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Abstract: The limited availability of materials with special properties represents one of the main
limitations to a wider application of polymer-based additive manufacturing technologies. Filled resins
are usually not suitable for vat photo-polymerization techniques such as stereolithography (SLA)
or digital light processing (DLP) due to a strong increment of viscosity derived from the presence
of rigid particles within the reactive suspension. In the present paper, the possibility to in situ
generate silver nanoparticles (AgNPs) starting from a homogeneous liquid system containing a well
dispersed silver salt, which is subsequently reduced to metallic silver during stereolithographic
process, is reported. The simultaneous photo-induced cross-linking of the acrylic resin produces
a filled thermoset resin with thermal-mechanical properties significantly enhanced with respect to
the unfilled resin, even at very low AgNPs concentrations. With this approach, the use of silver
salts having carbon-carbon double bonds, such as silver acrylate and silver methacrylate, allows the
formation of a nanocomposite structure in which the release of by-products is minimized due to
the active role of all the reactive components in the three dimensional (3D)-printing processes.
The synergy, between this nano-technology and the geometrical freedom offered by SLA, could open
up a wide spectrum of potential applications for such a material, for example in the field of food
packaging and medical and healthcare sectors, considering the well-known antimicrobial effects of
silver nanoparticles.

Keywords: 3D printing; stereolithography; acrylic resin; nanocomposite; silver nanoparticles;
in situ generation

1. Introduction

Additive manufacturing (AM) is a group of technologies that are revolutionizing many aspects
of the design and production processes behind the realization of an increasing number of products.
This disruptive new way to realize three-dimensional (3D) objects has had a heavy impact on a
lot of industrial sectors [1], also thanks to the vivid interest inspired in different research fields
from engineering to biomedical, passing through many other relevant disciplines such as cultural
heritage [2].

The main advantage of this innovative way to produce is the capability to reach high geometrical
complexity, maintaining the appropriate accuracy, at a low cost. In this respect, AM technologies are
sometimes called “free form fabrication” techniques. In some cases, AM is the only way to produce
very complex parts, other times it is a valid aid to reduce the number of different components in
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a complex object which traditionally has to be assembled from several parts. The advantages in
the prototyping phase are enormous, the time and cost to realize different prototypes to study their
properties, functionalities, and aspects are significantly reduced. AM can also offer advantages in the
reduction of the cost to customize products, with respect to traditional production methods [3].

Inside the wide AM family there are several different technologies, and even if some new
technologies are currently under development, many more are already available at a sufficiently
level of technological maturity, as confirmed by the increasing percentage of AM based industrial
productions [4].

Among the 3D printing technologies developed for polymeric materials, a possible classification
can start from the different materials form and state. Some of the technologies are able to process
powders and can create an object by depositing a binder to guarantee the cohesion of powder
layers (binder jetting) or by selectively sintering or melting them (powder bed fusion). Some other
technologies start from solid-form materials (e.g., pellets, wires), which must be melted before
being selectively deposited to form each layer of the object (material extrusion). Other different
technologies are able to process liquid-form material to locally deposit and cure it (material jetting)
or to selectively cure it from a liquid vat (vat photo-polymerization). Vat photo-polymerization
comprehends two different technologies, one based on a vector scanning curing provided by a laser
(stereolithography, SLA) and the other on a mask projection curing system (digital light processing,
DLP). One of the main drawbacks of this kind of technology is the increase of viscosity and the possible
sedimentation phenomena that tend to strongly limit the use of filled photo-curable resins in both
stereolithography (SLA) and DLP technologies [5–8].

SLA is one of the most interesting technology among the wide AM family, because it allows one
to reach the highest levels of accuracy combining the advantages of starting from a liquid base material
with the vector scanning driven modality that the laser adopts to cure it. The only higher limitations to
the accuracy are the laser spot size and the z axis step increase of each layer [9].

The approach on composite materials is the will to take advantage of useful properties of different
materials, while trying to limit their singular drawbacks. Adding a nanometric filler can significantly
increase the properties of the resulting nanocomposites mainly due to the higher surface-to-volume
ratios of nanofillers that promotes surface interactions, affecting positively the properties of the
nanocomposites starting from very low loadings [10–12]. The great advantage deriving from the
combination of AM and nanotechnology to produce nanocomposites can easily explain the numerous
articles that have been published on the subject. Often authors tried to increase the mechanical properties
of nanocomposites while understanding the correlation between filler content and nature with the
variation in properties [5,7,13–20]). However, the increase in mechanical properties often brings a
decrease in ductility and some work has been done to avoid it [5,16]. Though mechanical properties
are the most studied, some work has been done also on attempting to increase electrical and thermal
properties [7,14,21,22]. Researchers of many other application fields have been interested in combining
nanocomposites with AM. Studies have been published on biomedical applications [23], radar absorbing
materials [24], piezoelectric materials [25], the creation of metal coating layers for flexible substrates [26],
the development of hydrogel nanocomposites as substrates for antibacterial uses [27], and the fabrication
of printable elastic conductors [28], while some other researchers focused on better understanding all
the technological aspects involved and develop new printing techniques [13,29–31].

In a previous paper, the feasibility of 3D printing of parts based on acrylic photo-curable
formulations, containing silver nanoparticles (AgNPs) in situ generated by UV-induced reduction of
silver acetate, has been reported [32]. This approach involves a simultaneous polymerization-reduction
process, where the polymerization of acrylic monomers and the reduction of silver ions to metallic
silver occur at the same time by means of the laser action of an SLA printer. However, in this context
the acetate ions are not an integral part of the polymeric structure and, although they are compatible
with the chemical environment of the polymer network, they are not chemically bound and can be
released by the system under certain conditions. This aspect is common for all those silver salts,
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whose anions do not actively participate in the polymerization process. An undesirable behavior,
especially if applications in the biomedical field are considered. In the present paper, photo-curable
liquid formulations containing different types and amount of silver salts as metallic silver particle
precursors were prepared and converted in a solid part by means of a SLA. The laser light activated
simultaneous both the cross-linking of organic resin and the reduction of silver cations into metallic
AgNPs, in order to obtain a homogeneous composite material in which the starting reactants are
converted integrally into the final structure. In particular, silver acrylate and silver methacrylate
salts were used as suitable silver salts. This type of salts, in addition to providing the silver cations
for the AgNPs formation process, are able to react with the acrylic monomers during the radical
polymerization step due to the presence of alkenyl groups, reactive towards the cross-linking reaction
of acrylic resin. Moreover, the carboxylate groups present in the molecular structure of the precursor
salt can coordinate the surface of the silver nanoparticles as capping agent, leading to an increase and
optimization of the interface interaction [33,34]. In this way, all the initial components of the system
become a constituent element of the cross-linked structure. The absence of unreacted components from
the photo-curable formulation eliminates the possibility of undesired leaching and the presence of
AgNPs assures a strong anti-bacterial activity, enhanced by the nanometric dimensions of the particles.
The combination of these two aspects can easily promote the application of such a nanocomposite
material to fields (e.g., food contact, healthcare, and medical field) that can benefit from its bactericidal
properties, reducing the infection or contamination risks. As a matter of fact, the chemical and physical
properties of silver nanocomposites have already promoted their use in many fields and SLA and
AM, in general, can add to this practice the design freedom in the production of the 3D engineered
structures with customized shape [35,36]. The morphology and the mechanical properties of the
obtained filled polymers were investigated and discussed.

2. Materials and Methods

2.1. Materials

The starting monomers were commercially available acrylic resins provided by Allnex
(Allnex Holding S.à.r.l., Grand Rue, Luxemburg), in particular an amine functional acrylic resin
(Ebecryl 7100) and pentaerythritoltriacrylate (PETIA). Bis-(2,4,6-trimethylbenzoyl)-phenylphosphine
oxide was used as photo-initiator and was purchased from BASF (Ludwigshafen am Rhein, Germany)
under the trade name of Irgacure 819 (Ir 819). Two AgNPs precursors, silver acrylate (AgAcr) and silver
methacrylate (AgMAcr), were synthesized from silver nitrate and sodium acrylate and methacrylate,
respectively. All the chemicals were high purity reactants purchased from Sigma-Aldrich (Milan, Italy).

AgAcr was synthesized by mixing at room temperature silver nitrate and sodium acrylate water
solutions. The salts were mixed in stoichiometric ratio and the exchange reaction was instantaneous.
The precipitated AgAcr salt was washed once in water and twice in ethanol and ultracentrifuged
(Neya 16, Remi Neya, India) at 12,000 rpm for 5 min each step. AgMAcr was synthesized in the same
way by using sodium methacrylate instead of sodium acrylate.

2.2. Samples Preparation

The photo-curable resin was obtained by mixing together two different mixtures (A and B) for a
total of 100 g, shortly before the printing step, as reported in Scheme 1a. The A mixture was formed by
33 g of PETIA with the addition of 0.25 wt % of Ir 819 with respect to the total final mass. This mixture
was mixed overnight until complete dissolution of the photo-initiator. The B mixture was formed by
67 g of Ebecryl 7100 and a suitable quantity of silver salt, necessary to obtain the required concentration
of AgNPs in the final sample. To ease the dispersion in the resin, a small quantity of ethanol was
added to the salt and removed afterwards by a dynamic vacuum treatment on the solution carried out
at room temperature. A photo-curable resin formulation was also prepared without the presence of
silver salts, as reference material.



Polymers 2018, 10, 212 4 of 14

The samples were coded “AgAcr x%” and “AgMAcr x%” for polymers containing AgNPs obtained
from silver acrylate and silver methacrylate as precursors, respectively (x = 0.5, 1 and 2 corresponds to the
nominal weight percent of AgNPs, by assuming a complete conversion of silver salt to metallic silver).
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Scheme 1. Schematic representation of materials preparation, three dimensional (3D) printing and
post-curing steps (a) and expected reactions during the 3D printing process (b).

A commercial inverted SLA printer (Form 2, Formlabs Inc., Somerville, MA, USA) was used to
process the photo-curable formulations. The layer thickness was set to 50 µm. The CAD software
SolidWorks (Dassault Systems SolidWorks Corporation, Waltham, MA, USA) was used to design
the model for the specimens and the CAD file was then converted to an .stl file to be processed by
the printer software (Preform 2.3.3, Formlabs, Somerville, MA, USA, 2016). The printed specimens
were dumbbell-shaped according to the 1BA specimen type as indicated in the ISO 527-2 technical
standard. The specimens were produced with the stacking direction along the specimen thickness and
used for the subsequent structural and functional characterizations (Figure 1). The printing process
time was between 1.5 and 2 h and the photo-curable formulation was observed to be stable for the
whole period without any phase separation or side-reactions. The expected reactions occurring during
the 3D printing step are shown in the Scheme 1b. The reactions of silver ions reduction and radical
polymerization take place simultaneously, both activated by UV radiation, and lead to the formation
of a homogeneous composite. In this system, the acrylate and methacrylate ions become part of
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the polymeric cross-linked structure and at the same time can coordinate AgNPs by means of the
carboxylate groups, making interface interactions between filler and polymer matrix more effective.

At the end of the printing step, the specimens were detached from the build platform and rinsed
in iso-propylic alcohol (IPA) for 20 min to fully remove all the residues of unreacted resin. Finally,
a thermal post-curing treatment was carried out at 90 ◦C for 1 h, to complete the polymerization
process partially inhibited by the addition of the silver salt (see DSC results reported below).
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2.3. Samples Characterization

Differential scanning calorimetry (DSC) analysis was carried out at a heating rate of 10 ◦C/min
from −10 to 200 ◦C in nitrogen atmosphere (DSC, TA2010, TA Instruments, New Castle, DE, USA).

Transmission electron microscopy (TEM) was carried out (Tecnai 12 Gspirit electron microscope,
FEI Company, Hillsboro, OR, USA) by using an accelerating voltage of 120 kV and LaB6 as
electron source.

X-ray diffraction (XRD) analysis was carried out at in continuous-scanning mode between 30◦

and 85◦ 2θ angle with a scanning rate of 0.00013◦ s−1 (step size of 0.002◦ 2θ and 150 s as counting
time) (X’Pert PRO diffractometer, PANalytical, Almelo, The Netherlands). The diffractograms were
obtained directly on the 3D printed specimens (before post-curing) and acquired under the same
experimental conditions.

Tensile tests until failure were carried out according to the standard ISO 527-2 and carried out by
using a 2 kN load cell, at a crosshead speed of 1 mm/min, in environmental condition of temperature
and relative humidity (Universal Testing Machine, TesT GmbH, Erkrath, Germany).

Dynamic-mechanical thermal analysis (DMTA) was carried out by TA 800Q DMA instrument
(TA instruments, New Castle, DE, USA) equipped with a single-cantilever clamp. Suitable specimens
with rectangular shape (5 × 2 × 30 mm3) were obtained from the narrow parallel-sided portion of
the 3D printed dumbbell-shaped specimens. Dynamic storage modulus E′, loss modulus E′′ and loss
factor tan δ were recorded from −50 to 80 ◦C at a heating rate of 3 ◦C/min, at a controlled sinusoidal
strain (0.1% as maximum strain) and with a fixed frequency (1 Hz).

The creep behavior of unfilled and filled 3D printed specimens was investigated by applying a
constant stress (0.05 MPa) for a creep time of 10 min at several isothermal steps (temperature range
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from 10 to 50 ◦C, temperature increment 10 ◦C). Raw creep curves were used to generate a master curve
at 10 ◦C expressed as creep compliance Jc as a function of time, according to the time-temperature
superimposition (TTS) principle according to the Williams-Landel-Ferry (WLF) model [36].

To predict the reduced storage modulus, the generalized Kernel equation for the reduced modulus
of filled polymers was applied and a comparison with the experimental results was carried out,
using the following:

E′

E′1
=

1 + ABϕ2

1 + BΨϕ2
(1)

where E′ and E′1 are the storage moduli of the composite and of the unfilled matrix, respectively.
The constant A, for spherical particles, is defined as:

A =
7− 5ν

8− 10ν
(2)

being ν the Poisson’s ratio. The constant B depends on the ratio between the filler and the matrix
moduli, but it can be approximated to 1 for very high ratios.

Ψ is a reduced concentration term which depends on the maximum packing fraction of the
particles (ϕm) according to the following definition:

Ψ = 1 +
1− ϕm

ϕ2
m

ϕ2 (3)

in which ϕ2 represents the filler volume fraction. To convert the percentage weight values into volume
fractions, the density of the AgNPs has been taken equal to that of the bulk silver (10.49 g/cm3),
while for the matrix the density was taken equal to the one of the liquid resin formulation (1.127 g/cm3).

In this work, the Poisson’s ratio of the matrix was taken equal to 0.5 and the maximum packing
fraction of the particles ϕm was taken equal to 0.601, which is typical of the non-agglomerated
packing configuration.

3. Results

3.1. XRD and TEM Analysis

XRD patterns of “AgAcr x%” and “AgMAcr 1%” samples reported in Figure 2 confirm the
transformation of silver ions to metallic silver. It is also important to underline the absence of peaks
related to silver oxide (main peak at 32.9◦). Therefore, the peak intensity decreases from “AgAcr 2%” to
“AgAcr 0.5%” sample, according to the variation of the nanoparticle amount in the analyzed samples.

Moreover, the evident peak broadening is indicative of the nanometric dimension of the coherent
diffraction domains.

Typical TEM micrographs of unfilled and filled resins are reported in Figure 3.
TEM micrographs show that, compared to the unfilled sample, AgNPs can be observed in all

filled systems, regardless of the initial load and type of used AgNPs precursor. AgNPs present
an almost spherical geometry with a narrow size distribution. The measured average dimensions
are 9 ± 2, 13 ± 3, and 11± 2 nm in “AgAcr 1%”, “AgAcr 2%” and “AgMAcr 1%” samples, respectively.
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3.2. DSC Analysis

Typical DSC thermograms of unfilled and filled resins, before and after a post-curing thermal
treatment, are reported in Figure 4.



Polymers 2018, 10, 212 8 of 14Polymers 2018, 10, x  8 of 14 

 

 

Figure 4. Differential scanning calorimetry (DSC) thermograms (hexo up) of “Unfilled”, “AgAcr x%” 

and “AgAcr 1%” (TT: after thermal treatment; NT: no thermal treatment; I: first heating scan, II: 

second heating scan). 

Figure 4. Differential scanning calorimetry (DSC) thermograms (hexo up) of “Unfilled”, “AgAcr x%”
and “AgAcr 1%” (TT: after thermal treatment; NT: no thermal treatment; I: first heating scan, II: second
heating scan).



Polymers 2018, 10, 212 9 of 14

DSC thermogram of unfilled resins “Unfilled NT I” is characterized by the absence of any
exothermic peak indicating a complete resin conversion on the 3D printed specimens without the
necessity of any post-curing processes. On the contrary, all filled resins, characterized immediately after
3D printing (NT I samples), exhibit clear exothermic peaks attributable to the presence of unreacted
carbon-carbon double bonds. These peaks completely disappear in the second heating scan (NT II
samples) and are absent in the thermally post-cured samples (TT I samples).

3.3. Tensile Properties

Representative stress-strain curves of filled and unfilled resins are reported in Figure 5.
The corresponding tensile properties of the 3D printed specimens are reported in Table 1.
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Table 1. Tensile properties of 3D printed specimens (Et: Young’s modulus; σM: tensile strength;
εB: tensile strain at break, according to ISO 527 technical standard).

Sample Et (MPa) σM (MPa) εB (%)

Unfilled 68 ± 2 3.4 ± 0.3 6.1 ± 0.7
AgAcr 0.5% 111 ± 3 4.3 ± 0.4 4.8 ± 0.6
AgAcr 1% 113 ± 8 4.0 ± 0.4 4.0 ± 0.1
AgAcr 2% 142 ± 8 5.0 ± 0.8 4.7 ± 0.9

AgMAcr 1% 153 ± 5 3.4 ± 0.3 2.4 ± 0.2

Young’s modulus values systematically increase by increasing the AgNPs concentration from
a minimum of 68 MPa for “Unfilled” sample to a maximum of 153 MPa for “AgMAcr 1%” sample.
Also strength values follow the same trend with a significant maximum value of 5.0 MPa in the case of
“AgAcr 2%” sample.

Strain at break values systematically decrease by increasing the AgNPs concentration from a
maximum of 6.1% for “Unfilled” sample to a minimum of 2.4% for “AgMAcr 1%” sample.

3.4. Dynamic-Mechanical Thermal Properties

The results obtained by dynamic-mechanical analysis are reported in Table 2 in terms of glass
transition temperature (TgDMTA, determined from the maximum of tanδ curve) and storage modulus
measured at 60 ◦C.



Polymers 2018, 10, 212 10 of 14

Table 2. Glass transition temperature (TgDMTA, evaluated as temperature value corresponding to tanδ
peak) and storage modulus at 60 ◦C values for all the printed specimens, from Dynamic-mechanical
thermal analysis (DMTA) analyses.

Sample TgDMTA (◦C) E′ at 60 ◦C (MPa)

Unfilled 0.7 65
AgAcr 0.5% 4.9 87
AgAcr 1% 5.1 97
AgAcr 2% 11.8 130

AgMAcr 1% 10.5 140

TgDMTA values systematically increase by increasing the AgNPs concentration from a minimum
of 0.7 ◦C for “Unfilled” sample to a maximum of 11.8 ◦C for “AgAcr 2%” sample. Also storage
modulus values evaluated above TgDMTA follow a similar trend ranging from a minimum of 65 MPa
for “Unfilled” sample to a maximum of 140 MPa for “AgMAcr 1%” sample.

A comparison between the reduced storage modulus obtained from the experimental results and
from predictive equations is reported in Figure 6 by applying the generalized Kernel equation for the
reduced modulus of filled polymers [37].

The figure clearly shows an evident increment of the relative storage modulus (E′/E1
′) in the

experimental results with respect to the prediction of the Kernel equation. This increment can
be attributed to an action of the filler as a cross-linking agent, besides his action of pure rigid
particle reinforcement.
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3.5. Creep Properties

Creep data (compliance as a function of temperature) obtained at several isothermal conditions
ranging from 10 to 85 ◦C were elaborated by applying the time-temperature superimposition principle
in order to get information on the creep behavior of the investigated materials in a time scale much
higher than the experimentally accessible one. A portion of the obtained master curves at the reference
temperature of 10 ◦C is reported in Figure 7.
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“Unfilled”, “AgAcr x%”, and “AgMAcr 1%” samples.

All compliance values were in the range of 10−8 Pa−1 but there was a clear difference between
filled and unfilled resins notwithstanding a similar slope of the curves. Once again the materials
containing in situ generated AgNPs presented a more elastic behavior here represented in terms of
creep resistance.

4. Discussion

TEM analysis showed that the in situ formation of AgNPs during 3D printing allowed to optimize
the dispersion and distribution of the nanofillers within the polymer matrix, avoiding problems related
to the aggregation phenomena usually observed in the alternative ex situ preparative approaches.

DSC analysis indicated an uncomplete polymerization reaction in the case of filled resins,
i.e., in the presence of silver salts as AgNPs precursors. Presumably, two different phenomena
can contribute to a conversion of carbon-carbon double bonds lower than 100%. First of all, the in situ
generation of AgNPs converts the materials from a substantially homogeneous system to a bi-phasic
heterogeneous one with the two phases having different refractive indexes, which in turn could lead
to light scattering phenomena with a decrease of photo-polymerization reaction efficiency. Secondly,
the presence of rigid AgNPs in the polymer matrix is also expected to increase the rigidity and the
glass transition temperature of the material and an earlier vitrification could occur with a stop of the
chemical reactions due to limitation in the diffusion phenomena within a glassy matrix.

XRD analysis confirmed the conversion of silver cations deriving from soluble silver salts to
metallic silver thanks to the occurrence of a reduction process attributable to both UV radiation
(from SLA printer) and presence of radicals, formed after dissociation of photo-initiator. This is a very
important result taking into account that similar systems processed with an alternative technology
such as Digital Light Processing (DLP) evidenced the necessity to a UV-based post-curing step to
generate AgNPs [21,38]. From this point of view, the power (light intensity) of the UV radiation used
in SLA process was high enough to activate the chemical reduction processes to in situ generate AgNPs
during the 3D printing step, contrary to what observed by using a different additive manufacturing
technology (i.e., DLP) characterized by a less intensive radiation.

The increment in Young’s modulus, due to the presence of a rigid filler, is an expected result due
to hydrodynamic effect deriving from the inclusion of rigid particles in a less rigid polymer matrix.
On the other hand, data indicates that the cross-linking density, which in turn dominates the modulus
value above Tg, was not negatively affected by the in situ generation of AgNPs and related by-products
formation. Moreover, the use of silver salts with counter-anions which can react directly with the
acrylic monomers during the formation of the polymer network, can further stabilize the final system,
limiting the formation of extractable by-products.
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In addition to the significant increment of Young’s modulus evidenced for all the filled samples
(with a remarkable maximum value of 153 MPa for “AgMAcr 1%”), it is noteworthy also the increment
of strength in the case of “AgAcr x%” series with respect the unfilled reference resin (with a maximum
value of 5.0 MPa with respect to 3.4 MPa). This behavior is quite unexpected taking into account that
strength usually decreases by increasing the filler content in the case of micro-composites. Conversely,
in the present case a positive contribution can be considered as deriving by both the nanometric
size of the filler combined with an enhanced particle/matrix interfacial adhesion according to other
similar evidences reported in literature [39]. In this case, the interactions at the nanoparticle-polymer
interface can benefit from the presence of carboxylate groups present in the polymeric network and
deriving from the counter-anion of the starting salt. In fact, the acrylate and methacrylate groups
are characterized by the co-existence of alkenyl and carboxylic functionalities in the same molecule.
The alkenyl functionality has the possibility to react with the acrylic monomers, becoming part of the
polymeric structure. This behavior determines the formation of carboxylic pendants, scattered along
the polymer chain, which can coordinate the surface of the nanoparticles, improving the interactions
at the interface between AgNPs and polymer.

As expected, the presence of a high-modulus filler resulted in a decrement of strain at break for all
the filled resins, even if the loss in strain at break was relatively limited, with respect to the reference
value of 6.1% for unfilled resin.

Accordingly to quasi-static tensile properties above reported, also DMTA and creep data indicated
a significant increment of rigidity, proportional to the amount of AgNPs as indicated by both
glass transition temperature, storage modulus and compliance values. The comparison between
experimental and predicted storage modulus values further supported the presence of an enhanced
interfacial AgNPs-polymer adhesion, as already evidenced in previous papers [40–42].

5. Conclusions

This article demonstrates that the SLA process can simultaneously reduce a silver salt to an in
situ generate well dispersed and distributed AgNPs while polymerizing the liquid monomer into
a solid matrix. Thanks to the selection of silver salts having reactive counter-ions, such as acrylate
and methacrylate, the obtained nanocomposite material is homogeneous and without extractable
by-products. In fact, the reactive counter-ions can become part of the polymeric structure and stabilize
the nanoparticle-polymer interfacial interactions. The absence of by-products release, the presence of
AgNPs with good dispersion and distribution, the freedom and precision allowed in the fabrication
by the SLA process, are all factors that can promote this approach for the realization of useful and
valid nanocomposite materials applicable to various sectors ranging from medical and healthcare,
to food packaging.
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