimate the position.

Figure 5.15: Information provided by the UWB CPU regarding the estimation
procedure. Test n° 1
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The results of the trajectory estimation provided by the inner algorithm are
shown in Figure 5.16 together with the results cleaned from the erroneous solutions
(Flags). From what has been shown previously is evident that the anisotropic
geometry of the network is too bad to perform an acceptable navigation solution
with the inner positioning algorithm.

Figure 5.16: UWB inner solution.Test n° 1

The same consideration can been made for Test n° 2: Looking at the plots of
this two test is possible to observe some common behaviours in the error flags and
in the positioning. The errors are concentrated for both tests in the same portions
of the path, upholding the "bad geometry" statement. The mean update rate in
this test is 3.52 Hz with some data loss of about 10 seconds.
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Figure 5.17: Information provided by the UWB CPU regarding the estimation
procedure. Test n° 2.
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Figure 5.18: UWB inner solution. Test n° 2.

Figure 5.19: Time of the provided position and rate. Test n° 2.

185



5 – MULTI-SENSOR INTEGRATION FOR UNDERGROUND NAVIGATION

Ranging Acquisition from TimeDomain

Together with the estimates, the sensor is able to acquire and provide range
measurements used for the positioning. There are three different types of ranges:

• Precision Range Measurements (PRM) are taken using the TW-TOF
ranging technique. These readings typically have high accuracy and are pro-
vided with estimates of range error as well as flags that warn of possible errors.
The user can use these range error estimates to drive a Kalman Filter. The
flags can be used to disregard inaccurate readings.

• Coarse Range Estimates (CRE) are analogous to RSSI (received signal
strength indication) range estimates produced by continuous wave RF rang-
ing systems in that they relate the strength of the received signal to range.
They are different in two important ways. First, the signal strength reported
is based on the strength of the first arriving energy and not on the strongest
overall energy. This ensures that large signals produced by constructive mul-
tipath do not introduce false readings. Second, the signal strength reported
is automatically calibrated based on the last successful Precision Range Mea-
surement.

• Echo Last Range (ELR) measurements are Precision Range Measurements
which have been taken between two other radios in the system. In other words,
any time a unit initiates a range request, it will broadcast the last range
measurement it successfully completed. For example, if Unit A measures the
distance between Unit A and Unit B, it will broadcast this range measurement
to Units C, D, E, etc., whenever it next initiates a range measurement. This
is an alternate way of automatically distributing range information through
a system.

Looking at PRM time acquisition, there are no data missing in the range mea-
surements and the data rate is about 6.2 Hz for Test n° 1(Figure 5.20 and 6 Hz for
Test n° 2 5.21).
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Figure 5.20: Range acquisition time. Test n° 1.

Figure 5.21: Range acquisition time. Test n° 2.
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5.4.2.1 Implemented UWB EKF positioning

Acquiring raw range measurements allows to implement a more sophisticated
algorithm with respect to the one proposed by the manufacturer. The raw ranges
measurements has been used to perform an EKF independent from the inner al-
gorithm proposed by the TimeDomain P440 system. Implementing an algorithm
knowing the behaviour of the measurements and the geometry of the acquisition,
could improve the positioning solution and increase the control on the estimation
procedure. In order to do this, the procedure proposed in Figure 5.22 has been
used. It consist in an initialization procedure which estimate the position of the
UWB receiver during the standing part of the path. This initialization has been
implemented in an automatic procedure which perform a non-linear least square
minimization. Once the range measurements express the motion (raising a thresh-
old), an EKF algorithm is used to estimate the trajectory. The update time has
been setted at 1 Hz and the predictive model used to predict the state from previous
estimate is supposed the uniform rectilinear motion.

Figure 5.23 is the ground trajectory estimation of the user walking along the
tunnel that was equipped with the UWB sensor TAG. Figure 5.24 shows velocity
estimation from which we can observe a walking velocity of about 1.5 m/s along
Y axis, while about 0 m/s along X and Z axis. This is consistent with the ground
track that shows a continuous motion along the Y axis. A great improvement of
the positioning estimation with respect to the inner solution is evident from the
results. It is possible also to note the absence of missing data value and outliers.
Similar results are observable in the other test (Figure from 5.25 to 5.26). These
outputs will be used as updating solution to integrate with the INS.

Figure 5.23: EKF navigation result. Test n° 1.
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Figure 5.22: Flow diagram of EKF method used for UWB positioning estimation.
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Figure 5.24: EKF velocity estimate. Test n° 1.

Figure 5.25: EKF navigation result. Test n°2.
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Figure 5.26: EKF velocity estimation. Test n° 2.

Figure 5.27: Position estimated with EKF for Test n° 1.

5.4.2.2 Inertial measurements analysis

In this study, acceleration and angular velocity measured by the IMU mounted
on the platform are integrated sequentially to provide relative position and relative
attitude information while the UWB position are used as absolute inputs for the
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hybridization. For this purpose is important to characterize the noise level of
the acquired raw data. With low-cost sensor is fundamental to perform static
acquisition in order to compute measurement residuals [105]. As in the performed
test an industrial grade INS is used, just the behaviour of the measurements has
been analysed. In particular, looking at the following figure, is possible to observe
two peaks in the rotation rate along the X axis, corresponding to a rotation of the
platform performed by the user as a visual time stamp reference point. Looking
at the gyros measurements along the Z axis is possible to identify a peak in the
middle of the test. This is the turning point, when the platform, and so the user,
has turned along himself to walk back along the path. The grey area correspond to
some second of static position in the turn point before to move back along the path.
The same information is provided by the relative Heading information, where at
360 seconds from the start, a turn of 180° is visible. Figure from 5.28 to 5.33 shows
the measurements acquired for the two test performed. With this information and
the UWB EKF estimate position and velocity, is possible to perform the INS/UWB
hybridization.

Figure 5.28: XSense gyroscopes measurements for Test N° 1.
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Figure 5.29: XSense acceleration for Test n° 1.

Figure 5.30: XSense attitude estimation for Test N° 1.
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Figure 5.31: XSense INS data output. Gyroscopes measurements for Test N° 2.
Identification of the turning point on the GyroZ axis.

Figure 5.32: XSense INS data output. Accelereation along three axis for Test n° 2.
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Figure 5.33: XSense INS data output Test N° 2. Attitude estimation.

5.4.2.3 UWB/INS Results

The theoretical concepts for the UWB/INS hybridization has been already ex-
plained in Section 5.2.2 and represented in Figure 5.4. Figure 5.5 goes more in deep
in the description of the implemented algorithm. From the operative point of view,
numerous problems have been addressed, mainly due to the time synchronization
and the georeferencing of UWBmeasurements.

1. Time synchronization. Usually in a loosely coupled system integration,
the problem of the unsynchronized clocks is addressed stamping the data
received time of each sensor referred to a common clock and estimating the
relative skew and drift rate. In this work unfortunately, each sensor system
has acquired his data independently and with his own time scale. For the INS,
the time is referred to the internal clock which start with the initialization
of the sensor. The UWB measurements and the video are referred to the
computational unit clock (PC and Raspberry respectively). It is evident,
that without a common reference time, the time-related errors can decrease
the accuracy of the navigation solution. To face with this problem, during
the acquisition campaign, a rapid movement of the platform has been made
by the user in order to generate a visual timestamp on the inertial rotation
rate along the pitch direction. In order to do this, the differences between
adjacent elements of the rotation rate has been computed and the first and
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last peak of the resulting plot has been identified as the start and the end of
the test. Another important information is the start of the movement which
take place some seconds after the visual timestamp. In order to do this, a
step detection algorithm has been used. It is based on the computation of the
magnitude of the acceleration vector along the three axis. It show the general
changes in acceleration. The plot shows that the acceleration magnitude is
not zero-mean. Subtracting the mean from the data will remove any constant
effects, such as gravity. Each peak on this plot (Figure 5.34) correspond to
a step being taken while walking. This movement is easily recognizable also
in the video frames. Using the visual marker (peak on the plot) the common
staring movement timestamp has been identified for all the data. To validate
the obtained result, this time identification has been compared with the GPS
time provided by the SPAN system which has been initialized outside the
tunnel. Finally, also the turning point of the walking path must be identified.
This is easily detectable from the plot of the INS heading estimation as already
shown in Figures 5.30 and 5.33.

Figure 5.34: Step identification for start movement time.

2. UWB EKF georeferencing. In the loosely coupling of INS and GNSS
measurements the mechanization equations of the inertial navigation are
parametrized in north-east-down (NED) navigation frame. The entries of
the position vector are the users geodetic coordinate in latitude (L), longi-
tude (λ) and Altitude (h) which are converted thanks to the rotation matrix.
Therefore in the proposed integration, the innovation process of the EKF need
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to be estimated using UWB state vector in the correct georeferenced frame.
Unfortunately, as no GNSS-topographic survey has been made during the
implementation of the UWB network in the tunnel, the trajectory estimated
by the UWB system is in local reference frame. To overcome this problem,
the UWB estimated points have been converted from local to global reference
system using an Helmert transformation and some known common points of
the SPAN reference system [106].

These problems can introduce errors in the estimation procedure and should be
avoided in future data acquisition campaign. Once addressed all these issue, the
implemented algorithm has been used to process the data of the two tests and the
results has been analysed. Figure 5.35 shows the results in cartographic reference
system (ETRS89 - ETRS-TM35FIN) for Test 1. The red line represent the SPAN
reference trajectory, the green points the estimate 2D position at the update time
of the EKF. Figure 5.36 shows the same results in local NED system. This plot
allows a metric visualization of the trajectories. Figures 5.37 shows the velocity
estimates. Then Figures 5.38 shows the estimates of the accelerometer bias and
Figure 5.39 represent rate gyro bias for the same time period (516 seconds of KF
update). Finally Figure 5.40 shows the attitude history. The same analysis has
been made for Test n° 2.

Figure 5.35: Navigation estimation in cartographic coordinates and reference SPAN
solution. Test n° 1.
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Figure 5.36: Navigation estimation in local NED coordinates (navigation frame)
and reference SPAN solution. Test n° 1.

Figure 5.37: Velocity estimation from EKF along NED axis. Test n° 1.
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Figure 5.38: Sensor acceleration bias estimate for the low-cost UWB/INS integra-
tion. Test n° 1.

Figure 5.39: Sensor gyro bias estimate for the low-cost UWB/INS integration. Test
n° 1.
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Figure 5.40: Attitude history for a low-cost UWB/INS integration. Test n° 1.

Figure 5.41: Navigation estimation in cartographic coordinates and reference SPAN
solution. Test n° 2.
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Figure 5.42: Navigation estimation in local NED coordinates (navigation frame)
and reference SPAN solution. Test n° 2.

Figure 5.43: Velocity estimation from EKF along NED axis. Test n° 2.
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Figure 5.44: Sensor acceleration bias estimate for the low-cost UWB/INS integra-
tion. Test n° 2.

Figure 5.45: Sensor gyro bias estimate for the low-cost UWB/INS integration. Test
n° 2.
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Figure 5.46: Attitude history for a low-cost UWB/INS integration. Test n° 2.

Finally, in order to validate the accuracy of the estimation, the positioning
solution obtained was compared to a reference trajectory acquired with the SPAN
system. These comparison has been made following the test procedures reported in
[107] which estimates 3D and 2D error between the user position and the reference
path at a given estimation time. The errors are defined as follow:

PE3D =
√

(X̂East −XEast)2 + (ŶNorth − YNorth)2 + (ẐDown − ZDown)2 (5.2)

PE2D =
√

(X̂East −XEast)2 + (ŶNorth − YNorth)2 (5.3)

where X̂East, ŶNorth, ẐDown are the estimated coordinates and XEast, YNorth and
ZDown are the reference coordinates extracted by the SPAN estimation. The PE3D
and PE2D are plotted in Figures 5.47 and 5.47 with some meaningful statistics
reported in Table 5.4 and 5.5. From the results is possible to state that the 3D
positioning accuracy is about 5-7 m considering the 95th percentile, while the 2D
positioning accuracy is 5-6 m.
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Figure 5.47: 3D and 2D positioning error. Test n°1.

Figure 5.48: 3D and 2D positioning error. Test n°1.

Table 5.4: PE3D statistical characterization for both tests.

Statistics Test n° 1 Test n° 2
Min [m] 0.101 0.243
Max [m] 7.464 7.262
Mean [m] 3.640 2.510
Std.D. [m] 2.019 1.395
50th precentile 3.788 2.371
70th precentile 5.226 3.029
95th precentile 6.723 5.058
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Table 5.5: PE2D statistical characterization for both tests.

Statistics Test n° 1 Test n° 2
Min [m] 0.0128 0.087
Max [m] 7.450 7.262
Mean [m] 3.488 1.883
Std.D. [m] 2.128 1.342
50th precentile 3.656 1.556
70th precentile 5.206 2.329
95th precentile 6.706 4.691
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Chapter 6

CONCLUSIONS

The aims of this doctoral thesis is to investigate on sensors systems and relative
methodologies to perform positioning and navigation of people, goods and vehicles
in challenging environments and particularly in urban cities. The interest on this
research raises from two unsolved problems in the field of navigation:

1. there are not current positioning systems able to ensure the robustness and
integrity of the positioning in critical scenarios (indoor, disturbed, shielded,
crowded) like the GNSS in outdoor environments;

2. does not exist a positioning and navigation system based on a single technol-
ogy able to guarantee the continuity of the position estimation in the transi-
tion from an open space to an indoor environment, i.e. a seamless navigation
system that works every time and everywhere.

These two statements are particularly true when sensors or integrated systems
are low-cost, because they are characterized by the introduction of noise in the
observations.

To this aims, deep knowledge and study of the state of art related to tech-
nologies, methods and algorithms of data fusion is crucial to identify the gap in
the current research. What emerged from the literature review has defined the
research lines of this thesis. In particular, a wide range of innovative technologies
and solutions is observed, based on different physical quantities (both analog and
digital) and methodologies. These solutions are used for several applications, there-
fore numerous requirements must be guaranteed. Moreover, each sensor operates
differently according to the the type of environment and provides specific informa-
tion related to the provided service. Each system has costs, energy consumption,
communication infrastructure needs, and other characteristics which highlight their
heterogeneity.

In this context, it is clear the need to integrate different technologies to exploit
the benefits and to mitigate the limits of each sensor. The multi-sensor hybridiza-
tion can be considered the first research line of this work.
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The second research line, raising from the literature reviews, is the awareness
that any solution is strictly environment dependent. Before acquiring data and
investigating on positioning algorithm it is mandatory to define which challenges
the system should face according to the environment characteristics. This allows
to determine the the most suitable sensor or method for the purpose of seamless
navigation.

The urban environment is one of the most challenging sites in which perform
navigation. It is composed by tall building and threes which mitigate the GNSS
signal and generates multipath effects causing erroneous position estimation. It
is rich of interference sources for radio-based signals due to the presence of nu-
merous man-made communication infrastructures. Also, it presents indoor and
underground spaces where GNSS signals are attenuated or blocked.

All these elements make the research on seamless positioning and navigation in
urban environment essential to face the profound changes of our society as regards
smart mobility, emergency management and information society.

Urban cities are composed by complex spaces (districts, squares, public offices,
private houses, etc.) with different sizes, so that a multi-scale approach is required.
In fact, one of the strictest sensor feature is the coverage, i.e. the capability of
the system to operate inside an area. This parameter has strongly influenced the
selection of sensors in this research. Three spaces have been identified and three
different technologies and methods of positioning have been selected. Firstly, with
intent to perform positioning in limited spaces, like offices and building floors, the
so-called floor scale environment has been defined. In this area, an UWB technology
for positioning and tracking has been used and validated.

Secondly, to perform positioning in larger spaces, like hospitals, railway and
subway stations, the infrastructure scale has been defined. In this area, image-
based positioning approach has been used.

Finally, to perform positioning outdoor and in urban canyons, where the spaces
are not restricted, the so-called district scale has been defined and the GNSS posi-
tioning with smartphones has been investigated.

The choice of these three methodologies has been further confirmed by empirical
data obtained by real applications. For the floor scale, the performances of low-cost
UWB systems have been validated in term of real time positioning and ranging. The
systems have been used within offices and narrow corridors of the Department of
Environment, Land and Infrastructure Engineering of Politecnico di Torino (Italy).
The accuracy level reached with this kind of sensor is strongly affected by the
environmental noise, nevertheless the error in positioning was of some centimeters.

Regarding the infrastructure scale environment, a research project conducted in
2016 with the aims of perform indoor positioning in an underground metro station,
has allowed to investigate on image recognition-based location. In this case, several
tests have been performed in Bangbae metro station of Seoul (Republic of Korea).
The solution developed by the Geomatic Research Group of the Politecnico di
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Torino and validated by the author has demonstrated the possibility to perform
real time positioning in man-made crowded environment with a sub-metric level
of accuracy and with an high level of reliability. Moreover, such methods allow to
estimate not only the position of the imaging sensor but also its orientation.

Finally, the district scale have been considered and the performances of GNSS
smartphones chipsets have been assessed. The interest in this technology is in-
creased by the recent possibility to access to the raw observables of the GNSS
chipset installed in new-generation mass-market smartphones. From 2016, Google
has released a new API for the Android operating systems which allows to acquire
directly the GNSS raw data. The test conducted in the Politecnico di Torino (Italy)
has shown the capability of these systems to reach high accuracy in the positioning
with real time kinematic estimation procedure.

The analysis have been enriched by the statistical characterization of the sen-
sors observation and by focusing on the site-dependent behaviour of the estimates.
Moreover, the outcomes of these three case studies demonstrated the systems com-
plementarity and permitted to set up the sensor integration: a multi-sensor plat-
form, composed by UWB transceiver, smartphone device, Imaging sensor and INS.

In this context, a data fusion algorithm has been developed and a theoretical
framework has been proposed, taking into account the redundancy of the acquired
data and, above all, the main objective of the thesis: providing a seamless naviga-
tion solution.

A research project conducted in 2018 by the Finnish Geospatial Research Insti-
tute, Helsinki (Finland) gave to the author the chance to investigate in this direction
with a real case study. The Kaivos Project consisted in developing and validating
low-cost pedestrian navigation solutions for underground mines. The characteris-
tics of mines are very challenging for positioning and navigation procedures. Firstly,
they are similar to indoor environments, where the GNSS navigation is not suit-
able. Then, the presence of ferrometallic minerals can generate interferences in
radiofrequency-based technologies. Finally, the low-light conditions represent a
strong issue for all the navigation procedures based on images. From this point of
view, if a system is able to perform seamless navigation in an underground mine,
it is possible to state that it can perform well also in an urban environment.

The above mentioned methodologies used at different urban scales, have been
here applied with new-algorithms and filters to obtain a navigation solution. The
algorithm, composed by a hybridization of UWB sensor, infrared low-cost camera
and inertial platform, has been developed in a loosely coupling approach inside
a EKF estimation procedure. The results obtained have been validated in term
of accuracy and precision with respect to a reference solution. Unfortunately, the
visual odometry algorithm has been applied on a heavily blurred dataset providing
no results, although the proposed framework is valid.

The results obtained shows that the UWB/INS integration provide a navigation
solution with a mean error of less than 3.6 meters and a standard deviation less
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than 2 meters in 3D positioning. In 2D positioning the mean error is less than 3.5
meters with a standard deviation less than 2 meters. Numerous sources of errors
have been injected during the test, mainly due to the bad time synchronization and
to the various approximations. Nevertheless, the results demonstrate the possibility
to use a low-cost integrated system in this critical environment, guaranteeing the
indoor-outdoor passage.

A drawback of the proposed solution is the use of UWB sensor in complex and
narrow mines. In this case, the economic advantage of low-cost sensors is lost when
a capillary infrastructure is needed to obtain the required accuracy.

The main contribution of this work has been the integration of several low-cost
sensors in a portable platform for challenging environment navigation. Moreover,
the numerous issues identified for each sensor analysed provide a robust basis to
upgrade the system for seamless navigation in urban environment. Considering the
obtained results, a context awareness procedure should be implemented in order to
trigger sensors and weight observations according to the operational context and
user behaviour.

6.1 Future activities
In this thesis several positioning solutions have been considered and analyzed in

order to cope with the problem of seamless positioning and navigation in challenging
environments. Although the performances of different methodologies have been
assessed and the benefits of multi-sensor integration have been demonstrated, the
proposed solution highlights new research path for future developments of the thesis
work.

Regarding the GNSS positioning with smartphones, future activities could con-
cern the use of dual-frequency, multi-constellation receivers which are facing the
markets nowadays. The availability of signals from two frequencies allows to cor-
rect most of the error sources introduced by ionospheric propagation. At the same
time, it opens the way to solve the carrier phase integer ambiguity, enabling RTK
and Precise Point Positioning (PPP). Frequency diversity is among the most quoted
solutions to increase robustness to interference and jamming.

In the proposed solution UWB systems have been used to provide additional
measurements for the data-fusion algorithm. Nevertheless, its data transmission ca-
pability could allow to define a geofence, in which a particular response of the posi-
tioning algorithm could be triggered. This feature could be particularly interesting
to automatically switch between indoor and outdoor solution and to guarantee the
seamlessness.

Furthermore, possible future developments of this work, regarding the vision-
based navigation, are driven by the newly implementation of machine vision com-
ponents and the continuing advances of deep learning and artificial intelligence in
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embedded systems. With these methods, the limits of popular state-of-art algo-
rithms for pose estimation and feature extraction could be overcome.

Regarding the integration algorithm proposed in the present work, the classical
KF techniques could be developed in more outperforming implementations, such
as tight and ultra-tight coupling or particle filters. Also artificial intelligence could
be investigated in the case where accurate stochastic modeling is not possible.
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