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Supplementary material

Appendix A: Properties of the Graph

In this appendix we focus on the description of the graph G induced by the Markov basis BN
over the fiber FN,t. First we give two formulae to compute the number of vertices |V |, that
corresponds to the cardinality of the fiberFN,t , and the number of edges |E| in G. Then we prove
that the graph is bipartite and we give a way to compute the number of orbits of permutations
contained in the fiber π ⊆ FN,t.

The computation of the cardinality of FN,t can be seen as the problem of distributing t re-
sources among N users, when users may get no resources. This is a well known exercise in
combinatorics which gives |V | =

(
t+N−1
N−1

)
(Lovász et al., 2006, Theorem 3.4.2).

The number of edges can be computed observing that every edge corresponds to the addi-
tion/subtraction of a move m ∈ BN , therefore we just have to check which moves are admissible
for a generic vertex y ∈ FN,t.

The set of vertices can be divided into three subsets:

• the internal vertices, i.e. the vectors with no component equal to 0;
• the vertices corresponding to vectors with y1 6= 0 and 1 ≤ z < N components equal to

zero;
• the vertices corresponding to vectors with y1 = 0 and 1 ≤ z∗ < N − 1 additional

components equal to zero.

Consider the first subset, i.e. the internal vertices. This set has cardinality
(
t−1
N−1

)
and for each

vertex in this set every move mK 1 ≤ K ≤ N − 1 with every sign ε = ±1 is admissible. This
is a consequence of the absence of entries equal to 0, which means that we can add or subtract 1
from every entry. Thus each vertex in this set has 2(N − 1) edges.
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2 R.Fontana, F.R.Crucinio

Secondly, consider the set of vertices with z zero components and y1 6= 0; this set has cardinal-
ity given by the number of possible vectors with sum of entries equal to t and z zero components(

t−1
N−1−z

)
times the possible positions for the z zero components

(
N−1
z

)
. For the vertices in this

set the 2(N−1−z) moves which do not involve the z zero components are admissible and within
the ones which involve the zero components only the z moves with ε = +1 are admissible. Thus
every vertex in this set has 2(N − 1− z) + z = 2N − 2− z edges.

Finally, consider the set of vertices with y1 = 0 and z∗ additional null components and denote
the total number of zero components z = z∗+1. The cardinality of this set is given by the product
between the number of possible vectors with sum of entries equal to t and z zero components(

t−1
N−1−z

)
and the possible positions for the z∗ additional zero components

(
N−1
z∗

)
=
(
N−1
z−1
)
. For

the vertices in this set ε = +1 is the only admissible sign and if ε = +1 the moves involving the
z∗ zero components are not admissible; therefore each vertex in this set has N −1−z∗ = N −z
edges.

Thus the total number of edges is given by the sum of these three terms

2(N − 1)

(
t− 1

N − 1

)
+

N−1∑
z=1

(2N − 2− z)
(

t− 1

N − 1− z

)(
N − 1

z

)
+

N−1∑
z=1

(N − z)
(

t− 1

N − 1− z

)(
N − 1

z − 1

)
divided by two (because by counting the edges of each vertex we count the same edge twice).

To prove that G is bipartite we observe that it is not possible to return to the starting vector
by an odd sequence of moves: consider the first component y1 of a generic vector y ∈ FN,t
and a generic path of moves. Every move acts on y1 with a +1 or a −1. To come back to y1 the
sequence of +1 and −1 has to be even. This proves that G has no cycle of odd length, hence the
graph is bipartite.

Finally, the number of orbits of permutation contained in the fiber is equivalent to the number
of partitions of t into N or fewer parts. This number is part(t,N), where part is the partition
function defined in Kunz (2006) and Wilf (2000). The values of the partition function can be
computed using the recurrence part(t,N) = part(t,N − 1) + part(t − N,N) and depend on
both the sample size N and the sum of entries t.

Appendix B: Markov basis for the new parametrisation of
FN,t

In this section we give a way to build the Markov basis for the parametrisation ofFN,t in equation
(4.3), given the value of the sum of entries t. A similar construction is presented in Chen et al.
(2005).
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Orbit-based conditional tests. 3

The linear sufficient statistic for this parametrisation of FN,t is a(fπ) = Atfπ where

At =

(
0 1 . . . t
1 1 . . . 1

)
.

As recalled in Section 2.2, a Markov basis forAt is a finite set of movesBπt = {mπ
1 , . . . ,m

π
K}

which belongs to the integer kernel ofAt and induces a connected graph over the fiber associated
with At. We are interested in a Markov Basis for the specific fiber FN,t = {fπ : Atfπ =
(t,N)T }. With a slight abuse of notation we still denote by Bπt such a basis. We denote as bxc
the floor of x, bxc = max (m ∈ Z | m ≤ x).

A procedure to build a basis for FN,t = {fπ : Atfπ = (t,N)T } is available in Chen et al.
(2005), however this procedure results in a basis which is not minimal. Indeed, the number of
moves proposed by Chen et al. (2005) is

(
t−1
2

)
while the number K of moves we get (see Propo-

sition B.2) satisfies K ≤
(
t−1
2

)
. The following proposition gives a way to build a minimal basis.

Proposition B.1. For any integer t one can build a Markov basis Bπt for the fiber FN,t consider-
ing the moves mk,i which are built as follows: for every 2 ≤ k ≤ t and for every 1 ≤ i ≤ bk/2c
the t+ 1 components vector mk,i is constructed by

1. setting all the components of mk,i equal to zero;
2. setting (mk,i)0 = −1 and (mk,i)k = −1;
3. setting (mk,i)i = 1;
4. setting (mk,i)k−i = (mk,i)k−i + 1.

Proof. First we observe that for any m ∈ Bπt its components (m)i, i = 0, . . . , t are in {−1, 0, 1, 2}.
It follows that m ∈ Zt+1. We also observe thatmi = 2 if and only if i = k− i, that is if i = k/2.

Secondly, Atm = 0 because

(0, 1, . . . , t)m = 0 ·m0 + i ·mi + (k − i) ·mk−i + k ·mk =

= 0 · (−1) + i · 1 + (k − i) · 1 + k · (−1) = 0

and

(1, 1, . . . , 1)m = 1 ·m0 + 1 ·mi + 1 ·mk−i + 1 ·mk =

= 1 · (−1) + 1 · 1 + 1 · 1 + 1 · (−1) = 0.

Thirdly, we prove that the points of the re-parametrised FN,t are connected by the moves of
Bπt by induction over t. Preliminary, we observe that Bπt can be considered as the disjoint union
of Bπt,0 and Bπt,1 where Bπt,0 = {(x0, . . . , xt) ∈ Bπt : xt = 0} and Bπt,1 = {(x0, . . . , xt) ∈ Bπt :

xt = −1}. Bpit,0 is obtained with 2 ≤ k < t and Bπt,1 is obtained with k = t.
By construction it holds that Bπt,0 = {(x0, . . . , xt−1, 0) : (x0, . . . , xt−1) ∈ Bπt−1}.

• For t = 1, we have FN,1 = {(N − 1, 1)} and Bπ1 = ∅.
• For t = 2, we have FN,2 = {(N − 1, 0, 1), (N − 2, 2, 0)} and Bπ2 = {(−1, 2,−1)}. It

follows that the two orbits into FN,2 are connected by the move of Bπ2 .
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4 R.Fontana, F.R.Crucinio

• Let us now suppose that Bπt connects the re-parametrised FN,t and let us prove that
Bπt+1 connects the remainder FN,t+1. We observe that FN,t+1 is the disjoint union of
the sets F̃N,t+1 and {(N − 1, 0, . . . , 0, 1)}, where F̃N,t+1 contains the points (x0, x1 +
1, x2, . . . , xt, 0) with (x0, x1, x2, . . . , xt) ∈ FN,t. It is easy to verify that Bπt+1,0 connects
all the points of F̃N,t+1 and that Bπt+1,1 connects the point {(N − 1, 0, . . . , 0, 1)} to the
points of F̃N,t+1.

Remark B.1. As for the Markov basis in equation (3), the basis Bπt can be obtained providing
to 4ti2 the matrix At which defines the re-parametrised fiber and its dimensions. In general
4ti2 will provide a larger number of moves than those obtained using Proposition B.1. This is
due to the fact that 4ti2 gives a basis for all the fibers {fπ : Atfπ = b,b ≥ 0}, while we have
built a Markov basis for the specific fiber FN,t, where b = (t,N)T .

Example B.1. For t = 6, 4ti2 gives 15 moves: the nine listed in equation (4.6) plus the six
below 

0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 1 −1 0
0 1 −1 0 0 −1
1 −1 0 −2 0 −1
−2 −1 −1 0 −1 0

1 1 1 1 1 1


.

As one can easily check none of these moves is admissible. For example to use the first move
(0, 0, 0, 0, 1,−2, 1) we need a vector f such that

∑6
i=0 ifi ≥ 10, but such f does not belong to

FN,6.
Additionally, the procedure suggested by Chen et al. (2005) gives

(
6−1
2

)
= 10 moves while

only 9 are needed to get a connected graph (see Figure 2).

Proposition B.2. The number K of moves in Bπt is equal to

K =

{
t2

4 if t is even
t2−1
4 if t is odd

.

Proof. From Proposition B.1 it follows that the total number of moves in Bπt , for a generic t, is
given by

∑t
k=2bk/2c.

Thus if 2 ≤ k ≤ t we need to compute the sum of the following sequence

k 2 3 4 5 6 7 . . . t
bk/2c 1 1 2 2 3 3 . . . bt/2c .
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Orbit-based conditional tests. 5

If t is odd then this sum is

t∑
k=2

bk/2c = 2 ·
(t−1)/2∑
k=1

k =

= 2 · 1

2
·
(
t− 1

2
·
(
t− 1

2
+ 1

))
=

=
(t− 1)(t+ 1)

4
=
t2 − 1

4
.

If t is even then

t∑
k=2

bk/2c = 2 ·
(t−2)/2∑
k=1

k +
t

2
=

= 2 · 1

2
·
(
t− 2

2
·
(
t− 2

2
+ 1

))
+
t

2
=

=
t

2

(
t− 2

2
+ 1

)
=
t2

4
.

Appendix C: Properties of Estimators

In this appendix we show the proofs of the 3 properties of the estimators I(U(y)≤u) and FU (u | π)
presented in Section 5. First we prove that both estimators are unbiased, then the relation between
the variances of the two estimators and finally, thanks to Lemma C.1, we prove a similar result
for the mean absolute deviation.

Proposition. Unbiasedness of both estimators (Proposition 5.1)
Ep

(
I(U(y)≤u)(y)

)
= Epπ (FU (u | π)) = FU (u | FN,t).
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6 R.Fontana, F.R.Crucinio

Proof. If we compute the expectation of FU (u | π) using pπ we get

Epπ (FU (u | π)) =
∑

π⊆FN,t

pπ(π)FU (u | π)

=
∑

π⊆FN,t

pπ(π)
1

#π

∑
y∈π

I(U(y)≤u)(y)

=
∑

π⊆FN,t

pπ(π)
∑
y∈π

I(U(y)≤u)(y) p(y|π)

=
∑

π⊆FN,t

∑
y∈π

I(U(y)≤u)(y) p(y)

=
∑

y∈FN,t

p(y)I(U(y)≤u)(y)

= Ep

(
I(U(y)≤u)(y)

)
= FU (u | FN,t).

Proposition. Comparison of Variances (Proposition 5.2)
varp

(
I(U(y)≤u)

)
≥ varpπ (FU (u | π)).

Proof. From Proposition 5.1 both I(U(y)≤u) and FU (u | π) are unbiased estimator of the distri-
bution of U over the fiber FN,t, FU (u | FN,t). Then it is enough to show that

Ep

(
(I(U(y)≤u))

2
)
≥ Epπ

(
(FU (u | π)2)

)
From (I(U(y)≤u))

2 = I(U(y)≤u) we have

Ep

(
(I(U(y)≤u))

2
)

= Ep

(
I(U(y)≤u)

)
=

∑
y∈FN,t

p(y)I(U(y)≤u)

=
∑

π⊆FN,t

∑
y∈π

p(y)I(U(y)≤u)

=
∑

π⊆FN,t

∑
y∈π

p(y | π) pπ(π)I(U(y)≤u)

=
∑

π⊆FN,t

pπ(π)
∑
y∈π

1

#π
I(U(y)≤u)

≥
∑

π⊆FN,t

pπ(π)

(∑
y∈π

1

#π
I(U(y)≤u)

)2

= Epπ

(
(FU (u | π)2)

)
.
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Orbit-based conditional tests. 7

The ≥ sign comes from

0 ≤

(∑
y∈π

I(U(y)≤u)

#π

)
≤ 1 ⇒

(∑
y∈π

I(U(y)≤u)

#π

)2

≤

(∑
y∈π

I(U(y)≤u)

#π

)
.

To prove the result in Proposition 5.3 for the mean absolute deviation (MAD), we need the
following Lemma.

Lemma C.1. Let x, y ∈ [0, 1], then the following facts hold:

1. x− 2xy + y ≥ 0;
2. |x− y| ≤ x− 2xy + y.

Proposition. Comparison of MAD (Proposition 5.3)
MADp

[
I(U(y)≤u)

]
≥ MADpπ [FU (u | π)].

Proof.

MADp

[
I(U(y)≤u)

]
= E

(
|I(U(y)≤u) − FU (u | FN,t)|

)
=

∑
y∈FN,t

p(y)|I(U(y)≤u) − FU (u | FN,t)|

=
∑

π⊆FN,t

∑
y∈π

p(y)|I(U(y)≤u) − FU (u | FN,t)|

=
∑

π⊆FN,t

pπ(π) · 1

#π

∑
y∈π
|I(U(y)≤u) − FU (u | FN,t)|.

We divide the vectors y ∈ π into two classesC0 andC1 = C̄0, such thatC0 =
{
y ∈ π : I(U(y)≤u) = 0

}
and C1 =

{
y ∈ π : I(U(y)≤u) = 1

}
, then

MADp

[
I(U(y)≤u)

]
=

=
∑

π⊆FN,t

pπ(π) · 1

#π

(∑
C0

FU (u | FN,t) +
∑
C1

(1− FU (u | FN,t))

)

=
∑

π⊆FN,t

pπ(π) · 1

#π
(#C0 · FU (u | FN,t) + #C1 · (1− FU (u | FN,t))) .

By looking at the definition of FU (u | π) in equation (4) we observe that #C1/#π = FU (u | π)
and #C0/#π = 1−#C1/#π = 1− FU (u | π), thus

MADp

[
I(U(y)≤u)

]
=

=
∑

π⊆FN,t

pπ(π) (FU (u | FN,t)− 2FU (u | π)FU (u | FN,t) + FU (u | π)) .
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Now, by Lemma C.1, it holds that

|FU (u | FN,t)− FU (u | π)| ≤ FU (u | FN,t)− 2FU (u | π)FU (u | FN,t) + FU (u | π)

Therefore

MADp

[
I(U(y)≤u)

]
=

=
∑

π⊆FN,t

pπ(π) (FU (u | FN,t)− 2FU (u | π)FU (u | FN,t) + FU (u | π))

≥
∑

π⊆FN,t

pπ(π)|FU (u | FN,t)− FU (u | π)|

= MADpπ [FU (u | π)] .

Appendix D: Permutation and MCMC sampling

In this section we carry out a brief analysis of the limit case which we get when we sample just
one orbit π and we carry out a standard Monte Carlo sampling over π. If the sampled orbit is
πyobs , i.e. the one which contains the observed vector yobs, the sampling procedure proposed in
Section 4 corresponds to the standard permutation sampling (Pesarin and Salmaso, 2010).

We observe that yobs is an observation sampled from the distribution p and that the corre-
sponding orbit πyobs is an observation sampled from the distribution pπ , where p and pπ are the
probability distributions in Proposition 5.1.

Two well-known remarkable properties of the permutation sampling immediately follows
from Proposition 5.1. First FU (u | πyobs), the cumulative distribution function conditional to
the orbit of the observed sample, is an unbiased estimator of FU (u | FN,t), the cumulative dis-
tribution function over the fiber FN,t. Secondly, it is an unbiased estimator of FU (u | FN,t) for
any distribution function p, that does not need to be specified. In fact the estimator FU (u | πyobs)
does not need any expression of p to be computed.

Example D.1. As a simple example consider again the fiber F3,6 in Figure 1. We select n1 = 2
and n2 = 1 and we compare the exact cumulative distribution over the fiber FU (u | FN,t) and
the cumulative distribution over π = π(1,2,3), the orbit with highest probability, FU (u | π). We
get two distributions (Table 1) which are considerably close, even if the cardinality of the selected
orbit is low (#π(1,2,3) = 6) compared to the the cardinality of F3,6, which is 28. However, it is
easy to see that some orbits do not give a good approximation of the distribution over FN,t. If
we refer again to the fiber F3,6 and we consider π(2,2,2), we get a cumulative distribution which
has only two values, 0 and 1 (Table 1). This difference is due to the unequal probabilities of the
orbits in FN,t (these probabilities are reported in Table 1).
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Orbit-based conditional tests. 9

Table 1. Cumulative distributions of U
u 0 1 2 3 4 5 6

F3,6 0.001 0.018 0.100 0.320 0.649 0.912 1
π(1,2,3) 0 0 0 0.333 0.667 1 1
π(2,2,2) 0 0 0 0 1 1 1

Table 2. UMPU tests. Scenario definition

n1 6 10 30
n2 4 15 20

(a) Sample sizes

µ1 1 1 1
µ2 1 1.5 2

(b) Population means

Appendix E: Simulation study

E.1. UMPU Tests

We start by considering the uniformly most powerful unbiased test in equation (2.1). We compare
the exact conditional cumulative distribution function F (u | FN,t) in the case of Poisson data
with

• the approximated conditional cumulative distribution function obtained using Algorithm
1;

• the approximated conditional cumulative distribution function obtained using Algorithm
2;

• the standard permutation cumulative distribution function F̂ (u | πyobs) (this is the limit
case of Algorithm 2 when only the first step is performed, i.e. Nsim = 0).

A preliminary simulation study is presented in Crucinio and Fontana (2017).
We consider Poisson distributed data Y1 = (Y1, . . . , Yn1

) of size n1 from Poisson(µ1) and
Y2 = (Yn1+1, . . . , Yn1+n2

) of size n2 from Poisson(µ2). In this case the exact distribution (2.2)
under H0 : µ1 = µ2 = µ is known to be a binomial distribution with t trials and probability of
success n1/(n1 + n2). Then the exact value of FU (u | FN,t) is given by

FU (u | FN,t) = p(Binomial(t, θ0) ≤ u) =

u∑
k=0

(
t

k

)
θk0 (1− θ0)t−k, (E.1)

with θ0 = n1/(n1 + n2).
We consider 9 scenarios built taking three different sample sizes (n1, n2) (Table 3a) and, for

each sample size, three different population means (µ1, µ2) (Table 3b).
First we compare how fast the two MCMC procedures converge to the true distribution FU (u |

FN,t). We draw one random sample yobs for each scenario above, we run both Algorithm 1 and 2
for 15 seconds and at every step we compute the corresponding estimate of FU (u | FN,t) (which
is based on the indicator function I(U(y)≤u) in the first case and on the permutation distribution
FU (u | π) in the second one). The number of Monte Carlo permutations for every sampled orbit
π is kept fixed and equal to 5, 000. In both Algorithm 1 and 2 we do not include burn-in steps.
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10 R.Fontana, F.R.Crucinio

Table 3. UMPU tests. Error analysis: standard deviation and MAD

Scenario Std Dev MAD
n1 n2 µ1 µ2 Algorithm 2 Algorithm 1 Permutation Algorithm 2 Algorithm 1 Permutation

6 4 1 1 0.0112 0.0237 0.0523 0.0094 0.0197 0.0368
6 4 1 1.5 0.0109 0.0239 0.0451 0.0094 0.0246 0.0367
6 4 1 2 0.0116 0.0202 0.0450 0.0102 0.0311 0.0371

10 15 1 1 0.0181 0.0248 0.0278 0.0140 0.0205 0.0202
10 15 1 1.5 0.0096 0.0213 0.0270 0.0143 0.0289 0.0205
10 15 1 2 0.0067 0.0116 0.0232 0.0139 0.0342 0.0209
20 30 1 1 0.0261 0.0307 0.0189 0.0213 0.0252 0.0143
20 30 1 1.5 0.0072 0.0223 0.0163 0.0221 0.0320 0.0143
20 30 1 2 0.0025 0.0091 0.0093 0.0215 0.0320 0.0144

Overall 0.0133 0.0218 0.0326 0.0151 0.0276 0.0239

Figure 1 shows four examples of the behaviour of the two MCMC procedures which are
representative of the 9 scenarios. In all the 9 scenarios the convergence of Algorithm 2 to (E.1)
is much faster than that of Algorithm 1. In fact Algorithm 2 achieves satisfactory convergence in
∼ 0.1 seconds while Algorithm 1 takes more than 10 seconds.

To further explore the convergence of the three sampling algorithms, we consider again the
9 scenarios above and for every scenario we draw 1,000 samples. For each sample we run a
standard permutation sampling and both Algorithm 1 and Algorithm 2 with the settings described
above (i.e. 15 seconds, no burn-in and 5,000 permutations per orbit).

For each sample we compute the errors of the three estimated distributions. We denote by F̂πU ,
F̂y
U and F̂U (u | πyobs) the estimated distributions obtained by Algorithm 2, Algorithm 1 and the

standard permutation method, respectively. The errors Ey, Eπ and Eperm are defined as

Ey = F̂y
U (u | FN,t)−

u∑
k=0

(
t

k

)
θk0 (1− θ0)t−k, (E.2)

Eπ = F̂πU (u | FN,t)−
u∑
k=0

(
t

k

)
θk0 (1− θ0)t−k, (E.3)

Eperm = F̂U (u | πyobs)−
u∑
k=0

(
t

k

)
θk0 (1− θ0)t−k. (E.4)

We know from Proposition 5.1 that the expected value of Ey, Eπ and Eperm is 0. On average the
observed errors are very close to 0 for every sampling procedure. The overall sample means of
the errors are +0.0017, −0.0093 and +0.0052 for Algorithm 2, Algorithm 1 and the standard
permutation method respectively (the overall sample means have been computed considering all
the 9,000 simulations).

In Table 3 we report the standard deviation and mean absolute deviation (MAD) of the errors.
To analyse the difference between Algorithm 2, 1 and standard permutation we compute the
ratio between the standard deviations of the first two and the standard deviation of Algorithm 2.
We repeat the same computation for the MAD. The results are in Table 4. Algorithm 1 gives a
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Table 4. UMPU tests. Error analysis: ratios of standard deviation and MAD

Scenario Std Dev MAD
n1 n2 µ1 µ2 Algorithm 1 Permutation Algorithm 1 Permutation

6 4 1 1 2.12 4.68 2.09 3.90
6 4 1 1.5 2.19 4.13 2.60 3.89
6 4 1 2 1.73 3.87 3.06 3.65
10 15 1 1 1.37 1.54 1.47 1.45
10 15 1 1.5 2.23 2.83 2.02 1.43
10 15 1 2 1.73 3.44 2.47 1.50
20 30 1 1 1.18 0.72 1.18 0.67
20 30 1 1.5 3.09 2.25 1.45 0.65
20 30 1 2 3.58 3.66 1.48 0.67

Overall 1.64 2.45 1.82 1.58

Table 5. UMPU tests. Number of iterations
Scenario N. iterations ratio

n1 n2 µ1 µ2 Orbit Fiber Fiber/Orbit

6 4 1 1 23977 53842 2.25
6 4 1 1.5 24169 53210 2.20
6 4 1 2 24560 57382 2.34

10 15 1 1 11950 52504 4.39
10 15 1 1.5 11564 54836 4.74
10 15 1 2 7326 53492 7.30
20 30 1 1 4675 45576 9.75
20 30 1 1.5 3174 44817 14.12
20 30 1 2 2572 48003 18.66

standard deviation that is often double (the overall value is 1.64) than that of Algorithm 2. This
overall ratio becomes 2.45 when we compare the standard deviation of Algorithm 2 with that of
the standard permutation. The corresponding overall values of the ratios of the MADs are 1.82
and 1.58, respectively.

These results are consistent with Propositions 5.2 and 5.3 in Section 5 and are confirmed by
Figure 2, in which the histograms of the absolute errors for four scenarios are shown. These plots
are representative of the behaviour in any of the 9 scenarios.

The number of iterations made by Algorithm 2 and Algorithm 1 in the allocated 15 seconds
are reported in Table 5. Algorithm 2 performs better than Algorithm 1 even if the number of
iterations made is lower: in 15 seconds, Algorithm 1 makes from twice to almost 19 times more
iterations than Algorithm 2. Despite this difference in the number of iterations, Algorithm 2
always achieves lower variance and MAD.

Remark E.1. It would be possible to further reduce the computational time required by Algo-
rithm 2 by exploiting one of the key features of this new approach, namely the possibility of
sampling from each orbit independently. The computations of the Monte Carlo cdf F̂U (uobs | π)
(step 5 of Algorithm 2) could be made in parallel: once the chain reaches an orbit π the Monte
Carlo sampling over π can be performed while the chain keeps on moving on the set of orbits.
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Table 6. Linear Regression. Scenario definition

n1 3 7 15
n2 4 8 15
n3 3 8 20

(a) Sample sizes

µ1 1 1 1
µ2 1 1 1
µ3 1 1.5 2

(b) Population means

E.2. Simple Linear Regression

We carry on our simulation study by considering the hypothesis test described in Section 6.2.
If the samples we are interested in are Poisson distributed, we know from McCullagh and

Nelder (1989) that the vector (Y1, . . . , YN ) given the sum T =
∑N
i=1 Yi follows a multinomial

distribution

Multinomial
(
t,

n1
n1 + . . .+ nk

, . . . ,
nk

n1 + . . .+ nk

)
,

where n1, . . . , nk are the number of observations Yi in each of the k groups.
We set the number of groups k = 3 and we consider the test statistic U =

∑n1

i=1 Yi +

2
∑n2+n1

i=n1+1 Yi + 3
∑N
i=n1+n2+1 Yi. The distribution of U given T can be computed from the

Multinomial distribution above as

p(U = u | T = t) =

(3t−u)/2∑
x1=2t−u

p(Multinomial = (x1, 3t− 2x1 − u, u− 2t+ x1)). (E.5)

We compare the exact values obtained using equation (E.5) with

• the approximated conditional cumulative distribution function obtained using Algorithm
1;

• the approximated conditional cumulative distribution function obtained using Algorithm
2;

• the standard permutation cumulative distribution function F̂ (u | πyobs) (this is the limit
case of Algorithm 2 when Niter = 0).

As we did earlier, we consider 9 scenarios built taking three different sample sizes (n1, n2, n3)
(Table 7a) and, for each sample size, three different population means (µ1, µ2, µ3) (Table 7b).

Figure 3 shows two examples of convergence for Algorithm 1 and Algorithm 2 in 10 seconds.
As usual, we report the exact value computed with equation (E.5) and the value given by a stan-
dard permutation sampling. The behaviour of the two Algorithm is similar to the one observed
in Appendix E.1. Algorithm 2 converges in the least time to the exact value.

As a further comparison, we compute the errors for the 3 sampling procedures as shown in
equations (E.2), (E.3) and (E.4), where we substitute the binomial cdf with the cdf we obtain
by summing up the probabilities in equation (E.5). The overall means of the errors are +0.0027,
+0.0032, -0.0005 for Algorithm 1, 2 and standard permutation sampling. As expected, all the
estimates are unbiased (Proposition 5.1 and Remark 5.1).
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Table 7. Linear Regression. Error analysis: standard deviation and MAD

Scenario Std Dev MAD
n1 n2 n3 µ1 µ2 µ3 Algorithm 2 Algorithm 1 Permutation Algorithm 2 Algorithm 1 Permutation

3 4 3 1 1 1 0.010 0.010 0.045 0.009 0.007 0.033
3 4 3 1 1 1.5 0.008 0.009 0.042 0.006 0.006 0.030
3 4 3 1 1 2 0.006 0.008 0.043 0.005 0.005 0.030
7 8 8 1 1 1 0.006 0.016 0.050 0.006 0.012 0.030
7 8 8 1 1 1.5 0.005 0.014 0.089 0.004 0.010 0.040
7 8 8 1 1 2 0.003 0.009 0.081 0.003 0.006 0.036

15 15 20 1 1 1 0.007 0.024 0.200 0.006 0.018 0.121
15 15 20 1 1 1.5 0.008 0.017 0.225 0.006 0.012 0.126
15 15 20 1 1 2 0.007 0.009 0.130 0.004 0.004 0.040

Overall 0.007 0.014 0.120 0.005 0.009 0.054

Table 8. Linear Regression. Error analysis: ratios of standard deviation and MAD

Scenario Std Dev MAD
n1 n2 n3 µ1 µ2 µ3 Algorithm 1 Permutation Algorithm 1 Permutation

3 4 3 1 1 1 0.99 4.61 0.86 3.86
3 4 3 1 1 1.5 1.13 5.20 1.01 4.80
3 4 3 1 1 2 1.21 6.68 1.05 5.98
7 8 8 1 1 1 2.48 7.85 2.17 5.36
7 8 8 1 1 1.5 2.85 18.43 2.60 10.61
7 8 8 1 1 2 2.73 24.11 2.04 13.13

15 15 20 1 1 1 3.28 27.00 3.25 21.28
15 15 20 1 1 1.5 2.18 28.26 2.10 22.94
15 15 20 1 1 2 1.29 19.41 1.12 10.61

Overall 1.98 17.20 1.72 10.39

We report the standard deviations and MADs in Table 7 and the corresponding ratios in Table
8. As observed above, Algorithm 1 gives estimates whose variability measures are on average
twice as big than those obtained with Algorithm 2.

In conclusion, the observations made for the simulation study on the UMPU test (Appendix
E.1) apply in this case, too: Algorithm 2 outperforms Algorithm 1 in terms of speed and accuracy.

E.3. Computational Details

The simulation study presented in this section was implemented in SAS/IML R©. The software
code is available upon request. We performed the analysis using a standard laptop (CPU Intel
core 2 Duo T6570 CPU 2.10GHz 2.10GHz, RAM 4GB).
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(a) n1 = 6, n2 = 4, µ1 = 1, µ2 = 1 (b) n1 = 6, n2 = 4, µ1 = 1, µ2 = 1.5

(c) n1 = 10, n2 = 15, µ1 = 1, µ2 = 1 (d) n1 = 30, n2 = 20, µ1 = 1, µ2 = 1.5

Figure 1. UMPU tests. Comparison of the convergence to the exact value (solid horizontal line) in 15 seconds of
Algorithm 2 (solid line) and Algorithm 1 (dashed line). The Monte Carlo permutation estimate of FU (u | FN,t)
(dashed horizontal line) is reported too. The number of Monte Carlo permutations for πyobs is 5, 000.
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(a) n1 = 6, n2 = 4, µ1 = 1, µ2 = 1 (b) n1 = 6, n2 = 4, µ1 = 1, µ2 = 1.5

(c) n1 = 10, n2 = 15, µ1 = 1, µ2 = 1 (d) n1 = 10, n2 = 15, µ1 = 1, µ2 = 1.5

Figure 2. UMPU tests. Observed absolute values of the approximation error for Algorithm 1, Ey , the approximation
error for Algorithm 2, Eπ , and the approximation error for the standard permutation sampling, Eperm.
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(a) n1 = 3, n2 = 4, n3 = 3, µ1 = 1, µ1 = 1, µ3 = 2 (b) n1 = 15, n2 = 15, n3 = 20, µ1 = 1, µ2 = 1, µ3 = 1

Figure 3. Linear Regression. Comparison of the convergence to the exact value (solid horizontal line) in 10 seconds of
Algorithm 2 (solid line) and Algorithm 1 (dashed line). The Monte Carlo permutation estimate of FU (u | FN,t) (dashed
horizontal line) is reported too. The number of Monte Carlo permutations for πyobs is 5, 000.
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