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1 Introduction

Several physical processes can be modeled through hybrid systems
characterized by the interplay of continuous-time dynamics with
discrete-time events. For instance, such systems have been proved
very useful to model the absorption, distribution, metabolism, and
elimination of several drugs that are periodically dosed either
through intravenous or oral administration [1–5]. Furthermore, these
systems have gained a lot of attention also in aerospace [6], industrial
[7], and several other applications. Therefore, it is not surprising that
a lot of research effort has been spent to characterize the properties
of these systems [8–15]. Two remarkable examples are [16], where
reachability and observability of linear impulsive systems are com-
prehensively characterized through invariant subspaces, and [17],
where the structural properties of linear periodic hybrid systems are
framed in terms of algebraic and geometric conditions on their data.

The main objective of this paper is to provide a framework that
allows to easily design controllers for hybrid systems with periodic
jumps that are controlled through impulsive, discrete-time inputs (in
the following, referred to as hybrid system with impulsive inputs). By
allowing nontrivial discrete-time dynamics, such systems constitute
a generalization of linear plants that are controlled through periodic,
discrete-time inputs (usually referred to as impulsive systems), which
recently gained a lot of attention [18–21], especially in the context
of pharmacokinetics models [2–5, 22, 23].

Differently from [21, 24], where model predictive control (briefly,
MPC) techniques are proposed to design the input of an impulsive
system, in this paper, it is shown that a controller for a hybrid system
with impulsive inputs can be designed by using any tool that allows
the design of controllers for discrete-time systems. In particular, it
is shown that any hybrid system with impulsive inputs can be recast
into a discrete-time, linear, time invariant system, which, in turn, can
be used to design a controller for the original system. Once such a
discrete-time controller has been designed, it can be readily used to
control the hybrid system by using an interfacing plant based on the
observability Gramian of the continuous-time dynamics. In such a
way, both classical and novel (such as [25, 26]) discrete-time control
tools can be used to design a controller for the hybrid system.

The main advantage of the tools given in this paper with respect to
the ones given in the literature (as, e.g., the MPC approaches given
in [21, 24]) is that they allow the design of a controller for the hybrid
system just on the basis of the transfer function of the discrete-time
equivalent system, which, in turn, can be obtained directly from the
transfer function of the hybrid system. In particular, this allows to
directly use frequency-domain methods to design controllers for the
hybrid system (see the subsequent Subsections 4.2 and 4.5).

The remainder of the paper is organized as follows: in Section 2,
the class of hybrid systems considered in this paper is introduced and
some preliminary results are given. In Section 3, it is shown that any
hybrid system with impulsive inputs can be recast into a discrete-
time plant. Such a system can be used to design a controller, which,
in turn, can be readily used to control the hybrid plant by mean of
an interfacing system. In Section 4, several examples of application
of the proposed technique are given to corroborate the theoretical
results. Conclusions are given in Section 5.

2 Notation and preliminary results

In this section, the notation used in this paper is introduced (Sub-
section 2.1) and some preliminary results about hybrid system with
impulsive inputs are given (Subsection 2.2).

2.1 Notation

Let R, R>0, Z, N and C be the set of real, nonnegative real, in-
teger, natural and complex numbers, respectively. Let Cg := {s ∈
C : |s| < 1}. The symbol I denotes the identity matrix of suit-
able dimensions. Letting A ∈ Rn×n, the symbol Λ(A) denotes
the spectrum of A. A set T ⊂ R>0 × N is a hybrid time domain
if, for each (τ, κ) ∈ T , the set T ∩ [0, τ ]× {0, 1, . . . , κ} equals⋃κ
k=0 Ik × {k}, where Ik = [tk, tk+1], k = 0, . . . , κ, and t0 6

t1 6 · · · 6 tκ 6 tκ+1 = τ . A function ξ : T → Rs is a hybrid arc
if T is an hybrid time domain and for each fixed k ∈ N the map t 7→
u(t, k) is locally absolutely continuous on Ik := {t : (t, k) ∈ T }.
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2.2 Hybrid linear systems with impulsive inputs

The objective of this subsection consists in defining the class of hy-
brid systems considered in this paper, namely linear hybrid systems
with periodic jumps and discrete-time, impulsive inputs. Towards
this end, let τM ∈ R>0 be given and consider the hybrid time
domain

T =

∞⋃
k=0

[k τM , (k + 1) τM ]× {k}, (1)

together with the linear time invariant (briefly, LTI) hybrid system

ẋ = Ax, (2a)
+
x = E x+ F v, (2b)

where x(t, k) ∈ Rn denotes the state of the system, v(k) ∈ Rm
denote the impulsive control inputs, (t, k) ∈ T , A ∈ Rn×n, E ∈
Rn×n and F ∈ Rn×p are matrices of real elements. Letting

tk = k τM , k ∈ N,

denote the jump times, given an initial condition x0 ∈ R and a
function v : N→ Rµ, a hybrid arc x : T → Rn is a solution to
system (2) with input v starting at x0 if

1. x(0, 0) = x0;
2. for almost all t ∈ [tk, tk+1] and all k ∈ N,

d

dt
x(t, k) = Ax(t, k);

3. x(tk+1, k + 1) = E x(tk+1, k) + F v(k), ∀k ∈ N.

System (2) is globally exponentially stable with v = 0 if
there exist c1, c2 ∈ R>0 such that |x(t, k)| < c1e

−c2t|x0|, ∀t ∈
R>0, ∀k ∈ N. The next statement gives necessary and sufficient
condition for exponential stability of system (2) with v = 0.

Proposition 1 ([27]). System (2) is globally exponentially sta-
ble if and only if Λ(Ẽ) ⊂ Cg, where Ẽ = E exp(AτM ) is the
monodromy matrix of system (2).

Proposition 1 follows by the observation that, if v = 0,
then the solutions to the hybrid system (2) are given by
x(t, k) = eA(t−tk) Ẽk−1 x0 for all (t, k) ∈ T , thus implying that
x(tk+1, k + 1) = Ẽk x0 for all k ∈ N. Thus, since the eigenvalues
of Ẽ are continuous with respect to the entries of the matrices A and
E and with respect to the period τM , global exponential stability of
system (2) is robust with respect to small perturbations of these data
(an equivalent proof can be obtained by using the robustness analysis
given in [11] by using Lyapunov functions).

In [28, 29], the notion of transfer function for LTI hybrid systems
has been introduced. Namely, letting the output of system (2) be

y(t, k) = C x(t, k), (3)

with C ∈ Rm×n, since there is no continuous-time input, the
transfer function of system (2) is given by

W (`, z) = C(` I −A)−1(z I − Ẽ)−1F. (4)

Such a function can be used to compute the output response of
system (2), (3). Namely, let the symbols f(`) = L{f(t)}t→` and
g(z) = Z {g(k)}k→z denote the Laplace transform of f : R>0 →
R (with inverse denoted L−1{f(`)}`→t) and the Z transform of g :

N→ R (with inverse denoted Z−1{g(z)}z→k), respectively [30].
Thus, given an hybrid arc ξ : T → Rs, define its hybrid transform

ξ(`, z) = H{ξ(t, k)}t→`,k→z
= L

{
Z {ξ(σ + kτM , k)}k→z

}
σ→` ,

with inverse denoted H−1{ξ(s, z)}`→t,z→k. Hence, by [31,
Thm. 1], the output response of system (2) to the input v : N→ Rp
with initial condition x0 = 0 is given by

y(t, k) = H−1{W (`, z)v(z)}`→t,z→k,

where v(z) = Z {v(k)}k→z .
In fact, by [17, Thm. 1], the output response of system (2) to the

input v : N→ Rp with initial condition x0 = 0 is given by

y(t, k) = C eA(t−kτM )
k−1∑
j=0

Ẽk−1−jFv(k),

by definingW (`, z) as in (4), one has that

H−1{W (`, z)v(z)}`→t,z→k
= CL−1{(`I −A)−1}`→t−kτMZ

−1{(zI − Ẽ)−1Fv(z)}z→k

= C eA(t−kτM )
k−1∑
j=0

Ẽk−1−jFv(k).

A complex number z0 ∈ C is a z-pole ofW (`, z) if

lim
z→z0

W (`, z) =∞,

for any ` ∈ C.
By [31, Prop. 4], as for classical non-hybrid LTI systems [32], the

z-poles of W (`, z) correspond to the monodromy modes that are
strongly reachable and observable. Therefore, consider the following
assumption.

Assumption 1. System (2), (3) is strongly reachable and observable.

Assumption 1 can be easily verified through PBH-like tests. In
fact, by [17], system (2), (3) is (strongly) reachable if and only if

rank([ Ẽ − λ I F ]) = n, ∀λ ∈ Λ(Ẽ), (5a)

whereas system (2), (3) is observable if and only if

rank

([
Ẽ − λ I
O(C,A)

])
= n, ∀λ ∈ Λ(Ẽ), (5b)

where O(C,A) is the observability matrix of the pair (C,A),

O(C,A) =

 C
...

C An−1

 .
It is worth noticing that (5b) need not imply that the pair (C,A) is
observable since O(C,A) need not have full rank.

Under Assumption 1, global exponential stability of the system
can be easily verified by inspecting the transfer function of the
system, as detailed in the following lemma.

Lemma 1. Let Assumption 1 hold. Then, system (2), (3) is globally
exponentially stable if and only if the z-poles ofW (`, z) are in Cg .

IET Control Theory Appl., pp. 1–12
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Proof: By [31, Prop. 4], the z-poles of W (`, z) are the eigenvalues
of Ẽ that correspond to strongly reachable and observable modes.
Therefore, if system (2), (3) is strongly reachable and observable,
then the z-poles of W (`, z) are the eigenvalues of the matrix Ẽ.
Thus, the statement follows by Proposition 1. �

Note that the transfer functionW (`, z) can be rewritten as

W (`, z) =
1

det(` I −A) det(z I − Ẽ)
U(`, z),

where
U(`, z) = C adj(` I −A) adj(z I − Ẽ)F

is a polynomial matrix in Rm×p[`, z], i.e., the lowest common
denominator d(`, z) of the (rational) entries of W (`, z) can be fac-
torized as d(`, z) = d1(`)d2(z). Therefore, under Assumption 1
and in view of Lemma 1, system (2), (3) is globally exponentially
stable if and only if all the roots of d2(z) ∈ R[z] are in Cg . Such a
condition can be easily verified by using the Jury criterion [33].

The following lemma shows that if system (2) is globally expo-
nentially stable, then its output response asymptotically tends to the
one corresponding to x0 = 0, thus showing that, if system (2) is
globally exponentially stable, then the functionW (`, z) can be used
to characterize its steady state response.

Lemma 2. Assume that system (2) is globally exponentially stable.
Thus, for each δ ∈ R>0 and x0 ∈ Rn, there is k̄ ∈ N such that, for
all (t, k) ∈ T such that k > k̄,∣∣∣y(t, k)−H−1{W (`, z)v(z)}`→t,z→k

∣∣∣ 6 δ.
Proof: By [31], the output response of system (2), (3) is given by

y(t, k) = C eA (t−tk) Ẽk x0 + C eA (t−tk)
k−1∑
j=0

Ẽk−1−j F v(k).

Since (t− tk) ∈ [0, τM ], there exists M ∈ R>0 such that
|eA (t−tk)| 6M for all (t, k) ∈ T . Furthermore, if system (2) is
globally exponentially stable, then, by Proposition 1, Λ(Ẽ) ⊂ Cg
and hence there exists % ∈ (0, 1) such that |Ẽ| 6 %. Hence, the
following inequality hold

∣∣∣y(t, k)− C eA (t−tk) ∑k−1
j=0 Ẽ

k−1−j F v(k)
∣∣∣

=
∣∣∣y(t, k)−H−1{W (`, z)v(z)}`→t,z→k

∣∣∣
= |C eA (t−tk) Ẽk x0| 6 |C| |x0| %k,

thus implying the statement. �

3 Synthesis of a controller for hybrid LTI system
through a discrete-time equivalent system

The main objective of this section is to show that the hybrid sys-
tem (2) can be recast into a discrete-time LTI system, which, in turn,
can be used to design a controller for system (2), (3). Toward this
goal, consider the system

+

ξ = Ẽ ξ + F v, (6a)

ψ = O(C,A) ξ, (6b)

together with its transfer function

H(z) = O(C,A) (z I − Ẽ)−1 F, (7)

and let ξ0 ∈ Rn be its initial condition.

Remark 1. Note that the discrete-time system (7) differs from the
one that can be obtained by considering discrete samples ψ̃(k) of
the output y(t, k) at post-jump times, ψ̃(k) = y(tk, k), that is

+

ξ = Ẽ ξ + F v, (8a)

ψ̃ = C ξ. (8b)

In fact, in view of (5b), system (7) is observable if and only if the
hybrid system (2), (3) is observable, whereas, by classical properties
of discrete-time linear plants, system (8) is observable if and only if

rank

([
Ẽ − λ I
C

])
= n, ∀λ ∈ Λ(Ẽ),

that is a condition more restrictive than (5b). In particular, there may
exist some unstable monodromy modes (i.e., eigenvalues of Ẽ not
in Cg) that are not observable through the matrix C, but that are
observable through O(C,A), as shown in the following example.

Example 1. Consider the hybrid system (2), (3) with data τM = 1,

A =

[
0 1
0 0

]
, F =

[
0
1

]
,

E =

[
0 2
0 2

]
, C =

[
1 −1

]
.

By letting Ẽ = E eAτM , it can be easily verified that system (8) is
not detectable and hence it is not possible to design a linear output
feedback controller that stabilizes it for all its initial conditions, and
hence it is not possible to design a feedback controller that stabilizes
the hybrid system (2), (3) by just using post-jump samples of its
output. On the other hand, it can be easily verified that system (6)
is observable and hence it is possible to design an output feedback
controller that stabilizes it.

The main objective of this section is to show that the output re-
sponse of the discrete-time system (6) comprehensively captures the
hybrid dynamics of system (2), (3) and that if one designs a con-
troller for the discrete-time system (6), it can be readily applied to
the hybrid system (2), (3) by means of an interfacing system. Toward
this end, consider the following proposition, which shows that the
output y(t, k) of the hybrid LTI system (2), (3) can be reconstructed
form the output of the discrete-time LTI system (6).

Proposition 2. Assume that x0 = ξ0. Let y(t, k) and ψ(k) be the
output responses of systems (2), (3) and (6) to the input v : N→ Rp,
respectively. Then, for each σ ∈ [0, τM ], there exists Γ : [0, τM ]→
Rm×(mn) such that, ∀k ∈ N,

y(tk + σ, k) = Γ(σ)ψ(k).

Proof: Note that the output response of system (2), (3) is given by

y(t, k) = C eA (t−tk) x(tk, k) =

∞∑
i=0

1

i!
C Ai(t− tk)i x(tk, k),

for all (t, k) ∈ T . By the by the Cayley-Hamilton theorem [34],
there existα0, . . . , αn−1 ∈ R such thatAn =

∑n−1
j=0 αiA

i. There-
fore, for each i ∈ N, there exist βi,0, . . . , βi,n−1 ∈ R such that

C Ai =

n−1∑
j=0

βi,jC A
j . (9)

Note that, letting ᾱ = max{|α0|, . . . , |αn−1|}, by the Cayley-
Hamilton theorem, one has that |βi,j | 6 ᾱi. Hence, one has y(tk +

σ, k) =
∑n−1
j=0

∑∞
i=0

βi,j σ
i

i! C Aj x(tk, k), for each σ ∈ [0, τM ].
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Thus, consider the series
∑∞
i=0

βi,j σ
i

i! . Since |βi,j | 6 ᾱI , it re-

sults that
∑∞
i=0

|βi,j |σi

i! 6
∑∞
i=0

ᾱi σi

i! = eᾱ σ , i.e., the considered

series is convergent. Thus, letting γj =
∑∞
i=0

βi,j σ
i

i! , we have that

y(tk + σ, k) =

n−1∑
j=0

γj(σ)C Aj x(tk, k).

The proof is concluded by that fact that, by construction, if x0 =
ξ0, then the monodromy state response of system (2) matches the
discrete-time state response of system (6). �

By Proposition 2, the output response of the hybrid system (2), (3)
can be determined from the one of the discrete-time system (6), by
using a function Γ : [0, τM ]→ Rm×(mn) that depends on the char-
acteristic polynomial of the continuous-time dynamical matrix A.
The following two remarks provide some additional details on the
correspondence established in Proposition 2.

Remark 2. By the construction carried out in the proof of Propo-
sition 2, the output y(t, tk) of system (2), (3) vanishes identically
for all t ∈ [tk, tk+1] if and only if the output of system (6) van-
ishes at k. In fact, y(t, k) = 0 for all t ∈ [tk, tk+1] if and only if
C Ai x(tk, k) = 0, i ∈ {0, . . . , n− 1}, since this implies, by the
Cayley-Hamilton theorem [34], that C Ai x(tk, k) = 0, i ∈ N, and
hence that y(t, k) =

∑∞
i=0 C A

i x(tk, k)
(t−tk)i

i! = 0.

Remark 3. In view of (5b), system (2), (3) is observable if and
only if system (6) is observable. Therefore, since x(tk+1, k + 1) =
Ẽ x(tk, k) + F v(k) (i.e., the monodromy dynamics of x(tk, k) are
the same as the ones of ξ(k) given in (6a)), it is not surprising that the
amount of “information” that can be gathered about the state x(t, k)
from the continuous-time history of y(t, k) is essentially the same as
the one that can be gathered from ψ(k).

It is worth noticing that the transfer function H(z) can be de-
termined directly by using the hybrid transfer function W (`, z). In
fact, by the initial value theorem [30], one has

C(zI − Ẽ)−1F = lim
σ→0

CeAσ(zI − Ẽ)−1F

= lim
`→∞

`W (`, z). (10a)

Similarly, it results that, for each i ∈ N,

C Ai(zI − Ẽ)−1 F = lim
σ→0

C
dieAσ

dσi
(zI − Ẽ)−1 F

= lim
`→∞

`

`iW (`, z)−
i∑

j=1

`i−j CAj−1(zI − Ẽ)−1F

 .

(10b)

This shows that the transfer function H(z) can be obtained even in
the case that one does not have a state-space description of the hybrid
system, but just its transfer function W (`, z). On the other hand, if
one has a state space description of the hybrid system, then (7) is
more direct than (10) to computeH(z).

The following lemma entails with the global exponential stability
of system (2) in terms of the poles of the transfer function H(z).

Lemma 3. Let Assumption 1 hold. Then system (2), (3) is globally
exponentially stable if and only if the poles ofH(z) are in Cg .

Proof: If system (2), (3) is strongly reachable and observable, then,
by (5), system (6) is reachable and observable. Therefore, by classi-
cal results about LTI systems [32], the eigenvalues of Ẽ are the poles
of H(z). Thus, the statement follows by Proposition 1. �

The main objective of the remainder of this section, is to show
that by designing a controller for the discrete-time system (6) on the
basis of the knowledge of H(z), it is possible to design a hybrid
controller for system (2), (3). Toward this end, let

G(t) =

∫ t
0
eA

>θ C>C eAθ dθ

be the observability Gramian of the continuous-time system (2a), (3)
and consider the following lemma

Lemma 4. For each t ∈ R>0, there exists M(t) such that
M(t)G(t) = O(C,A).

Proof: By classical linear algebra results [32], one has that
ker(G(t)) = ker(O(C,A)), for all t ∈ R>0. Therefore, by the fun-
damental theorem of algebra [32], it results that (Im(G>(t)))⊥ =
(Im(O>(C,A)))⊥, i.e., Im(G>(t)) = Im(O>(C,A)), for all t ∈
R>0. Therefore, for each t ∈ R>0, there exists M(t) such that
G>(t)M>(t) = O>(C,A), as to be proved. �

By using Lemma 4, let N be such that N G(τM ) = O(C,A),
and consider the hybrid system (whose solution are defined over the
hybrid time domain T )

ζ̇ = −A>ζ + C>y, (11a)
+

ζ = 0, (11b)

with discrete-time output given by

φ(k) = N eA
>τM ζ(tk+1, k). (11c)

The following theorem establishes that the output response of the
interconnection of systems (2), (3) and (11), with the discrete-time
output (11c), matches the one of system (6).

Theorem 1. Assume that ξ0 = x0 and consider the series intercon-
nection of systems (2), (3) and (11). Thus, the (discrete-time) output
response φ(k) of the interconnection of systems (2), (3), (11), is the
same as the one of system (6).

Proof: By considering that y(t, k) = C eA (t−tk)x(tk, k) for all
k ∈ N, it results that

ζ(t, k) =

(∫ t−tk
0

e−A
>(t−tk−θ)C>C eAθ dθ

)
x(tk, k)

= e−A
>(t−tk)

(∫ t−tk
0

eA
> θC>C eAθ dθ

)
x(tk, k)

= e−A
>(t−tk)G(t− tk)x(tk, k).

Therefore, for all k ∈ N, one has that

ζ(tk+1, k) = e−A
>τM G(τM )x(tk, k),

and hence φ(k) = N G(τM )x(tk, k) = O(C,A)x(tk, k). The
proof is concluded by the fact that the monodromy dynamics of
x(tk, k) satisfies x(tk+1, k + 1) = Ẽ x(tk, k) + F v(k), whence,
if x0 = ξ0, then x(tk, k) = ξ(k). �

The following proposition characterizes the structural properties
of the interconnection of systems (2), (3) and (11).

Proposition 3. Let Assumption 1 hold. Then, the series interconnec-
tion of systems (2), (3) and (11) is controllable and constructible.
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Proof: By Theorem 1, the hybrid dynamics of the series interconnec-
tion of systems (2), (3) and (11) are given by

ẋ =

[
A 0

C>C −A>
]
x, (12a)

+
x =

[
E 0
0 0

]
x+

[
F
0

]
v, (12b)

φ =
[
O(C,A) 0

]
x. (12c)

Therefore, since[
E 0
0 0

]
exp

([
A 0

C>C −A>
]
τM

)
=

[
Ẽ 0
0 0

]
,

and, by Assumption 1 and (5),

rank

([
Ẽ − λ I 0 F

0 −λ I 0

])
= 2n,

rank

 Ẽ − λ I 0
0 −λ I

O(C,A) 0

 = 2n,

for all λ ∈ Λ(Ẽ) \ {0}, by [17], the series interconnection of sys-
tems (2), (3) and (11) is controllable and constructible. �

By Proposition 3 and [31, Prop. 4], a result wholly similar to
Lemma 3 can be easily proved for the series interconnection of
systems (2), (3) and (11).

Corollary 1. Let Assumption 1 hold. Then the series interconnection
of systems (2), (3) and (11) is globally exponentially stable if and
only if the poles ofH(z) are in Cg .

By using the results given in this section, it can be easily shown
that the problem of design of a hybrid controller for system (2), (3)
is essentially equivalent to the problem of designing a discrete-time
controller for system (6). In fact, by Proposition 2 and Lemma 3, the
discrete-time system (6) comprehensively captures the hybrid dy-
namics of system (2), (3). Therefore, when addressing the problem
of designing a controller for the hybrid system (2), it seems rather
more convenient to design a controller for the discrete-time sys-
tem (6). Thus, in view of Theorem 1, once such a controller has been
designed, it can be readily used to control the hybrid system (2), (3)
by interfacing it through system (11). In particular, given H(z), let
Q(z) and G(z) be designed so that the closed loop system ΣD
depicted in Figure 1 is asymptotically stable. Such a property can
be easily verified, for example, by using the Nyquist criterion for
multi-input multi-output systems [35–37].

ΣD

G H

Q

r +

−
e v ψ

η

Fig. 1: A discrete-time control scheme.

Thus, in view of the correspondence established in Theorem 1, the
closed loop system ΣH depicted in Figure 2 is asymptotically stable.
In particular, the response in the ψ variables of system ΣD matches
with the response in the φ variables of system ΣH .

It is worth noticing that, if the closed loop system ΣH is asymp-
totically stable, then, by Lemma 2, the steady state output response
of the hybrid system (2) is not affected by its initial condition. There-
fore, under Assumption 1, the synthesis of the controllers Q(z)

ΣH

G System (2), (3)

System (11)Q

r +

η

−
e v y

φ

Fig. 2: An hybrid control scheme.

and G(z) can be carried out by using directly the transfer function
H(z), which, in turn, can be determined directly from the hybrid
transfer functionW (`, z) by using the expressions given in (10).

In the following section, the effectiveness of the control scheme
depicted in Figure 2 is highlighted through several examples.

4 Examples of applications

In this section, the results established in Section 3 are used to design
controllers for several hybrid systems with impulsive inputs model-
ing physical processes of practical interest. In particular, it is shown
that, by mean of the interfacing system (11), it is possible to design
a controller for the hybrid system (2), (3) by using any strategy that
allows the design of controllers for discrete-time systems.

4.1 A mass-spring mechanical system

Consider the system depicted in Figure 3, which consists of a
body having massM = 0.2 Kg and a spring having stiffness K =
1 KN/m, which is periodically forced (with period 1 s) by an
impulsive force that instantaneously changes the speed of the body.

K
M

v

Fig. 3: A simple mechanical system.

Letting x1 be the position of the body having mass M, letting
x2 be its speed, and assuming that the only available measure is the
speed of the body having massM, the dynamics of such a system
can be modeled through the hybrid system (2) with

A =

[
0 1

− KM 0

]
, F =

[
0
1

]
, C = [ 0 1 ]. (13)

By using (4), one obtains that the transfer function of the hybrid
system (13) is given by

W (`, z) =
z`− ` cos

(
50
√

2
)
− 50
√

2 sin
(
50
√

2
)

(`2 + 5000)
(
z2 − 2z cos

(
50
√

2
)

+ 1
) ,

whereas, by using (7), the transfer function of the discrete-time
equivalent system is given by

H(z) =

 z−cos(50
√

2)
z2−2 cos(50

√
2)z+1

− 50
√

2 sin(50
√

2)
z2−2 cos(50

√
2)z+1

 .
By letting G = 1 and Q = [ 0.549682 −0.0130692 ], it can be
easily verified that the discrete-time closed-loop system ΣD de-
picted in Figure 1 is asymptotically stable. Therefore, by the results
given in Section 3, the hybrid control scheme given in Figure 2 is
such that the closed loop system ΣH is asymptotically stable.

A simulation has been carried out to evaluate the performance
of such a control scheme, assuming x(0) = [ 0.1 m 0 m/s ]>.
Figure 4 depicts the results of such a simulation.

As shown by such a figure, the proposed control scheme makes
the closed-loop hybrid system asymptotically stable.
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Fig. 4: State response in the x variables of ΣH in the first example.

4.2 Lithium ions distribution in the human body

Lithium ions are one of the most widespread drugs for treating the
manic-depressive illness and the bipolar disorder. Thus, designing
a controller to regulate the concentration of such ions is a critical
problem to be addressed in order improve the effectiveness of these
treatments, especially due to the fact that therapeutic and toxic levels
of lithium ions differ by only a factor of 2.

Consider the kinetic model of the distribution of lithium ions
in the human body upon periodic oral administration obtained
in [38] from experimental data. Such a model can be framed
in the setting of this paper as the hybrid system (2), with x =
[ x1 x2 x3 ]>, where x1, x2, and x3 denote the concentration
(measured in mmol/L) of lithium ions in plasma, in red blood cells,
and in muscle-like cells, respectively, v is the lithium ions assumed
by oral administration (measured in mmol), the (continuous-)time
is measured in hours, τM denotes the interval between two oral
administrations (assumed to be 3 h), and

A =

 −0.6137 0.1835 0.2406
1.2644 −0.8 0
0.2054 0 −0.19

 , (14a)

E = I, (14b)

F =

 10.9
0
0

 . (14c)

According to the three compartments model obtained in [38], the
amount y of lithium ions excreted through urine (assumed to be
the available measure to design the control) is proportional to the
concentration of lithium in plasma, i.e., y = C x with

C = [ 0.18 0 0 ]. (14d)

As in [24, 38], the objective of this section is to find a controller
to designs the oral administration v of lithium ions with the aim
of steering their concentration in muscle-like cells compartment to
0.65 mmol/L. It is worth noticing that, by [39–42], since, in the
continuous-time dynamics, there is not an internal model of a con-
stant (i.e., 0 is not an eigenvalue of A) and no continuous-time input
is allowed, it is not possible to achieve exact regulation of the state
x3 to a constant. Therefore, the objective of the controller pursued in
this section is to steer the monodromy state x3(tk, k) to the desired
value of concentration allowing a ripple between two consecutive
oral administrations. Note that this objective cannot be easily pur-
sued by using just discrete-time samples of y since the controlled
output does not match with the measured one. However, in the fol-
lowing, it is shown that such a goal can be easily pursued by using
the design strategy given in Section 3.

Toward this end, consider the observability matrix of (C,A),

O(C,A) =

 0.1800 0 0
−0.1105 0.0330 0.0433
0.1185 −0.0467 −0.0348

 .
Since rank(O(C,A)) = 3, the pair (C,A) is observable, thus im-
plying that there existsO−1(C,A) such thatO−1(C,A)O(C,A) =

I . Hence, let L be the last row of such a matrix and let

$(k) = Lφ(k), (15)

where φ(k) is the output of the interconnection of systems (2), (3)
and (11), that, by construction, is an estimate of the state x3 obtained
by using the interfacing system. By the same reasoning used to prove
Theorem 1, one has that

H(z) =
$(z)

v(z)
=

2.842 z − 0.3318

z3 − 1.298 z2 + 0.3469 z − 0.008139
, (16)

is the transfer function of the discrete-time system

+

ξ = eAτM ξ + F v, (17a)

$ = [ 0 0 1 ] ξ, (17b)

which relates the amount v of lithium ions provided through oral
administration and the after-administration concentration $ of such
ions in muscle-like cells. Thus, such a transfer function can be used
to design a discrete-time feedback controller that regulates the output
$ (which, by construction, in absence of measurement noise, equals
x3) to the desired value.

A controller for the impulsive system with data (14) have been
designed by using the transfer functionH(z) given in (16) and clas-
sical loop-shaping techniques. In particular, consider the closed-loop
system ΣD depicted in Figure 1 withQ(z) = 1 and

G(z) = 0.0367
z − 0.9382

(z − 0.216)(z − 1)
. (18)

By inspecting the Nyquist diagram of H(z)G(z) (depicted in
Figure 5), it can be easily derived that the closed loop system ΣD
depicted in Figure 1 is asymptotically stable.

−1 −0.5 0

−0.4

−0.2

0

0.2

0.4

Fig. 5: Nyquist diagram ofH(z)G(z) in the second example.

Furthermore, by inspecting the step response of the closed-loop
system ΣD , whose transfer function is given by H(z)G(z)

1+H(z)G(z)
, it can

be easily observed that the rising time and the overshoot of such a
system equal 6 time units and 8.47 %, respectively (see Figure 6).

Therefore, the considered controller seems to be particularly suit-
able to regulate the monodromy response in the x3 variables to the
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Fig. 6: Step response of H(z)G(z)
1+H(z)G(z)

in the second example.

desired target concentration. As a matter of fact, the small over-
shoot suggests that the considered controller can be used to achieve
the regulation objective avoiding to reach critical concentrations of
lithium ions (that could be toxic), whereas the small rising time
suggests a fast response to the given reference signal.

In view of the correspondence established in Section 3, this con-
troller can be readily used to regulate the monodromy response of
the hybrid system with data (14). In particular, consider the control
scheme depicted in Figure 2, with Q(z) = L and with the G(z)
given in (18). In view of the correspondence established at the be-
ginning of this section, the signal η(k) equals $(k) for all k ∈ N.
Therefore, the monodromy output response of the hybrid system
matches the output response of the discrete-time one. In particu-
lar, since the closed-loop system ΣD is asymptotically stable, then,
by Corollary 1, the closed-loop system ΣH is asymptotically sta-
ble. Figure 7 depicts the state response in the x variables of the
closed-loop system ΣH to the constant reference r(k) = 0.65, that
is the target concentration of lithium ions in muscle-like cells, and
the corresponding state response of the discrete-time system (17a).

0 50 100 150 200
0

0.5

1

t [h]

[m
m

o
l/

L
]

ξ1
ξ2
ξ3
x1
x2
x3

Fig. 7: State response in the x variables of ΣH in the second
example.

As shown by such a figure, the monodromy response of the hy-
brid system matches with the state response of the discrete-time one.
Therefore, the design made at discrete-time by using standard tools
can be directly used to control the hybrid system (2) by means of
the interfacing system (11). It is worth stressing again that the ripple
between two discrete-time inputs is unavoidable in this setting, due
to the fact that the matrix A is nonsingular.

4.3 Maneuvering a spacecraft

Consider a spacecraft flying in the neighborhood of a satellite, which
is traveling in a circular orbit around a planet with known angular
speed ω. Assume that the control objective is to let the spacecraft
track a circular, periodic reference trajectory around the satellite.

Letting x = [ x1 ẋ1 x2 ẋ2 x3 ẋ3 ]>, x(t, k) ∈ R6,
denote the positions and velocities of the spacecraft and letting
v(k) ∈ R3 denote the instantaneous change of velocities due to the
periodic thrusters actions, the well-known Hill-Clohessy-Wiltshire
equations [6, 43–45] can be used to model the dynamics of the

spacecraft. Letting τM denote the period between two thrusters ac-
tions, such equations can be framed in the setting of this paper as
system (2) with data

A =


0 1 0 0 0 0

3ω2 0 0 2ω 0 0
0 0 0 1 0 0
0 −2ω 0 0 0 0
0 0 0 0 0 1

0 0 0 0 −ω2 0

 ,
E = I,

F =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 .

Assuming that the spacecraft is equipped with a GPS-like system
that allows to determine accurately its position [46], the output of
system (2) is assumed to be given by (3), with

C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 .
Hence, consider the monodromy representation of the spacecraft
dynamics given in (6), with Ẽ = eAτM . Since the pair (C,A) is
observable, there exists a pseudoinverse O†(C,A) of O(C,A) such
that O†(C,A)O(C,A) = I . Therefore, one has that

$(k) = O†(C,A)ψ(k) = ξ(k), k ∈ N,

i.e., when designing a controller for system (6), it is possible to as-
sume that the state of system (6) is measured. The control objective is
to let the monodromy position of the spacecraft track the trajectories
of the following discrete-time exosystem

+
γ = S γ, (19)

where γ(k) ∈ R3 are the sampled positions (with sampling time
τM ) of a periodic orbit with period 2π

ω? and

S =

 cos (ω? τM ) − sin (ω? τM ) 0
sin (ω? τM ) cos (ω? τM ) 0

0 0 1

 .
Since the state ξ of system (6) and the state γ of the exosystem

are both measured, it is possible to use a full information [47, 48]
scheme to design a regulator for the monodromy system (6). In par-
ticular, letting K be such that Λ(Ẽ + F K) ⊂ Cg (such a matrix

IET Control Theory Appl., pp. 1–12
c© The Institution of Engineering and Technology 2015 7



exists since the pair (Ẽ, F ) is reachable), and letting Π and Γ be the
solution to the following discrete-time Francis equation

ΠS = ẼΠ + F Γ,

C Π− I = 0,

consider the control scheme depicted in Figure 8, where L = Γ−
K Π and K̃ = KO†(C,A).

System (19) L System (6)

K̃

γ + v ψ

+

Fig. 8: Internal model full information discrete-time control scheme.

By classical results about output regulation for discrete-
time linear system [47], such a control scheme is such that
limk→∞ C ξ(k)− γ(k) = 0. Therefore, in view of the correspon-
dence established in Section 3, the control scheme depicted in
Figure 9 achieves monodromy regulation of the output of the hybrid
system (2), (3). It is worth noticing that it is not possible to derive a
full information hybrid control scheme analogous to the one depicted
in Figure 9 just by considering discrete-time samples of the hybrid
output y due to the fact that rank(C) = 3 whereas x(t, k) ∈ R6.

System (19) L System (2), (3)

System (11)K̃

γ + v y

+

ψ

Fig. 9: Internal model full information hybrid control scheme.

A numerical simulation has been carried out to evaluate the
performances of the control scheme depicted in Figure 9, letting
ω = 0.0011 rad/s (corresponding to a low Earth orbit with a period
of about 95 minutes), ω? = 2π

50 rad/s (corresponding to a rotation
of the spacecraft with a period of 50 s around the satellite), τM =
3 s, x0 = [ 10 m 0 m/s 12 m 0 m/s 3 m 0 m/s ]>, γ0 =

[ 10 m 10 m 0 m ]>, and

K = −(I + F>PF )−1F>PẼ.

where P is the solution to the following algebraic Riccati equation

P = Ẽ> P Ẽ + I − Ẽ>P F (I + F>P F )−1F>P Ẽ. (20)

Figure 10 depicts the results of such a simulation.
As shown by such a figure, the monodromy behavior of system (2)

matches with the one of the discrete-time system (6). Thus, the full
information regulation control scheme depicted in Figure 9 (which
has been designed just by using the discrete-time equivalent control
system (6)) achieves monodromy output tracking. Note that, as in
the previous example, since there is not a continuous-time internal
model for the exosystem, it is not possible to achieve exact track-
ing at continuous-time just by exploiting discrete-time control inputs
(for further details the interested reader is referred to [42]).

4.4 Spinning and bouncing disk

Consider a disk of radius r, total mass m, and inertia I, moving
on an horizontal plane between two parallel walls, orthogonal to the
plane of motion and infinitely massive. Let l + 2r, l > 0, be the dis-
tance between the two walls, let (xc, yc) be the coordinates of the
center of mass of the disk, and let α denote the angular position of
the disk (Figure 11).
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ẋ2
x3

ẋ3
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Fig. 10: Simulation of the spacecraft behavior.

yc

xc

ϑ

Fig. 11: A rotating disk bouncing between two walls.

Assume that xc(0) = 0, that |ẋc(t)| = |ẋc(0)| = υ > 0, and that
all the impacts are elastic and occur with pre–impact conditions such
that the infinitesimal interval in which the disk is in contact with
the wall consists in a first interval of sliding followed by a second
interval of rolling.

Under these hypotheses, and assuming that the angular velocity of
the disk at impact times can be instantaneously changed, the dynam-
ics of the mechanical system depicted in Figure 11 can be modeled
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through the hybrid system (2) with τM = l
υ , and data

A =

 0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

E =


1 0 0 0

0 1− ζ−1 0 −ζ−1 r
0 0 1 0

0 −r−1 (1− ζ−1) 0 ζ−1

 ,

F =

 0 0
1 0
0 0
0 1

 ,
where ζ = r2m

I and x = [ yc ẏc ϑ ϑ̇ ]> [49]. Assume that
the only available output is y = C x, with

C =

[
1 0 0 0
0 0 1 0

]
.

The control objective is to stabilize the system, despite the pres-
ence of an unmeasurable disturbance γ generated by the exosystem

+
γ = S γ, (21)

where

S =

[
1 1
−1 1

]
,

that acts on the discrete-time dynamics of the system as

+
x = E x+ F v + J γ,

where

J =

 0 0
1 0
0 0
0 0

 .
Note that, the continuous-time subsystem (2a), (3) is observable,

rank(O(C,A)) = 4, and hence, by the correspondence established
in Section 3, stabilizing system (2) essentially matches with steering
to zero the output ψ of the discrete-time system

+

ξ = Ẽ ξ + F v + J γ, (22a)

ψ = O(C,A) ξ. (22b)

However, since the disturbance γ is unmeasurable, it is not possible
to use a full information scheme to steer the state to 0, as in Subsec-
tion 4.3. Nevertheless, by using the results given in [48], it is possible
to use an error feedback scheme to achieve the regulation objective.
In particular, letting Ẽ = E eAτM , letting K be such that

Λ(Ẽ + F K) ⊂ Cg

(such a matrix exists since the pair (Ẽ, F ) is reachable), letting Z =
[ Z>1 Z>2 ]> be such that

Λ

([
Ẽ J
0 S

]
+ Z [ O(C,A) 0 ]

)
⊂ Cg,

and letting Π and Γ be the solution to the following Francis equation

ΠS = ẼΠ + F Γ + J,

O(C,A) Π = 0,

the discrete-time controller

+
ν =

[
Ẽ + Z1O(C,A) + F K J + F (Γ−K Π)

Z2O(C,A) S

]
ν

− Z ψ, (23a)

v = [ K Γ−K Π ]ν, (23b)

steers the output ψ of system (22) to zero. Therefore, in view of
the correspondence established in Section 3, the control scheme
depicted in Figure 12 achieves error feedback regulation of the con-
sidered hybrid system with discrete-time unmeasurable disturbance.

System (21)

System (2), (3)

System (11)System (23)

γ
y

ψ
v

Fig. 12: Error feedback hybrid control scheme.

A numerical simulation has been carried out to evaluate
the performance of the proposed control scheme assuming r =
0.1 m, τM = 1 s, m = 0.3 kg, I = 1.5 · 10−4 m4, ν0 = 0, γ0 =
[ 0.3 −0.1 ]>, and x0 = [ 0.1 m 0 m/s −2 rad 0 rad/s ]>,
whereas the gains K and Z have been designed by solving a Riccati
equation wholly similar to (20). Figure 13 depicts the results of such
a simulation.
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yc
ẏc
ϑ
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Fig. 13: State response in the x variables of the control system
depicted in Figure 12.

As shown by such a figure, the control system depicted in
Figure 12 is able to steer to zero the state of the hybrid system
despite the presence of an unmeasurable disturbance affecting its
discrete-time dynamics.

4.5 Voltage regulator

Consider the electric circuit depicted in Figure 14 that is a simple
smoothing circuit controlled by a conventional digital-to-analog con-
verter, which consists of three of capacitors, characterized by the
capacitances C1 = 2.2µF, C2 = 4.7µF, and C3 = 33µF, two re-
sistors, characterized by the resistances R1 = 2.2 kΩ, and R2 =
100 kΩ, an operational amplifier, and two switches, which are
short-circuited periodically every τM = 10 ms.

Letting xi(t, k) ∈ R be the voltage across the capacitance labeled
with xi and letting v(k) be the voltage applied by the independent
generator at t = tk, the dynamics of such a system can be modeled
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Fig. 14: A voltage smoothing circuit.

in the setting of this paper as system (2) with data

A =

 0 0 0
1

R1 C2 − 1
R1 C2 0

0 0 − 1
R2 C3

 ,
E =

 0 0 0

0 C2
C2+C3

C3
C2+C3

0 C2
C2+C3

C3
C2+C3

 .
F =

 1
0
0

 ,
The control objective is to steer x3 to a desired voltage. Thus, define
the output matrix

C =
[

0 0 1
]
.

and consider the discrete-time equivalent system (6), where Ẽ =
E eAτM . Such a system is not reachable since 0 ∈ Λ(Ẽ) and

rank
([

Ẽ F
])

= 2.

However, system (6) is controllable since

rank
([

Ẽ − λ I F
])

= 3, ∀λ ∈ Λ(Ẽ) \ {0}.

On the other hand, one has rank(O(C,A)) = 1 (i.e., the
continuous-time system (2a), (3) is not observable), but

rank

([
Ẽ − λ I
O(C,A)

])
= 2, ∀λ ∈ Λ(Ẽ) \ {0},

and hence system (6) is constructible. Therefore, by (5), the hy-
brid system (2), (3) is constructible and controllable as well, thus
implying, by a trivial extension of Proposition 3, that a controller
that stabilizes the discrete-time system (6) makes the hybrid sys-
tem (2), (3), (11) globally exponentially stable.

Since rank(O(C,A)) = 1, designing a controller for system (6)
is essentially equivalent to design a controller for the system

+

ξ = Ẽ ξ + F v, (24a)

$ = C ξ, (24b)

whose transfer function is

H(z) =
0.07727

z2 − 0.9201 z
.

In order to further corroborate the fact that, by using the proposed
strategy, any design tool can be used to find a control law for the
hybrid system (2), (3), a feedback controller for system (24) has
been designed by using an automatic PID tuner (in particular, the
pidtune algorithm implemented in Matlab [50]), thus obtaining

G(z) =
1.588 z2 + 0.1932 z − 1.395

z2 − 0.204 z − 0.796
.

Thus, by letting L = [ 1 0 0 ] and noticing that LO(C,A) =
C, the controller depicted in Figure 2 with such a G(z) and with
Q(z) = L has been used to control the hybrid system (2), (3).

Figure 15 depicts the results of a numerical simulation in which
such a control scheme has been used with r = 5 V. As shown by
such a figure, the proposed controller scheme achieves the objective
of steering the state x3 of the hybrid system toward the reference
voltage level.

0 0.2 0.4 0.6 0.8

1

3

5

y
[V

]

Fig. 15: Numerical simulation of the electric system.

Note that in such a simulation the voltage level are actually dis-
continuous due to the jumps induced by the switches. It is worth
noticing that a similar results could be obtained by using the post-
jump values x3(tk, k) of the voltage across the capacitor labeled
with C3 as discrete-time output rather thanLφ(k), without requiring
the use of the interfacing system (11).

5 Conclusions

In this paper, the problem of designing controller for hybrid systems
with impulsive inputs has been addressed. It has been shown that
each hybrid systems with impulsive inputs and periodic jumps can be
recast into a discrete-time, linear, time-invariant plant, which, in turn,
can be used to design a controller. Thus, an interfacing system has
been proposed to readily use the designed discrete-time controller
to control the original hybrid plant. Several examples, spanning
from aerospace to biological applications, have been reported to
corroborate the theoretical results.

The main innovation of the modeling strategy proposed in this
paper with respect to the one given in [24] is that, while the latter
presents a state space approach to obtain a discrete-time equivalent
system, the former allows also to directly use discrete-time transfer
functions to synthesize a controller for the hybrid system. This paves
the way toward the use of frequency-domain tools for the design
of controllers for hybrid systems such as automatic PID tuning and
loop-shaping techniques.

It is worth noticing that, even if the results given in this paper
have been presented through the modern hybrid formalism, they are
strongly related to the research carried out in the context of sampled-
data and periodic systems (we refer the interested reader to [51–53]
for sampled–data systems and to [54–57] for periodic ones). Dif-
ferently from these classical results, here it has been shown that by
exploiting the hybrid nature of the system, it is possible to design a
controller for the system without any assumption about the sampling
time (that, in the context of this paper, is the dwell time τM between
two consecutive jumps), provided that the hybrid system satisfies
some necessary conditions about stabilizability and detectability.
Furthermore, in the context of this paper, it has been shown how
the discrete-time jumps that are seldom made by the system can be
fully exploited in order to achieve the control objectives.

Future researches will deal with the extension of the frequency-
domain tools introduced in this paper to systems having both
continuous-time and discrete-time control inputs, with the design of
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controllers satisfying constraints in the state and in the control in-
put, and with the comparison between the L2 gain [58] of the hybrid
system (2) and of the discrete-time system (6).
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