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Abstract

We consider some 3D wave equation problems defined in an unbounded domain, possibly
with far field sources. For their solution, by means of standard finite element methods, we
propose a Non Reflecting Boundary Condition (NRBC) on the chosen artificial boundary B,
which is based on a known space-time integral equation defining a relationship between the
solution of the differential problem and its normal derivative on B. Such a NRBC is exact,
non local both in space and time. We discretize it by using a fast convolution quadrature
technique in time and a collocation method in space. The computational complexity of the
discrete convolution is of order N logN , being N the total number of time steps performed.
That of the fully discretized NRBC is O(N2

BN logN), where NB denotes the number of mesh
points taken on B.

Besides showing a good accuracy and numerical stability, the proposed NRBC has the
property of being suitable for artificial boundaries of general shapes. It also allows the
treatment of far field (multiple) sources, that do not have to be necessarily included in the
finite computational domain, being transparent not only for outgoing waves but also for
incoming ones. This approach is in particular used to solve multiple scattering problems.

Keywords: wave equation; absorbing boundary conditions; space-time boundary integral
equations; numerical methods; multiple scattering

1. Introduction

A key issue for solving PDE problems in unbounded domains is the introduction of a
proper artificial boundary to delimit the computational domain of interest, hence the asso-
ciation with this boundary of a condition which guarantees that the solution of the initial
boundary value problem defined in this (bounded) domain coincides with the corresponding
restriction of the solution of the original problem. The method of Artificial (or Absorbing,
or Non Reflecting) Boundary Condition (ABC or NRBC) consists of introducing an artifi-
cial boundary B that truncates the infinite domain and determines two distinct regions: a
bounded one of interest Ω and a residual infinite domain D. By analyzing the problem in
D, a non reflecting boundary condition on B is derived in order to avoid spurious reflections.

IThis work was supported by the Ministero dell’Istruzione, dell’Università e della Ricerca of Italy, under
the research program PRIN 2012: Innovative methodologies for PDE-based numerical modelling.
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Once a NRBC has been defined, this is coupled with the condition given on the boundary of
the original problem physical domain and with the known initial values, to uniquely define
the solution of the corresponding problem in Ω. Then, this latter can be solved, by coupling
a time integrator with, for example, a finite differences or a finite elements method.

Many papers have been published on this topic, in particular in the last two decades;
their number is too large to mention them. For a review, see for example [9], [10], [11], [6].
All these papers, except for [24], Sections 5.5, 5.6, [12], [16], [6], deal with the construction of
NRBC with the property of absorbing only outgoing wave, not waves that are either outgoing
or incoming. Therefore, known sources must necessarily be included in the computational
domain. However, this can be a severe drawback when, for example, sources are far away
from the physical domain. Moreover, the NRBC holds only for a single convex artificial
boundary having a special shape, like a circle (sphere) or ellipse (ellipsoid). Only in the last
years multiple scattering problems have been examined (see [12], [16]).

Very recently, in [6], we have proposed a global non reflecting boundary condition for
the solution of two-dimensional exterior problems for the classical wave equation, which is
given by a linear combination of a single and a double layer operators. It is defined by a
known space-time boundary integral relationship that the problem solution and its normal
derivative must satisfy at the chosen artificial boundary B. It is of exact type, and it holds for
a (smooth) curve of arbitrary shape; therefore, it can be used also in situations of multiple
scattering, and even in more general ones. Moreover, it allows the problem to have non
trivial data, whose (local) supports do not have necessarily to be included in the Ω domain,
as it is usually done, in particular when they are away from the domain of interest. In such a
case, the proposed NRBC naturally includes the effects of these data and it is automatically
transparent for outgoing waves as well as for incoming ones.

For the discretization of the artificial condition, namely for the approximation of the
single and double layer operators, we have proposed a numerical scheme which is based on a
second order Lubich discrete convolution quadrature formula (see [18]) for the discretization
of the time integral, coupled with a classical collocation method in space. The computational
complexity of the discrete convolution rule is of order N logN , being N the total number
of time steps performed. That of the fully discretized NRBC is O(N2

BN logN), where NB
denotes the number of mesh points taken on B. When the discretization of the bounded
domain Ω, where we apply the chosen finite element scheme, is refined, and the time stepsize
is simultaneously reduced, the accuracy of the NRBC discretization increases.

The numerical examples presented in [6] for the two-dimensional case, show that indeed
the proposed NRBC is very competitive, from both the accuracy and the computational
cost points of view, with some of local type, such as the second order Engquist-Majda and
Bayliss-Turkel ones.

In this new paper, we extend the results presented in [6] to the three-dimensional case,
and also consider multiple scattering/multiple source problems. The computational cost
of this NRBC is significantly higher than that of local types; however, we believe that its
generality and new applications should justify it. In any case, a first attempt to reduce it is
described in Section 3.4. Four numerical examples are presented in Section 6, while in the
last section we draw some conclusions and outline some possible further improvements.
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2. Exact non reflecting boundary conditions for multiple scattering

We consider the problem of a wave propagating through a homogeneous medium in three
dimension and impinging upon a scatterer made up of κκκ bounded obstacles of arbitrary
shape. We assume that the scatterers are impenetrable and well separated from each other.
We denote by Ωi

k ⊂ R3, with k = 1, · · · ,κκκ, Ωi
k ∩ Ωi

` = ∅ for k 6= `, the open bounded
domains with sufficiently smooth boundaries Γk, and by Ωi = ∪κκκk=1Ωi

k ⊂ R3 the connected
open domain bounded by the union of the obstacle boundaries Γ = ∪κκκk=1Γk. Then, we set
Ωe = R3 \ Ωi, and consider the following wave propagation problem in Ωe:

uett(x, t)−∆ue(x, t) = f(x, t) in Ωe × (0, T )

u(x, t) = g(x, t) in Γ× (0, T )

ue(x, 0) = u0(x) in Ωe

uet (x, 0) = v0(x) in Ωe.

(1)

As often occurs in practical situations, we assume that the initial values u0, v0 and the source
term f have local supports.

When one has to determine the solution ue of the above problem in a bounded subregion
of Ωe, surrounding the physical obstacles Ωi

k, it is necessary to truncate the infinite domain
Ωe by introducing an artificial smooth boundary B. However, the idea of introducing a
single artificial boundary B that encloses all the obstacles becomes too expensive when, for
example, the scatterers are far from each other, and one has to determine the solution ue

only in a neighborhood of each scatterer. In this case, it is preferable to surround each single
obstacle by an artificial boundary Bk and compute the problem solution in the domains of
interest.

We denote by Ωk the subdomain bounded internally by Γk and externally by Bk, and by
Ω = ∪κκκk=1Ωk the bounded computational domain of interest. Finally, we set D = R3 \Ω. To
solve our problem in the Ω domain, we need to prescribe Non Reflecting Boundary Conditions
on B = ∪κκκk=1Bk, which allow outgoing waves leave Ωk without spurious reflections. These
waves propagate to all other subdomains, and are then reflected by the other scatterers;
therefore, subsequently they reenter in Ωk.

We remark that the artificial boundary is chosen to detect the (bounded) region where
one has to compute the problem solution. This region does not necessarily have to contain
the supports of the source term and of the initial data. Thus, in general, the support of a
datum will be either in the (bounded) region of interest Ω, or in the residual domain D. In
the latter case it will be taken into account by a corresponding term of the artificial boundary
condition formulation.

To obtain a well posed problem in Ω, we need to impose a proper boundary condition
on B. To this end, we analyze the problem in D, and we impose on B the integral relation
that the solution u and its (outward) normal derivative ∂nDu have to satisfy. In [6] an
exact NRBC has been proposed in two dimension and for a single scatterer and a single
artificial boundary. Following [5], where a BIE has been derived for the non homogeneous
wave equation with non trivial initial data, the derivation of a NRBC in the case of multiple
connected artificial boundaries is fairly simple. To write it in a more compact form, we
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introduce the single and double layer integral operators, defined by

Vψ(x, t) :=

∫ t

0

∫
B
G(x− y, t− τ)ψ(y, τ)dBydτ

=
κκκ∑
k=1

∫ t

0

∫
Bk
G(x− y, t− τ)ψ(y, τ)dBydτ,

and

Kϕ(x, t) :=

∫ t

0

∫
B
∂nDG(x− y, t− τ)ϕ(y, τ)dBydτ

=
κκκ∑
k=1

∫ t

0

∫
Bk
∂nDG(x− y, t− τ)ϕ(y, τ)dBydτ,

respectively, where ∂nD denotes the outward unit normal derivative on the boundary B for
the problem defined in the residual domain D, and G(x, t) is the fundamental solution of
the wave equation given in (1), that is:

G(x, t) =
δ(t− ‖x‖)

4π‖x‖
, (2)

δ(·), being the well known Dirac delta function. The NRBC on B is then given by:

1

2
u(x, t) = V∂nDu(x, t)−Ku(x, t) + Iu0(x, t) + Iv0(x, t) + If (x, t) x ∈ B, (3)

where the “volume” terms Iu0 , Iv0 and If are generated by the non homogeneous initial
conditions and the non trivial source, respectively. These volume terms have the following
integral representations:

Iu0(x, t) =


∂

∂t

∫
supp(u0)

u0(y)G(x− y, t)dy, if supp(u0) ⊂ D

0, if supp(u0) ⊂ Ω

(4)

Iv0(x, t) =


∫

supp(v0)

v0(y)G(x− y, t)dy, if supp(v0) ⊂ D

0, if supp(v0) ⊂ Ω

(5)

If (x, t) =


∫ t

0

∫
supp(f)

f(y, τ)G(x− y, t− τ)dydτ, if supp(f) ⊂ D

0, if supp(f) ⊂ Ω.

(6)

Thus, denoting by ∂n = ∂
∂n

the outward unit normal derivative defined on the boundary
B, for the problem defined in the domain Ω, and noting that ∂n = −∂nD , the model problem
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(defined in the domain of interest Ω) takes the following form:

utt(x, t)−∆u(x, t) = f̃(x, t) in Ω× (0, T )

u(x, t) = g(x, t) in Γ× (0, T )
1
2
u(x, t) + V∂nu(x, t) + Ku(x, t) = Iu0(x, t) + Iv0(x, t) + If (x, t) inB × (0, T )

u(x, 0) = ũ0(x) in Ω

ut(x, 0) = ṽ0(x) in Ω,

(7)

where

ũ0 =

{
0 if supp(u0) ⊂ D.
u0 if supp(u0) ⊂ Ω

ṽ0 =

{
0 if supp(v0) ⊂ D.
v0 if supp(v0) ⊂ Ω

f̃ =

{
0 if supp(f) ⊂ D.
f if supp(f) ⊂ Ω

As far as we know, this is the first NRBC that allows to include the (locally supported)
source and initial data in the non absorbing boundary condition rather than in the compu-
tational domain. All the existing NRBCs work under the assumption that the supports of
the data are included in the computational domain, so that the chosen (convex) artificial
boundary B must enclose them. Thus, the resulting method becomes too expensive when
the datum supports are far from the obstacles. On the contrary, in such cases, using our
NRBC we can choose artificial boundaries of general shape, even non convex, and let the
supports of the source and the initial data be included in the residual infinite domain D.

To discretize the NRBC, i.e., the single and double layer operators, we propose a numeri-
cal scheme which is based on a discrete convolution quadrature formula, for the time integral
approximation, and a classical collocation method for the space integral discretization. As
remarked in [6], if N denotes the number of time steps to be performed, the proposed NRBC
discretization requires O(N logN) operations to compute, for each given collocation (space)
point, the associated temporal convolution at all chosen instants.

We set u(t)(x) = u(x, t) and introduce the additional unknown function λ(x, t) =
λ(t)(x) := ∂nu(x, t), which is defined only on the boundary B. Following [6], but in a more
general setting here, for any given t ≥ 0 we also introduce the functional spaces

Xk = Xk(t) = {uk(t) ∈ H1(Ωk) : uk(t)|Γk = g(t)|Γk}, X = X(t) =
κκκ∏
k=1

Xk

and

Xk,0 = {uk(t) ∈ H1(Ωk) : uk(t)|Γk = 0}, X0 =
κκκ∏
k=1

Xk,0.

Similarly, we set

H−1/2(B) =
κκκ∏
k=1

H−1/2(Bk).
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Then, the problem defined in the domain of interest Ω takes the following form:
given f̃ ∈ L2(Ω × (0, T )), ũ0 ∈ X, ṽ0 ∈ L2(Ω), find u(t) ∈ C0([0, T ];X) ∩ C1([0, T ];L2(Ω))
and λ(t) ∈ C0([0, T ];H−1/2(B)) such that

d2

dt2
(u(t), w)Ω + a(u(t), w)− (λ(t), w)B = (f̃(t), w)Ω, ∀w ∈ X0

1
2
u(x, t) + Vλ(x, t) + Ku(x, t) = Iu0(x, t) + Iv0(x, t) + If (x, t) on B
u(0) = ũ0 in Ω
du
dt

(0) = ṽ0 in Ω.

(8)

holds in the distributional sense in (0, T ), where a : X ×X → R is the bilinear form

a(v, w) =

∫
Ω

∇v · ∇w =
κκκ∑
k=1

∫
Ωk

∇vk · ∇wk,

and, (v, w)D =
∫
D
vw =

∑κκκ
k=1

∫
Dk
vkwk, where, depending on its occurrence, D is either Ω

or B.

3. Discretization of the NRBC

3.1. Approximation in time

We approximate the single and double layer operators appearing in the NRNC by com-
bining a second order (time) convolution quadrature formula of Lubich (see [18]) with a
classical space collocation method. For its time discretization, we split the interval [0, T ]
into N steps of equal length ∆t = T/N and collocate the equation at the discrete time levels
tn = n∆t, n = 0, . . . , N :

1

2
u(x, tn) + (Vλ)(x, tn) + (Ku)(x, tn) = Iu0(x, tn) + Iv0(x, tn) + If (x, tn) (9)

After having exchanged the order of integration, the time integrals appearing in the def-
inition of the single and double layer operators are discretized by means of the Lubich
convolution quadrature formula associated with the second order Backward Differentiation
Method (BDF) for ordinary differential equations (see [5]). We obtain:

(Vλ)(x, tn) ≈
n∑
j=0

κκκ∑
k=1

∫
Bk
ωV
n−j(∆t; ||x− y||)λ(y, tj) dBy, n = 0, . . . , N (10)

(Ku)(x, tn) ≈
n∑
j=0

κκκ∑
k=1

∫
Bk
ωK
n−j(∆t; ||x− y||)u(y, tj) dBy, n = 0, . . . , N (11)

whose coefficients ωJn ,J = V ,K, are given by

ωJn (∆t; ||x− y||) =
1

2πı

∫
|z|=ρ

KJ
(
||x− y||, γ(z)

∆t

)
z−(n+1) dz

6



where in this case KV = Ĝ is the Laplace transform of the kernel G appearing in the

definition of the single layer operator V , and KK = ∂̂G/∂n is the Laplace transform of the
kernel ∂G/∂n appearing in the definition of the double layer operator K.

The function γ(z) = 3/2−2z+1/2z2 is the so called characteristic quotient of the chosen
BDF method of order 2. The parameter ρ is such that for |z| ≤ ρ the corresponding γ(z)
lies in the domain of analyticity of KJ . In particular, we have that

KV(r, s) =
1

4πr
e−rs,

KK(r, s) = − 1

4πr
e−rs

(
1

r
+ s

)
∂r

∂n
.

(12)

By introducing the polar coordinate z = ρeı̇ϕ, the above integrals can be efficiently
computed by using the trapezoidal rule with L ≥ N equal steps of length 2π/L:

ωJn (∆t; r) ≈
ρ−n

L

L−1∑
l=0

KJ
(
r,
γ(ρ exp(ı̇l2π/L))

∆t

)
exp(−ı̇nl2π/L). (13)

We choose L = 2N and ρN =
√
ε, since Lubich in ([18]) has shown that this choice leads

to an approximation of ωn with relative error of size
√
ε, if KJ is computed with a relative

accuracy bounded by ε. The choice of ε suggested by Lubich is 10−10. According to the
previous statement, this should give a relative accuracy of order 10−5, which is sufficient for
the tests we have performed and that we will present in the examples that will follow. For
each given x ∈ B, all the ωJn can be computed simultaneously by the FFT, with O(N logN)
flops. Note that when we choose L > N , as in our case, the required ωJn are given by the
first N components of the coefficient vector determined by the FFT.

3.2. Approximation in space

For the space discretization, each surface Bk, of the global artificial boundary B, is
approximated by a continuous piecewise triangular surface Bk,∆, interpolating Bk at the
triangle vertices {xk,i, i = 1, . . . ,Mk}. We denote by ∆x,k the mesh size of Bk,∆, which is
given by the maximum triangle diameter.

Further, we set uBk(x, t) = u(x, t)|Bk and λBk(x, t) = λ(x, t)|Bk , k = 1, · · · ,κκκ. At each
time instant tj, the unknown function uBk(·, tj) and its normal derivative λBk(·, tj) on Bk are
approximated by

u∆x,k
(x, tj) :=

Mk∑
i=1

ujk,ibk,i(x), x ∈ Bk,∆ (14)

and

λ∆x,k
(x, tj) :=

Mk∑
i=1

λjk,ibk,i(x), x ∈ Bk,∆ (15)

respectively, where ujk,i ≈ uBk(xk,i, tj), λ
j
k,i ≈ λBk(xk,i, tj), and {bk,i}Mk

i=1 are the classical
continuous piecewise linear basis functions associated with the given triangulation.
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3.3. Time-space discretization

After having introduced the above time and space discretizations, we collocate the re-
sulting discretized BIE at the (collocation) points xk,h, h = 1, . . . ,Mk, for each k = 1, · · · ,κκκ.
To write the final system of equations in vectorial notation, we define the matrices

(Vk,`
n−j)hi =

∫
B`
ωV
n−j(∆t; ‖xk,h − y‖)b`,i(y)dBy, i = 1, · · · ,M` (16)

(Kk,`
n−j)hi =

∫
B`
ωK
n−j(∆t; ‖xk,h − y‖)b`,i(y)dBy, i = 1, · · · ,M` (17)

` = 1, . . . ,κκκ, and the vectors

Ik,nu0
= [Iu0(xk,1, tn), Iu0(xk,2, tn), · · · , Iu0(xk,Mk

, tn)]T

Ik,nv0
= [Iv0(xk,1, tn), Iv0(xk,2, tn), · · · , Iv0(xk,Mk

, tn)]T

Ik,nf = [If (xk,1, tn), If (xk,2, tn), · · · , If (xk,Mk
, tn)]T .

Then, we introduce the unknown vectors ujB` =
[
uj`,1, . . . , u

j
`,M`

]T
and λλλjB` =

[
λj`,1, . . . , λ

j
`,M`

]T
,

for ` = 1, . . . ,κκκ and j = 0, . . . , n, and obtain the following system of equations (see [6] for
the case of a single scatterer):(

1

2
Ik + Kk,k

0

)
unBk +

κκκ∑
`=1
6̀=k

Kk,`
0 unB` +

κκκ∑
`=1

n−1∑
j=0

Kk,`
n−ju

j
B` +

κκκ∑
`=1

Vk,`
0 λλλnB` +

κκκ∑
`=1

n−1∑
j=0

Vk,`
n−jλλλ

j
B`

= Ik,nu0
+ Ik,nv0

+ Ik,nf , k = 1, . . . ,κκκ; n = 0, . . . , N (18)

where the matrix Ik denotes the identity matrix of order Mk.
From the computational point of view, supposing to know ujB` and λλλjB` for each ` =

1, . . . ,κκκ, at the time steps j = 0, . . . , n− 1, the absorbing condition at time tn is given by(
1

2
Ik + Kk,k

0

)
unBk +

κκκ∑
`=1
6̀=k

Kk,`
0 unB` +

κκκ∑
`=1

Vk,`
0 λλλnB`

= −
κκκ∑
`=1

n−1∑
j=0

Kk,`
n−ju

j
B` −

κκκ∑
`=1

n−1∑
j=0

Vk,`
n−jλλλ

j
B` + Ik,nu0

+ Ik,nv0
+ Ik,nf (19)

for each k = 1, . . . ,κκκ.

Remark 3.1. As described in [5], for each row index, the corresponding row elements of all
the above matrices can be computed simultaneously by means of the FFT algorithm, after
replacing, in the representations (16), (17), the ω kernel by its discretization (13), and
exchanging the integration symbol with that of the quadrature sum (for details see [5]).

The evaluation of the above volume integrals Ik,nu0
, Ik,nv0

, Ik,nf has been discussed in [20],
where an efficient numerical approach has been proposed for the 2D case and for compactly
supported data (see also [5]). In the forthcoming numerical tests, we will consider sources
concentrated at a point. This choice extremely simplifies the evaluation of the volume term
appearing in the NRBC equation.
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3.4. NRBC computational cost and memory space

Let assume that the chosen Finite Element (FE) grid is regular. For notational simplicity,
we denote by Nh the number of its interior points, and by NB that of the points lying on the
boundary Bk; then, we have NB = O(N

2/3
h ) as Nh → ∞, i.e., as ∆x → 0. Furthermore, as

we have already tested in the 2D case, the robustness of the proposed NRBC discretization,
and its higher accuracy with respect to that of the associated FEM, may allow a decoupling
of the NRBC grid from that of the FEM. That is, one might construct the discretization of
the ABC on a subset of the boundary nodes defined by the FE grid. The coupling of the
two grids can be performed by a local linear interpolation process.

We further recall that all sums

n−1∑
j=0

Kk,`
n−ju

j
B` ,

n−1∑
j=0

Vk,`
n−jλλλ

j
B` , n = 1, . . . , N (20)

are simultaneously computed by applying a FFT-based algorithm (see [3], Sect. 8.3.1), with

a computational cost of O(N2
BN logN) = O(N

4/3
h N logN) flops.

The working space at a first glace appears to be that of 2N2
BN real numbers; that is,

that due to the construction of the above matrices Km,Vm,m = 0, . . . , N . However, this
can be significantly reduced. Indeed, as mentioned in Remark 3.1, for each row index,
the corresponding row elements of all matrices Km,Vm,m = 0, . . . , N , are simultaneously
computed by means of the FFT algorithm. However, before computing, for all matrices, the
elements of all rows having the next row index, we set equal to zero those whose size is less
than a threshold value; for example, 10−5 or 10−8, depending of the final accuracy we want
to achieve. Then, we will store, and later use, only the remaining “non zero” row elements.
At the end, the total number of elements of each couple of matrices Km,Vm that need to
be store is only a fraction of 2N2

B. Also the corresponding matrix-vector products will have
a computational cost much lower than N2

B.
Some theoretical results, which partially allows us to understand the behavior of the

matrices Vm, are reported below. Unfortunately, we cannot derive similar ones for the Km

matrices, since an explicit representation for the ω-coefficients which define them is not
known. However, the numerical testing we have performed seem to confirm that, as in the
2D case, the behaviors of both matrices are very similar.

Since for the ω-coefficients associated with the V operator, an explicit analytic repre-
sentation is known, to verify if the matrices Vm have some properties, which may be useful
to reduce the computational cost of the discretized NRBC, we have obtained the following
bounds.

Lemma 3.2. Let ∆t = T/N , with T > 0 fixed and N arbitrary positive integer. For the
ω-coefficients associated with the operator V the following bounds hold.

(i) For all integers 1 ≤ n ≤ N and reals r > 0,

r|ωn(∆t; r)| < 0.05462× n−
1
4

(
rN

nT
e−

rN
nT

+1

)n/2
. (21)

9



(ii) Let n be a fixed positive integer. For 0 < r0 ≤ r ≤ r1, with r0, r1 arbitrary real
numbers, we have:

|ωn(∆t; r)| ≤ Cn
(
Ne−αnN

)n/2
, (22)

where

Cn =
0.05462

r0

n−1/4
(r1e

nT

)n/2
, αn =

r0

nT
.

Proof. In the case of the operator V , the following explicit representation for the ω coeffi-
cients has been derived in [17] (see also [19]):

ωn(∆t; r) =
1

4πrn!
e
− 3r

2∆t

(
r

2∆t

)n/2
Hn

(√
2r

∆t

)
, n ≥ 0, (23)

where r = ‖x − y‖,x,y ∈ B, and Hn(x) = 2nxn + . . . is the n-degree Hermite orthogonal
polynomial.

First we consider the case n = 1 . . . , N , with N → ∞, that is, ∆t → 0. Using the
well-known Stirling’s formula for the factorial:

n! =
√

2πnn+ 1
2 e−n+ θ

12n , 0 < θ < 1

and the bound (see [1], (22.14.17))

|Hn(x)| < 1.0865× 2
n
2 e

x2

2

√
n!

from representation (23) we obtain:

r|ωn(∆t; r)| <
1.0865

29/4π5/4
n−

n
2
− 1

4 e
n
2 e−

1
2
rN
T

(
rN

T

)n/2
,

from which (21) follows.
Then, we consider the case n fixed and ∆t → 0. We also assume 0 < r0 ≤ r ≤ r1, with

r0, r1 given real numbers. In this case, bound (22) follows immediately from (21). 2

Starting from (21) above, and noting that the function y = xe−x+1 is always positive in
(0,∞), is increasing from 0 to its maximum value 1 in the interval [0, 1], and exponentially
decaying to zero in [1,∞), a straightforward calculation then gives the following results.

Corollary 3.3. Let assume T > kdB, where 0 < r ≤ dB, dB denoting the diameter of the
artificial boundary B. Then, for all integers n, N/k ≤ n ≤ N , with k ≥ 1 fixed, we have:

r|ωn(∆t; r)| < 0.05462× n−1/4

(
kdB
T

e−
kdB
T

+1

)n
2

, (24)

where 0 < kdB
T
e−

kdB
T

+1 < 1.

10



Note that if in bounds (24) we set x = kdB/T , for 0 ≤ x ≤ 1/4, i.e. T ≥ 4kdB, we have,
for example, y < 0.53, hence 0.5332 < 1.51E − 9 and 0.5364 < 2.26E − 18. The smaller is
x the smaller is y, hence the faster is the convergence to zero of the associated powers. In
particular, for all r > 0, the right hand side of (24) tends to zero exponentially, as NT →∞.
In general, as long as x is away from the abscissa x̄ = 1, the corresponding value of yn/2

decay exponentially to zero, as N →∞.

Remark 3.4. From bound (24) it also follows that the larger is T with respect to the diameter
of the artificial boundary B, the larger is the value of k that can be taken. Thus for all integers
N sufficiently large, all the matrices Vn, N/k ≤ n ≤ N , can be neglected.

In the following three sets of figures, we consider an artificial boundary given by a sphere
of radius R = 0.1, final time instants T = 0.5, 1, 10, respectively, and time step T/N . In
particular, on the left hand side figures, we report the maximum absolute value of the matrix
elements of the matrices Vn and Kn, for n = 0, . . . , N . On the right hand side figures, we
plot, for each n, the number of each matrix element whose size is larger or equal than the
threshold value 1E − 8.

Figure 1: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 0.5
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Figure 2: Left plot: behavior of the maximum absolute value of the elements of the matrix Kn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 0.5
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Figure 3: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 1
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Figure 4: Left plot: behavior of the maximum absolute value of the elements of the matrix Kn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 1
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Figure 5: Left plot: behavior of the maximum absolute value of the elements of the matrix Vn (Single Layer)
versus time. Right plot: number of the non zero entries of the matrix Vn after threshold. R = 0.1, T = 10
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4. Discretization of the boundary value problem

4.1. Time discretization

In principle, any integration scheme can be used for the time discretization of the first
equation in (8) (see for example [6], where different time schemes have been considered and
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Figure 6: Left plot: behavior of the maximum absolute value of the elements of the matrix Kn (Double Layer)
versus time. Right plot: number of the non zero entries of the matrix Kn after threshold. R = 0.1, T = 10
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compared). For simplicity, we choose to use the Crank-Nicolson integration method, which
is of second order and unconditionally stable. Thus, denoting by v := ∂u

∂t
and by un = un(x),

vn = vn(x), λn = λn(x) and f̃n = f̃n(x) the approximations of u(x, tn), v(x, tn), λ(x, tn)
and f̃(x, tn), respectively, and applying the Crank-Nicolson discretization, a straightforward
calculation leads to the following time-marching scheme (for more details see [6])

(un+1, w)Ω +
∆2
t

4
a(un+1, w)− ∆2

t

4
(λn+1, w)B = (un, w)Ω − ∆2

t

4
a(un, w) +

∆2
t

4
(λn, w)B

+ ∆t(v
n, w)Ω +

∆2
t

4
(f̃n+1 + f̃n, w)Ω, ∀w ∈ X0

vn+1 = 2
∆t

(un+1 − un)− vn.
(25)

4.2. Space discretization

At each time tn, to compute the unknowns un and λn we will use a finite element method.
To this end, we consider a finite decomposition of each computational domain Ωk (defined in
Section 2) into tetrahedra and we denote by Ωk,∆ = ∪T ∈Tk,hT the finite polyhedral domain,
whose mesh size is bounded by h and whose inner and outer boundaries are denoted by Γk,∆
and Bk,∆, respectively. Then, we associate with this decomposition the functional spaces

Xk,h = {wk,h ∈ C0(Ωk) : wk,h|T ∈ P1(T ), T ∈ Tk,h, wk,h|Γk,∆ = g|Γk,∆} ⊂ H1(Ωk),

Xk,h,0 = {wk,h ∈ C0(Ωk) : wk,h|T ∈ P1(T ), T ∈ Tk,h, wk,h|Γk,∆ = 0},⊂ H1
0 (Ωk)

of (piecewise) linear conforming finite elements in the domain Ωk associated with the mesh
Tk,h. We also introduce the space Wk,h of (continuous) functions defined on the boundary
Bk by the finite element basis {bk,i(x)}Mk

i=1 (see (14), (15)). Finally, we set

Xh =
κκκ∏
k=1

Xk,h, Xh,0 =
κκκ∏
k=1

Xk,h,0, Wh =
κκκ∏
k=1

Wk,h.

13



The Galerkin formulation of (25) then reads: for each n = 0, · · · , N − 1, find (un+1
h , λn+1

h ) ∈
Xh ×Wh such that, for all wh ∈ Xh,0 we have:

(un+1
h , wh)Ω +

∆2
t

4
a(un+1

h , wh)−
∆2
t

4
(λn+1

h , wh)B = (unh, wh)Ω −
∆2
t

4
a(unh, wh)

+
∆2
t

4
(λnh, wh)B + ∆t(v

n
h , wh)Ω +

∆2
t

4
(f̃n+1 + f̃n, wh)Ω

(26)

For every k = 1, . . . ,κκκ, let {NΩk
i }i∈Sk denote the set of finite element basis functions

defined on the decomposition Tk,h, where: Sk = SIk ∪SBk , SIk is the set of the internal mesh
nodes of the polyhedron Ωk,∆ and SBk is the set of the mesh nodes lying on the artificial
boundary Bk. Note that bk,i = NΩk

i |Bk , i ∈ SBk . By properly reordering the unknown
coefficients of unk,h := unh|Ωk

, we obtain the (unknown) vector unk = [unIk ,u
n
Bk ]

T , whose two

components unIk and unBk represent the unknown values associated with the internal nodes of
Ωk,∆ and with those on the boundary Bk, respectively. Similarly for the vector vnk , containing
the unknown coefficients of vnk,h. Finally, we denote by λnBk the unknown vector whose
components are the coefficients of the approximant λ4x,k(xk, tn) defined in (15).

To rewrite (26) in the matrix form, we consider the system of equations associated with
a single computational domain Ωk,∆, k = 1, . . . ,κκκ, which is given by(

Mk +
∆2
t

4
Ak

)
un+1
k − ∆2

t

4
Qkλλλn+1

Bk =

(
Mk − ∆2

t

4
Ak

)
unk +

∆2
t

4
QkλλλnBk + ∆tM

kvnk

+
∆2
t

4

(
f̃n+1
k + f̃nk

)
(27)

where

Mk =

[
Mk

II Mk
IB

Mk
BI Mk

BB

]
, Ak =

[
AkII AkIB
AkBI AkBB

]
, Qk =

[
Qk
IB

Qk
BB

]
.

The matrix elements

(Mk)ij =

∫
Ωk

NΩk
i NΩk

j , (Ak)ij =

∫
Ωk

∇NΩk
i · ∇N

Ωk
j , i, j ∈ Sk

are those of the mass and stiffness matrices, respectively, while those of Qk are given by

(Qk)ij =

∫
Bk
bk,ibk,j, i ∈ Sk, j ∈ SBk .

Equation (27) is finally coupled with

vn+1
k =

2

∆t

(un+1
k − unk)− vnk (28)
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and with the discretized NRBC equation(
1

2
Ik + Kk,k

0

)
un+1
Bk +

κκκ∑
`=1
` 6=k

Kk,`
0 un+1

B` +
κκκ∑
`=1

Vk,`
0 λλλn+1

B`

= −
κκκ∑
`=1

n∑
j=0

Kk,`
n+1−ju

j
B` −

κκκ∑
`=1

n∑
j=0

Vk,`
n+1−jλλλ

j
B` + Ik,n+1

u0
+ Ik,n+1

v0
+ Ik,n+1

f .

Having set µ =
∆2
t

4
, and letting k = 1, . . . ,κκκ, we obtain a final linear system AX = B

having the following block structure:

A =



[
M1 + µA1 −µQ1

1
2
I1 + K1,1

0 V1,1
0

] [
O O

K1,2
0 V1,2

0

]
. . .

[
O O

K1,κκκ
0 V1,κκκ

0

]
[

O O

K2,1
0 V2,1

0

] [
M2 + µA2 −µQ2

1
2
I2 + K2,2

0 V2,2
0

]
. . .

[
O O

K2,κκκ
0 V2,κκκ

0

]
...

...
. . .

...[
O O

Kκκκ,1
0 Vκκκ,1

0

]
. . .

[
Mκκκ + µAκκκ −µQκκκ

1
2
Iκκκ + Kκκκ,κκκ

0 Vκκκ,κκκ
0

]



X =



[
un+1

1

λλλn+1
B1

]
[

un+1
2

λλλn+1
B2

]
...[

un+1
κκκ

λλλn+1
Bκκκ

]



B =




(M1 − µA1) un1 + µQ1λλλn1 + ∆tM

1vn1 + µ
(
f̃n+1
1 + f̃n1

)
−

κκκ∑
`=1

n∑
j=0

K1,`
n+1−ju

j
B` −

κκκ∑
`=1

n∑
j=0

V1,`
n+1−jλλλ

j
B` + I1,n+1

u0
+ I1,n+1

v0
+ I1,n+1

f




(M2 − µA2) un2 + µQ2λλλn2 + ∆tM
2vn2 + µ

(
f̃n+1
2 + f̃n2

)
−

κκκ∑
`=1

n∑
j=0

K2,`
n+1−ju

j
B` −

κκκ∑
`=1

n∑
j=0

V2,`
n+1−jλλλ

j
B` + I2,n+1

u0
+ I2,n+1

v0
+ I2,n+1

f


...

(Mκκκ − µAκκκ) unκκκ + µQκκκλλλnκκκ + ∆tM
κκκvnκκκ + µ

(
f̃n+1
κκκ + f̃nκκκ

)
−

κκκ∑
`=1

n∑
j=0

Kκκκ,`
n+1−ju

j
B` −

κκκ∑
`=1

n∑
j=0

Vκκκ,`
n+1−jλλλ

j
B` + Iκκκ,n+1

u0
+ Iκκκ,n+1

v0
+ Iκκκ,n+1

f
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Remark 4.1. We have tested the stability and convergence of the proposed method. From the
results we have obtained, it appears that unconditional stability and convergence is guaranteed,
in the given time interval [0, T ], as long as all the integrals required by the (discretized) NRBC
are exactly evaluated. When these integrals are evaluated with a given accuracy ε, then, for
any chosen space discretization parameter ∆x, there exists a time step barrier ∆0 = ∆0(ε),
with ∆0 → 0 as ε → 0, such that for ∆t < ∆0 instabilities arise before reaching the final
time T .

For example, if in the first example of Section 6, where T = 10, we choose N =
32, 64, 128, 256, 512, 1024 and consider the first two levels of space discretization, no instabil-
ity appears when we perform the required integration by using a ν-point Gauss-Legendre rule,
with ν = 2, 2, 2, 8, 12, 20 in the case of the first level of discretization, and ν = 2, 2, 2, 2, 8, 12
in the case of the second level. In both cases, for example, if we take ν = 4 when N =
512, 1024, instabilities appear before reaching the endpoint T = 10. Thus, the efficient eval-
uation of the above mentioned integrals is a crucial point for the success of the proposed
NRBC. Note however that, as ∆x decreases, the accuracy given by the chosen ν-point rule
increases, hence the value of ∆0 decreases.

5. An exact solution for a wave equation problem in the exterior of the unit
sphere

To test the convergence of the proposed numerical scheme, and in particular the effec-
tiveness of the proposed NRBC, it is important to have a reference solution at hand. We
start recalling that the following single-layer potential representation associated to (1),

u(x, t) =

∫ t

0

∫
Γ

G(||x−y||, t−τ)ϕ(y, τ) dΓy dτ+Iu0(x, t)+Iv0(x, t)+If (x, t) x ∈ Ωe (29)

holds (see [5]). We remark that the density function ϕ in (29) is the solution of the following
Time Dependent Boundary Integral Equation (TDBIE)∫

Γ

∫ t

0

G(r, t− τ)ϕ(y, τ) dτdΓy = g(x, t)− Iu0(x, t)− Iv0(x, t)− If (x, t), x ∈ Γ, (30)

and represents the jump of the normal derivative of u along Γ. Once the density function
is known, the solution u at any point in the infinite domain Ωe is defined by computing the
associated potential (29). For a generic problem, in order to obtain a reference solution, we
will first solve (30) and then compute (29) by using a very fine space/time refinement.

In the special case of an homogeneous problem (u0 = v0 = f = 0) defined on the surface
Γ = S2 of the unit sphere, it is possible to derive an explicit analytic representation for the
solution of problem (1). In [22] the authors derive the analytic expression of the solution ϕ of
the boundary integral equation (30). We follow here the same idea to get the solution u in the
exterior of the unit sphere. For convenience of the reader, we report the main ingredients. Let
û(x, s) (the Laplace transform of u(x, t)) be the solution of the wave equation reformulated
in the frequency domain (Helmholtz equation). In [22] the authors choose the boundary
Dirichlet datum g(x, t) = g(t)Y m

n (x), where Y m
n are the spherical harmonics of degree n
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and order m, with n = 0, 1, . . . and −n ≤ m ≤ n. They prove that the density function
ϕ(x, t) = ϕ(t)Y m

n (x) satisfies the relation ĝ(s) = λn(s)ϕ̂(s), being λn the eigenvalues of the
single layer potential Helmholtz operator associated to the Helmholtz equation. Following
the same idea, to get the solution of the Dirichlet problem for the time dependent wave
equation in the exterior of the unit sphere, we write

u(x, t) = u(t)Y m
n (ξ), with x = rξ ∈ R3, ξ ∈ Γ = S2 (31)

where, for notational simplicity, we denote by u(t) a function which depends also on r. Then,
we use the property that the solution û of the associated Helmholtz problem satisfies the
relationship

û(s) = ĝ(s)
h

(1)
n (isr)

h
(1)
n (is)

, (32)

where h
(1)
n denote the spherical Bessel functions of third kind (see [14]). By computing the

inverse Laplace transform of (32), we retrieve an analytic expression for the solution of the
homogeneous wave equation. This is given by representation (31), with

u(t) = L−1

(
ĝ
h

(1)
n (ir·)
h

(1)
n (i·)

)
(t) = g ∗ L−1

(
h

(1)
n (ir·)
h

(1)
n (i·)

)
(t).

By using established properties of the Bessel functions (see in particular [1] (Sec. 10.1.1)
and [15] (formula in Sec. 8.466)), and following [22], we easily get

h(1)
n (s) =

√
π

2s
H

(1)

n+ 1
2

(s) =

√
π

2s

√
2

πs
(i)−(n+1)eis

n∑
k=0

(−1)k
(n+ k)!

k!(n− k)!

1

(2is)k

=
1

s
(i)−(n+1)eis

n∑
k=0

yn

(
− 1

is

)
,

where yn(s) :=
∑n

k=0(n, k)sk, (n, k) := (n+k)!
2kk!(n−k)!

and H
(1)
ν is the first kind Hankel function

of order ν. Using this latter expression we obtain:

h
(1)
n (irs)

h
(1)
n (is)

=
1

r
e−(r−1)syn( 1

rs
)

yn(1
s
)
.

In the simplest case n = 0 we have yn(s) = 1, wherefrom
h

(1)
0 (irs)

h
(1)
0 (is)

= 1
r
e−(r−1)s. By using

classical properties of the inverse Laplace transform, we easily get

L−1

(
h

(1)
0 (ir·)
h

(1)
0 (i·)

)
(t) =

1

r
H(t− (r − 1))δ(t− (r − 1)),

being H the Heaviside function. Thus, we obtain
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u(t) =
1

r

∫ t

0

g(t− τ)H(τ − (r − 1))δ(τ − (r − 1))dτ

=

{
0 if t ≤ r − 1

1
r
g(t− (r − 1)) otherwise.

(33)

Since Y 0
0 (x) = 1/(2

√
π), the solution reads

u(x, t) =
1

2
√
π
u(t) (34)

with u(t) defined by (33). Note that this latter is a radial function. In Figure 7 we show the
behavior of u(x, t), with respect to the time variable, corresponding to the Dirichlet data
g(x, t) = 1

2
√
π
t4e−2t (left plot) and g(x, t) = 1

2
√
π

sin(2t)te−2t (right plot).

Figure 7: Exact solutions of the homogeneous wave equation for Γ = S2 corresponding to the choice of
the Dirichlet data g(x, t) = 1

2
√
π
t4e−2t (left plot) and g(x, t) = 1

2
√
π

sin(2t)te−2t (right plot). Each curve

corresponds to its behavior with respect to time at points having distance r from the origin.
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6. Numerical results

In the numerical tests we will perform, the discretization of the three dimensional spatial
domain is generated by using the Freefem++ library. In particular we use the TetGen
software, which allows to generate the tetrahedral mesh of the domain Ω starting from that
we define on its boundary (see [21]). The computational domains that we will consider
for our numerical examples are three dimensional shells bounded internally by a surface Γ
and externally by a surface B. The model that represents the shell, which is constructed by
TetGen, is a three dimensional Piecewise Linear Complex (PLC). We recall that TetGen does
not generate the surface mesh of the PLC; this, together with the choice of the maximum
diameter of the triangles generated to approximate the surfaces, must be given as input by
the user. Moreover, TetGen does not take the curvature of the surface into account. In what
follows, nT denotes the number of tetrahedra of the decomposition of the computational
domain Ω, while ntΓ and ntB denote the number of triangles belonging to the boundaries Γ
and B, respectively.

For simplicity, all the problems we will consider have trivial initial data u0 and v0, since
the evaluation of the corresponding integrals would require a further ad hoc discussion.
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Example 1. As a first example, we consider Problem (1) in the case where Ωi consists of a
single scatterer (κκκ = 1). We assume that the source f is zero throughout the infinite exterior
domain Ωe. The boundary Γ is the unit sphere, where we prescribe the Dirichlet condition
g(x, t) = 1

2
√
π
t4e−2t for all t ≥ 0. The solution of this problem is a radial function and its

analytical expression is given by (34) and (33).
We choose a spherical artificial boundary B having radius R = 2, so that Ω is the shell

bounded internally by Γ and externally by B. In Figure 8 we show a section of three different
refinements of the shell. Here, and in the following examples, to evaluate the integrals that
appear in the elements of the matrices Vk,`

m and Kk,`
m (see (16) and (17)), we first map each

triangle of the approximated artificial surface, where the integrand in non null, into the
(standard) reference triangle; then we introduce the polar coordinates and apply a ν-points
Gauss-Legendre quadrature rule, with ν = 4, to each one-dimensional integral. We remark
that, because of the discrepancy between the artificial boundary B∆ of the PLC Ω∆ and
that (B) of the NRBC, and of the presence of the normal derivative in the kernel KK (see
(12)), the solution obtained by integrating over the plain triangles of B∆ is not satisfactory
for coarse spatial discretizations and presents spurious reflections that disappear with spatial
refinements. Therefore, we perform the integration over the curvilinear triangles, which is
simply obtained by projecting a point belonging to the plane triangle to the corresponding
point of the surface (see for example Figures 14 and 15 where we compare both types of
approximation).

In Figure 9 we compare the exact solution with the approximate solution we have obtained
at an internal point P ≈ (1.5, 0, 0) (left plot) and at a point P ≈ (2, 0, 0) that belongs to
the boundary B∆ (right plot). The approximations have been obtained by decomposing the
spherical shell into nT = 24224 tetrahedra and the time interval [0, 10] into N = 100 steps.
Being the exact solution known, we also compute the absolute error

Err := max
0≤n≤N

‖u(·, tn)− u∆x(·, tn)‖L2(Ω). (35)

The numerical computation of the quantity

‖u(·, tn)− u∆x(·, tn)‖2
L2(Ω) ≈

∑
T ∈Th

∫
T
|u(x, tn)− u∆x(x, tn)|2dx

has been obtained by applying on each tetrahedron T a 4-point quadrature rule of order 2
(see [13] for details).

In Table 1 we report the behavior of the absolute error with respect to the space and
time mesh refinement. The successive spatial refinements have been obtained by halving each
time the mesh size of both the internal (hΓ) and external (hB) boundaries of the shell. The
associated refinements of the Ω decomposition is automatically determined by the software
TetGen. The above errors are essentially due to the FE computation. Those due to the
NRBC discretization appear negligible. Indeed, if we compute, for example, all the needed
integrals with higher accuracy, using a 16-point Gauss-Legendre rule, we obtain the same
errors reported in Table 1.

In the following three examples, since the corresponding exact solutions are not known,
to measure the accuracy of the approximations we obtain, we construct a reference “exact”
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Figure 8: Example 1. A section of the shell having the unit sphere as internal boundary and the sphere of
radius 2 as external one: three discretizations into nT tetrahedra.

nT = 315 nT = 24224 nT = 40904

Figure 9: Example 1. Comparison between the exact solution and the approximate one at P ≈ (1.5, 0, 0)
(left plot) and at P ≈ (2, 0, 0) (right plot), by using nT = 24224 tetrahedra for the shell discretization and
N = 100 time steps.
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Table 1: Example 1. Behavior of the absolute error (35) with respect to the space and time mesh refinements,
for t ∈ [0, 10].

hΓ hB ntΓ ntB nT N Err
.5 1 122 122 367 32 5.05E-02
.25 .5 440 440 27023 64 4.41E-03
.125 .25 1772 1772 44892 128 2.63E-03

solution as follows: we first compute the density function by applying the Lubich-collocation
method to equation (30) on a fine space and time discretization; then, the solution at any
point in the infinite domain Ωe is retrieved by computing the associated potential (29). This
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solution will be denoted by the acronym BEM.

Example 2. Case a). We consider the case of a wave generated by a single source and
impinging upon a single body acting as a soft obstacle. The data of the problem are u0 = 0,
v0 = 0, g = 0 and f 6= 0. We recall that, if a source is far from the area of interest, the
existing local NRBCs would require to take a much larger domain Ω, to include the source,
thus wasting computational time and space memory. This is not the case when we use our
NRBC. Indeed, when a source is located in the residual domain D, the source action is taken
into account by the proposed artificial boundary condition.

To simplify the computation of the volume term If , we consider a source concentrated
at a point x0: f(x, t) = h(t)δ(x − x0), where h(t) is a given smooth function. With this
choice, taking into account the presence of the delta Dirac function in the expression of the
fundamental solution (2), we deduce the following simple form of the volume integral If
defined in (6):

If (x, t) =

{
h(t−‖x−x0‖)

4π‖x−x0‖ , for all x : ‖x− x0‖ < t

0 otherwise.
(36)

We place the source f(x, t) = t2 sin(4t)e−tδ(x−x0) at the point x0 = (5, 0, 0); Γ and B are
the surfaces of the spheres of radius r0 = .25 and R = .5, respectively, both centered at the
origin (see Figure 10 left plot). In Figure 10, right plot, we compare the approximate and the
reference solution (BEM) at the point P ≈ (.5, 0, 0) belonging to the artificial boundary B∆.
The reference solution has been obtained by a discretization of Γ into ntΓ = 122 triangles
and N = 1E + 03 time steps. The approximate solution has been obtained by using a
decomposition of the spherical shell into nT = 226 tetrahedra and N = 500 time steps. We
note that the reference and the approximate solutions perfectly match and that the wave is
null until the signal f reaches the point P at the time t ≈ 4.5. Moreover, because of the
presence of the term e−t in the source f , the wave vanishes for large times.

Figure 10: Example 2. Case a). Benchmark configuration: the scatterer surrounded by the artificial bound-
ary and the external source f (left plot). Comparison between the reference solution and the approximate
one at P ≈ (.5, 0, 0) (right plot).

0 2 4 6 8 10 12 14 16 18 20
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time

 

 

BEM
ABC , n

T
 = 226 nt

B
 = 122

21



Figure 11: Example 2. Case b). Benchmark configuration: the scatterer surrounded by the artificial
boundary and the external sources f1 and f2 (left plot). Comparison between the reference solution and the
approximate one at P ≈ (.5, 0, 0) (right plot)
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Case b). The treatment of a single source, external to the finite computational domain,
can be easily extended to several sources, compactly supported and having disjoint supports.
In this case, the volume term If that appears in the NRBC consists of the sum of several
volume terms Ifi , each of which is generated by the corresponding source fi. In the next
example, in the same setting of the case a), we consider the two point sources

f1(x, t) = h1(t)δ(x− x1) = t2 sin(4t)e−tδ(x− x1)

f2(x, t) = h2(t)δ(x− x2) = cos(10t)δ(x− x2),

located in x1 = (1, 0, 0) and x2 = (0, 5, 0), respectively. It is easy to check that the volume
term of the NRBC is given by If = If1 + If2 , where Ifi , i = 1, 2 are given by (36).

In Figure 11 we show the history of the wave at the the point P ≈ (.5, 0, 0) belonging
to the artificial boundary B∆. Also in this case the reference and the approximate solutions
match. At a time t ≈ 0.5 the effect of the first source f1 is visible at P , and when the effect
of this source vanish (because of the presence of the e−t term) the oscillatory behavior of the
wave is due to the persistence of the signal f2.

Example 3. The ductility of the artificial boundary is another important characteristic of
the proposed NRBC. In this example we consider a single scatterer whose boundary Γ is the
nut shape surface obtained by rotating the one dimensional curve

x(θ) = ρ(θ) cos(θ)
y(θ) = ρ(θ) sin(θ),

where ρ(θ) = c(1 + e cos(nθ)), c = 0.5, e = 0.7, n = 2 and θ ∈ [0, 2π], along the x-axis (see
Figure 12). The parametric representation of the three dimensional nut is therefore given by

X(θ, ϕ) = x(θ)
Y (θ, ϕ) = cos(ϕ)y(θ)
Z(θ, ϕ) = sin(ϕ)y(θ).

(37)
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Figure 12: Example 3. The nut shape curve for the choice c = 0.5, e = 0.7 and n = 2 (left plot) and the
corresponding three dimensional surface (right plot)
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We prescribe on Γ the Dirichlet datum g(x, t) = 1
2
√
π
t4e−2t for all t ≥ 0. In order to study

the behavior of the solution in a thin region surrounding Γ, we choose the artificial boundary
B having the same shape of Γ, that is the nut shape surface obtained with the choice of the
parameters c = 1, e = 0.7 and n = 2. A cross section of the resulting finite computational
domain, bounded internally by Γ and externally by B, and a decomposition of it into tetra-
hedra, is represented in Figure 13. In Figure 14 we plot the behavior of the BEM reference
solution and of the approximate ones at a point P ≈ (1.7, 0, 0) of the artificial boundary
B∆. The approximations are obtained with different refinements of the spatial mesh and for
a fixed refinement of the time interval [0, 10] into N = 100 steps. In particular we compare
the approximation obtained when the matrix elements of the matrices Vm and Km are com-
puted by integrating over the plain triangles (”ABC plain” acronym for the solution, right
plot) and the one obtained when the matrix elements are computed by integrating over the
curvilinear triangles (”ABC curv” acronym for the solution,left plot). We note that, with the
same mesh refinement, the second approach produces a more accurate approximation with
respect to the first one. In Figure 15 we compare the reference and approximate solutions at
the B∆ point P ≈ (0, 0.3, 0), which is placed in the external surrounding of the nut boundary
Γ.
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Figure 13: Example 3. A decomposition of the finite computational domain into tetrahedra

Figure 14: Example 3. Comparison between the reference solution and the approximate one at P ≈ (1.7, 0, 0)
by curvilinear triangles (left plot) and plain triangles (right plot), N = 100.
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Figure 15: Example 3. Comparison between the reference solution and the approximate one at P ≈ (0, 0.3, 0)
by curvilinear triangles (left plot) and plain triangles (right plot), N = 100.
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Example 4. In this last example, we consider a multiple scattering problem. In particular
we consider two disjoint spherical bodies whose boundaries Γ1 and Γ2 are spherical surfaces
both of radius r = 1, centered at the origin and at C = (6, 0, 0), respectively. As in Example
1, we assume that the source f and the initial data u0 and v0 are zero throughout the infinite
exterior domain Ωe. For all t ≥ 0, we prescribe the Dirichlet condition g(x, t) = 1

2
√
π
t4e−2t on

Γ1, and set g(x, t) = 0 on Γ2. Therefore, the second body acts as a soft reflecting obstacle.
We choose the artificial boundary B1 as the spherical surface centered at the origin and with
radius R1 = 2, and the artificial boundary B2 as the spherical surface centered at C and with
radius R2 = 2.

In Figure 16 we compare the BEM reference solution and the corresponding approximate
one at the points P1 ≈ (2, 0, 0), P1 ∈ B1,∆ and P2 ≈ (4, 0, 0), P2 ∈ B2,∆. Each reference
solution has been obtained by a discretization of both surfaces into ntB1 = ntB2 = 122
triangles, and by performing N = 1E + 03 (equal) time steps in the interval [0, 20]. The
approximate solutions are given by a decomposition of both spherical shells into nT = 24224
tetrahedra and N = 200. It can be noticed that the solution at P1 coincides with the exact
solution represented in Figure 9 (right plot) until the time instant t ≈ 7, when the effect of
the second obstacle comes into play.

Figure 16: Example 4. Comparison between the reference solution and the approximate one at P ≈ (2, 0, 0)
(left plot) and at P ≈ (4, 0, 0) (right plot), corresponding to the choice nT = 24224 and N = 200.
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7. Conclusions

In [16] the authors construct a fully local ABC, to deal with 3D multi-scattering problems.
As for all local conditions, sources must be included in the computational domain. Moreover,
the shape of artificial boundary the authors consider is that of a spherical surface, one for each
obstacle, although they remark that ellipsoidal ones could also be taken. Its computational
cost is O(NBN). We must however remark that this ABC requires, as stated by the authors,
a number of auxiliary functions that must be judiciously chosen, depending on the problem
or desired accuracy. Furthermore, a local spline interpolation on the obstacle boundaries is
also required.
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In the examples they present, the proposed ABC is coupled with a finite-difference
scheme. It is however not clear how their approach should be applied in the case of ob-
stacles having more general shapes, and with the finite difference method replaced by the
FE one.

Our approach is more general. Obstacles and artificial boundaries can have any (smooth)
shape. Furthermore we can even have multi sources, which do not have to be necessarily
included in the computational domain. The NRBC naturally takes into account their effects.
One does not have to separate incoming waves from outgoing ones. The NRBC will be
transparent for each one of them. Finally, we also mention that in principle, we could even
have obstacles which are rotating independently from each other. Indeed, some numerical
testing we have already performed in the 2D case have given very promising results.

This generality has however a cost, both in terms of CPU and space memory, which is
certainly higher than that of the above mentioned local condition. But we believe that a
deeper investigation on these aspects should lead to further savings. The goal is to have a
computational cost close to that of the associated FEM.

Besides the computational cost and the space memory, another possible drawback of the
proposed NRBC is that the time interval of integration must be fixed in advance. Moreover,
if the computation of integrals defining the NRBC is not performed with the needed accuracy,
as pointed out in Remark 4.1, instabilities might arise before reaching the final instant T .
But increasing the number of quadrature nodes means to increase the NRBC computational
cost. Nevertheless, in our opinion there is still room for reducing these drawbacks, including
the computational complexity and the working space. This includes the use of discrete
convolution quadratures alternative to those of Lubich (see [4], [22], [8]), which should allow
the construction of sparse Km and Vm matrices, with the position of the non zero elements
known a priori, but at the cost of loosing the FFT benefits; the use of higher order Lubich
convolution rules (see for example [19], [2]); and finally the use of time integration formulas
which do not require to fix a priori the final time instant T (see [23]). Finally, we recall
that very recently the use of a multigrid strategy has been examined, to reduce the overall
computational cost of the BIE discretization (see [7]). However, the use of these strategies
for reducing the computational cost of our NRBC are still at an early stage and need further
investigation.
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