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Summary

Since the conception of the first stored-program computer by John von Neu-
mann in 1945, processing units have undergone extraordinary transformations.
Over the years, computing systems have pervaded numerous aspects of the hu-
man life and are now ubiquitous. The continuous evolution of processing systems
has been mainly driven by three factors: technological progress, architectural in-
novation and an always growing demand for computational power. The combined
action of these factors has led to the creation of extremely powerful computing
systems and to the emergence of some fascinating applications that could not have
existed without the support of such computational power. However, such advances
do not come for free. Power consumption is, nowadays, one of the major concerns.
Complexity at the architectural level of processing units, technological scaling and
resource demanding characteristics of modern applications all have a large impact
on power consumption. Moreover, applications are not only resource demanding,
but also data demanding, and this has a strong effect on the role that the memory
plays on power consumption. Memory accesses are extremely costly in terms of
energy and are a performance bottleneck. In fact, while CMOS technology keeps
scaling, memories have not made progress at the same pace. This has created a
performance gap between processing units and memories that is best known as von
Neumann bottleneck or memory wall. Memories are not able to provide data at
the same rate as processing units are able to compute them. In addition to all
these problems, technological scaling is also approaching a limit where it would not
be possible to further progress because of fundamental physical, technological and
economical limitations. The introduction of novel beyond-CMOS technologies based
on new information-processing paradigms is a potential solution to the limitations
of technological scaling. This thesis addresses different aspects of these problems.

In the first part of this research work the need for computational power and
energy efficiency is targeted through a specific and widespread application: Convo-
lutional Neural Networks (CNNs). Being resource and data demanding, CNNs re-
quire energy efficient hardware acceleration. For this aim, a custom-designed hard-
ware accelerator is proposed. The Deep Learning Processor combines the quality
of design achieved with the ASIC implementation flow with the reconfigurability of
FPGAs. The accelerator is an array of Processing Elements interconnected through
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a Network-on-Chip. The Processing Element is the basic block of the whole ac-
celerator and it has been designed to be flexible but at the same time optimized
for CNN-like workload, performance oriented and low power. The Deep Learning
Processor has been used as an architectural template for conducting a design space
exploration that takes into account all the key features of the accelerator and defines
the best configurations in terms of energy efficiency and throughput.

In the second part of this thesis, the limitations related to the technological
scaling and the von Neumann bottleneck are targeted through the exploration of
a non-von-Neumann computing paradigm that is Logic-in-Memory. This novel ap-
proach goes beyond the separation between computation and memory, typical of
von Neumann processing systems, trying to fully integrate them in a single unit.
Data are computed directly inside the memory without the need to move them.
This approach has a twofold advantage: tearing down memory accesses (and the
related power consumption) and demolishing the memory wall. This research work
investigates the concept of Logic-in-Memory by presenting a novel Configurable
Logic-in-Memory Architecture (CLiMA) that exploits the in-memory computing
paradigm while also targeting flexibility and high performance. A version of CLiMA
based on an emerging non-CMOS technology, namely Nano Magnetic Logic, is also
presented. The effectiveness of the CLiMA approach is validated through com-
parisons with the non-LiM architecture presented in the first part of this thesis.
Moreover, a taxonomy that classifies the main works found in literature regarding
the in-memory processing topic is presented.
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We can only see a short distance ahead,
but we can see plenty there that needs to
be done.

A. M. TURING
Computer Machinery and Intelligence, 1950
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Chapter 1

Motivations and background

The idea of a learning machine dates back to 1947, when Alan Turing, during
a lecture given to the London Mathematical Society, predicts the existence of a
“machine that can learn from experience” [114]. Few years later, in the well-known
paper Computer Machinery and Intelligence [113], Turing tries to answer the ques-
tion “Can machines think?” introducing the famous Imitation Game. He does not
give an exact answer to weather machines might show intelligence or not, but he
defines aspects and characteristics of a hypothetical learning machine, foretelling a
time where machines will compete with human beings in any task.

Since then, Artificial Intelligence (AI) has undergone drastic advances in all
fields thanks to new computing technologies. Among all AI fields, Machine Learning
is one of the most studied and used to solve disparate class of problems.

Machine Learning comprises a wide family of algorithms: in particular, this
work focuses on Deep Learning for image recognition and classification.
Deep Learning is at the base of Convolutional Neural Networks, learning models
that are being successfully used for this purpose as they are highly accurate in clas-
sifying images. However, Convolutional Neural Networks are resource, power and
time demanding, hence, they require powerful and efficient systems to accelerate
the computation. This work explores circuit techniques and design methodologies
for energy efficient Deep Learning computation by taking as reference a custom-
designed hardware accelerator.

1.1 Machine Learning
Machine Learning (ML) is the field of AI that deals with the development of

learning techniques [96] that makes it possible for a computer to learn and improve
at fulfilling a task.
ML theory is vast and, since it is not the focus of this work, it will not be treated
from a mathematical point of view but only some basic concepts will be given to
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1 – Motivations and background

understand what will be described in the next chapters of this thesis.

1.1.1 Learning Methods
ML is based on different learning methods. The main ones are:

• Supervised learning [94][75]: its task is to learn a function that maps an input
to an output based on example pairs that are given as input. A pair is made
of an input and a label, i.e. the desired output. The example input pairs,
referred to as labeled training data set, are fed to the learning algorithm. By
analyzing the training data set, it infers a function that can be used to map
new input data. If the learning method works correctly it should assign to
new unseen examples the expected output labels. Classification problems, for
example, make use of supervised learning.

• Unsupervised learning [95][75]: unlike the supervised case, example inputs
are not labeled. Here the objective is to deduce an intrinsic structure or some
common attributes from input data. Clustering, as instance, belongs to this
class.

• Reinforcement learning [108][75]: this method is based on trial and error.
Differently from supervised learning it does not have labeled training data
and unlike unsupervised learning it is characterized by a reward measure
which has to be maximized during the trial and error steps. Decision-making
problems make use of this kind of learning method.

In the rest of this work only supervised learning will be considered.

1.1.2 Working principle
The key point in ML is that there are patterns underlying the data that can be

used to construct an approximation of the process that generated this data [4]. ML
techniques are based on representation learning [12], a method that aims at learning
data representations with the goal of ease the extraction of useful information when
building prediction models. In order to understand how ML algorithms work, it
could be useful to use a similarity with part of the learning process of a child. In
its first years of life, a child needs to see things in order to learn what they are and
associate a name to them. Once he gains this knowledge, he will be able to recognize
objects, animals, people and so forth. In case of behavior-related knowledge, the
child will need experience to learn. The working principle of a ML algorithm, shown
in figure 1.1, is basically the same: it learns a model from example data or past
experience (the training set) and it optimizes it, that is the training phase. After
that, the model built can be inferred to unseen data or problems (new input), that
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1.1 – Machine Learning

Training Set

Learning Algorithm

Learned 
Model

Predicted 
output

New
input

Figure 1.1: Machine Learning working principle scheme.

is the inference phase. If the training phase was robust and the learned model
accurate, the predicted output should be faithful to the real expected output.

1.1.3 Applications
ML algorithms are nowadays ubiquitous. Possible applications cover a wide

range of fields: from computer vision to medical diagnosis [68] and health-care,
from general game playing [104] to robot motion [8], from bioinformatics to natural
language processing [100] and so on.
Some practical examples of ML applications in real fields follow.

• Face/object recognition: this computer vision technique allows to recognize
faces and objects in images or videos. Detection of faces or objects comes at
hand in fields such as security surveillance or manufacturing quality control,
respectively. It could also be applied in medical imaging for the detection of
tumors, as instance.

• Customer segmentation: in the marketing field, the way to target specific
groups of clients is customer segmentation. Clients are clustered into different
groups based on the identification of some common characteristics such as
age, gender, interests, income level and so on. Each of these groups are
addressed with a different marketing strategy in order to improve the quantity
of purchases or customer loyalty and satisfaction.

• Autonomous driving: this refers to a vehicle that is able to move autonomously.
Being aware of what happens (semaphores, pedestrians, other cars) while
driving a car and taking decisions on the fly based on the ever changing en-
vironment is arduous. For this reason and for their safety critical nature,
self-driving vehicles are still a challenge but ML algorithms have paved the
way for significant improvements.
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1 – Motivations and background

These are just few examples of the numerous potential applications in which
ML techniques can be successfully applied.

1.1.4 Deep Learning
Machine Learning comprises a wide family of algorithms. Depending on the

application, the type of dataset and the accuracy required for the learned model,
one might choose a specific kind of algorithm rather than another.
Among the learning models that belong to ML, Deep Learning (DL) is one of the
most promising: in the last years, indeed, the advances done in this fields have
revolutionized the world of AI. For sake of clarity, figure 1.2 depicts the relation
between AI, ML and DL.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 1.2: Relation between AI, ML and DL.

The DL computational model is based on the automatic learning of data features
and representation and it is, nowadays, widely and successfully used in disparate
fields such as image recognition [69], natural language processing [25], bioinformat-
ics, strategic marketing and many more.
The key concept behind DL is that it learns multiple levels or a hierarchy of data
features [73], that is the reason of being defined deep. Figure 1.3 depicts the feature
extraction approach adopted in DL models: starting from raw input data, several
features with different abstraction levels are extracted and learned. All of them,
from low level (none or ‘shallow’ abstraction) to high level (‘deep’ abstraction) ones,
contribute to the definition of very complex learning functions.
ML and DL differ in many aspects:

1. Feature extraction: in ML algorithms features are extracted and selected
manually while in DL they are identified and learned automatically.

2. Data dependency: DL techniques, differently from ML ones, require a huge
quantity of data to perform at their best. Hence, DL scales well with data-
intensive applications.
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1.2 – Artificial Neural Networks

Input 
data

Abstraction levels

Feature Extraction

Low level
feat.

High level
feat.

Output

Figure 1.3: Feature extraction in DL models involves multiple levels of data repre-
sentation abstraction.

3. Computational power: given the large data quantity needed, DL models re-
quire high computational power and high-end machines to run (e.g. GPUs)
while ML algorithms can work on low-end machines.

4. Training time: in general, the training phase of DL algorithms, unlike in
ML, is highly time demanding because a large amount of parameters must be
learned.

5. Results interpretation: DL models are very complex and, in turn, it is not
possible to fully understand why they behave in a certain way. The same can-
not be said about ML models that are based on rules that help understanding
the reasoning behind their choices.

These differences suggest that the choice of using DL rather than ML depends on
the kind of problem to face, on the quantity and type of input data and on the
computational power available.

1.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a subset of Machine Learning models.

ANNs can be shallow or deep, in this case they are referred to as Deep ANNs (or
simply Deep Neural Networks, DNNs). ANNs are vaguely inspired to the human
brain neural network.
These kind of models are used when the problem to deal with involves a large
number of features or when the input dataset is complex. ANNs are heavily used
nowadays in the most disparate fields.
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1 – Motivations and background

1.2.1 The single-layer perceptron
In the human brain there are neurons and synapses: the former can be seen

as processing units working in parallel, the latter are the interconnections among
these units. ANNs have a similar structure.
In particular, the basic processing element of an ANN is the perceptron [92], a unit
that behaves analogously to the human brain perception process. A perceptron,
depicted in figure 1.4.A, has inputs (xi, i = 0, . . . , n) that can either come from the
outside environment or that can be the outputs of other perceptrons. Each input
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Data     class A

Decision
boundary

Figure 1.4: (A) Perceptron representation. xi, i = 1, . . . , n are inputs while y is
the perceptron output. wi, i = 1, . . . , n are the synaptic weights of the connections
between inputs and output. (B) Linear discrimination.

is connected to the output (y) by means of a synaptic weight (wi, i = 0, . . . , n). w0
is called bias unit and it is always equal to 1. For this reason, usually it is omitted.
This simple perceptron has only one layer of synaptic weights, that is why it is also
called single-layer perceptron. In the basic case, the output of the perceptron is
equal to the weighted sum of the outputs [15]:

y(x) =
n∑

i=1
xiwi + w0 (1.1)

The function that links x and y is linear and equation 1.1 is a line with slope w and
intercept w0. As shown in picture 1.4.B, this simple function works as a decision
boundary and it can be used as a binary classifier since it divides the xy plane into
two. The simple perceptron can be used to separate data that belongs to group A,
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1.2 – Artificial Neural Networks

from data that do not. As a result, y(x) can be defined as a threshold function:

data

⎧⎨⎩∈ class A when y(x) > 0
/∈ class A otherwise

When considering n dimensions, y becomes a dot product between vectors:

y(x) = wT x (1.2)

with x, w ∈ Rn. w are the weights to learn. In general, y is called activation
function or perceptron hypothesis.
The perceptron depicted in figure 1.4.A can only perform a binary discrimination:
either an input belongs to a certain class or not. When dealing with multi-class
classification problems, more perceptrons working in parallel can be used [15] (figure
1.5). In this case, each perceptron yi, i = 0, . . . , k, is associated with a function

.

.

.

x1

xn

x  = 10

y1

y2

yk

.

.

.

x2

w11
w21

wn1

Figure 1.5: Multi-class perceptron.

f(x) with weight vector wi, i = 0, . . . , k. Equation 1.2 can be rewritten as:

yi(x) =
n∑

j=1
xjwij + wi0 = wT

i x, i = 1, . . . , k (1.3)

wij is the synaptic weight that connects input xj to output yi. All the synaptic
weight vectors constitute the weight matrix W.

9



1 – Motivations and background

Figure 1.6: Most used activation functions: logistic sigmoid σ, hyperbolic tangent
tanh and ReLU.

1.2.2 Activation Functions
When classes are not linearly separable, other kinds of functions must be defined.

Among the most used (shown in graph 1.6) there are:

• Logistic sigmoid [47] σ(z) = 1
1+e−z

• Hyperbolic tangent [47] f(z) = tanh(z)

• Rectified Linear Unit (ReLU) [27][39] f(z) = max(0, z)

If z = wT x then the activation y can be expressed as:

• a sigmoid activation

y(z) = σ(wT x) = 1
1 + e−wT x (1.4)

• a hyperbolic tangent activation

y(z) = tanh(wT x) (1.5)

• a ReLU activation
y(z) = max(0, wT x) (1.6)

10



1.2 – Artificial Neural Networks

y

x

Figure 1.7: Complex decision boundary.

1.2.3 The multi-layer perceptron
When the aim is to build more complex functions to fit complicated hypothesis

like the one shown in picture 1.7, multi-layer perceptrons (MLPs) must be used [15].
These kind of perceptrons, as shown in picture 1.8, are made of at least two layers
of synaptic weights. The units that connect inputs to outputs through intermediate
layers of synaptic weights are called hidden units. a

(k)
j , j = 1, . . . , m, k = 1, . . . , d
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Figure 1.8: Multi-layer perceptron.

is the activation unit (or simply activation) associated with the j-th hidden unit in
the k-th layer. W(k) is the weight matrix that maps the outputs of a certain layer
with the inputs of a subsequent one. A MLP with two or more layers of perceptrons
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1 – Motivations and background

is an ANN. If an ANN has a large number of hidden layers than it is a deep neural
network.
First layer perceptrons satisfy the following equation:

a
(1)
j = g(w(1)T

j x), j = 1, . . . , m (1.7)

where g(·) is a generic activation function.
Equation 1.7 can be rewritten as:

a(1) = g(W(1)x) (1.8)

Hidden perceptrons, instead, satisfy the following equation:

a
(k)
j = g(w(k)T

j a(k−1)
j ), j = 1, . . . , m, k = 2, . . . , d (1.9)

Finally, output layer activations can be calculated as:

yz = g(w(d+1)T
z a(d)

j ), j = 1, . . . , m, z = 1, . . . , p (1.10)

It can be observed, by substituting equations 1.7, 1.9 and 1.10 one into the other,
that output activations are calculated by taking into account all intermediate and
input activations. This method is called forward propagation since input values are
forwarded through intermediate layers to the output layer.
Using vector notation, equation 1.10 can be rewritten as:

y = g(w(d+1)T a(d)
j ), j = 1, . . . , m (1.11)

Equation 1.11 represents the ANN hypothesis. The weights are called network
parameters and they are learned by the ANN during the training phase. Learning
these parameters allows to build an accurate hypothesis that can suitably fit the
type of problem taken into account. The deeper the network – i.e. more hidden
layers – the more accurate the hypothesis but the larger the number of parameters
and the overall complexity of the ANN.

1.2.4 Brief Overview on Learning
There exists various learning algorithms that are used to train ANNs. However,

since they are not the focus of this work, they will not be thoroughly treated in
this contest. Just few notions will be mentioned so as to give an idea to the reader
of what learning is.
The working principle of learning algorithms is explained in figure 1.9. Learning
is based on the minimization of a cost function that is defined as the difference
between the actual output and the predicted output (i.e. the output computed by
the ANN). The cost function is, basically, the error that the network does when
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Figure 1.9: Learning iteration principle in ANNs.

carrying out the classification. The predicted output is obtained by feeding the
ANN with the training dataset, while the actual output, considering a supervised
learning model and a given dataset, is known a priori. This minimization phase
is an iterative procedure that, step after step, updates the network weights until
the cost function has reached a minimum value. Weights are updated on the basis
of the error that is propagated backward through all the network layers. At the
end, the learning stage returns a trained ANN whose parameters (the weights) are
the ones that the network has learned and that better map inputs to the desired
output.
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1 – Motivations and background

1.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a class of DNNs that are particularly

suitable for pattern recognition and classification. In fact, in the last ten years,
they have been successfully deployed for complex tasks such as image recognition
and classification, video analysis, natural language processing, sound perception
and more. Performing this kind of tasks require a system that is able to extract
relevant representations of the input (e.g. an image) while remaining insensible
to variations and distortions [74]. CNNs are specifically designed to automatically
learn invariant representations (also called features) by using discrete convolution
(this is the reason why these networks are called convolutional). In the contest of
this thesis the focus is on CNNs applied to image detection.

The working principle of CNNs is neurobiologically inspired by the pioneering
work led by neuroscientists Hubel and Wiesel on the visual cortex of a cat [54].
Cortical neurons are locally responsive, meaning that they react to stimuli only in
a delimited region of the visual field, called receptive field. In order to cover the
whole visual field, receptive fields of different neurons partially overlap. Artificial
neurons in CNNs (which equivalent to perceptrons) act in the same way.

1.3.1 Main Characteristics
As shown in figure 1.10, layers in a Convolutional Neural Network are three-

dimensional, in fact, they are made of several 2D neuron planes. CNNs peculiar
characteristics, that distinguish them from other kinds of neural networks, are
mainly three [72].

1. Receptive fields locality: each neuron in a layer of a CNN is connected only to
a small portion of the input image, exploiting the spatial locality propriety
of neurons in the brain visual cortex. This means that each neuron extracts
some key features (as instance, edges or corners) only from a small region of
the whole image.

2. Weight sharing: features detected by a neuron in its receptive field are likely
to be found in the whole image. For this reason, all other neurons, whose
receptive fields focus on different regions, share the same weights that are
used to filter the input image and extract crucial features when performing
recognition.

3. Subsampling: the idea behind subsampling is that the exact location of a
feature, once discriminated, becomes less important than its relative position
with respect to the rest of the features. This is why subsampling can be
exploited to reduce the resolution of the filtered image.
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Neurons on
different planes

Receptive field

Same
weights

Different 2D neuron
planes in a single layer

Input image
3D layer

Figure 1.10: CNN layers are 3D: they contain several 2D planes of neurons. Each
neuron in a CNN extract features from a defined region of the input image using
learned weights. This region is called receptive field. Neurons in the same plane
share weights.

1.3.2 Generic Architecture
A typical CNN architecture, as depicted in figure 1.11, is a sequence of 3D

layers, where each layer can be seen as a volume of neurons. Each plane of neurons

Input image Output3D Layers

…

1st Layer

2nd Layer
N-th Layer

Figure 1.11: Typical architecture of a CNN. Multiple 3D layers of neurons are used
to filter and extract key features from the input image.

inside a layer performs a computation that generates a 2D output called feature
map [70], as a result, the output of a single layer is a volume of feature maps.
These maps carry information related to the features detected by neurons when
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1 – Motivations and background

analyzing the image. Output feature maps of a certain layer become the input of
the subsequent layer. This sequence of feature maps elaboration, layer after layer,
allows to combine lower-level features into higher-level features [73], following a
bottom-up approach. Indeed, an image can be decomposed in different features:
groups of edges and corners (low-level features) assemble into patterns, patterns
(mid-level features) constitutes parts of an object and parts (high-level features)
form the object itself. The last layers of a CNN (more details will be given in
the next subsection) perform the actual classification. The output of a CNN is a
probability distribution over the classes that the network is able to discriminate.

Main Layers

Layers in a typical CNN can be distinguished in three main kinds [74], namely
convolution, rectification and pooling. Figure 1.12 shows the main operations in
a CNN. The input image is represented as a matrix of pixels (unsigned integers
that can assume values in the range [0, 255]). A more detailed description of the
computation performed in each layer will be given in the following.
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16 50 72 87 2 3

4 0 10 4 5 2

-72 21

After
CONV

Kernel is shifted
by 1 pixel (STRIDE)

-1 -1 -1

-1 8 -1

-1 -1 -1

KERNEL

INPUT IMAGE

OUTPUT

FEATURE

MAP

-125

92 -126

40

-66
-52

-168 270
151

215 345

-253

492
-47

0 21

After
ReLU

OUTPUT

FEATURE

MAP

0

92
0

40

0 0

0 270
151

215
345

0

492 0

92 40

After

MAXPOOL

OUTPUT

FEATURE

MAP

345 492

Figure 1.12: Main operations in a CNN.

Convolution A convolution layer (CONV), as the name suggests, is where neu-
rons perform convolutions between the input image and the learned weights. Each
neuron is associated with a kernel (i.e. a matrix of weights). The kernel is shifted
all over the input image, computing a weighted sum of the inputs. Observing the
example in figure 1.12, the kernel is a 3×3 matrix that is first applied on the red
region of the input image, also called convolution window, performing an element-
wise multiplication and a final accumulation of all the obtained values. If I is the
input image and K is the kernel, then the convolution operation can be expressed
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1.3 – Convolutional Neural Networks

as:
o =

3∑
i=1

3∑
j=1

I[i][j] · K[i][j] (1.12)

The output value o is the first element (in picture 1.12 it is the red element in
the output feature map after the convolution) of the output feature map produced.
Then the kernel is shifted by a variable quantity called stride (in figure 1.12 is equal
to 1) covering a new convolution window and a new output is produced. The whole
image is scanned following this procedure and the result is an output feature map
that becomes the input for the next layer. The process of shifting the kernel on
the input image is usually referred to as sliding window process. The size of the
output feature map depends on the value of the stride. This parameter is used
to downsample the input image [70] loosing some position information, as already
explained in subsection 1.3.1.
Figure 1.13 generalizes the operation of convolution between an image of size R×C
and a kernel of size K×K with stride S. The output feature map resulting from the

O

P

R

C

O

P

Input image Output feature map

Kernel

K

K

a single pixel

R

C

new output pixelS kernel is slid

1st ITERATION

2nd ITERATION

Convolution
window

Figure 1.13: Basic convolution operation. The kernel is slid until all the input
image has been filtered. The result of the convolution is an output feature map
that highlights certain features depending on the type of filter used.
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convolution has dimensions O×P that can be calculated as:

O = M − k1
S

+ 1; P = N − k2
S

+ 1 (1.13)

Usually kernel, input image and output feature map are square shaped. The ex-
ample in figure 1.13 is a simplification of what happens in real CNNs where the
convolution is high-dimensional. Figure 1.14 depicts a more general case. First of

Kernel

Cin

K

K
Cin

R

C

Input image
Output feature map

O

P

+

Convolution
windows

Figure 1.14: High-dimensional convolution with a single kernel. Each convolution
window produces an output value. The values are summed together in order to
compute the final pixel of the output feature map.

all, the input image is RGB, hence, it is composed of three channels (red, green
and blue). The parameter Cin represents the number of input channels. The kernel,
also, is a 3D matrix with Cin channels as the input image. Each kernel channel is
slid on the correspondent input image channel. For each convolution window, the
output values obtained by convolving each kernel channel with the correspondent
image channel are summed together to produce the final pixel of the output feature
map. Moreover, as said in subsection 1.3.2, layers are made of many neuron planes
each with its own kernel matrix. So each layer has multiple kernels to detect mul-
tiple features from the same image as shown in picture 1.15, where the number of
different kernels is indicated by F. For each kernel, a channel of the output feature
map is produced. The parameter Cout indicates the number of output channels
from a layer that is equal to the number of convolution kernels (F in figure 1.15).
Since the output feature map of a layer becomes the input feature map for the next
layer, the high-dimensional convolution operation described since now is generally
valid for any feature map (not only for the input image). A complete convolution
between a R×C×Cin feature map and F kernels of size K×K×Cin with stride S is
defined by the following pseudo-code:
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Figure 1.15: High-dimensional convolution with multiple kernels. The output fea-
ture map has multiple channels (Cout) as the number of kernels (F).

1 for (row =0; row <O; row ++){
2 for (col =0; col <P; col ++){
3 for (m=0; m<Cout; m++){
4 for (n=0; n<Cin; n++){
5 for (i=0; i<K; i++){
6 for (j=0; j<K; j++){
7 out_fm[row ][ col ][m]+= kernel[i][j][n][m]×
8 in_fm[S·row+i][S·col+j][n];
9 }}}}}}

Listing 1.1: High-dimensional convolution pseudo code.

Rectification As said in subsection 1.2.2, there exists many activation functions.
Among those, one of the most used is the Rectifying Linear Unit (ReLU) because it
accelerates training of Deep CNNs of several times with respect to other activation
functions [39][69]. It basically saturates to 0 every negative value in the output
feature map as shown in figure 1.12.

Pooling Feature pooling is a form of down-sampling and it is used in CNNs
because it introduces invariance to image variations such as translations, deforma-
tions, noise [16][42]. One of the most used form of feature pooling is max pooling
(MAXPOOL) since it works better than other forms of pooling [69]. As depicted
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in figure 1.12, it divides the feature map in regions (pools) from which it select
the maximum value producing a more compact output feature map. The aim of
pooling, indeed, is also to reduce the size of feature maps in order to lighten the
computational load of the network.

Figure 1.16 shows a complete CNN architecture. The layers described above are
repeated different times inside a deep convolutional network. It is also important to

… …
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cat  0.2%
fly 0.1%
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IF
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…

FEATURE EXTRACTION CLASSIFICATION

Figure 1.16: A typical CNN architecture is composed of a sequence of convolution,
ReLU and max pooling layers whose job is to extract features from the input image.
After feature extraction, there is a classification stage composed of a number of
fully connected (FC) layers and a final classifier that computes the probability
distribution over the available classes.

underline that the shape of the different layers varies across the network. The last
convolution layer is fed to the so called fully connected (FC) layers. Differently from
standard convolution layers where each neuron is connected only to a small portion
of the previous layer, in FC layers all neurons are connected to the entire previous
layer (that is why they are called fully connected). FC layers generate a vector
whose size is equal to the number of classes that the network can discriminate. After
the FC stage, the last layer inside a CNN is a classifier that returns the probability
distribution over the available classes. The class with the highest probability is the
result of the CNN classification. Feeding the network with new images (not the
one in the test dataset) for classification is referred to as inference phase.

1.4 Case study: AlexNet
ILSVRC (ImageNet Large Scale Visual Recognition Challenge) is an annual

competition, announced for the first time in 2010, in which teams of researchers
compete with their algorithms to reach the highest precision in different visual
recognition tasks. The goal of the challenge is to classify images using a subset of the
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ImageNet dataset (10 million images divided in more than 10 thousands categories)
as training [93]. In 2012 a deep CNN called AlexNet [69] made a breakthrough by
lowering the classification error rate to 16% (until then it was around 25%). This
is considered as the beginning of the deep learning revolution. Since then, not only
the AI research community but also many other research fields and the industry
have started paying attention. After AlexNet, several novel and powerful CNN
architectures have been proposed, reaching excellent visual recognition results (the
classification error rate is now smaller than 5%).

In order to fully understand some important challenges related to deep CNNs,
a brief overview of AlexNet will be given in the following.
AlexNet is composed of 8 layers: 5 convolutional, and 3 fully connected layers.
Every convolutional and FC layer is followed by the ReLU non-linearity and the
first, the second and the fifth CONV layers are also followed by max pooling. The
input are 224×224×3 images. The last FC layer is connected to a 1000-way classifier
that generates a probability distribution over the 1000 classes that the network can
discriminate. A detailed scheme of the architecture can be found in [69]. The main
figure of interest in the contest of this work is the computational power and the
storage capacity needed to run AlexNet. As highlighted in figure 1.17, this network
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Figure 1.17: AlexNet parameters count.

has 60 million parameters and it counts almost 1 billion operations. In particular,
convolutional layers account for more than 90% of the operations, being the true
computational bottleneck of CNNs.
The time required to train AlexNet, as the authors claim, was between five and six
days on two GTX 580 3GB GPUs. It is important to underline that while training
requires high-precision computation (floating point operations), inference does not
have the same precision constraints [51][30][21] and, in fact, the latency is smaller
than in the training case.
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1.5 Challenges of processing in CNNs
In general, deep learning algorithms must deal with the manipulation of a huge

quantity of data and with very long processing time. As seen in section 1.4, AlexNet
is characterized by a large quantity of parameters and operations. Over the last ten
years, CNNs have evolved and become deeper and more complex. Figure 1.18 high-
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Figure 1.18: Complexity evolution of CNNs over time.

lights how the complexity of CNNs has drastically grown over the years by taking
as reference five very well known networks (LeNet [71], AlexNet [69], GoogLeNet
[110], VGGNet [106], ResNet [48]). The direct consequence of this complexity
growth is twofold. On one side there is the need for powerful systems that can effi-
ciently sustain such data-intensive workload. For this reason, the diffusion of deep
CNNs has overlapped with the appearance and consolidation of massively parallel
technologies such as GPUs (Graphic Processor Units). On the other side, CNN
processing is highly demanding in terms of memory requirements (a large number
of parameters), indeed, memory access is the bottleneck as convolution operations
require a lot of read/write accesses to retrieve input data and write partial results
that will be reused for subsequent convolution operations (the output of a layer is
the input of the next layer). The CNN data flow allows to reuse some input data.
This data reuse property involves both kernels and feature maps.

• Kernel reuse: as explained in subsection 1.3.1, because of the weight sharing
property kernels are reused multiple times over an input feature map.
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1.5 – Challenges of processing in CNNs

• Input feature map reuse: because of the sliding window process explained in
subsection 1.3.2, pixels are reused across convolution windows. Moreover, the
same feature map is reused across different filters (figure 1.15).

Nevertheless, memory access remains a big challenge.
The memory-demanding and computational-intensive characteristics of CNN pro-
cessing bring in a further challenge: power consumption. As said when introducing
Convolutional Neural Networks, they are effectively used in manifold applications.
Many of these applications are mobile or IoT related and they make use of a pre-
trained network to perform real-time inference. It is clear that such kind of applica-
tions have very strict power and latency requirements. For this reason, the research
community and the industry have been focusing on energy-efficient inference ac-
celeration and many hardware solutions have been proposed. An overview of the
main ones will be given in the following chapter.

23



24



Chapter 2

Related Work

The State of the Art on acceleration of Convolutional Neural Networks is broad.
Here only some of the most relevant works will be reported. The accelerators
described in the following are all based on ASIC (Application Specific Integrated
Circuit) designs as that is the target of this work (the motivation of this choice
will be given at the beginning of chapter 3). An extensive survey on hardware
accelerators (including FPGA- and GPU-based ones) for Deep Learning can be
found in [112] (together with other related topics) and [117].

In [20] authors propose a reconfigurable accelerator for Deep CNNs that is
optimized for energy efficiency. It is based on a spatial architecture made of an
array of 168 processing elements (PEs) and four levels of memory hierarchy that
include the off-chip DRAM, the on-chip global buffer, a FIFO buffer that controls
the inter-PE communication traffic and a register file inside each PE. In addition,
the PE contains a MAC for multiply-accumulate operations that can also be used
for max pooling processing. They also define a taxonomy of existing CNN dataflows
(each of them exploits only partially the data sharing possibilities offered by the
convolution) and, based on those, propose a novel dataflow called row stationary
that takes advantage of all the types of data sharing in convolutional layers to
efficiently exploit and optimize the data movement across the memory hierarchy.

The work presented in [19] is an area- and energy-efficient accelerator, scalable
to TOP/s performance called Origami. It is composed of a number of so called sum-
of-product (SoP) units that compute convolution windows. Each SoP is fed with
the same input features but with different kernels, hence, each SoP compute the
partial sum of a different output channel. These partial sums are then accumulated
by other blocks called channel summer (ChSum). Origami is also equipped with an
SRAM that stores the image window that is currently being computed, an image
bank (basically a register file) in which is loaded the image row to send to the SoP
units and a filter bank for storing weights. The Origami chip is thought to be used
in conjunction with an FPGA that is configured to do possible data pre-processing
on input images, store data processed by Origami chips, execute max pooling and
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ReLU functions that Origami does not support.
The Deep Convolutional Neural Network Recognition Processor presented in

[105] is an energy-efficient CNN processor to be used in IoE (Internet-of-Everything)
systems to enable in-situ machine learning processing. The system is made of four
homogeneous CNN cores composed of: a control unit, input, output and kernel
buffers and two so called Neuron Processing Elements (NPEs). Each NPE is com-
posed of a number of parallel dual-range MAC blocks (DRMAC) for convolutions,
ReLU blocks and Maxpool blocks. The DRMAC blocks can be configured to per-
form truncated MAC operations on a reduced bit-width precision to limit the power
consumption. In addition the authors conduct a PCA (Principal Component Anal-
ysis) to extract few basic kernels from which the original kernels can be derived by
weighted sums of such basic kernels with a very small loss in the network accuracy.
The advantage of this approach is that only the basic kernels and the constant
values needed for the weighted sums are stored on chip.

The work in [46] presents an energy efficient inference engine (EIE) designed
for accelerating compressed network models based on sparse matrix-matrix multi-
plications and weight sharing without accuracy loss. The engine is composed of a
central control unit (CCU) that controls an array of PEs each of them computing
convolutions on a row of the compressed input matrix. The PE is composed of an
arithmetic unit that performs MAC operations and various memory units to man-
age input/output data movements. Furthermore, there is a distributed non-zero
detection network that detects non-zero input features which are then broadcasted
to the PE array.

In [80] authors propose an energy-scalable CNN processor that can be used
for visual recognition in wearable devices. A subword-parallel Dynamic-Voltage-
Accuracy-Frequency Scaling (DVAFS) technique is introduced and exploited to
enable energy-precision scalability while always guaranteeing a constant through-
put. The processor is C programmable and it is based on a SIMD RISC instruction
set extended with custom instructions. The processor is composed of a SIMD array
of MAC units for convolutions, a SIMD array of units that perform ReLU and max
pooling, an on-chip SRAM and a control unit. The MAC units are designed to re-
configurable in terms of precision: as instance, a single unit can be used to execute
one MAC operation on two 8-bit data or two MAC operations on four 4-bit data.
Moreover, in order to exploit dynamic voltage scaling in a granular way, the chip
is divided into three different power and body-bias regions.

The work presented in [29] is a complete energy-efficient SoC (System-on-Chip)
for embedded systems that make use of CNN applications. It composed of an ARM
Cortex microcontroller, eight DSP clusters that perform operations such as pooling,
non-linear activation, normalization and classification, 8 convolutional accelerators,
DMAs units, different peripherals and other standard blocks to support different
computer vision applications and on-chip SRAM. Each convolutional accelerator
integrates buffers for input features, kernels, intermediate and output results, 36
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fixed-point MAC units and an adder tree for accumulation.
The Deep Neural Processing Unit (DNPU) proposed in [103] is a reconfigurable

processor that support CNNs and RNNs (Recurrent Neural Networks). It is com-
posed of a convolution processor, a unit that processes FC and RNN layers and a
global RISC controller. The convolution processor is a multi-cluster unit, where
each cluster (four in total) integrates four convolution cores, each having an array
of PEs and small memory units to hold input data and partial sums. The key
feature is the use of a dynamic fixed-point with on-line adaptation technique and
of a LUT-based (Lookup Table) multiplier that allows to reduce the power con-
sumption with respect to a standard multiplier. The adaptive dynamic fixed-point
changes the fraction length of a word, based on the overflow monitoring of the op-
erations executed. The processor for FC and RNN layers is composed of buffers for
input/output data and a matrix multiplier based on a quantization table (Q-table)
where pre-computed multiplication results between input features and weights are
stored. The Q-table allows to reduce the off-chip accesses to retrieve input data.

In [122] authors propose an energy-efficient Hybrid-Neural-Network Processor
that supports CNN-, FCN (Full Connection Network)- and RNN-like dataflow. The
processor is composed of a controller, an on-chip memory system and two heteroge-
neous arrays of processing elements. PEs are divided in general PEs for convolution
support and super PEs which are enhanced general PEs that also support pooling
and operations needed for RNNs. Each PE has two configurable multiplier that
can be used together or separately depending on the input data precision.

Paper [63] describes the architecture and the deployment in datacenters of the
Google Tensor Processing Unit (TPU). The TPU is designed to work as a coproces-
sor inside servers to accelerate DNN computation and meet the requirements of the
growing demand of DNNs usage in applications such as speech recognition. The
TPU is a custom ASIC whose main computation core is a Matrix Multiply Unit
containing 256×256 MAC units organized as a systolic array. An accumulator unit
accumulates the partial sums produced by the Matrix Multiply Unit. There are
different on-chip buffers for storing weights, input features, partial results and in-
structions for the TPU coming from the host server. That are also two other units,
one for calculating activations and one for performing normalization and pooling.
TPU’s instructions are CISC-like.
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Chapter 3

Deep Learning Processor
Architecture

This chapter thoroughly describes the architecture of the proposed Deep Learn-
ing Processor. The accelerator has been designed having in mind the challenges
that CNN processing poses, as discussed in chapter 1, section 1.5. This part of
the work, together with the design space exploration of the DLP (chapter 4), was
developed in the contest of an international joint research project involving Po-
litecnico di Torino (Giulia Santoro, prof. Mario Casu, prof. Andrea Calimera and
Valentino Peluso) and National University of Singapore (prof. Massimo Alioto).
The outcome of this work is the product of the discussion and the collaboration
between the people cited above. Part of this work was previously published in [98]
and [97].

3.1 Hardware Choice for Inference Acceleration
Inference acceleration of CNNs has been widely addressed in literature (chapter

2) and many different hardware solutions have been proposed.
The key features that an optimal DL accelerator should have are:

• flexibility to support the shape variability of CNN layers;

• high-throughput to keep up with the computation-intensive workload;

• energy-efficiency to sustain the throughput and the data demand at the same
time.

Given the peculiar characteristics of CNNs, not all hardware systems are suitable
for inference acceleration. Table 3.1 reports an overview of advantages and disad-
vantages of using some common hardware solutions.
CPUs are flexible since they are general purpose but they are highly inefficient for
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HW type PROs CONs
CPU Flexible Hihgly inefficient
GPU Great for training High power dissipation

FPGA Reconfigurable
Not expensive Not dedicated

ASIC Dedicated
Performance Not flexible

Table 3.1: Advantages and drawbacks of different types of hardware solutions for
inference acceleration.

data-intensive and massively parallel applications such as deep learning. GPUs,
on the contrary, have been and are still used for accelerating the training phase of
CNNs because they provide high-precision computation (required for training) and
massive parallelism. However, GPUs are characterized by a huge power consump-
tion that makes them unfit for energy efficient inference that is instead required by
most of the emerging applications, such as embedded platforms. Many hardware
accelerators in literature are based on FPGA (Field Programmable Gate Array)
implementations since they are a low cost solution while also ensuring reconfigura-
bility. However, they are not a dedicated solution, hence they cannot reach the
same performance that an ASIC implementation would. Clearly, the drawback in
ASIC solutions is that they are not flexible.
An optimal trade-off between flexibility, performance and efficiency is represented
by a hybrid solutions such as a Deep Learning Processor (DLP) which combines
the quality of design achieved with ASIC implementation flows with the reconfig-
urability of FPGAs.

3.2 System Overview
As shown in figure 3.1, the proposed DLP (hereinafter also called accelera-

tor) is an array of Processing Elements (PEs) interconnected through a wormhole-
switching Network-on-Chip (NoC) [13]. The NoC was not developed as part of this
work and, since it is not the main focus, it will not be described further. The PEs
array is also interfaced with an external DRAM through DDR channels. Moreover,
there is an SRAM buffer that works as an additional level of memory hierarchy
between the NoC, that routes data from/to the PEs array, and the off-chip DRAM.
The computing core of the DLP is the array of Processing Elements that process
data in parallel. Each PE communicates with the NoC through a router (small
green block denoted by R) that sends data and instructions to be executed. As
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Figure 3.1: Overview of the proposed DLP architecture.

it will be thoroughly described in the next section, each PE is equipped with an
input buffer to hold data to be elaborated and with a small output buffer to keep
computed data that are then sent out of the array.

3.3 Processing Element
The Processing Element is where the computation happens, hence, it can be

considered as the basic block of the whole accelerator.
It is a micro-programmed Single Instruction Multiple Data (SIMD) unit, as depicted
in figure 3.2. It is composed of a Control Unit (CU) that sends instructions to the
SIMD unit, called so because it is made of four lanes, each executing the same
instructions but on different data. Lanes receive data from the router and send
back computed data.
The Processing Element has been designed to be:

• optimized for CNN-like workload

• programmable and flexible

• performance-oriented

The PE was described in VHDL (VHSIC Hardware Description Language) in a
parametric fashion with maximum flexibility. This means that every characteristic
(e.g. number of lanes, data precision, size of the PE internal memory and so on)
can be easily modified without need to change the code.

3.3.1 Lane
As depicted in figure 3.2, each lane is composed of:
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Figure 3.2: Block diagram of the PE architecture.

• an Input Buffer (IB) that stores data to be computed;

• an Execution Unit (EU);

• a Scratchpad Memory (SM) that holds partial results that will be reused
shortly afterwards;

• an Output Buffer (OB) to buffer computed data that are then sent out of the
PE.

Looking more closely at figure 3.2, it can be noticed that lanes are connected with
each other (blue arrows going from an EU to the other). In fact, in addition to
working independently, lanes can also cooperate. This cooperation mechanism can
be applied mainly in two cases.

1. When dealing with large-sized input data that cannot be handled by a single
lane, the data is split in several chunks that are assigned to different lanes.
Each lane executes a portion of the operation and then partial results are
properly elaborated exploiting the interconnection among the EUs to produce
the final result.

2. When accumulating data to compute the final result of a convolution window:
as shown in figure 3.3, each lane computes the multiplication of an input pixel
and a weight. The partial results produced are then accumulated horizontally
through the lanes to obtain the final result of the convolution window.
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Figure 3.3: PE lanes working in group.

This grouping mechanism makes it possible to save data movement from/to mem-
ory. Lanes can be grouped to work together in different combinations: as instance,
two groups of two lanes each or one group of four lanes. Some lanes can also be
left in an idle state if they are not needed. The working mode of lanes inside a PE
is flexible depending on the needs.

Execution Unit

The Execution Unit is a two-stage-pipeline modified Multiply-Accumulate (MAC)
unit that can support multiply-accumulate operations needed for the convolution,
max pooling and ReLU. These operations are the most commonly used in CNNs,
hence, they have been chosen as basic operations that each lane can execute. A
simplified block diagram of the EU is depicted in figure 3.4. Inputs A and B (a pixel
and a weight) are used for convolution operations and come from the input buffer.
As a first step they are multiplied, then this partial result is accumulated through
the adder. A multiplication and an accumulation take two clock cycles because of
the presence of two registers (REG and ACC) that define the two pipeline stages of
the EU. At each clock cycle new A and B inputs are loaded from the input buffer,
then they are multiplied and after that summed to the previous partial result until
a convolution window is completed. Once the final result is available, the EU stores
it in the output buffer or in the scratchpad memory if it will be needed again shortly
afterwards.
Multiplexer M1 is used to select between:

1 data coming from the multiplier;

2 input D that may come from the IB or from another lane. This input is
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Figure 3.4: Simplified block diagram of the Execution Unit.

selected when the adder is used as a standalone component to sum partial re-
sults (e.g., during cross-channel accumulation in high dimensional convolution
or for horizontal accumulation across lanes) or for max pooling.

Multiplexer M2 is used to support max pooling. The EU compares two data at a
time by subtracting them. The sign (SGN) of the result is used to select the bigger
data between the two inputs of the adder that might be:

1 the data coming from multiplexer M1;

2 the value stored in the accumulation (ACC) register.

The comparison is carried on until all data in a max pooling window have been
compared and the biggest among them is chosen.
Depending on the operation to perform, the ACC register must be properly initial-
ized. Multiplexer M3 is used for this purpose and it selects among:

1 the smallest negative value when performing the first iteration of max pooling;

34



3.3 – Processing Element

2 the input C coming from the SM;

3 the output of multiplexer M2 which contains the bigger value among the two
compared when performing max pooling;

4 the output of the adder.

Finally, multiplexer M4 is used when the CONV layer that is being computed is
followed by the ReLU activation. As said in paragraph 1.3.2, a ReLU activation
saturates to zero negative values. As a consequence, if the ReLU signal is high and
the value coming from the adder is negative (SGN equal to 1), the output of the
AND will be high as well and it will select input 1 of the multiplexer.
The execution unit is very flexible and with minor modifications with respect to a
standard MAC unit it provides hardware support not only for convolution but also
for ReLU, max pooling and accumulation of partial results that might be stored,
depending on the case, either in the scratchpad memory or in the input buffer or
that come from other lanes inside the PE.

Input Buffer

The input buffer is a sophisticated and flexible memory structure. A simplified
block diagram is depicted in picture 3.5. The IB is composed of two banks: a
private (PVT) and a shared (SHD) one. The PVT bank, as the name suggests, is
only accessible by its lane. The SHD bank, instead, might be accessed also by the
other lanes in the PE. This sharing property is useful when lanes share the same
kernel. If there was no sharing, it would have been necessary to replicate the kernel
in the input buffer of each lane creating redundancy. By giving to each lane access
to the shared bank of the other lanes, there is no such waste and all the memory
capacity can be exploited to store useful data. The sharing mode can be enabled
or disabled depending on the needs.
Both the PVT and SHD banks are divided in an even and an odd portion. Each
portion has one write port (data_in1 for even, data_in2 for odd) controlled by a
write address (wr1_addr for even, wr2_addr for odd). In total, each bank has two
write ports. For what concerns the read ports the situation is different. The PVT
bank has four read ports (two per portion, one controlled by rd1_addr and the
other by rd2_addr). The SHD bank has, instead, two read ports (both controlled
by rd1_addr).
Multiplexers are used to control from which bank and portion of the IB forwarding
the data to output ports. As indicated by the dashed red arrows, multiplexers are
controlled by read addresses (actually, only some bits of the whole addresses are
used as control signals). Thanks to these multiplexers, different read combinations
are available guaranteeing flexibility:
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Figure 3.5: Simplified block diagram of the Input Buffer.

• both out1 and out2 from PVT (one from the even and the other from the
odd portion);

• out1 from local SHD and out2 from PVT;

• out1 from other lane SHD and out2 from PVT.

The first read option might be useful, as instance, when performing max pooling: if
the PVT bank contains data to be compared, they are read two at a time and sent
to the EU. The last two options are useful for convolution operations: supposing
that PVT contains pixels and SHD stores weights, one data is read from PVT and
the other from SHD.
In order to understand how the address space of the input buffer is managed, it
might be of help to report an example. Suppose that each lane has an IB with 160
locations (128 for the PVT bank and 32 for the SHD) as shown in figure 3.6. In
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Figure 3.6: Address space of the Input Buffer memory system inside a PE.

addition, all the four SHD banks, for a total of 128 locations, are addressable by
each lane. This means that each lane can address a total of 256 locations, requiring
an 8-bit address. Two cases must be distinguished.

1. Sharing mode disabled (each lane has not access to the other SHD banks):
the address space seen by each lane goes from address 0 to address 159 (0-127
for PVT and 128-159 for local SHD).

2. Sharing mode enabled (each lane can access all the other SHD banks): the
address space seen by each lane goes from address 0 to address 255 (0-127
always for PVT). Differently from the first case, now each lane sees an address
space for accessing all SHD banks that goes from address 128 to 255 (red
numbers in figure 3.6).

The address mapping for reading/writing operations is explained in the following.
SHD read address mapping:

usage 1 SHD bank sel bank address even/odd
bits 7 6 5 4 . . . 1 0

Table 3.2: Read address mapping for SHD banks.

The most significant bit (bit number 7) is set to one as SHD addresses start from
128 (10000000 in binary). Bits 5 and 6 are used to discriminate SHD banks (00 for
lane 1 SHD, 01 for lane 2 and so on). Bits 0 to 4 are used to address a location in
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the bank.
PVT read address mapping:

usage 0 bank address even/odd
bits 7 6 . . . 1 0

Table 3.3: Read address mapping for PVT banks.

In this case the most significant bit is set to zero as PVT addresses go from 0
(00000000 in binary) to 127 (01111111 in binary).
SHD write address mapping:

usage 1 unused bank address even/odd
bits 7 6 5 4 . . . 1 0

Table 3.4: Write address mapping for SHD banks.

In this case bits 5 and 6 are unused since the writing is managed privately inside
each lane (there is no need to share as done for the reading).
PVT write address mapping: Another fundamental characteristics of the IB is that

usage 0 bank address even/odd
bits 7 6 . . . 1 0

Table 3.5: Write address mapping for PVT banks.

is can be used in double buffering mode (DBM). When executing convolutions,
as instance, data are continuously read from the IB. Once all of them have been
consumed by the EU, the computation must stop allowing new data to be loaded
in the input buffer. This loading latency causes performance to decrease. In order
to avoid it, the double buffer mode was introduced. Basically, the IB is divided into
two parts, one read portion and one write portion as shown in picture 3.7. Assume
that, at step 1, the orange portion is being loaded with new data while the green
portion is being read. At step 2 all data from the read portion has been used to
feed the EU while the data loading of the write part is terminated. At this point
the two portions are swapped: the green one becomes the write portion while the
orange one is used to read the new data just loaded. Once all data in the orange
block are consumed, the two portions are swapped again and so forth. Assuming
that the loading and consuming rates are the same, this mechanism ensures:

• masking of the loading latency of the input buffer;

• continuous computation.
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For the sake of flexibility, the double buffering mode can be applied to PVT and
SHD banks independently. Therefore, the possible combinations are:

1. no DBM for PVT and SHD;

2. DBM only for PVT or the opposite;

3. DBM for both PVT and SHD.

Scratchpad Memory

The scratchpad memory is a basic read/write memory with one input port and
one output port. A scheme is shown in figure 3.8.

SM

rd / wr
addr

data_in

clock

data_out

Figure 3.8: Scratchpad Memory.

Output Buffer

The output buffer depicted in figure 3.9 is a simple FIFO (First In First Out),
hence, the first data stored is also the first to be read. Empty and full signals are
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Figure 3.9: Output Buffer.

used to manage read/write operations. Whenever the buffer is full, the full signal
is high and any further write operation is blocked (disabling the OB through the
en signal) until data inside the buffer are read and sent to the router. Once the
buffer is emptied, the full signal goes low, the empty signal goes high and write
operations are enabled again.

3.3.2 Latch-based Memory Design
All memory structures described since now have been designed following a latch-

based approach as the one depicted in figure 3.10. Memory cells are high-level
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Figure 3.10: Latch-based memory design.

sensitive latches. All input signals (input data, address, . . . ), before entering the
latch array, go through low-level sensitive master latches. Hence, there is a sequence
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of master and slaves latches and, as a result, the whole memory array is edge-
sensitive. This design technique is used for implementing small embedded memories
(as this is the case). In fact, the presence of several slave latches controlled just by
one master latch allows to build compact memory arrays. In addition, with respect
to a standard SRAM, the latch-based implementation can work at a lower VDD,
with consequent power savings. Moreover, a latch-based memory design is a good
candidate for custom of semi-custom implementation (place&route, as instance).

3.3.3 Control Unit
The control unit manages all operation modes of the PE. It is a micro-programmed

unit and its block diagram is represented in picture 3.11. In addition to the standard
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Figure 3.11: Control Unit.

blocks usually present in a micro-programmed CU, there are three additional com-
ponents: the FSM (Finite State Machine), the sequencer and the setting registers.
The FSM is the only component inside a PE that interacts with the external world.
In particular, the FSM communicates with an interface block, which intermediates
between the PE and the NoC, using request and acknowledgment signals. This
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communication protocol is used to manage data transfer to/from the PE (write
code or data in the PE or transfer computed data out of the PE).
The setting registers, as the name suggests, store important settings used to man-
age PE operation modes.
Finally, the sequencer (refer to figure 3.12) is a block that allows to manage in-
struction loops efficiently, by guaranteeing zero-overhead in loops. In fact, a con-

MUX

# iter

-1

= 0

# iterations

MUX

address

write portion
start addr

from 
SETTING 

REGISTERS read portion
start addr

+1

Figure 3.12: Simplified version of the sequencer.

volutional layer can be seen as a routine of few simple instructions iterated many
times. The sequencer provides:

• control for iteration on a single instruction or a routine;

• automatic update of read/write addresses for the IB when reading/writing
on contiguous locations;

• automatic update of addresses when using the IB in double buffering mode
to swap between read/write portions.

Inputs of the sequencer come from the setting registers.
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Chapter 4

Design Space Exploration

The Deep Learning Processor described in chapter 3 is used as an architectural
template for conducting a design space exploration based on an analytic model that
takes into account all the key features of the accelerator and defines all the best
DLP configurations in terms of energy efficiency and throughput.

4.1 Low-power Design
The PE and the NoC are developed at register-transfer level using a fully para-

metric HDL (Hardware Description Language ) code that can be easily deployed
on an FPGA or mapped onto an ASIC target technology. In this work a commer-
cial 28 nm UTBB FDSOI technology is used. The RTL (Register-Transfer Level)
code of the PE and the NoC router are first synthesized using Synopsys Design
Compiler, and then placed and routed using Synopsys IC Compiler. For both the
design stages low-power optimization features have been enabled. Power consump-
tion is extracted using Synopsys Prime-Time with SAIF back-annotation. Figure
4.1 shows the design flow. The FDSOI technology is well-known for its extended

RTL description:
fully parametric

HDL code

Synthesis on a 
28 nm UTBB FDSOI 

technology
(Synopsys Design Compiler)

Place & Route
(Synopsys IC Compiler)

Power consumption
using SAIF back

annotation
(Synopsys Prime Time)

Low-power optimization features

Figure 4.1: Low-power design flow of the PE.

supply voltage (VDD) range. In this work, the PE and the NoC router are charac-
terized using a VDD voltage range between 0.6 V and 1.0 V with a 100 mV step and
a corresponding set of clock frequencies (fck) determined after physical design. In
addition, since clock frequency can be set with a finer granularity than the supply
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voltage (PLLs can be tuned in more easily than voltage regulators), it has been
considered also the possibility of scaling down the clock frequency for each voltage
value. This results in four different frequencies for each 100 mV interval. Figure
4.2 shows the resulting seventeen Voltage-Frequency (VF) points used during the
design space exploration.
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Figure 4.2: VF pairs.

4.2 Power Management
When dealing with low power and energy efficient applications, a power manage-

ment strategy is crucial. Previous works, such as [22], have shown that techniques
like Dynamic Voltage and Frequency Scaling (DVFS) help improve the power con-
sumption in CNN accelerators. In this contest, a fine dual-VDD DVFS management
has been explored.
Standard DVFS adjusts both supply voltage and clock frequency to reduce the
power consumption, exploiting the dependence of dynamic power on VDD and fck.
Inside a voltage range, there are different admitted clock frequencies (as shown in
figure 4.2). A reduction of fck implies a linear decrease of the power consumption.
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When fck is lowered below the lowest value in that voltage domain, VDD is also
decreased causing a further power reduction.
When considering dual-VDD DVFS, the design is divided in regions called tiles that
can be supplied with a low or a high-VDD. These two VDD correspond to the out-
ermost supply voltage points inside a voltage domain (for example, 0.6 V and 0.7
V, observing figure 4.2). The VDD value assigned to each tile is such that the clock
frequency constraint is met and the total number of tiles set at low-VDD is maxi-
mized. The dual-VDD scheme assigns to tiles that belong to critical timing paths a
high-VDD and to tiles that belong to non-critical timing paths a low-VDD.
The dual-VDD DVFS technique was applied in the contest of this work by following
the same implementation flow proposed in [83].

4.3 Design Space
As already said, the DLP architecture presented in chapter 3 was described

using a parametric HDL code, hence, it can be used as a template to generate
different instances whose characteristics vary according to table 4.1. So, each of

Variable Value Meaning
NP E 4÷100 Number of PEs
NMC 1÷4 Number of memory con-

trollers
S% 0÷80%, 10-% steps Size of SRAM buffers as

a percentage of die area
BNoC 32÷256, 32-bit steps NoC channels bit-width
MIB 32, 64, 128, 256 Words in the IB
IFIB 8, 16, 32 Words in the IB dedi-

cated to IFs
DBIF 0, 1 Double-buffering mode

variable for IFs
DBW 0, 1 Double-buffering mode

variable for Ws
V F 1÷17 Voltage-Frequency pairs

Table 4.1: DLP’s design space variables.

these DLP instances can vary in terms of number of PEs in the array, number
and size of SRAM banks connected to DDR memory controllers and/or to the
periphery of the NoC, size of input buffers and whether or not the double buffering
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mode is active (this mode is set at firmware level in the microcode memory of the
control unit). The design space is then obtained by the Cartesian product of all
the design-time and run-time variables shown in table 4.1 that will be delineated
in the following.

• NP E = NP Er × NP Ec: number of PEs in the array matching the layout of a
NoC mesh. It is expressed as the number of PEs per row (NP Er) multiplied
by the number of PEs per column (NP Ec). NP Er and NP Ec are independent
variables. The maximum value that NP E can assume depends on the target
die area which ranges from 2 mm2 up to 10 mm2. In the former case NP E,MAX

is 20, while in the latter it is 100.

• NMC : number of DRAM memory controllers and channels which can vary
from 1 to 4. The more the channels the higher the memory bandwidth but,
also, the higher the power dissipated in the external DRAM.

• S%: size of SRAM buffers expressed as a percentage of the maximum die
area. This variable ranges from 0 to 80%, with 10% steps. The SRAM is
placed between the NoC periphery and the DDR memory controllers and it is
partitioned in NMC buffers. Each buffer is divided in different banks in order
to ensure the same access bandwidth of the NoC. The bank size depends on
S%, NMC and the die area.

• BNoC : NoC channels bit-width that varies from 32 to 256 bits.

• MIB: private bank of the input buffer expressed as number of words. This
variable ranges from 32 to 256 words. The size of the shared bank (SHD) is
always 1/4 of the private one.

• IFIB: portion of the input buffer in which Input Features (IFs) are stored.
Possible values are 8, 16 or 32 words. This portion and the weights portion
are eventually doubled when the double buffering mode is active and they
sum up to MIB words (256 maximum, in total).

• DBIF : boolean variable that indicates whether the double buffering mode is
active (0 for inactive, 1 for active) for the input buffer portion that stores IFs
(PVT).

• DBW : boolean variable that indicates whether the double buffering mode is
active (0 for inactive, 1 for active) for the input buffer portion that stores
Weights (SHD).

• V F : number indicating the VF pair chosen for a particular DLP instance.

When conducting the design space exploration, three constraints are set and feasible
solution must respect them.
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1. AMAX : maximum die area which is given by the sum of the logic are and the
SRAM area.

2. BWDRAM : maximum DRAM bandwidth which is given by the multiplication
between accesses per unit time to the DDR channels and the DDR channels
bit-width.

3. BWSRAM : maximum SRAM bandwidth (similar limit as for BWDRAM).

Once all non-feasible solutions are pruned out of the design space, a Pareto analysis
is conducted by searching feasible implementations which are not dominated in
terms of throughput, evaluated as billions of basic operations per second (GOPS),
or energy efficiency, evaluated as the inverse of the energy spent per single operation
(in nJ−1, commonly expressed as GOPS/W). The next section describes the analytic
model in detail.

4.4 Energy-Throughput Model
4.4.1 Workload Model

The computation of CONV and FC layers is modeled as matrix-matrix multi-
plications as done in standard CNNs frameworks such as Caffe [61]. Only convo-
lutional and fully connected layers are considered in the workload model as they
represent the true computational bottleneck of CNNs. Standard matrix block par-
titioning is then applied to enable parallel processing. Hence, the computation
inside each PE is modeled as a sequence of three basic steps:

1. fetching of Input Features (IFs) and Weights (Ws);

2. multiplication of the fetched IF and W;

3. accumulation.

IFs are firstly fetched from the off-chip DRAM and then stored in the SRAM buffers,
if present, because they are reused across different kernels. If SRAM buffers are not
present, input data have to be fetched from the DRAM whenever it is necessary.

4.4.2 Throughput Model
Different combination of design variables may lead to architectures in which the

throughput can be limited by:

1. computation;

2. memory bandwidth of the DRAM of the SRAM;
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3. the NoC bandwidth.

This model finds the bottleneck and computes the throughput accordingly. The
throughput model has been described in such a way to follow quite accurately the
RTL description of the PE. The NoC is instead modeled by following a simplified
steady-state model that neglects the insurgence of congestion in the NoC and the
consequent latencies. In fact, since the NoC communication patterns are regular
and predictable at design-time for the application considered in this work, neglect-
ing the congestion does not affect the accuracy of the model.
The throughput of the all DLP can be calculated as:

ThS = NP EThP E (4.1)

where NP E is the number of active PEs and ThP E is the throughput of a single PE
expressed by equation 4.2.

ThP E = NLThL (4.2)
NL is the number of lanes inside a PE (this is fixed to 4), while ThL is the single
lane throughput. ThL can be seen as the number of basic operations executed by
a lane during an Initiation Interval.
ThL can be expressed as:

ThL = NW NOP S

IIW

fck (4.3)

Considering that NW NOP S = NW (NMUL + NADD) = 2NW IF is the number of op-
erations computed by a single lane during an initiation interval IIW , the expression
of the throughput can be rewritten as:

ThL = 2NW IF

IIW

fck (4.4)

As depicted in figure 4.3, the computation of a lane consists of two nested loops
(loop1 and loop2). First, in loop1, weights are loaded from the DRAM into the
input buffer (W portion), then, in loop2 input features are loaded from the DRAM
into the IB (IF portion). The inner loop is repeated for NW times, where NW is
the weight-reuse factor and it takes into account the fact that weights are reused
over a feature map. So, except for the first iteration, for the other loop2 iterations
IFs are fetched directly from the input buffer and sent to the execution unit (EU)
together with the weight fetched in the outer loop. The initiation interval of loop1
and loop2 are indicated by IIW and IIIF , respectively. If there are no stalls due to
the unavailability of a double buffer (DBW = 0) or the NoC bandwidth, then the
outer cycle initiation interval is exactly equal to NW × IIW .
IIW is calculated as:

IIW =

⎧⎨⎩max(LW , NW IIIF ), if DBW = 1
LW + NW IIIF if DBW = 0

(4.5)
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DRAM

SRAM

IB
loop1: fetch W        IIW

loop2: fetch IF        IIIF

Nw = weights reuse factor

Shared weights

W

IF

1

2

2

EU
× Nw

LANE

Figure 4.3: PE data fetching scheme for convolution computation.

where LW is the weights communication latency (time needed to load the wights).
The expression of IIW takes into account two cases.

1. DBW active: IIW is equal to the maximum between the weights communica-
tion latency LW and NW times the IF initiation interval (IIIF must be taken
into account for every iteration of inner loop2, as shown in figure 4.3).

2. DBW inactive: IIW is equal to the sum of the weights communication latency
LW and NW times the IF initiation interval.

LW is limited by the bandwidth of either the PE input interface, the NoC, or the
DRAM:

LW = WDW NL

min(BWP E, BWNoC , BWDRAM) (4.6)

In equation 4.6, W is the number of weights loaded in the IB, DW the weight bit-
width parallelism and NL is the number of lanes.
IIIF is calculated similarly to IIW ; it takes into account potential stalls due to IF
communication latency and computation latency:

IIIF =

⎧⎨⎩max(LIF , LC), if DBIF = 1
LIF + LC if DBIF = 0

(4.7)

where LIF is the communication latency of input features, which is similar to
equation 4.6 but it considers the possibility of loading IFs from the SRAM other
than the DRAM. The expression of IIIF also takes into account two cases.

1. DBIF active: IIIF is equal to the maximum between the IF communication
latency LIF and the computation latency LC .
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2. DBIF inactive: IIIF is equal to the sum of the IF communication latency
LIF and the computation latency LC .

The computation latency is calculated as:

LC = IF + Lovh (4.8)

where Lovh is the control logic overhead (one clock cycle in this architecture).
In a scenario where the computation latency is the dominant term, IIW ≃ NW IIIF ,
IIIF ≃ LC and LC ≃ IF (negligible overhead Lovh). When substituting these
expressions in equation 4.4, ThL becomes:

ThL ≃ 2IF

IIIF

fck ≃ 2IF

IF
fck ≃ 2fck (4.9)

Basically, ThL simplifies to two operations per clock cycle, i.e. one multiplication
and one addition.
The throughput of a lane is given as number of clock cycles, hence, the actual ThL

in GOPS is finally obtained by multiplying the number of clock cycles by the clock
frequency fck.

4.4.3 Energy Model
The energy model takes into account the energy dissipated:

• to access both the off-chip DRAM and the SRAM;

• to move data through the NoC;

• by the PE array.

The energy efficiency (GOPS/W) is calculated as:

Eeff = ThS

ET OT

(4.10)

where ET OT is the sum of the three energy contribution cited above and ThS

is the system throughput (equation 4.1). The power dissipated to access the
DRAM considers a specific commercial low-power DDR chip (Micron Technology
Inc. LPDDR4X, Z00M 4-Gb die) and its expression is taken from the datasheet
(in mW):

PDRAM = NMC

(
10.9 + 0.8522BWrd + 462BWwr

BWDRAM

)
, (4.11)

BWrd and BWwr are the reading and writing bandwidth, respectively, and they
depend on the workload. The bandwidth of each DRAM channel is equal to
BWDRAM/NMC =96 Gbps. The maximum DRAM power consumption is obtained
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when BWrd = BWDRAM and BWwr = 0. Supposing to have a 4-channel (NMC = 4)
DRAM chip, PDRAM,max = 4(10.9 + 0.8 · 522) = 1714mW .
The DRAM energy consumption is given by:

EDRAM = PDRAMTEXE = PDRAM
NOPS

ThS

(4.12)

where NOPS is the number of operations performed.
The PE and NoC power consumptions are obtained from post-layout simulations
under realistic workload (SAIF back-annotation as explained in section 4.1). Figure
4.4 shows different PE’s power consumption curves obtained by varying the size of
the input buffer MIB which is a design variable (section 4.3).
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Figure 4.4: PE’s power consumption as function of the working frequency. The
different curves refer to different values of the size of the input buffer (expressed as
number of words).

Even when considering the worst case, which is MIB = 256 and fck ≃ 1.4 GHz, the
PE power consumption (less than 60 mW) is 30× smaller than PDRAM,max.
Finally, the on-chip SRAM energy is obtained from the SRAM module generators.
The described model was implemented in Matlab and an extensive design space
exploration was carried out, by using the design variables listed in table 4.1. The
results of the exploration are reported in the next section.
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4.5 Results and Analysis
The solutions obtained by running the exploration are projected into the through-

put-energy efficiency subspace and then Pareto points are extracted. The obtained
Pareto curves are reported in figures 4.5(a)-(b); figure 4.5(a) does not take into
consideration the DRAM energy, whereas figure 4.5(b) does. In correspondence of

Pareto Solutions w/o DRAM Energy

E
n

er
g

y 
E

ff
ic

ie
n

c
y 

(G
O

P
S

/W
)

Throughput (GOPS)
(a)

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90

(9,7),11.1,4,60,12
(9,7),13.3,4,60,5

(12,5),12.6,4,60,4

(13,6),16.4,4,60,1

(10,6),16.8,4,60,1

(14,2),5.7,4,60,4(10,3),7.1,4,60,1

(14,2),11.3,4,80,1

(14,2),5.7,4,60,1

(10,2),3.9,4,40,1

(9,2),3.5,4,40,1

(9,2),3.1,4,40,1

(7,2),3.6,4,60,1
(6,2),2.1,4,40,1

(4,3),1.2,4,0,1

(4,3),1.0,4,0,1(4,3),0.8,4,0,1

(5,2),0.7,4,0,1

(3,3),0.6,4,0,1

(3,2),0.4,4,0,1

(2,2),0.3,2,0,1

(#PEr,#PEc), Area(mm2), #DDR-Ch, SRAM%, VF
Pareto frontier

Pareto Solutions w/ DRAM Energy

E
n

er
g

y 
E

ff
ic

ie
n

c
y 

(G
O

P
S

/W
)

Throughput (GOPS)
(b)

30

35

40

45

50

55

60

64 66 68 70 72 74 76 78 80 82

(9,7),11.1,4,60,12

(9,7),13.3,4,60,5

(12,5),12.6,4,60,4
(13,6),16.4,4,60,1

(10,6),16.8,4,60,1

(14,2),5.7,4,60,4(10,3),7.1,4,60,1

(14,2),11.3,4,80,1

(#PEr,#PEc), Area(mm2), #DDR-Ch, SRAM%, VF
Pareto frontier

Figure 4.5: Pareto-Optimal Solutions

each Pareto point the most representative design variables, among the ones listed
in table 4.1, are indicated. These are: the size of the PE array expressed as pairs
of PEs per row NPEr and PEs per column NPEc (#PEr, #PEc), the total die are
(in mm2), the number of DDR channels (#DDR-Ch), the percentage of total die
area dedicated to SRAM (SRAM%) and the chosen VF pair code (V F , 1 ÷ 17 as
reported in figure 4.2).
The first and most evident difference between the two plots is the significant im-
pact of DRAM energy on the energy efficiency of the DLP. Indeed, when taking
into account the impact of accessing the off-chip DRAM, the energy efficiency drops
of one order of magnitude. Furthermore, the Pareto curve is compressed and it is
shifted towards higher throughput values. In fact, below 64 GOPS, all the exist-
ing implementations show an inferior energy efficiency; by contrast, without the
DRAM, highly energy-efficient implementations can be obtained even at a lower
throughput, down to 10 GOPS.
A closer look to the Pareto points reveals that the points obtained by consider-
ing the DRAM energy are a subset of those obtained without the DRAM energy.
In particular, only the Pareto points with throughput greater than 64 GOPS are
preserved when the DRAM energy is included; the ones that exhibit lower through-
put but higher energy efficiency without the DRAM energy are pruned when the
DRAM energy is included because they become Pareto-dominated. These pruned
points happen to be those with a small area and a reduced parallelism, as reported
in figures 4.6(a)-(b). The first Pareto-optimal implementation with DRAM energy
(64 GOPS) takes an area (11.3mm2) that is 37× larger than that of the minimum

52



4.5 – Results and Analysis

0

5

10

15

20

20 30 40 50 60 70 80

Area of Pareto solutions w/o DRAM energy

Throughput (GOPS)
(a)

0

5

10

15

20

64 66 68 70 72 74 76 78

Area of Pareto solutions w/ DRAM energy

Throughput (GOPS)
(b)

A
re

a 
(m

m
2 )

A
re

a 
(m

m
2 )

Logic
NoC
Input Buffer
SRAM

Logic
NoC
Input Buffer
SRAM
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throughput solution obtained without DRAM (10 GOPS). Moreover, one should
note that the percentage of SRAM area, which is 0% without DRAM energy for
the low-throughput points, dramatically increases when considering higher through-
put solutions. This important result can also be observed from a different angle.
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The plots in figures 4.7(a)-(b) show the traffic per unit of time (Gpbs) to/from the
on-chip SRAM and the off-chip DRAM. An architectural organization that does
not consider the energy cost of moving data off-chip would saturate the DRAM
bandwidth first, and then, just for high throughput (>40 GOPS), would start us-
ing the SRAM. By contrast, an effective design optimization would keep DRAM
bandwidth as low as possible by stressing the SRAM usage; how much SRAM is
actually needed can be inferred from the Pareto-analysis of figure 4.5 on the base
of the throughput constraint.
For what concerns the VF selection, Pareto solutions use VF pairs numbered from
1 to 12 and, obviously, greater numbers are associated to higher throughput, due
to the increasing clock frequency. VF pairs 13 to 17 are only used by dominated
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solutions.
Other experiments were carried out in order to determine how the usage of a

single-VDD or a dual-VDD DVFS technique affects the space of the solutions. In
these experiments the total die area is not a design variable but two boundary cases
are considered: (1) AMAX = 2 mm2 and (2) AMAX = 10 mm2. Figure 4.8(a)-(b)
depicts the result of the design space exploration when using a dual-VDD DVFS
power management (please refer to section 4.2) and AMAX = 2 mm2. Neglecting
(figure 4.8(a)) or not the DRAM energy (figure 4.8(b)) causes changes in the space
of the solutions that are coherent and analogous to those already explained in the
analysis of figure 4.5, i.e. when considering the DRAM energy there is a drastic
reduction in terms of energy efficiency, a shrinking of the throughput range and
an increase in the percentage of area occupied by the SRAM. In addition to these
considerations, one must observe that, when not considering the DRAM energy,
highly energy-efficient solutions tend not to maximize the use of the whole available
area (2 mm2) and SRAM% = 0. On the contrary, when the throughput increases,
accessing continuously the DRAM would not be energy efficient, hence, SRAM is
needed. This results in a higher area occupation. In contrast, when taking into
account the DRAM energy, all the Pareto solutions uses the whole available area
and allocate some percentage of it for SRAM. For what concerns voltage-frequency
pairs, the two cases depicted in figure 4.8(a)-(b) show the same trend: V F pairs
increase with the throughput because PEs work at higher clock frequencies, hence,
a higher VDD is needed. V F pairs, instead, gets smaller when the energy efficiency
increases, confirming the fact that, when approaching the near-threshold region, a
high energy efficiency is achieved at lower voltages.
Figure 4.9 shows a comparison between single and dual-VDD DVFS Pareto curves for
a maximum target die area of 2 mm2 and including the DRAM energy. Each point
of the Pareto curve is labeled with the code indicating the chosen V F pair. It can
be seen that there is an actual advantage in using a dual-VDD DVFS scheme only
for high-throughput solutions, while for higher energy-efficient solutions there is no
significant benefit. This can be explained by considering that high energy-efficient
solutions work at low clock frequencies (1÷4 V F pairs), thus most (or even all) of
the tiles are fixed at low-VDD (no or few critical timing paths, as explained in section
4.2). As a consequence, there is no space for optimization. When considering high-
throughput solutions, instead, the target working frequency is higher and applying
a dual-VDD scheme can make a difference.
Finally, in figure 4.10, dual-VDD DVFS solutions are also reported for the case
AMAX = 10 mm2. Since the same considerations about ignoring or not the DRAM
energy hold, only the case that takes it into account is shown. It can be noticed
that these solutions allocate a big portion (from 40% to 80%) of the total die area
for on-chip SRAM. In fact, allocating more area for PEs would not be an efficient
solution since, at a certain point, the throughput will be limited by the memory
bandwidth, despite the increase of the number of PEs.
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Regarding the other design variables listed in table 4.1, the following trends are
common to all the experiments conducted.

• The number of memory controllers NMC tends to be maximized with and
without the DRAM energy (there is only one solution in figure 4.5(a) that
has NMC = 2 and it is the one with lowest throughput).

• The size of the input buffers MIB increases for solutions with a higher energy
efficiency, while it gets smaller with larger throughput. This is justified by
the fact that those solutions tend to favor a silicon allocation with a higher
number of execution units for a given area (larger parallelism) and a larger
amount of SRAM buffers to sustain the processing throughput. When fixing
the maximum die are to 2 mm2 and 10 mm2, IBs are larger for the former
and smaller for the latter case as more area is allocated for SRAM.

• All the Pareto solutions have DBIF = 1 and DBW = 0. In fact, the increase
in throughput that can be obtained by using the double buffering mode on
weights is almost negligible and, as an additional drawback, it reduces the IB
portion dedicated to input features (IFIB).

• Finally, the area allocated to the NoC gets larger as the throughput increases
(figures 4.6(a)-(b)); obviously, this is required in order to avoid communica-
tion bottlenecks between the PEs and the on-chip or off-chip memory.

The Energy-Performance design space exploration and the Pareto analysis con-
ducted highlight interesting optimization paths that can serve as point of reference
to optimize existing architecture or to design new optimal ones. Even though the
model described in section 4.4 refers to the DLP presented in chapter 3, it can be
easily generalized (the DLP proposed is also generic and flexible), since it already
takes into account the most common metrics used to evaluate DL accelerators,
and used as an exploratory tool to study different preliminary solutions and help
designers choose the one that most fit the constraints.
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Figure 4.8: Exploration of the dual-VDD DVFS case when AMAX = 2 mm2 and (a)
the DRAM energy is neglected, (b) the DRAM energy is considered.
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Chapter 5

Conclusions

The design of a hardware accelerator for the inference of Convolutional Neu-
ral Networks is a challenging task for manifold reasons. First of all, a thorough
understanding of Deep Learning and CNNs is fundamental. In particular, when
focusing on CNNs one must acquire knowledge of how they are structured, of the
different kinds of existing layers and operations involved and of the data flow inside
a layer and across multiple layers. Furthermore, it is very important to under-
stand which are the computational and memory bottlenecks that characterize such
learning models. Putting together all these information and deriving an optimal
architecture is not at all trivial as the number of requirements and constraints is
large. In addition, CNN acceleration other than being a hot research topic, it is al-
ready widespread in industry as well. As a consequence, giving a novel contribution
can be hard.

This work introduces a novel Deep Learning Processor that differs from other
solutions for being extremely flexible (as thoroughly discussed in chapter 3) and a
sophisticated model (presented in chapter 4) that can be used as a design explo-
ration tool to evaluate different energy-throughput optimal design solutions.

Many optimization paths could be further explored under different aspects:
data quantization [86] or compression [45] techniques could be used to reduce the
memory footprint and increase the number of data that can be stored on-chip; in
addition, data quantization allows to simplify the hardware requirements as it uses
a reduced data precision. From a hardware point of view, it could be worth to
explore the use of variable-precision execution units as the data precision may vary
across the network layers.

Last but not least, it might be effective to migrate towards completely different
computational paradigms (beyond the von Neumann model) and explore this field
in conjunction with novel emerging technologies. The second part of this thesis will
try to address and explore these new approaches.
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Part II

Beyond the Von Neumann
Paradigm
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Chapter 6

Motivations

The term von Neuman architecture indicates any computational system com-
posed of a CPU and a memory that stores data used by the CPU. The CPU executes
instructions and continuously accesses the memory in order to retrieve the data that
it needs. This data exchange between the CPU and the memory is the basis of the
von Neumann paradigm [40]. Since it was first proposed in 1945, the technology
has undergone huge advances. Thanks to the CMOS technology scaling, transistors
are getting smaller and smaller. Nowadays, indeed, it is possible to pack in a sin-
gle chip billions of transistors. Computational systems are extremely powerful and
fast but, in order to sustain the pace, memories should be able to provide as many
data as required by the computational core. However, if on one side the CMOS
technology keeps making progresses, on the other side memories are not, as the
main limitation is represented by the bandwidth. Hence, memories cannot provide
the amount of data required by computing units at the same rate of their working
frequency. This discrepancy represents the so-called von Neumann bottleneck or
memory wall. Different solutions have been proposed during the years, one of them
is memory hierarchy. The principle behind memory hierarchy is to have multiple
memories with different sizes placed at a distance from the processing unit that is
directly proportional to their size. Therefore the smallest memory is the closest to
the processing unit, being also the fastest. The goal of memory hierarchy is to hide
the latency of the main memory (the biggest) by adding different intermediate lev-
els of smaller memories. However, this solution is not enough to solve the memory
wall problem.
Another critical limitation intrinsic to the von Neumann model is that the contin-
uous data exchange between the processing unit and the memory causes a huge
power dissipation. In data intensive applications this problem is exacerbated; in-
deed, the main part of the total dynamic power consumption is caused by memory
accesses.
For these reasons, in the last years, the research and industry communities have
focused their attention on alternative solutions that go beyond the von Neumann
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paradigm, trying to tackle the problems at the root. Many approaches are being
explored: some of them try to bring computation and memory closer, others, such
as the Logic-in-Memory one, go beyond the separation between computation and
memory trying to fully integrate them in a single unit. The advantage brought
by the Logic-in-Memory approach is twofold: on one side, integrating logic and
memory means exploiting the full internal memory bandwidth, on the other, data
are manipulated directly inside the memory without the need to move them outside
for computation and then write back the results.

The von Neumann bottleneck is not the only consequence of CMOS technol-
ogy scaling. It seems, indeed, that transistor scaling is approaching a boundary not
only from the physical point of view but also from the technological and economical
one. The well-known Moore’s law has been obeyed for long and everything possible
has been done in order to adhere to it. However, as predicted in the 2013 Interna-
tional Technology Roadmap for Semiconductors [2], 2D scaling will eventually reach
some fundamental limits. For what concerns the physical limitations, as the device
becomes smaller, tunneling and leakages currents increase impacting on the perfor-
mance of the transistor and on the power consumption. This one is further affected
by the number of transistors integrated per unit-area which is in steady growth and
that also causes an high thermal dissipation. Regarding the technological limita-
tions, lithography-based techniques are not able to provide the required resolution
- below the light wavelength - to manufacture CMOS devices. Moreover, the rising
in cost of production, equipment and testing may reach a point where it will be
not affordable from the economic point of view. These are the main reasons why
the scientific community is moving towards the introduction of novel beyond-CMOS
technologies supporting new information-processing paradigms that are potentially
able to solve the problems addressed before. Among these emerging technologies,
Nano Magnetic Logic is one of the most interesting because it provides non volatil-
ity, computing capability and low power consumption. All these key features make
Nano Magnetic Logic (NML) a perfect candidate for Logic-in-Memory.

This research work investigates the concept of Logic-in-Memory by presenting
a novel Configurable Logic-in-Memory Architecture (CLiMA). An NML-based ver-
sion of CLiMA is also presented.
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Chapter 7

State of the Art

In-memory computation has been extensively targeted in literature and different
solutions have been explored. Given the extent of the State of the Art and the
differences between the proposed approaches in terms of design and implementation
choices, it is very difficult to make comparisons. In this chapter it is presented
a taxonomy that categorize the main works present in literature, based on the
role that the memory plays in computing data. Four main approaches have been
defined and in figure 7.1 the differences between them are highlighted. Moreover,
in appendix A it can be found a table that collects the main relevant works found
in literature and cited in this chapter or elsewhere in this second part of the thesis.
The works are listed in year-of-publishing order and for each of them the following
items have been reported: concise description of the architecture, technology used,
target applications, software/models used for simulation and/or evaluation, if the
proposed architecture is silicon-proven or not, classification according to one of the
approaches reported below.
The aim of this categorization is trying to delineate common and divergent features
between the works, methods and tools that might be of help – not only for the scope
of this thesis but also, and especially, for future works – for comparison purposes
and/or for developing new ideas.
It is important to underline that this categorization does not contain all the works
that can be found in literature, but the most relevant ones. Nonetheless, as far as
it is known, any other work in literature can be identified as belonging to one of
the four approaches described below.

7.1 Computing-near-Memory Approach
This approach can be considered as an evolution of conventional architectures

where logic and memory are two separated units. In fact, works that belong to
this category try to bring closer computation and storage by exploiting 3D Stacked
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Figure 7.1: Depending on the role that the memory plays in computing data, four
main approaches can be defined. (A) Computation-near-Memory: logic and storage
are still two separate entities but they are brought closer together thanks to 3D-
integration technologies (section 7.1). (B) Computation-in-Memory: memory is
used as is to perform computation (section 7.2). The actual data manipulation
takes place in the peripheral circuitry (e.g. sense amplifiers) of a memory. (C)
Computation-with-Memory: memory is used (as a CAM) for storing pre-computed
results for LUT-based computation (section 7.3). (D) Logic-in-Memory: simple
logic is added inside the memory cell to manipulate data locally (section 7.4).

Integrated Circuit (3D-SIC) technology [1]. This 3D integration technology allows
to stack silicon wafers or dies one on top of the other by interconnecting them
vertically, exploiting through-silicon vias (TSVs). As the name suggests, a TSV is
an electrical connection that crosses a silicon wafer, connecting the two sides of it.
By exploiting a 3D-stacking technology, not only memories can be implemented as
3D structures with several memory layers stacked one on top of the other (such
as the Hybrid Memory Cube, HMC [55] or the High Bandwidth Memory, HBM
[49]), but they can also be stacked on top of a computing unit. Computation and
memory are very close but still separate entities. For this reason, this approach
has been named Computation-near-Memory (CnM). Moreover, as shown in figure
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7.1(A), there is data movement from the memory, when data are read and sent to
the computing unit, and to the memory, for writing back results.
The advantages of TSV technology are manifold:

• shorter interconnections;

• wider memory bandwidth;

• reduced power consumption;

• more functionality (and/or storage capacity) in a smaller area.

All these benefits help mitigate the memory-bottleneck problem.
Some relevant works are [66], [125], [3], [124], [111], [119]. In particular, in [66], [125]
and [3] authors propose a multi-core architecture where each processor is composed
of two tiers, a computing one and a memory one stacked on top of it. In [119] and
[124] a host processor (a GPU in the former paper and a CPU in the latter, non 3D-
stacked in both cases) delegates data-intensive tasks to 3D-stacked computation-
near-memory units that act as co-processors. Authors in [111] and [119] exploit
the logic layer at the base of the HMC to perform near-memory computing. Works
such as [31] and [107] do not make use of a 3D-stacking technology, but they
propose to integrate the processor and memory banks on the same silicon die to
exploit a direct connection between them and avoid off-chip communication. The
benefits of such architectures are demonstrated by means of memory-intensive and
parallel benchmarks. Moreover, all the works cited here are implemented in CMOS
technology.

7.2 Computing-in-Memory Approach
Works belonging to these category use non-volatile memory technologies, such

as MRAM (Magnetoresistive Random-Access Memory) [7] or RRAM (Resistive
Random-Access Memory) [123], or volatile memory technologies, like DRAM (Dy-
namic Random-Access Memory) or SRAM (Static Random-Access Memory), to
perform both computation and storage tasks, by using technology as is. This
means that the memory array is not modified in terms of structure and functional-
ity, but its analog functionality is exploited to perform operations inside the array.
To be more specific, peripheral circuitry (i.e. sense amplifiers, SAs) is modified
and used to perform row-wise or column-wise logic operations. Hence, in-memory
computation is performed by reading data which is sensed and processed by SAs
and the result is written back in the array, as depicted in figure 7.1(B). In this
case, data is not moved out of the memory for the computing task, hence the name
Computing-in-Memory (CiM).
Works such as [6], [23], [44], [37], [76], [82] use a RRAM array to perform logical
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or arithmetic operations depending on the target application. Likewise, authors
in [101] propose to modify a commodity DRAM to perform bulk bitwise logic
operations inside the memory. In [57] RRAM arrays are connected by means of
configurable interconnects to realize fast in-memory adder trees. The configurable
interconnects can also be used to shift data.
In [14] and [84] authors propose a hybrid architecture in which CMOS logic is
used to perform instruction fetch and decode or other functions needed to manage
the data computation done inside the RRAM array. In [109] a chip for energy-
harvesting applications is presented. The system is composed of a host CPU and
RRAM arrays used as co-processor to accelerate ANN-like computing.

7.3 Computing-with-Memory Approach
As the previous one, this approach is also based on performing computation

and storage tasks by using non-volatile memory technologies. However, in this
case, RRAM arrays are used as Content Addressable Memories (CAM) to perform
computations in form of look-up tables (LUT). In fact, any n-input boolean function
can be encoded in an n-bit LUT by storing the truth table of the function in the
LUT. For example, the addition between two n-bit values can be implemented by
storing in the LUT all 22n input combinations. Pre-computed results are instead
stored in a further memory. Then, the LUT is accessed, like a CAM, by using an
input key (the combination of the two inputs) and an address is retrieved. This
address is used to access the memory that stores the correspondent result of the
operation. As shown in figure 7.1(C), computation is carried out with the memory
to retrieve a pre-processed result, from which the name Computing-with-Memory
(CwM).
Works belonging to these class are [53], [65], [121], [58], [59], [85]. In the last cited
work, authors propose to integrate RRAM CAM arrays inside the Floating Point
Units of a GPU, to hold highly frequent pre-computed values.

7.4 Logic-in-Memory Approach
Finally, in this approach simple logic is directly integrated inside the memory

cell, hence the name Logic-in-Memory (LiM). Differently from all other approaches,
this one enables data computation to be performed locally without the need to move
data to the peripheral circuitry or outside the memory. As highlighted in figure
7.1(D), data movement is exclusively internal to the memory array. Readings are
done to move data from one cell to another for computation purposes and writings
are done to update a cell content after a processing task. The are few works in
literature that are part of this class. In [79] authors propose a hybrid memory cell
in which an MTJ (Magnetic Tunnel Junction) device, used as non-volatile storage,
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is integrated with simple CMOS logic to realize a non-volatile logic-in-memory cell.
MTJs are at the base of MRAMs and they are composed of two ferromagnets sep-
arated by a thin insulator layer [64]. The resistance of the MTJ changes depending
on the relative orientation of the magnetization of the two ferromagnetic layers. In
particular, in a parallel magnetization configuration the resulting resistance of the
MTJ is low, while in an antiparallel magnetization configuration the resulting resis-
tance of the device is high. The switching between these two configurations can be
used to write a logic 0 or 1 in the MTJ [56]. The cell proposed in [79] is exploited in
[60] where authors present an architecture based on an hybrid MTJ/CMOS CAM
engine for search operations. In this case, the single non-volatile logic-in-memory
cell is a 3D structure in which a MTJ cell is stacked on top of simple CMOS logic.
In [120] authors propose a modified SRAM array in which rows of logic cells (LUT-
based and XOR-based) and rows of memory cells are alternated according to a
memory-logic-memory-latch scheme. The latch rows are used as redundant storage
cells to hold partial or final results.
The system presented in [62] is a hybrid approach between Computing-near-Memory
and Logic-in-Memory. The proposed architecture exploits 3D integration by stack-
ing DRAM on top of a logic layer using TSVs and it also adds logic inside the
DRAM to perform XOR operations. More specifically, while in the other works
belonging to this class logic is added directly inside each memory cell, in this work
XOR engines are added outside each memory bank.
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Chapter 8

CLiMA: Configurable
Logic-in-Memory Architecture

This chapter presents a novel approach to the concept of Logic-in-Memory, that
has brought to the definition of a new architecture called CLiMA, Configurable
Logic-in-Memory Architecture. The main idea behind CLiMA is the definition of
a flexible architecture that can adapt to different applications and requirements.
In fact, as the name suggests, CLiMA is a configurable architecture, since it can
be configured to perform different types of data computation, that exploits the
approach of Logic-in-Memory to enable data computation in memory. However,
CLiMA does not rely exclusively on the LiM approach, but, if necessary, it can
integrate one or more of the other approaches presented in chapter 7. In this sense,
the configurability of CLiMA extends also to the concept of in-memory computa-
tion.

8.1 Overview
As shown in figure 8.1, CLiMA can be seen, in its most generic form, as an

heterogeneous system that exploits different degrees of in-memory computing to
reduce as much as possible the memory bottleneck problem and its related conse-
quences, as thoroughly explained in chapter 6. As explained before, the idea is not
to limit CLiMA to exploit a single approach but a combination of them, if neces-
sary. The reason behind this choice is that, depending on the target application’s
characteristics, there might be a part of the algorithm that well maps, for example,
on a Logic-in-Memory scheme, while other parts do not. Hence, operations that are
suitable to be implemented in-memory (e.g. logic operations) are executed by CLiM
arrays, while more complex operations (e.g. multiplication, division) are executed
by a dedicated logic that cannot be implemented directly in memory. In figure
8.1 the dedicated logic with its own memory represents the CnM unit of CLiMA.
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Figure 8.1: CLiMA as an heterogeneous system where different approaches (CnM,
LiM, CiM, CwM) are integrated together in order to guarantee maximum flexibility.

CLiM arrays represent, instead, the LiM unit. Internally, a CLiM array has several
configurable cells that integrate logic and storage (CLiM cells). CLiM cells can
be interconnected in different ways, depending on the data exchange required by
the target algorithm. Moreover, for some applications there might be the need for
further data processing outside the rows or the columns of the array, which is the
aim of the extra-row/column logic. This logic can be considered as the CiM unit
of CLiMA. Even if not represented in figure 8.1, CLiMA could even have a CwM
unit (i.e. a CAM memory) for LUT-like computation.
It is clear that the flexibility of CLiMA is twofold:

1. provide support for different applications and for different types of operations
(logic and arithmetic);

2. provide different degrees of in-memory computation.

Figure 8.2 shows a high-level block diagram of CLiM array. The green and red
boxes indicate a row and a column of the array, respectively. Data manipulation
can happen locally, inside each LiM cell, or between cells. Moreover, data can be
manipulated externally to rows and columns by the extra-row/column logic. Figure
8.3 depicts, more clearly, the different possible types of data manipulation that can
take place inside the array. As before, green and red boxes indicate rows and
columns, respectively. Five possible in-memory types of operations can be defined:

• Local: data is manipulated locally, inside the cell;

• Intra-row: an operation takes place between two or more cells inside the same
row (black dashed arrow in figure 8.3);
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Figure 8.2: High-level block diagram of CLiM array.

• Intra-column: an operation takes place between two or more cells inside the
same column (black solid arrow in figure 8.3);

• Inter-row: an operation that involves two rows, as instance an operation
between a data stored in row A and one stored in row B;

• Inter-column: an operation that involves two columns, as instance an opera-
tion between a data stored in column A and one stored in column B.

Inter-row/column computations are perfectly fit for bitwise operations between two
rows or columns. Intra-row/column operations can, instead, be used to build more
complex data-flows to enable complex in-memory computations. An example is
depicted in figure 8.34. Each CLiM cell is represented as a logic-enhanced memory
cell. The logic in each cell is composed of a configurable logic block that can be
configured to perform boolean logic functions (e.g. AND/OR/XOR) and a full
adder to perform additions. By exploiting intra-row operations, each memory row
can work as a Ripple Carry Adder (RCA), highlighted by the red box in each row.
By exploiting intra-column operations (in addition to inter-row operations), more
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Figure 8.3: Possible types of data manipulation inside CLiM array.

memory rows can work as an Array Multiplier (AM). In fact, RCAs inside each row
produce partial products, then, these partial products are accumulated vertically
to produce the final multiplication result. Various multiplexers are used to direct
signals coming from/going to other cells. Figure 8.4 shows a magnified view of
the structure depicted in figure 8.34. The memory block (MEM) of each CLiM
cell is accessed by using word-lines (WL) and bit-lines (BL). Each CLiM cell can
be used to perform a logic operation or a sum between the data stored locally (in
MEM) and another data that can either be an external input (EXT_IN) or a data
coming from another cell. Looking at signals 1 to 5 in figure 8.4, it is possible
to distinguish among the following connections:

• Intra-cell connection

1 write back the result from the logic (L) or full adder (S) into MEM.

• Inter-cell connections

2 Cell output to south cell used for:
– inter-row operations;
– intra-column operations.

3 Cell output to east cell used for:
– inter-column operations;
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Figure 8.4: Detail of connections inside and between cells in a CLiM array. Some
connections ( 4 and 5 ) are specifically designed to support in-memory RCA and
AM.

– intra-row operations.
4 Cell output to north-east cell used for:

– in-memory AM support;
– diagonal data movement (inter-row and inter-column movement).

5 Output carry to south cell used for:
– in-memory AM support.

MUX1 is used to select which data to write inside the MEM block: if the external
data coming from the bit-line (to initialize the content of the memory) or the data
computed locally (the content of the memory is updated). MUX2 is used to choose
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among the result coming from the logic block (L) or the one coming from the full
adder (S), depending on the type of operation needed. MUX3 allows to choose
which data to send to neighboring cells: if the one coming from logic/full adder or
the one saved locally. This choice depends on the data-flow of the target application
and on how it is mapped on CLiMA. Finally, MUX4 is used to choose the source of
one of the two inputs of the logic block or the full adder. The number of inputs of
MUX4 changes depending on the position of the cell inside the array. As instance,
the very first cell on the first row and first column has only one input, hence the
absence of MUX4. The other cells, instead, have two or more inputs depending on
how many connections are designed to interconnect them.
It is clear that the more the connections the more the possibility of building complex
in-memory functions and data-flows. To sum up, the architecture showed in figure
8.34 can support several types of in-memory operations and data movement between
cells:

• in-memory logic operations;

• in-memory arithmetic operations;

• horizontal (intra-row/inter-column), vertical (intra-column/inter-row) and di-
agonal data movement (a mix of inter-row and inter-column).

It is important to highlight that while support for in-memory addition and mul-
tiplication is a huge advantage because data are manipulated directly inside the
memory, a RCA and an AM are not the fastest arithmetic circuits, hence, perform-
ing these operations in memory could slow down the execution. A solution to this
problem could be, as instance, to delegate the multiplication (an AM is slower than
a RCA) to a dedicated and faster unit outside the memory. This choice would also
simplify the interconnection structure inside the array, as some of the connections
depicted in figure 8.4 could be eliminated. However, these design choices need
careful consideration as some applications might benefit from them and some other
might not. If the aim is to work toward the implementation of a configurable and
flexible structure that can support different work-loads, data-flows and operations,
exploring various applications is the way to understand how the requirements, in
terms of hardware resources, functionality, level of in-memory computation, de-
gree of flexibility, vary accordingly. For this reason, some suitable algorithms have
been identified and they will be presented in the next section. Moreover, different
CLiMA approaches have been explored. The main one is presented in this chapter
at section 8.3, while others will be referenced in chapter 9.

8.2 Algorithms Selection
In this section, the algorithms selected for exploring different CLiMA approaches

are presented. As a key requirement, the target applications must be characterized
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by some common features, listed below.

• High data demand: memory intensive applications take advantage from in-
memory computation as it allows to reduce or, in same cases, avoid at all
data movement from/to the memory as it happens in Von Neumann-based
systems.

• High level of parallelism: computationally intensive applications that can be
executed in parallel to improve performance, benefit from CLiMA as it is,
intrinsically, a massively parallel architecture.

• Simple operations: in order to exploit in-memory computation as much as
possible, applications should be characterized by simple operations (mainly
logic operations but, as it will be shown in section 8.3, also some more complex
operations can be integrated inside the memory array).

By following these guidelines, several applications have been chosen, ranging from
query processing in databases to encryption, neural networks and decision trees.

8.2.1 Database Search using Bitmap Indexes
Being able to retrieve a data from a database at high speed is fundamental

for improving performance of database search operations. For this purpose, data
structures such as database indexes are used to locate data in a database at a
fast rate. There exist different types of indexes. Among these, bitmap indexes
[28] provide a way to answer database queries only by performing bitwise logic
operations.
An example will help explaining better how database search with bitmap indexing
works. Let suppose to have a database similar to the one represented in table 8.1.
It can be seen that, in this example, gender can assume only two values (F for

Employee ID Gender Age range
10 F A
11 M B
12 F B
13 F C
14 F D
15 M A
16 F E

Table 8.1: Portion of database containing a company’s employees information.

female and M for male) while the age range can assume five different values (letters
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indicates different age ranges, as instance, A include people that are 25 to 30 years
old). Each column in the database can be transformed in bitmap indexes, i.e.
vectors of bits. As instance, the bitmap index for the gender column is the one in
table 8.2. Basically, the bitmap index of a column will be a set of bits vectors, one

Employee ID Gender = F Gender = M
10 1 0
11 0 1
12 1 0
13 1 0
14 1 0
15 0 1
16 1 0

Table 8.2: Bitmap index of the gender column shown in table 8.1.

for each value that the column can assume. Hence, the bitmap index of the gender
feature has two vectors of bits. Answering a query such as ‘How many employees
are female and their age range is A or B?’ can be performed by executing logic
operations on the bitmap indexes, as depicted in figure 8.5. The result of the query

Gender = F Age Range = A Age Range = B

1
0
1
1
1
0
1

1
0
0
0
0
1
0

0
1
1
0
0
0
0

AND OR =

1
0
1
0
0
0
0

Query
Result

Figure 8.5: Query processing using bitmap indexes. Taking as reference the
database shown in table 8.1, answering to the query ‘How many employees are
female and their age range is A or B?’ translates into two simple bitwise logic oper-
ations. First, a bitwise OR between the bitmap indexs related to Age Range A and
B. Then, a bitwise AND between he result of this first operation and the bitmap
index related to Gender = F.

can be reused to perform other operations to answer more complex queries.

8.2.2 Random Decision Forests
Random decision forests [50] are a learning method used for classification. A
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Figure 8.6: Random decision forest.

random forest is composed of a number of decision trees (figure 8.6), all executing
the classification task in parallel in order to maximize the classification accuracy.
Each tree in the forest is trained on a different subset of the training set. The final
classification is computed as majority function of the classification results given
by each tree within the forest. Trees are characterized by a certain number of
nodes, the first one being the root node and the last ones being the leaf nodes. In
order to obtain a classification result, the tree must be traversed starting from the
root until a leaf is reached. At each node, a comparison between the input data
and a threshold associated to the node is performed: depending on the result of
the comparison, the next active node will be the one on the left or on the right.
The comparison is then repeated until a leaf node is found, which returns the
classification result.

8.2.3 Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) [26][32] is a cryptographic algorithm

developed by Joan Daemen e Vincent Rijmen. This algorithm can be used to
encrypt and decrypt information in blocks of 128 bits, by using a cryptographic
key that can have three different lengths: 128, 192 or 256 bits. The 128-bit blocks
are organized in 4×4 arrays of bytes, called states. These arrays are given as input
to the AES cipher which applies several transformation rounds on the data, called
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plaintext, producing the encrypted output data, called cyphertext. The number of
rounds depends on the length of the cipher key:

• 128-bit key = ten rounds;

• 192-bit key = twelve rounds;

• 256-bit key = fourteen rounds.

Each round consists of several processing steps described below.

1. SubBytes: each byte in the state array is substituted with another byte re-
trieved from a look-up table.

2. ShiftRows: rows of the state array are shifted to the left by a number of
positions that varies for each row (the first row is not shifted at all).

3. MixColumns: each column of the state array is transformed by applying an
invertible linear transformation. The transformation consists of performing
very simple operations such as shift and XOR.

4. AddRoundKey: each byte of the state array is processed by using a subkey
derived, for each round, from the main key. This step consists in performing
XOR operations between the bytes of the state array and the bytes of the
subkey.

These four steps are repeated for each round, except for the last one in which the
MixColumns step is not executed. Moreover, before the rounds are executed, other
two preliminary steps are performed:

1. KeyExpansion: each round uses a different key that is derived from the cipher
one; in this step round keys are computed.

2. AddRoundKey: each byte of the state array is transformed by combining it
with a portion of the round key using XOR operations.

8.2.4 Quantized Convolutional Neural Networks
Convolutional Neural Networks have been extensively explained in chapter 1.

Here, two quantized versions of classical CNNs are presented. In both cases com-
putation and memory requirements are greatly simplified at the expenses of a small
loss in prediction accuracy.
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XNOR-Networks XNOR-Networks [87] are CNNs in which weights and input
activations to convolutional layers are both binary. This means that values are
represented on a single bit and they can be equal to +1 or -1, where +1 corresponds
to logic 1 and -1 to logic 0. As a result, the standard convolution operation can be
approximated with XNOR and bitcount operations.

I ∗ W ≈ (sign(I) ∗ sign(W)) ⊙ Kα (8.1)

In equation 8.1 I is the input activation matrix, W is the weight matrix, ∗ is the
convolution operator, ∗ is the binary convolution (i.e. XNOR and bitcount), ⊙
is the element-wise product and Kα is a scaling factor. By doing so, the number
of non-binary operations is greatly reduced with respect to the binary ones. This
approximation not only simplifies the hardware requirements of such kind of net-
works, but it also allows to obtain considerable memory savings since inputs pixels
and weights require a single-bit data representation.

ShiftCNN ShiftCNN [43] uses a power-of-two weight representation that elimi-
nates the need for multiplications in Convolutional Neural Networks. In this case
multiplication operations reduces to simple shift operations. In particular, since all
weights are quantized to power-of-two values of the type 2−n, all shift operations
are arithmetic right shifts.

8.3 CLiMA for Quantized Convolutional Neural
Networks

Following the ideas and concepts presented in section 8.1, here, it is proposed a
version of CLiMA for quantized Convolutional Neural Networks. In particular, the
reference network in this case is ShiftCNN. An overview of the proposed architecture
of CLiMA is given in figure 8.7. The Logic-in-Memory core of CLiMA is represented
by the CLiM Array (highlighted by the red box). The array is composed of a number
of rows and columns of CLiM cells, each having computation (configurable) and
storage capabilities. In this scheme each CLiM cell is intended to be an N-bit cell.
Surrounding the array there are row and column decoders used to enable cells for
reading/writing operations and also to control the data movement inside the array
when performing computations. These decoders are modified in order to enable
more contiguous rows and columns at the same time. Row and column masks are
used to enable/disable rows and columns in a more fine-grained way. The output
decoder is used to select one output data among all the data stored in the array.
External to the array there is also the weight memory, a standard memory where
convolution weights are stored. The weight dispatcher is used to properly distribute
weights among the rows of the array.

81



8 – CLiMA: Configurable Logic-in-Memory Architecture

RO
W

 D
EC

O
DE

R

COLUMN DECODER
RO

W
 M

AS
K

… … …
… … …

…

…
…

…
…

…

DATA OUT

CLiM Array

OUTPUT DECODER

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

CLiM cell

DATA
INCOLUMN MASK

ADDR

ADDR

W
EI

G
H

T 
DI

SP
AT

CH
ER

…

WEIGHT
MEMORY

DATA
IN ADDR

Figure 8.7: Overview of the proposed architecture of CLiMA.

A thorough description of the architecture of CLiMA for quantized CNNs and its
usage to perform in-memory computations will be given in the following.

8.3.1 CNN Data Flow Mapping on CLiMA
As explained in section 1.3, the real workload of CNNs is represented by convo-

lutional layers. The computation in such layers consists in shifting the weight kernel
all over the input feature map, performing a weighted sum of the inputs, as image
8.8 depicts. It can be observed that convolution windows partially overlap. In
order to allow parallel computation of convolution windows, what is usually done
is mapping the convolution into a matrix multiplication, as shown in figure 8.9.
When moving from a standard convolution flow (figure 8.9(A)) to a matrix mul-
tiplication one (figure 8.9(B)), it is as convolution windows were unrolled. When
unrolling, as it can be noticed from figure 8.10, weights are shared across pixels
on the same column.Hence, multiplications are executed in the vertical directions
and accumulations in the horizontal direction. However, the drawback of unrolling
convolution windows is the introduction of data redundancy. In figure 8.9(B) input
data highlighted in red represent the redundant data. These are the input features
that belong to the overlapping regions between convolution windows. The number
of redundant data clearly depends on the dimensions of the overlapping regions
which, in turn, depend on the kernel size and on the stride. In particular, the
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Figure 8.8: The weight kernel is applied on sub-regions (convolution windows) of
the input feature map in order to perform convolution. When the kernel is shifted
from one sub-region to the other, there is an area of overlap between convolution
windows whose dimension depend on the kernel size and stride.
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Figure 8.9: (A) Standard convolution. (B) Matrix-multiplication-like convolution.
Red numbers indicate data redundancy. IF Map stands for Input Feature Map, OF
Map for Output Feature Map.
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Figure 8.10: Column-wise weight sharing when the convolution window is unrolled.

overlapping region gets larger when the kernel gets bigger and/or the stride gets
smaller, as highlighted in figure 8.11.

(A) 3x3 kernel, stride = 1 (B) 5x5 kernel, stride = 1

Overlapping
region

Convolution
windows

Figure 8.11: Size of overlapping region gets larger when (A) the stride gets smaller
and (B) the kernel is bigger.

AlexNet has been taken in consideration as a case study in order to assess how much
the number of input features increases because of the data redundancy introduced
by the unrolling of convolution windows in a real CNN. The histogram reported
in figure 8.12 shows how the number of input features per convolution layer veries
before and after the unrolling of convolution windows. The five convolution layers
of AlexNet are displayed on the x-axis, while input features are reported on the y-
axis (in base 10 logarithmic scale). It can be seen that when unrolling, the number
of input features increases of one order of magnitude with respect to the standard
situation. This is valid for each convolution layer.
The data redundancy caused by unrolling is not negligible and, an architecture such
as CLiMA would not benefit from such unrolled data flow. Indeed, the memory
array would not be exploited in an efficient way. On the other hand, by exploiting
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Figure 8.12: Number of input features per convolution layer before and after the
unrolling of convolution windows in AlexNet.

unrolling, as shown in figure 8.10, all convolution windows can be executed in par-
allel inside CLiMA and the convolution computation is straightforward. In fact,
supposing that each cell inside the CLiM array stores a pixel, multiplications can be
done by distributing weights in the vertical direction (same weights for cells on the
same column), while accumulations can be executed inside each row by exploiting
inter-cells connections.
However, as already highlighted, the data redundancy caused by unrolling is not
acceptable for an architecture such as CLiMA, since the storage space must be used
in the most efficient way possible. Therefore, in order to avoid data redundancy
and guarantee parallel computation at the same time, a different data flow map-
ping scheme has been studied. When considering the convolution of a kernel over
an input feature map, it can be observed that not all convolution windows over-
lap. Hence, the idea is to execute in parallel only the non overlapping convolution
windows and repeat the process until all convolution windows have been executed.
This is graphically explained in figure 8.13. In this example the kernel used is 3 × 3
and the stride is equal to 2. The convolution of the kernel over the input feature
map is decomposed in four different iteration steps. In each of these steps non
overlapping convolution windows are executed in parallel. The number of iteration
steps required to complete a convolution according to this scheme depends on the
following parameters:

• size of the input feature map;

• size of the weight kernel;

• stride.
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Step 1 Step 2 Step 3 Step 4

Figure 8.13: Parallel computation of non overlapping convolution windows. In this
example it takes four iteration steps to execute the convolution with a 3 × 3 kernel
and stride equal to 2.

This parameters also change layer by layer.
Considering an input feature map with dimensions Win = Hin, a kernel with size
k × k and stride S, the number of iterations steps can be calculated as:

#iter = tot_conv_windows

parallel_conv_windows
(8.2)

where tot_conv_windows is the total number of convolution windows, whereas
parallel_conv_windows is the number of convolution windows that can be exe-
cuted in parallel. The total number of convolution windows can be simply calcu-
lated as Wout · Hout, where Wout = Hout are the dimensions of the output feature
map (as explained in chapter 1, Wout and Hout are computed according to equation
1.13). The number of parallel convolution windows can be evaluated according to
the following equation:

parallel_conv_windows =
(

Win

k + (S − 1)

)2

, k > 1 (8.3)

Equation 8.3 is valid for kernels with size k > 1. When the kernel is 1×1, the num-
ber of parallel convolution windows coincides with the number of total convolution
windows and, as a consequence, the number of iterations required to complete the
whole convolution is equal to 1 as all the windows are non overlapping.
The advantage of using the presented parallel non-overlapping data flow scheme
is the avoidance of data redundancy while preserving the parallel computation of
convolution windows.

This data flow scheme can be directly and easily mapped on CLiMA. In fact,
the idea is to store, in memory, the input feature map by assigning a pixel to each
cell of the array. Weights are instead properly distributed to the cells and moved
over the array in such a way that the convolution window shifting operation is
reproduced and the parallel computation of non overlapping windows, as depicted
in figure 8.13, is guaranteed. More details on weight distribution and how the
computation of the convolution is managed in CLiMA will be given in subsection
8.3.3.
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8.3.2 CLiM cell
The basic block of CLiMA is the CLiM cell. Its high level block diagram is

represented in figure 8.14. The CLiM cell, as already explained in section 8.1,
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Figure 8.14: High-level block diagram of the N-bit CLiM cell.

integrates logic and storage. This cell has been designed in order to guarantee
maximum configurability and flexibility. It consists of:

• an add/logic block that can be configured to perform arithmetic functions
such as addition, subtraction and logic functions such as XOR, XNOR, AND,
OR, NOT;

• a SHIFT/STORE block that can be used as a normal storage element or to
execute shift operations on the data stored;

• a further STORE block that is used to hold partial or final results.

The content of the STORE block can be copied in the SHIFT/STORE block and
viceversa. The CLiM cell in figure 8.14 is an N-bit cell made of N 1-bit cells that,
properly connected together by exploiting inter-cell connections, create a complex
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CLiM cell. The detailed internal structure of the CLiM cell is depicted in figure
8.15 (this is actually a simplified version of the real CLiM cell, its structure would
be too confusing with all the details; here are reported the main ones). Row enable
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Figure 8.15: Detailed internal structure of the N-bit CLiM cell. By exploiting
inter-cell connections, 1-bit cells are properly connected to create a complex CLiM
cell.

and column enable lines are used to select cells in the CLiM array for read/write
operations. Their role is equivalent to that of word-lines and bit-lines and, similarly,
they are controlled by decoders (more details on decoders will be given in subsection
8.3.3). In figure 8.15, the leftmost 1-bit cell contains the MSB (most significant bit)
while the rightmost cell contains the LSB (least significant bit). Each 1-bit CLiM
cell is composed of two main elementary blocks: a 1-bit FA/logic block and a 1-bit
store block. In addition to these components there is some other logic and the other
store block for temporary/final results that, for sake of clarity, has not been drawn.
The 1-bit FA/logic block is, basically, a simple full adder that can be also used to
perform logic functions. The truth table of a full adder is reported in table 8.3. It
can be observed that by fixing one or more full adder inputs to 0 or 1, the sum (S)
and output carry (Cout) return different logic functions:

• when A = 0

– S = B ⊕ Cin (XOR)
– Cout = B · Cin (AND)

• when A = 1
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A B Cin S Cout

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1

Table 8.3: Full adder truth table.

– S = B ⊕ Cin (XNOR)
– Cout = B + Cin (OR)

• when A = 0 and B = 1

– S = Cin (NOT)
– Cout = Cin (indentity)

• when A = 1 and B = 0

– S = Cin (NOT)
– Cout = Cin (indentity)

In order to support shift operations, store blocks are interconnected in a chain-like
fashion with the output of a block being the input of the adjacent one. In order to
support arithmetic right shifts1, the output of the MSB CLiM cell is fed back to its
input in order to replicate the sign bit. The structure shown in figure 8.15 supports
only right shift operations. With few and simple modifications (not reported in
figure for the sake of clarity) also left shifts can be handled inside the CLiM cell.
Other logic elements inside the cell are:

• XOR gates used to calculate the 2’s complement of input b when executing
the operation a − b;

• different multiplexers used to select different signals, depending on the mode
(storage, compute logic, compute arithmetic) in which the cell is being used.

1In computer arithmetic, a right or left shift is an operation that moves an N-bit operand by a
given number of positions toward the right or left, respectively. When right shifting, if the shift is
logical the leftmost positions are filled with zeroes, whereas if the shift is arithmetic the MSB, i.e.
the sign bit, is replicated to fill the leftmost positions. When left shifting there is no difference in
logic and arithmetic shift as in both cases the rightmost positions are filled with zeroes.

89



8 – CLiMA: Configurable Logic-in-Memory Architecture

8.3.3 CLiM Array
The stucture of the CLiM array is shown in figure 8.7. What is missing in that

scheme is a fundamental component of the architecture: the interconnections that
allow data to be moved across cells for in-memory computation. In this specific
case, interconnections have been designed specifically to support the convolution
flow in the most efficient way possible. Inter-cells connections inside the CLiM array
are depicted in figure 8.16. It can be seen that there are horizontal and vertical
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Figure 8.16: CLiM array structure. Inter-cells connections are shown: they are
specifically designed to support the convolution flow. In addition, rows of the
arrays are alternatively configured to be used as shift blocks or adders.

connections between neighboring and non CLiM cells. Moreover, the rows of the
array are alternatively configured as shift blocks (even rows), which also receive
weights from the external weight memory (refer to figure 8.7), or as adders (odd
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rows). The idea is that even rows store input pixels and execute the shift operations,
while odd rows execute the accumulations of the shifted pixels in order to produce
the result of the convolution. Figure 8.17 shows how the computation of a 3 × 3
convolution window is managed inside the CLiM array. The very first step, which

Step 1: initial pixel values 
are stored in even rows (R0, 
R2, R4)

Step 2: weights are distributed to cells on even 
rows and data are shifted accordingly

Step 3: data on rows 0 and 2 
are sent to row 1 for partial 
accumulation

Step 4: data on row 4 are sent to 
row 1 for partial accumulation

Step 5 & 6: horizontal accumulation on row 1; the final result of the 
convolution window is stored in the leftmost cell of row 1
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Figure 8.17: Convolution window computation inside the CLiM array.

can be considered a preliminary one, consists in loading input features into the
even rows of the array. Then, weights are distributed across cells on even rows and
data are shifted accordingly. Inside each cell the input feature is originally stored
in the STORE block. At the beginning of the computation the data is copied from
the STORE block into the STORE/SHIFT block where it will be shifted, while the
original value of the pixel will be kept as is in the redundant STORE block. The
reason of keeping the original value of the pixel in the STORE block is that each
convolution layer in a CNN makes use of different weight kernels (high dimensional
convolution), as explained in paragraph 1.3.2. This means that more kernels share
the same input feature map and CLiMA exploits this property in order to reuse data
that are already inside the array.
The example reported in figure 8.17 uses a 3 × 3 kernel. For example, the pixel
whose correspondent weight is 20 is not shifted at all, whereas the pixel whose
correspondent weight is −2−2 is be shifted by two positions to the right and, since
the sign of the weight is negative, the sign of the pixel is also inverted. Once all
data have been shifted, they are accumulated in the odd rows. In step 3, data on
rows 0 (R0) and 2 (R2) are sent to row 1 where cells execute element-wise addition
and update their content. In step 4, cells on row 4 sent their data to row 1 for
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further accumulation. Finally, in steps 5 and 6 the partial results stored in row 1
are horizontally accumulated (from the right to the left) to obtain the final result
of the convolution window. The final result is then copied in the STORE block of
the cell.
The data flow explained since now makes use of the horizontal and vertical inter-
cells connections to accumulate data and obtain the final result. However, when
the size of the kernel varies (kernel dimensions vary across layers in a CNN) the
number of cells involved in the computation of a convolution widow varies as well.
The interconnection fabric designed and shown in figure 8.7 allows to support any
kernel size, guaranteeing flexibility.

8.3.4 Control of CLiM Array
The control of the array is mainly managed by setting row/column decoders

and masks properly. Row/column decoders are modified in order to enable more
contiguous rows/columns at the same time. This is achieved by providing two
addresses to the decoders: a starting address and an ending one, with the former
being smaller than the latter. The decoders then activate all rows/columns included
in the interval indicated by the starting and the ending address. However, in order
to enable more complex patterns decoders are not enough. As shown in the example
in figure 8.18, four convolution windows are executed in parallel in the CLiM array.
In this case, the computation involves cells on rows and columns from 0 to 6. Hence,
when setting row/column decoders the starting and ending addresses provided will
be 0 and 6, respectively. This setting enables all rows and columns in the given
interval of addresses. However, convolution windows are not adjacent and the third
row and column should not be active. Row/column masks are used to mask the
enabling signals coming from the decoders in order to disable the rows/columns
inside an interval of addresses that are not involved in the computation.

8.3.5 Weights Dispatching
As shown in figure 8.7, a block called weight dispatcher is used to distribute

weights over the array in order to reproduce the window shifting process typical of
the convolution operation. Figure 8.19 describes how the weight dispatching works
in CLiMA. Weights are distributed alternately among CLiM cells on each row. Cells
0 and 4 share the same weight as well as cells c1 and c5 and so on. As explained
in subsection 8.3.1, a complete convolution operation is divided in different steps
where non overlapping convolution windows are executed in parallel. Step after
step, windows move over the input feature map (figure 8.13). Therefore, the goal
is to reproduce the window shifting process by moving the convolution windows as
showed in figure 8.19(A). In the CLiM array this movement is obtained by shuffling
weights after each computation step (figure 8.19(B)). At time t1 6 out of 7 cells
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Figure 8.18: Example of four parallel convolution windows to be computed in-
memory. The convolution windows might not be contiguous, hence, some rows/-
columns between them are inactive. The combination of row/column decoders and
masks is used to selectively enable/disable rows/columns.

in the row are active and weights are distributed in such a way that cells c0 and
c4 receive weight w1, cells c1 and c5 receive weight w2 and so on. At the next
computation step, time t2, weights are shuffled in order to move the convolution
windows. At time t3 weights are shuffled again and convolution windows are shifted
further. This dispatching mechanism is managed by the weight dispatcher block
which, step after step, shuffles weights according to the window shifting pattern
needed. Figure 8.19 depicts only an example of possible window shifting pattern.
Since the dispatching mechanism is flexible, different patterns (when varying the
stride, as instance) can be mapped. Moreover, the dispatching mechanism has
been optimized to manage 3 × 3 filters since this is the most widely used kernel
size. Nonetheless, smaller or larger kernels can be easily managed as well. In fact,
another common kernel size is 1 × 1 and, in this case, the same kernel would be
distributed to all rows with no need to shuffle weights as all convolution windows
can be computed in parallel at the same time (no overlapping regions when the
kernel is 1 × 1). Other common sizes are, for example, 5 × 5 or 7 × 7 filters (even
though filters larger than 3 × 3 are usually used very few times and only in the first
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Figure 8.19: Weight dispatching mechanism in CLiMA. (A) Window shifting pro-
cess. (B) The weight shuffling process managed by the weight dispatcher block
allows to reproduce inside the CLiM array the window shifting mechanism used in
the convolution.

layer of the network). In this case the weight distribution would be more complex
as the convolution window would be processed in more than one step.

8.3.6 Data Reuse Possibilities in CLiMA
One of the main advantages of using a LiM architecture such as CLiMA for

convolution processing is the possibility to reuse data computed inside the array
for further processing without the need to move it outside, as it is done in architec-
tures that do not exploit the LiM principle. When targeting CNNs, different data
reuse possibilities can be delineated in CLiMA, as also depicted in figure 8.20. Let
suppose to map each channel of the input feature map on a different CLiM array
(figure 8.20(A)). As explained in paragraph 1.3.2, the convolution operation is high-
dimensional and it involves multiple filters that share the same input feature map
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Figure 8.20: Data reuse possibilities. (A) Each channel of the input feature map
can be mapped on a CLiM array. (B) The input feature map stored in the CLiM
arrays is reused by different kernels in order to compute high-dimensional convolu-
tion. (C) After convolution, each CLiM array stores partial output results that are
accumulated across CLiM arrays to obtain the final output feature map.

to produce an output feature map with as many channels as the number of filters.
This means that the input feature map stored in CLiMA can be reused by different
filters (figure 8.20(B)). Each channel of the filter is assigned to the correspondent
channel of the input feature map and in-memory convolution is performed. Each
CLiM array will now store the partial results of the convolution. These partial
results can be accumulated across the arrays (figure 8.20(C)) in order to produce
the final output feature map.
So, the type of data reuse in CLiMA are:

• filter reuse: filters are reused across the input feature map to perform convo-
lution based on the sliding window process;

• input feature map reuse: input feature maps are reused by several filters to
perform high-dimensional convolution;

• partial results reuse: partial results obtained by in-memory convolution are
reused, inside CLiMA, for further processing to obtain the final output feature
map.

The filter and feature map reuse properties are typical of the CNN data flow, as
explained in section 1.5, and CLiMA intrinsically exploits them in order to reduce
data movement and memory accesses. In addition, since the convolution operation
is completely performed in CLiMA, partial results are already stored in memory,
hence, there is no need to move them and they can be directly reused for further
processing to obtain the final result.
On the contrary, what is usually done in non-LiM architectures is:

1. the input feature map and the first filter are read from the memory;
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2. convolution is performed inside an execution unit and partial results are writ-
ten back in memory;

3. once the convolution is completed all partial results are read from the memory;

4. accumulation of partial results is performed and final results are written into
the memory.

5. back to step 1 until all filters have been used.

It is clear that, thanks to the intrinsic data reuse possibilities of CLiMA, the advan-
tage of using such architecture to perform convolution is huge in terms of reducing
memory accesses. As it will be shown in the next subsection, this is not the only
advantage as the intrinsic massively parallelism offered by CLiMA allows to speed
up the convolution considerably.

8.3.7 Results and Comparison
The architecture of CLiMA was conceived to be technology independent, there-

fore, it is not bounded to any specific technology because the main aim is to val-
idated that the CLiMA computational model is effective with respect to a con-
ventional one2. CLiMA was modeled by using a fully parametric VHDL code and
validated through extensive simulations and by comparing the results obtained from
the VHDL description with an analogous model developed in MATLAB.
In order to validate the effectiveness of the CLiMA, the architecture has been com-
pared to the Deep Learning Processor presented in chapter 3.
For this purpose, an analytic computational model of CLiMA was defined. The
parameters taken into account by this model are:

• the characteristics of the convolution layer, i.e. input feature map dimen-
sions (Win, Hin), kernel dimensions (k), stride (S) and output feature map
dimensions (Wout, Hout);

• number of non-overlapping convolution widows that can be executed in par-
allel (according to the parallel non-overlapping data flow scheme described in
subsection 8.3.1) in each layer;

• cycles needed to execute the convolution of a single window.

2In this contest, a conventional architecture or conventional computational model is referred to
a system where the processing unit and the memory are physically separated and data are moved
from the memory into the processing core for computation and results are then written back into
the memory.
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In order to compute the number of non-overlapping convolution windows that can
be executed in parallel, the characteristics of the convolution layer must be taken
into account. Starting from the output feature map size, the total number of
convolution windows needed to complete the convolution of a layer is equal to the
size of the output feature map that can be calculated according to the following
equation:

Wout = Hout = Win − k

S
+ 1 (8.4)

Input and output feature maps are always square, therefore they have the same
width (Win/out) and height (Hin/out). Since, a single convolution window produces
an output pixel (figure 1.13), the total number of convolution windows (CWtot) is
exactly equal to the total number of output pixels:

CWtot = Wout · Hout = W 2
out = H2

out (8.5)

The number of non-overlapping convolution windows on a layer can be computed
as:

CWnon−ov =
(

Win

k + (S − 1)

)2

(8.6)

In order to compute a complete convolution by using the parallel non-overlapping
data flow scheme, more computation rounds are needed as shown in figure 8.8. The
number of rounds is simply given by the upper bound of the ratio between the total
number of convolution windows (equation 8.5) and the number of non-overlapping
ones (equation 8.6):

Crounds =
⌈

CWtot

CWnon−ov

⌉
(8.7)

Now, in order to compute the number of cycles required to execute the complete
convolution on a layer, the single convolution window must be first taken into
account. The number of cycles required to execute a single convolution window
depends on the size of the window, hence, on the size of the kernel. Considering
how the computation of a k × k convolution window is managed inside the CLiM
array (as shown in figure 8.17), the number of cycles for a single convolution window
(CWcycles) are given by:

CWcycles = 8 + 1 +
(

k − 1
2

)
+ (k − 1) (8.8)

The terms that constitute equation 8.8 are:

• number of cycles needed to perform shifts: it is a constant value because
weights are on 8 bits hence, in the worst case, 8 shifts are required. In
CLiMA data is shifted of 1 bit per cycle.
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• number of cycles needed to perform accumulations:

– 1 cycle to accumulate data pairs as shown in step 3 of figure 8.17; in
this case the number of cycles in independent from the size of the kernel
because these accumulations can always be done in parallel;

– (k−1)/2 cycles to perform accumulations of non-adjacent data as shown
in step 4 of figure 8.17; this figure shows only the case of a 3 × 3 ker-
nel, however, when the size of the kernel increases the number of cycles
required to perform non-adjacent accumulations increases because the
convolution window is larger and there are more non-adjacent data to
accumulate;

– k−1 cycles to perform final horizontal accumulations as shown in steps 5
and 6 of figure 8.17; as well as for the previous term, also in this case the
number of cycles grows as the size of the kernel, hence the convolution
window, increases because there are more horizontal accumulations to
perform.

The total number of cycles (Ccycles) needed to execute a complete convolution on a
layer is given by:

Ccycles = CWcycles · Crounds (8.9)
In a single convolution round CWnon−ov windows are executed in parallel. Knowing
that the number of cycles taken to execute them is CWcycles, the total number of
cycles to complete the convolution of a layer is expressed by equation 8.9.
Two CNNs were used to extract results and perform comparisons with the Deep
Learning Accelerator: AlexNet [69] and ResNet-18 [48]. For what concerns the
Deep Learning accelerator, the assumption is that each convolution window is as-
signed to a processing element for parallel execution. The number of cycles to
execute a convolution window depends on the kernel size, hence k × k because
the DL Accelerator has a throughput of 1 MAC operation per cycle (refer to the
throughput model in subsection 4.4.2). Regarding CLiMA, the assumption is that
a certain number of non-overlapping windows are executed in parallel (according to
the proposed parallel non-overlapping data flow scheme). Four different scenarios
were considered; what varies between one scenario and the other is the parallelism
level, i.e. the total number of parallel processing elements in the DL processor and
the total number of parallel non-overlapping windows in CLiMA. Figures 8.21 show
the number of cycles required by CLiMA to perform the convolution in AlexNet. In
both graphs, on the x axis are reported the five convolution layers of AlexNet while
on the y axis the number of cycles are shown. The four different lines represent
the different scenarios considered. The blue line is the worst scenario, with only 10
parallel non-overlapping convolution windows, whereas the red line represent the
best scenario with a window parallelism of 60. The graph in figure 8.21(B) is a
magnification of the left graph, showing more in detail the number of cycles for the
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Figure 8.21: (A) Cycles to execute convolution in CLiMA considering AlexNet as
workload and four different parallelism scenarios. (B) Detail of the last four layers
of AlexNet.

last four convolution layers of AlexNet. As expected, by increasing the parallelism
(and the dimension of the CLiM array, as a consequence) the number of cycles to
complete the convolution reduces. This reduction is drastic in the first layer of the
network while it is less evident in the last three layers. This behavior depends on
the characteristics of the layers. In particular, the first and second layers have a
large size (Win, Hin), which means that the number of parallel non-overlapping win-
dows is high as well. Going deeper in the network the size of the layers decreases as
well as the number of non-overlapping windows until a lower limit is reached where
having more parallelism does not influence the number of cycles.
The behavior is similar for the DL Accelerator, as highlighted in the graphs in
figure 8.22. The four different lines refer, as before, to the four different parallel
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Figure 8.22: (A) Cycles to execute convolution in the DL Accelerator considering
AlexNet as workload and four different parallelism scenarios. (B) Detail of the last
four layers of AlexNet.

scenarios with the blue line representing the worst scenario (only 10 parallel PEs)
and the red line representing the best one (60 parallel PEs). As for CLiMA, also
in this case when going deeper in the CNN, the size of the layers decreases as well
as the number of convolution windows. For this reason, as clearly highlighted in
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the graph in figure 8.22(B), increasing the parallelism does not have a big impact
in the total number of cycles taken to complete the convolution.
In order to compare CLiMA and the DL Accelerator the average number of cy-
cles required to complete the convolution in the four different scenarios have been
calculated. The results are shown in the graph in figure 8.23. The term con-
ventional refers to the DL Accelerator. The x axis reports the parallelism level
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Figure 8.23: AlexNet: number of average cycles to perform convolution in different
parallelism scenarios. CLiMA and the DL Accelerator (referred to as conventional)
are compared.

(non-overlapping convolution windows for CLiMA, parallel PEs for the DL Accel-
erator). The y axis reports the average cycles. It can be clearly seen that in all
the scenarios CLiMA outperforms the DL Accelerator. The percentage reduction
in terms of average of cycles that CLiMA provides is quite significant. Indeed, it is
equal to 70% when considering a parallelism of 60 and steadily increasing while the
parallelism decreases, with a peak reduction of 78% when considering the smallest
parallelism scenario. The cycles reduction is more evident when the parallelism is
smaller, which further proves the effectiveness of the CLiMA computational flow.
Similar trends can be observed when taking as workload another CNN, ResNet-
18. Figure 8.24 reports the results of performing convolution in CLiMA (graphs
in figures 8.24(A) and (B)) and in the DL Accelerator (graphs in figures 8.24(C)
and (D)). As for AlexNet, when going deeper in the network, layers tend to shrink
and the number of convolution windows reduces, that is why increasing the level of
parallelism in both architectures does not have any significant advantages in terms
of performance. The average cycles for all layers in ResNet-18 has been computed
as well and the results for CLiMA and the DL Accelerator are depicted in figure
8.25. Also in this case CLiMA outperforms the DL Accelerator. In fact, it can be
seen that CLiMA provides a percentage reduction in terms of cycles, when com-
pared to the DL Accelerator, that ranges from 45% when considering the maximum
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Figure 8.24: (A) Cycles to execute convolution in CLiMA considering ResNet-18
as workload and four different parallelism scenarios. (B) Detail of the last layers
of ResNet-18. (C) Cycles to execute convolution in the DL Accelerator considering
ResNet-18 as workload and four different parallelism scenarios. (D) Detail of the
last layers of ResNet-18.
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Figure 8.25: ResNet-18: number of average cycles to perform convolution in differ-
ent parallelism scenarios. CLiMA and the DL Accelerator (referred to as conven-
tional) are compared.

parallelism, to 49% when considering the minimum one. In this case the percentage
reduction is smaller than in the AlexNet case. This depends on the characteristics
of the network (i.e. size of the layers and of the kernels, stride) and, in particular,
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on how many non-overlapping convolution windows each layer has. The more they
are the more the reduction of cycles provided by CLiMA.
Even if described to be technology independent, the CLiM array has been synthe-
sized on a 28nm FDSOI technology (the same used to synthesize the DL Acceler-
ator) in order to have an estimation of the clock frequency at which the array can
work. The size of the array synthesized is such that 10 non-overlapping windows
can be executed in parallel. The same case has been considered for the DL Acceler-
ator, with 10 PEs working in parallel. In both cases the working frequency is close
to 1.8 GHz. This data, together with the average cycles calculated before in case of
a parallelism equal to 10 are used to estimate the execution time taken by CLiMA
and the DL Accelerator to perform the convolution. The results are reported in
table 8.4. As expected, at the same working frequency the average execution time

CNN type Architecture Average cycles Texec [µs]

AlexNet CLiMA
DL Acc.

1711
7790

0.95
43.2

ResNet-18 CLiMA
DL Acc.

2209
42939

1.2
24

Table 8.4: Performance estimation of CLiMA vs. the DL Accelerator for AlexNet
and ResNet-18. The parallelism is fixed to 10 parallel convolution windows for
CLiMA and PEs for the DL Accelerator. The target clock frequency is 1.8 GHz for
both architectures.

in CLiMA is lower than in the DL Accelerator.
The main point of the comparison is to demonstrate that exploiting the Logic-in-
Memory paradigm it is possible to reduce the number of data exchanges between
the processing unit and the memory. In case of CLiMA, the processing unit is
represented by the CLiM array while the external memory is represented by the
weights memory. This memory is accessed only once to read the weights which
are then reused to execute all the convolution windows on the whole input feature
map. This means that only k × k reading operations from the weights memory are
required. The input features are already inside the CLiM array. The same is true
for the output results which are computed inside the array. Therefore, no write
operations to an external memory are required.
For what concerns the DL Accelerator, the external memory is represented by the
input and output buffers in the PE. In this case both input features and weights are
read form the input buffer and moved to the execution unit. The output results for
each convolution window are then written in the output buffer. This means that
for each convolution window the number of memory accesses required is:

• (k × k) + (k × k) to read weights and correspondent input features from the
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input buffer;

• Wout · Hout to write the output results in the output buffer.

It is important to underline that in this evaluation it is not being considered the
presence of a main memory (external to CLiMA or the DL Accelerator) form which
weights and input features are loaded and written into the input buffer of each PE
inside the DL Accelerator or into the CLiM array. These operations are always
required and cannot be avoided even when considering a LiM-based architecture
(because it needs to loaded with data somehow). Moreover, CLiMA and the DL
Accelerator are very different from each other under many aspects, hence, com-
paring them is not easy and the main risk is to make a non fair comparison. In
order to avoid this, the evaluation is carried out when considering the basic case
of the convolution computation, that is a single kernel shifted on a single input
feature map. Results for AlexNet and ResNet-18 are reported in figures 8.26 and
8.27. In both cases, thanks to the data reuse possibilities that CLiMA offers and

Figure 8.26: AlexNet: (A) DL Accelerator memory accesses (read operations to
retrieve weights and input features and write operations to store final results). (B)
CLiMA: external memory accesses. Only read operations are performed to retrieve
weights from the weight memory.

thanks to the LiM computing paradigm, memory accesses are drastically reduced
with respect to a conventional computing paradigm such as the one used in the DL
Accelerator.

8.4 CLiMA: Strong Points and Issues
In this section, a recapitulation of CLiMA is given in the perspective of highlight-

ing strong points and issues. The main strong points of the proposed architecture
can be identified in the following.

• In-memory computation: being a Logic-in-Memory architecture, data pro-
cessing in CLiMA is done directly inside the memory without the need to
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Figure 8.27: ResNet-18: (A) DL Accelerator memory accesses (read operations to
retrieve weights and input features and write operations to store final results). (B)
CLiMA: external memory accesses. Only read operations are performed to retrieve
weights from the weight memory.

move data. The reuse of data already present in memory is maximized when
further processing is needed.

• Configurability: the CLiM cell, which is the basic LiM element of CLiMA,
can be configured to perform logical and arithmetic in-memory operations by
reusing the same simple logic.

• Flexibility: inter-cells connections can be exploited to build more complex
in-memory functions, making CLiMA a flexible architecture that can be used
for different applications.

• Parallelism: CLiMA is intrinsically parallel as its main core is the array, a
collections of cells that can work together and in parallel. This feature is
exploited to accelerate data-intensive applications.

For what concerns issues, two main ones can be identified. Firstly, the architecture
proposed in section 8.3, although configurable and flexible in terms of operations
that can be executed in memory, it is not in terms of inter-cells connections, hence,
possible computation patterns. In fact, the interconnection fabric presented in sub-
section 8.3.3 has been specifically designed to maximize the CNN data flow. As it
will also be clear from chapter 9 (exploration of other CLiMA approaches targeting
other applications), inter-cells connections vary quite a lot depending on the target
application since the data flow changes as well. This means that, some algorithms
may require certain inter-cells connections, to be executed in an efficient way, that
other algorithms may not need. The non-generality of inter-cells connections limits
the flexibility of CLiMA. The second issue is related to the control of CLiMA, in
particular, to the management of operations and data flow inside the CLiM array.
As depicted in figure 8.17, the convolution window computation consists of differ-
ent steps in which different cells interact, exchange data and perform computation.
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Moreover, the active cells involved in the computation vary step after step (figures
8.18 and 8.19). The management of the computation flow inside the array is not
at all trivial especially because the data exchange between cells must be carefully
coordinated in order to avoid that cells send or receive wrong data.

8.5 Beyond CMOS: CLiMA for pNML
As explained in chapter 6, beyond-CMOS technologies are being studied by the

research community as possible substitutes of CMOS [81]. Among these, Nano
Magnetic Logic (NML) is one of the most promising as it combines non volatility
with computing capabilities, 3D integrability and low power consumption. There
exists different implementations of NML technology and one of the most interesting
is perpendicular NML (pNML) [10]. In this section it is presented the design of
the CLiM cell (different versions) and of the CLiM array, fully based on pNML
technology.

8.5.1 pNML: perpendicular Nano Magnetic Logic
The basic element of Nano Magnetic Logic is the nanomagnet, a multi-layer

Co/Pt stack small enough (in the order of tens of nanometer) to guarantee the
presence of a single magnetic domain. Nanomagnets are bi-stable elements: in fact,
thanks to magnetization anisotropy, only two stable magnetization states are al-
lowed. In pNML, nanomagnets are characterized by perpendicular (with respect to
the magnet plane) magnetization anisotropy (reason why the technology is called
perpendicular NML) and the direction of the magnetization, as shown in figure
8.28(A), is used to encode logic values ’0’ and ’1’. Differently from CMOS, in
pNML technology the information is driven by magneto-static field-coupling in-
teraction among the nanomagnets. Logic gates and interconnections can be easily
built by linking nanomagnets in a proper way. The field-coupling interaction among
pNML cells enables the transfer of magnetic charge, hence, the signal transmission.
A specific direction of the signal propagation is obtained by modifying the local
magnetic properties of nanomagnets (figure 8.28(B)) [18]. In particular, by exploit-
ing Focused Ion Beam (FIB) irradiation, a region of the nanomagnet is made more
sensitive to magnetic field variations. This induced high sensitive region is called
Artificial Nucleation Center (ANC). The ANC can be considered as the input of
the magnetic device; in other words, it is the point where a domain wall starts nu-
cleating and, eventually, it propagates through the nanomagnet reversing its initial
magnetization direction (figure 8.28(C)). A recent research development [67] mod-
ifies the way in which ANCs are created: instead of using FIB irradiation, ANCs
can be created by changing the shape and thickness of one side of the nanomagnet
(figure 8.28(E)).
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Figure 8.28: pNML technology basics. (A) Single-domain nanomagnets are bi-
stable devices. The magnetization direction is used to encode the binary values 0
and 1. (B) The Artificial Nucleation Center (ANC) produced by FIB irradiation
guarantees that the signal propagation direction is unidirectional. (C) The ANC is
the point where a domain wall is nucleated and eventually propagated inside the
nanomagnet, causing the switching of the magnetization direction. (D) Global out-
of-plane magnetic field used as clocking mechanism in pNML circuits. (E) Inverter.
(F) Minority voter. (G) 3D minority voter.

The propagation of information in a pNML circuit can be achieved by applying a
global out-of-plane magnetic field (figure 8.28(D)) [11] that has the same function
of the clock signal in a CMOS circuit. This external magnetic field is sinusoidal and
its intensity is such that it can force the switching of the magnetization direction
of the nanomagnets. So, the combined action of the external magnetic field and
ANCs allows a correct transmission of the information in a defined direction. As
shown in figure 8.28(B), the coupling field (dashed blue line) of a magnet has an
effect on the ANC of its neighboring nanomagnet and influences the magnetization
switching. In pNML circuits nanomagnets tend to arrange themselves in an anti-
parallel (figure 8.28(B)) or parallel way, depending on their relative position.
Figure 8.29 shows how the clocking mechanism work in pNML circuits and how
information is propagated through a pNML wire (i.e. a chain of nanomagnets).
The pNML wire has one input magnet (IN) whose magnetization direction is fixed
at logic 1. At time t = 0 there is no external magnetic field applied. At time
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Figure 8.29: Clocking mechanism in pNML technology.

t = 0.5 a positive field is applied. Since it has the same magnetization direction of
the input nanomagnet, the two contributions superpose and cause the switching of
magnet A, in anti-parallel direction. In the next semi-period (t = 1) the external
field and magnet A have the same direction and magnet B switches accordingly. In
this way a logic 1 is propagated through the chain.
The basic elements to build pNML logic circuits are the inverter (figure 8.28(E)),
the notch (figure 8.28(F)) and the minority voter (figure 8.28(G), 3D version in
figure 8.28(H)), a function whose output is equal to the minority of the inputs. A
notch is a shape deformation that acts as a barrier, blocking the signal propagation
until it is depinned by means of a short in-plane magnetic field pulse [41]. Notches
can be used to create magnetic memory elements [90][36].
One of the main advantages of pNML technology is that it allows to create 3D
structures [9][33][35][34] with nanomagnets distributed on different planes. This
fundamental characteristic, together with the non-volatility of the NML technol-
ogy, allows to integrate memory and logic in the same device, perfectly embodying
the concept of Logic-in-Memory. Previous works on the exploration of 3D NML
structures were presented in [24][89][38][36][99]. However, none of these works pro-
pose a complete Logic-in-Memory structure, which is instead the aim of what will
be presented in the following.
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8.5.2 MagCAD: from layout to VHDL
The designs that will be shown in the next subsections were created using Mag-

CAD [88], an enhanced graphic editor software for emerging technologies fully de-
veloped at the VLSI laboratory (research group of the Department of Electronics
and Telecommunications of Politecnico di Torino).MagCAD can be used to design
and validate custom NML circuits.
The user can create its own design by means of a simple and intuitive GUI (Graph-
ical User Interface) that provides a layout workspace and building blocks (i.e. mag-
net, notch, inverter and others) that can be dragged and dropped inside it. Building
blocks can be connected and combined together to form more complex structures.
Moreover, MagCAD supports both planar and 3D designs, giving the user the pos-
sibility to add multiple layers and place magnets on them.
In addition, MagCAD supports hierarchical design; in fact, the layout can be ex-
ported and used as a component in other designs to build complex architectures.
Another key feature of MagCAD is that it supports the generation of the VHDL
description of a circuit starting from its layout. The generated VHDL files can
be directly used, together with a testbench, to simulate the behavior of the entity
using a standard HDL simulator. When exported, MagCAD generates also a log
file that contains useful information such as the number of VHDL items created or
an estimation of the area occupied by the NML design.
The VHDL description generated by MagCAD makes use of a compact VHDL model
[115] developed for pNML devices, based on physical models and technological pa-
rameters extracted from experimental results. As of now, different micro-magnetic
simulators (e.g., mumax3, OOMMF, NMAG) can be used to perform low-level sim-
ulations of magnetic devices and structures but, one of their main limitations is the
size of the structure that can be modeled and simulated. In fact, low-level micro-
magnetic simulations are extremely time and resource consuming, hence, simulating
large and complex structures is not feasible as it would require too much time and
resources. On the contrary, MagCAD offers the possibility to design, simulate and
validate even very complex structures.

8.5.3 pNML CLiM Cell and Array
Two different pNML-based versions of the CLiM cell were designed. Both of

them are multi-layer structures.
The first pNML CLiM cell, shown in figure 8.30, is the most complex one and it is
the exact pNML-equivalent of the cell presented in subsection 8.3.2. The design is
three-dimensional with magnets placed on four different layers. The main building
blocks of the cell are the computational element (figure 8.31(A)) and the memory
cell (figure 8.31(B)). The two building blocks are implemented on three layers. The
computational element (figure 8.31(A)) is a 1-bit configurable full adder that can
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Figure 8.30: pNML CLiM cell: complex version.
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Figure 8.31: pNML CLiM cell building blocks: (A) computational element, (B)
memory element.

also be programmed to execute logic operations (see subsection 8.3.2). The sel
input controls a 2-to-1 multiplexer, whose output is logic, that allows to choose
among c_out or S when performing logic operations. Then, one among output S
or logic is chosen (by means of an additional multiplexer not shown in figure) to
be sent to the memory cell. c_out is instead sent to the neighboring cell to create
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a ripple carry adder. Some pNML basic elements are also highlighted. A 3-input
majority voter (MV) is used to compute the output carry, while a 5-input MV is
used to compute the sum [17]. Other highlighted elements are the inverter and
the VIA that connects a nucleation center placed on another layer. Finally, fixed-0
inputs (nanomagnets with fixed magnetization) are used to fix one of the MV’s
inputs to obtain an AND gate. In fact, supposing that the MV has three inputs,
A, B and C, it satisfies the logic function MV = AB + BC + AC. If A = 0 then
MV = BC, which is the logic AND between inputs B and C.
The memory cell (figure 8.31(B)) exploits the notch to retain the information. The
en signal is used to enable the writing of a new data inside the cell, whereas the rst
signal reset the content of the cell. The output value changes accordingly to the
input only when the notch is depinned. The depinning of the notch corresponds to
the sampling of the input data. The feedback helps retaining the value stored in
the cell when the enable signal is inactive (no writing) but the input changes.
The cell shown in figure 8.30 has two memory cells (note the presence of two
notches) as the one presented in subsection 8.3.2, whose writing is controlled by
signals en and wr. The copy signal is used to copy the content of one memory cell
in the other. The shift signal is used to enable shift operations; the input shift_in
comes from an adjacent cell and it allows to connect more cells in chain to perform
shift operations.
Figure 8.32 shows a simplified version of the cell depicted in figure 8.30. This cell
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Figure 8.32: pNML CLiM cell: simplified version.

has only one memory element and it does not have signals to support shift opera-
tions.
As explained in subsection 8.3.3, when programming the CLiM array to perform
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convolution, cells on even rows are used for shift operations while cells on odd rows
are used for accumulation. For this reason, when designing the pNML CLiM array,
the complex version of the pNML CLiM cell was used in even rows and the simpli-
fied one in odd rows in order to reduce the overall area occupied by the architecture.
The pNML structure shown in figure 8.33, is a small pNML CLiM array composed
of three rows. Even rows contain four complex pNML CLiM cells. The odd row
contains five simple pNML CLiM cells. In fact, simplified pNML CLiM cells are
more compact that complex ones and this makes it possible to fit in one row a
larger number of them with respect to complex ones. This also allows to increase
precision when performing accumulations.
Moreover, it can be seen that a large portion of the overall area occupied by the
CLiM array is taken by interconnections. This design uses 9 layers: bottom ones are
occupied by CLiM cells, whereas upper ones are used for interconnection routing.
Even though the pNML CLiM array presented is very small, the layout is partic-
ularly complex because of all the connections needed between cells. This makes it
very difficult to design larger structures.
The pNML CLiM array occupies an estimated area of 109.3 µm.

Table 8.5 summarized some important results obtained by considering the same
methodology and assumptions presented in [11]. The values of power density and
binary throughput computed for the two pNML cells presented are compared to the
CMOS version of the CLiM cell (figure 8.14) when a 1-bit parallelism is considered.
First of all, it can be noticed that pNML cells are far more compact than the

Cell type Area Power density Binary throughput fclock
[µm2] [W/cm2] [GB/ns cm2] [MHz]

pNML
simple 2.7 3·10−3 1.18 50

pNML
complex 4.2 1.9·10−3 1.85 50

CMOS 40 75.7 3.7 1500

Table 8.5

CMOS one, thanks to the 3D integrability of pNML technology. Moreover, being
a very low power technology, pNML allows to obtain a power density that is three
orders of magnitude smaller than the one obtained in the CMOS case. For what
concerns binary throughput, which is actually a density (it is evaluated per square
centimeter), is slightly lower in the pNML cells with respect to the CMOS one.
However, considering that the CMOS clock frequency is 1.5 GHz and the pNML
one is only 50 MHz, the throughput density achievable in the pNML case is quite
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8 – CLiMA: Configurable Logic-in-Memory Architecture

remarkable. These results suggest that pNML is an ideal candidate for Logic-in-
Memory.
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Chapter 9

Exploration of other CLiMA
Approaches

The research work conducted on CLiMA has also involved different students
that with their ideas and contributions have helped defining advantages and limi-
tations of the LiM approach. This exploratory work was carried out in the context
of some thesis works and a multidisciplinary project that has involved several mas-
ter’s degree students. The ideas and fundamental characteristics of the CLiMA
concept presented in chapter 8 have been used as basis for the study of different
architectural and technological solutions. This chapter will mainly focus on the
architectural considerations that can be derived from the exploration conducted.
The architectures that are going to be presented in the next sections will not be
described in every detail, only the main and most useful (in the context of this
exploration) features will be highlighted.

9.1 CLiMA for Database Search
Database search based on bitmap indexes (subsection 8.2.1) is a perfect can-

didate for CLiMA as it requires the execution of simple bitwise logic operations
on large quantities of data. Bitmap indexes are stored in memory in such a way
that, when answering a query, operations are executed between rows. Going back
to the example shown in figure 8.5, a possible mapping on CLiMA would be to
store bitmap indexes on different rows, as depicted in figure 9.1. In order to per-
form the query ‘Gender = F AND (Age = A OR Age = B)’, two operations are
need: a bitwise OR between the two rows containing the age range bitmap indexes
and then a bitwise AND between the result of the bitwise OR and the content of
the row storing the bitmap index related to the gender. From this example, some
important preliminary considerations can be derived.

1. The operations required by the bitmap-based search are logical and bitwise:

115



9 – Exploration of other CLiMA Approaches

1 0 1 1 1 0 1
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CLiM cell

bitwise
OR

resultbitwise
AND

CLiM row

Figure 9.1: Mapping of bitmap indexes and bitwise operations on CLiMA.

this means that the building block of CLiMA, i.e. the CLiM cell, can be
simply implemented as a configurable block able to perform logic operations
and to store data; moreover, since operations are bitwise, cells on the same
column but different rows must be directly connected.

2. Queries can be simple (e.g., A + B) or composed (e.g., C · (A + B)). In the
first case the operation involves only two operands (hence, two rows), while
in the second case it involves more than two operands.

3. Operations can be executed on operands stored in any position inside the
array; in some cases operands might be stored on adjacent rows, in other
cases they might not.

4. If the query is composed and the operations are totally independent (e.g.,
(A · B) + (C · D)) then computation can be parallelized (e.g., A · B and C · D
are executed in parallel and, at the next step, the OR between the two partial
results is performed).

These considerations have driven the design choices of CLiMA for database search,
whose architecture is shown in figure 9.2. The computational core of CLiMA is, as
usual, the CLiM array. In this implementation, the array is a multi-bank structure
whose level of parallelism depends on the number of CLiM banks in the array.
Each CLiM bank, in fact, can perform computations independently from the others.
Banks can also exchange data among them. In order to manage the data exchange
without creating conflicts while guaranteeing flexibility, each bank is connected to
a bi-directional breaker (BB block). This block routes data according to a source
and a destination; as instance, if a data has to be moved from bank 0 (source)
to bank 3 (destination), then BB 0 sends the data from bank 0 toward the south

116



9.1 – CLiMA for Database Search

CLiM Bank 0

CLiM Bank 1

CLiM Bank 2

CLiM Bank N

BB 
0

BB 
1

BB 
2

BB 
N

… …

data_in

data_out
(result of query)

CLiM Array

1’s counter

CLiM Word

CLiM Word

CLiM Word

…

Ghost Word

CLiM Word

CLiM Word

CLiM Word

…

Ghost Word…
…

…

CLiM sub-array

da
ta

_in
data_out

CLiM
Row

O
PERANDS 

DECO
DER

LOGIC DECODER

CLiM Bank
Bi-directional

Breaker

O
PERATIO

NS DISPATCHER

INSTRUC
TIO

N
 M

EM
O

RY
Figure 9.2: CLiMA for database search based on bitmap indexing.

direction, BBs 1 and 2 are transparent and isolate banks 1 and 2 (which are not
involved in the operation) and, finally, BB 3 directs the data coming from north
toward bank 3. By properly controlling bi-directional breakers data can be moved
between banks with maximum flexibility.
The extra-array blocks help controlling the operations inside the CLiM array. In
particular, there is an instruction memory containing instructions that are sent to
the operations dispatcher block. Since CLiMA can execute more instructions in
parallel, the role of the dispatcher is to assign the correct instruction to the correct
bank. Each instruction specifies the type of logic operation to perform and the
two operands on which performing the operation. Several execution modes are
supported by the architecture:

• single operation - single bank: a single operation is executed between operands
belonging to the same bank;

• multi-operation - multi-bank: multiple operations are executed in parallel
either on operands belonging to the same bank or on operands belonging to
different banks;

• single composed operation: a single composed operation is executed; com-
posed operations involve more than two operands that can be in any bank;

• multi-composed operation: multiple composed operations are executed.

The one’s counter is used to count the number of hits of a query of the type ‘how
many?’, if required. The counter can be considered as extra-row logic.
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Figure 9.2 also depicts the internal structure of a CLiM bank which is composed
by a CLiM sub-array and some extra logic. The CLiM sub-array is composed of
multiple words, each containing a certain number of CLiM cells. The CLiM cell
has storage and logic computation capabilities. CLiM words on the same column
share the same input and output lines. There are also two global input/output
lines to connect the input/output column lines to the overall input/output ports of
the bank. Each bank has also a ghost row composed of cells that have only storage
capabilities. The ghost row is used to hold partial or final results in order to avoid
overwriting the original content of the bank.
For what concerns the extra-logic, the logic decoder is used to manage the config-
uration of the CLiM cells according to the required logic operation. The operands
decoder is instead used to activate the correct cells involved in an operation; it
receives the two addresses of the operands from the operations dispatcher.
For more details on CLiMA for database search please refer to [5].

Acknowledgments I would like to thank Milena Andrighetti for the work that
she has done on CLiMA for database search and for the contribution given in the
context of the exploration on CLiMA.

9.2 CLiMA for Random Decision Forests
Random decision forests (subsection 8.2.2) are a good choice for in-memory

implementation as they require comparisons that can be implemented with simple
logic operations. The architecture of CLiMA for Random Decision Forests is shown
in figure 9.3. It consists of a CLiM array composed of different sub-arrays, each
storing a tree of the forest. In particular, CLiM sub-arrays store the thresholds
associated to the tree’s nodes, whereas the nodes memory stores information related
to each node. The nodes memory is divided into multiple banks, each associated
to a tree and each communicating with a CLiM sub-array. The information stored
in banks are, for each node in a tree, its address and the addresses of its right
and left nodes. Figure 9.4 shown the internal structure of a CLiM sub-array. The
sub-array is organized in rows, each storing the threshold value associated to a
node. Thresholds are unsigned values; in order to identify whether a node is a leaf
or not, the MSB is set to 1 in the former case, to 0 in the latter. Each CLiM cell
inside a row is composed of a logic block for performing the comparison (two logic
gates) and a memory element that holds the value of the locally stored threshold.
The MSB cell stores the MSB of the threshold value: if the MSB is equal to 1
then the current node is a leaf, the comparison is skipped and the result of the
classification can be directly determined (blue arrow in figure 9.4 going from the
MSB cell toward the class RF). If, instead the MSB 0 the current node is not a
leaf and the comparison between the local threshold and the input data must be
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Figure 9.3: CLiMA for random decision forests.

performed. The comparison is done bit by bit inside the CLiM cells in a row.
Depending on the result, the next node in the tree is chosen. In particular, if the
threshold of the current node is larger than the input data than the next node is
the right one, otherwise it is the left one. The result of the comparison is sent to
the nodes memory and the current node is updated. In this way the whole tree
is traversed until a leaf node is reached. The first leaf node reached activates the
correspondent register in the class register file (RF). Each sub-array has its class
RF containing the values of the classes that each tree can distinguish. Once all
class values are available, the majority voter block (extra-array logic) calculates
the final classification result.
For more details on CLiMA for random decision forests please refer to [116].
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in the context of the exploration on CLiMA.
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9.3 CLiMA for AES
The AES algorithm (subsection 8.2.3) consists of different steps: some of them

can be easily implemented in memory, but others cannot. This does not depend
on the complexity of the operations required (all the operations are rather simple,
indeed) but mainly on the complexity of the processing patterns. As instance, the
ShiftRows step, consists of shifting the rows of the state array by a certain num-
ber of bytes to the left. This operation, per se, is not at all complex. Moreover,
as shown in subsection 8.3.2, implementing in-memory shift operations is possible
and effective. However, in the AES case shift operations require the movement of
bytes, not single bits. For this reason, implementing an in-memory byte shift would
be inefficient and complex because it would require a lot of inter-cells connections
which, in turn, would cause congestion. In general, the AES algorithm requires a
lot of data exchange that is not suitable to be implemented in memory. On the
other side, most data transformation are based on XOR operations which can be
easily integrated in memory.
The architecture of CLiMA for AES in represented in figure 9.5. It is composed
of the CLiM array, some extra-logic (MixColumn Block) and other storage units.
The CLiM array is an heterogeneous structure composed of three sub-arrays that
contain 16 8-bit CLiM cells each. CLiM cells are composed of two storage elements
(one to hold the original data, the other for partial or final results) and a XOR gate.
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Figure 9.5: CLiMA for the Advanced Encryption Standard algorithm.

The array is heterogeneous because the sub-arrays are used for different steps of the
AES. Even though all CLiM cells in sub-arrays are the same, what changes are the
inter-cells connections. In particular, CLiM sub-array 0 is used perform the part
of the KeyExpansion step that makes use of XOR operations and the KeyAddition
step. In this case CLiM cells on different rows are connected through vertical con-
nections because XOR operations are executed between the local stored data and
the data coming from the upper cell. CLiM sub-arrays 1 and 2 instead are used for
a part of the MixColumn step. In this case vertical inter-cell connections are not
needed. Cells are connected by means of horizontal interconnections because XOR
operations are executed, in this case, between the local stored data and the data
coming from another cell on the same row.
Outside the CLiM array the MixColumn block is used to perform the part of the
MixColumn step that cannot be mapped on CLiMA because it requires XOR oper-
ations between non-adjacent values. This would require a complex and congested
interconnection fabric inside the array, which is unfeasible. In this case the CLiM
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array is used as a memory, in fact, the MixColumn block reads data from it, exe-
cutes the needed operations and writes back the updated values inside the array.
At the beginning of each round of the AES algorithm, the State Array RF (Register
File) contains the data to encrypt. This data is used to access different Look-Up Ta-
bles (LUTs) when the SubBytes step is performed. The substituted bytes retrieved
from the LUTs are written back in the State Array RF. During the write-back
process bytes are also shifted in order to perform the ShiftRows step. For what
concerns the Key RF, here the cipher key is stored. When the KeyExpansion step
is performed, values stored in the Key RF are used to access the LUTs to perform
some transformations. The transformed values are written back in the Key RF and
then CLiMA is used to complete the KeyExpansion step, as explained earlier.
It is clear that the complexity of the AES, especially in terms of data exchanges,
makes this application not perfectly suitable for a full in-memory implementation.
For this reason, the architecture presented in this section uses a mix of LiM (the
XOR operations executed inside the CLiM array), CnM (the MixColumn block
that reads data from the CLiM array) and CwM (the LUTs used for byte transfor-
mations).

Acknowledgments I would like to thank Baldo Martino, Riccardo Massa and
Maurizio Spada for the work done on CLiMA for AES and for the contribution
given in the context of the exploration on CLiMA.

9.4 CLiMA for XNOR-Networks
Binary CNNs (subsection 8.2.4) are based on simple XOR and popcount oper-

ations that can be easily mapped on CLiMA. The architecture is depicted in figure
in figure 9.6. The CLiM array is composed of different rows, each divided in a
certain number of CLiM sub-rows. A detail of the internal structure of the sub-row
is shown in figure 9.6 on the right. The sub-row is the basic unit of this architec-
ture and it is composed of three simple CLiM cells. Two of them are programmed
to perform XOR operations between the pixels (stored locally) and the weights
(coming from the external weight memory) and one does both a XOR operation
and an addition between the results coming from the other two cells. The addition
performs a partial bitcount operation. The sum (S) and carry (Cout) values and
then sent to the bitcount logic (extra-array logic) that calculates the complete bit-
count operation. The reason why this operation is not entirely executed inside the
array is that the logic needed would occupy too much space, causing the array to
loose compactness. Moreover, for this implementation data unrolling was applied.
The unrolling scheme is the same shown in figure 8.10, hence, weights are shared
by CLiM cells placed on the same column. Accumulations are partially executed
inside sub-rows in the horizontal directions by exploiting inter-cells connections.
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9.5 Considerations
From the exploratory work carried out and from the description of CLiMA pre-

sented in chapter 8, different considerations can be inferred. These considerations
have been of great help in establishing which features of CLiMA must be improved
in order to take full advantage of the in-memory computing capabilities that the
architecture can offer and in order to define the right degree of configurability that
is a compromise between flexibility and efficiency.
Even though all the algorithms selected for the exploration are characterized by
high-data demand, high level of parallelism and simple operations, it turns out
that there are other fundamental aspects that must be taken into account.

1. Type of operations: it is not enough to consider the simplicity of the opera-
tions, in fact, all the algorithms selected are mainly characterized by simple
operations such as logical ones, additions or shifts. However, the type of
operations, even if they all require very simple hardware, has an influence
on which inter-cells connections are needed and which are not. Moreover,
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this has an influence on the degree of in-memory computing needed (only one
among LiM, CiM, CnM, CwM or a combination of them).

2. Data parallelism: this factor has influence on the granularity of the CLiM
array. As instance, if a certain algorithm requires only bitwise operations than
the array will have a fine granularity, meaning that the basic computational
cell will operate on a single bit. On the contrary, if multi-bit operations are
needed (e.g. N-bit addition) then the array will be characterized by a course
granularity and the basic computational cell will operate on multiple bits.

3. Regularity of the data flow: CLiMA is intrinsically characterized by a rather
regular structure; its computing core is, indeed, an array which has itself
a regular structure. The array favors small data movements or operations
between relatively close data. Large distance data movements inside CLiMA
can be supported but they are not efficient. As a result, the data flow of an
algorithm has, of course, a strong effect on the interconnections inside the
array.

For what concerns the type of operations, a solution to support as many operations
as possible inside CliMA has already been proposed in chapter 8. Indeed, the CLiM
cell presented can support logic operations, additions/subtractions and shifts. All
the algorithms selected are based on a sub-set of these operations, hence, they can
all be supported.
However, for what concerns data parallelism, the CLiM cell presented in subsection
8.3.2 is not dynamic, meaning that once the parallelism has been fixed it cannot
be changed, therefore, operations such as additions or shifts can only be done on
a fixed data parallelism. By changing the application the data parallelism changes
as well, of course.
For what concerns, instead, inter-cells connections, these are what varies the most
when changing the algorithm because, depending on the data flow and on how data
are mapped inside the array, the interactions between cells change.
All these issues will be tackled in the next chapter and some possible solutions and
future developments will be identified.
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Chapter 10

Conclusions and Future Works

The research work conducted in the contest of in-memory computing has brought
to the definition of CLiMA, a Configurable Logic-in-Memory Architecture that inte-
grates in-memory computing capabilities, configurability and parallelism. Different
variations of CLiMA have been presented in chapters 8 and 9 and while all are
based on the same ideas and concepts described in chapter 8, a lot of work still
needs to be done in order to delineate an architecture capable of adapting per-
fectly to the needs of different (but with similar characteristics) applications. The
long-term vision is, in fact, to reach the definition of a CLiMA that is sufficiently
flexible to adapt to the different requirements that each application demand. It
is important to underline that the aim is not to define a general purpose version
of CLiMA, but an architecture that well support all those applications that can
really take advantage from a computing unit like CLiMA. In order to do so, the
limitations exposed in sections 8.4 and 9.5 must be overcome.
One of the main and problematic issues is represented by interconnections inside
the CLiM array. As already explained, interconnections limit the possible com-
putation patterns, hence, the type of applications that can be run on CLiMA. A
possible solution to this problem is the definition of a configurable interconnection
network that can be re-configured depending on the algorithm. This has been par-
tially achieved in CLiMA for database search (section 9.1) where bus breakers are
used to flexibly route data where needed. However, this level of granularity is not
enough. A more fine interconnection system is needed and a possible path might
be to design a multi-level reconfigurable interconnection network with different de-
grees of granularity at each level in order to increase the flexibility. It is clear that
the complexity of such interconnection system would be quite significant, therefore,
possible computation patterns must be somehow limited.
Another limitation is represented by data parallelism. Inter-cells connection flex-
ibility is, again, the obvious solution if the architecture has to support dynamic
data parallelism. However, supporting any data parallelism is unfeasible because
it would mean controlling each inter-cell connection singularly. A more reasonable
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solution would be to define a parallelism granularity (e.g., multiples of 4 bits).
In section 8.4 an important issue was highlighted: the control of CLiMA is quite
complex because operations and data exchanges between cells must be carefully
coordinated in order to fulfill the correct computation flow. In this regard, it would
be of extreme importance to build a compiler for CLiMA in order to make it eas-
ier and more straightforward the management of the computation flow inside the
array.
In addition to these limitations, one of the main difficulties encountered during
the extraction of the results was the impossibility of comparing CLiMA to other
architectures that exploit, on some level, the concept of in-memory computing.
This depends partially on the architectural differences between CLiMA and other
works, but mainly on the lack of details on how the computation is carried out in
other architectures and, in most cases, on the unavailability of common comparison
figures. An obvious solution to this problem is to try extracting, somehow, useful
common figures or data from works found in literature. However, the risk of doing
so is that the information/data extracted are not precise, negatively affecting, as a
consequence, the results.

All the issues and limitations that affects CLiMA open new paths for future
developments. As demonstrated, the in-memory computing paradigm, as an alter-
native to the conventional von Neumann one, seems to be promising. This paradigm
shift has an effect on both the architectural and the technological level of a com-
puting system. This work has mainly focused on the architectural level, trying to
delineate strong points and limitations of the in-memory computing paradigm in
order to define a Configurable Logic-in-Memory Architecture that takes full advan-
tage of this new paradigm to tackle the memory bottleneck problem.
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Appendix A

Classification of in-Memory
Computing Related Works

This appendix reports a table that collects the main and most relevant works
(not all of them) found in literature related to in-memory computing and all of its
shades. The works are listed in year-of-publishing order and for each of them the
following items have been reported:

• Paper Ref.: bibliographical reference of the paper;

• Description: concise description of the proposed architecture;

• Technology used;

• Target applications;

• Software/models used for simulation and/or evaluation;

• Silicon proven: if the proposed architecture is silicon-proven or not;

• Approach: classification according to one of the approaches presented in chap-
ter 7.

The name of the approaches has been shortened. The correspondent acronyms used
are:

• CnM: Computation-near-Memory;

• CiM: Computation-in-Memory;

• CwM: Computation-with-Memory;

• LiM: Logic-in-Memory.

All the information found in this table have been retrieved from the referenced
papers, according to what the authors have reported.
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Paper Ref. Description Technology Target applications Software/models used Silicon 
proven Approach Year

[30]
Host processor + multiple PIM 
(Processing-In-Memory) co-

processors
180nm TSMC 

CMOS
Irregular data access 
patterns, dense matrix 

computations
in-house simulator based on RSIM 

event-driven simulator yes CnM 2002

[106] General purpose PIM-based 
massively parallel architecture DRAM + CMOS High-Perfomance Computing 

(HPC) not specified no CnM 2002

[77] 1-bit non-volatile full adder circuit 
mixing MTJ and CMOS

MTJ + 0.18 um 
CMOS Sum HSPICE yes LiM 2009

[124]
Multi-core architecture: custom 

logic layer with stacked DRAM in 
each core

32nm CMOS + 
3D-stacked 

DRAM
Data intensive and sparse 
data: 2D-FFT, SpGEMM

in-house synthesis tool for custom 
LiM blocks, CACTI-3DD no CnM 2013

[123]
Host processor + PIM cores. 

Each core has CPU+GPU and it 
is connected to a HMC

22nm/16nm 
CMOS + HMC

Graph processing, HPC, 
Rodinia benchmarks

in-house ML-based model for 
performance and power estimation no CnM 2014

[59]
MTJ-LIM hybrid architecture. 
Each memory cell has a MTJ 
stacked above simple CMOS 

logic

90nm CMOS + 
MTJ

Database search: Hopfield 
NNs, Sparse clustered 

networks 
Modelsim (VHDL), HSPICE, 

different Cadence tools yes LiM 2014

[84]
 RRAM CAM arrays inside the 
FPUs of a GPU, to hold highly 
frequent pre-computed values

45 nm TSMC 
CMOS + RRAM Image and signal processing

in-house framework to: profile 
apps and find high freq. patterns + 

generation of code to program 
CAMs, Multi2sim, FloPoCo, 

different Synopsis tool, Cadence 
Virtuoso

no CwM 2014

[65]
8x8 array with 2 tiers: one for 

MIPS-like cores interconnected 
through a 2D-mesh network and 

one for 3D-stacked SRAM

130nm CMOS + 
3D-stacked 

SRAM

AES encryption, edge 
detection, histogram, k-

means, matrix multiplication, 
median filter, motion 

estimation, string search

Synopsis, Cadence, in-house 
tools for 3D-stacking yes CnM 2015

[3]
Multi-core system with 32 in-order 
single-issue cores with HMC on 

top
CMOS + HMC Graph processing

in-house programming interface, in-
house cycle-accurate x86-64 

simulator
no CnM 2015

[120] Parallel SIMD RRAM-based CAM 
array

RRAM + 22nm 
CMOS

Low arithmetic intensity: N-
pairs Black Scholes option 
pricing (BSC), N-point FFT, 
Dense Matrix Multiplication

in-house cycle-accurate simulator, 
SPICE no CwM 2015

[23]
RRAM crossbar + modified 

peripheral circuitry to support 
ANN-like computation

RRAM ANNs NVsim, CACTI-3DD, CACTI-IO no CiM 2016

[36] RRAM arrays + 
microprogrammable control logic RRAM PRESENT cypher for 

lightweight cryptography not specified no CiM 2016

[75]
Non-volatile memory architecture 
with modified circuitry to perform 
bitwise logic operations between 

memory rows

memory based on 
generic resistive 

cells

Vector-OR operations, bitmap-
based graph processing and 

database search

HSPICE, in-house programming 
model to allocate data in the 

memory and send instructions, 
NVsim, CACTI-3DD, in-house 

simulator

no CiM 2016

[61]
XNOR gates inside DRAM banks 
+ other logic stacked below the 

memory using TSVs

3D-stacked 
DRAM + 32 nm 

PTM CMOS
Binary CNNs (XNOR-Net) CACTI, Virtuoso no LiM + CnM 2017

[108]
CPU for general purpose ops + 

unit with 4 RRAM arrays for 
matrix-vector multiplications + non-

volatile SRAM for data storage

150nm CMOS + 
RRAM general purpose, ANNs not specified yes CiM 2017

[43] RRAM crossbars + logic RRAM graph search: BFS NVsim no CiM 2017

[14]
3-stage pipelined GP architecture 

with RRAM instruction mem. + 
RRAM mem. for data computation 

and storage
RRAM 24 EPFL benchmarks

in-house algorithm to map the 
dataflow on the architecture and 

generate the instruction 
scheduling accordingly

no CiM 2017

[64] Multiple RRAM-based CAM 
arrays + microcontroller RRAM DNA sequence alignment SPICE, in-house cycle-accurate 

simulator no CwM 2017

[100]
Modified commodity DRAM to 
perform bulk bitwise AND-OR-

NOT operations
DRAM

Bulk bitwise logic operations 
(e.g. bitmap-based query 
processing for databases, 
encryption, DNA sequence 

mapping)

SPICE, Gem5 no CiM 2017

[56]
Configurable RRAM-based 

architecture to realize fast in-
memory adder trees

RRAM + 45nm 
CMOS

General OpenCL, image 
processing

multi2sim, Virtuoso, VTEAM 
memristor model no CiM 2017

[110]
HMC-based architecture where 

the logic layer of the HMC is used 
for approximate computing

Micron HMC

 Big-data: Breadth-First 
Search, Bit Count, String 
Search, Bitonic Sort, K-

means, K Nearest Neighbor, 
N Filter

multi2sim, McPAT, Cacti-3DD, 
HMS-Sim, in-house patch for 

Multi2sim to profile performance 
and energy

no CnM 2017

[119]
Modified SRAM array in which 
rows of logic cells (LUT-based 

and XOR-based) are alternated to 
rows of memory cells

SRAM + 90nm 
SAED EDK 

CMOS

Data-intensive: text, hist, 
mask, RNG, stream, BGT, 

CRC, swap, string
Cadence, Synopsis DC, CACTI, 

Orlksim no LiM 2017

[81]

RRAM-based architecture 
composed of a memory crossbar 

that provides inputs to a 
heterogeneous configurable 

computing crossbar

RRAM not specified SPICE no CiM 2017

[83]
Architecture composed of different 

Pes (each with a resistive 
memory to store/compute data) + 

control logic

RRAM + 32 nm 
CMOS

Common kernels (e.g. 
clustering, image and signal 

processing)

custom mapping tool to schedule 
ops, in-house circuit-level 

macrosimulator, CACTI, Synopsis 
DC, Synopsis VCS

yes but only 
Pt/HfO2/TiN 

RRAM 
devices

CiM 2017



Paper Ref. Description Technology Target applications Software/models used Silicon 
proven Approach Year

[57]

Processor composed of multiple 
parallel memory-based cores. 

Each core has different resistive 
CAM banks to perform LUT-

based computation + small CAM 
that stores high freq. Patterns

RRAM General OpenCL
in-house framework to profile 
applications and find high freq. 

patterns, Multi2sim
no CwM 2017

[118] Logic + stacked HMC HMC + 28nm 
CMOS Texture filtering modified cycle-accurate simulator 

Attila, McPAT, CACTI no CnM 2017

[58]

Non-volatile query accelerator 
composed of different resistive 

crossbar memory banks for data 
storage/computing. The 

accelerator works together with a 
host CPU to accelerate database 

query processing

RRAM + 45nm 
CMOS

Database search on Census 
dataset

HSPICE, VTEAM memristor 
model, in-house software-based 

cycle-accurate simulator
no CwM 2017

[52]
3D RRAM-based (different RRAM 
layers stacked one on top of the 
other) CAM units + logic for more 

complex operations
RRAM DNA sequence alignment 

(BLAST)
NVsim, in-house c++ performance 

simulator no CwM 2018

[6]
MRAM-based array with modified 

periphery circuitry to perform 
simple or composed logic 

operations
SOT-MRAM AES encryption Cadence Spectre, NVSim no CiM 2018





Nomenclature

Acronyms / Abbreviations

3D-SIC 3D Stacked Integrated Circuit

AES Advanced Encryption Standard

AI Artificial Intelligence

AM Array Multiplier

ANC Artificial Nucleation Center

ANN Artificial Neural Network

ASIC Application Specific Integrated Circuit

BL Bit-Line

CAM Content Addressable Memory

CiM Computing-in-Memory

CLiMA Configurable Logic-in-Memory Architecture

CMOS Complementary Meta-Oxide Semiconductor

CnM Computing-near-Memory

CNN Convolutional Neural Network

CONV Convolution

CPU Central Processing Unit

CU Control Unit

CwM Computing-with-Memory

DBM Double Buffering Mode
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Nomenclature

DL Deep Learning

DLP Deep Learning Processor

DNN Deep Neural Network

DRAM Dynamic Random-Access Memory

EU Execution Unit

FC Fully Connected

FDSOI Fully Depleted Silicon On Insulator

FIB Focused Ion Beam

FPGA Field Programmable Gate Array

GPU Graphic Processor Unit

GUI Graphical User Interface

HBM Hybrid Bandwidth Memory

HMC Hybrid Memory Cube

IB Input Buffer

ILSVRC ImageNet Large Scale Visual Recognition Challenge

LiM Logic-in-Memory

LSB Least Significant Bit

LUT Look-Up Tables

MAC Multiply-Accumulate

MAXPOOL Max pooling

ML Machine Learning

MLP Multi-Layer Perceptron

MRAM Magnetoresistive Random-Access Memory

MSB Most Significant Bit

MTJ Magnetic Tunnel Junction
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Nomenclature

MV Majority Voter

NML Nano Magnetic Logic

NoC Network-on-Chip

OB Output Buffer

PE Processing Element

pNML Perpendicular Nano Magnetic Logic

PVT Private

RCA Ripple Carry Adder

ReLU Rectified Linear Unit

RRAM Resistive Random-Access Memory

RTL Register-Transfer Level

SA Sense Amplifier

SHD Shared

SIMD Single Instruction Multiple Data

SM Scratchpad Memory

SRAM Static Random-Access Memory

TSV Through-Silicon Via

UTBB Ultra Thin Body and BOX

VHDL VHSIC Hardware Description Language

WL Word-Line
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